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Abstract

Sentiment analysis on Twitter has attracted much attention recently due to
its wide applications in both, commercial and public sectors. In this paper we
present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter.
Different from typical lexicon-based approaches, which offer a fixed and static
prior sentiment polarities of words regardless of their context, SentiCircles takes
into account the co-occurrence patterns of words in different contexts in tweets
to capture their semantics and update their pre-assigned strength and polarity in
sentiment lexicons accordingly. Our approach allows for the detection of sentiment
at both entity-level and tweet-level. We evaluate our proposed approach on three
Twitter datasets using three different sentiment lexicons to derive word prior
sentiments. Results show that our approach significantly outperforms the baselines
in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and
polarity (positive vs. negative) detections. For tweet-level sentiment detection,
our approach performs better than the state-of-the-art SentiStrength by 4-5% in
accuracy in two datasets, but falls marginally behind by 1% in F-measure in the
third dataset.

Keywords: Sentiment analysis, Contextual semantics, Twitter.

1. Introduction

Twitter sentiment analysis has attracted much attention due to the rapid growth
in Twitter’s popularity as a platform for people to express their opinions and
attitudes towards a great variety of topics. Approaches to Twitter sentiment analysis
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tend to focus on the identification of sentiment of individual tweets (tweet-level
sentiment detection). Broadly speaking, existing work on tweet-level sentiment
detection follows two main types of approaches, supervised learning or lexicon-
based.

Supervised learning approaches require training data for sentiment classifier
learning. In Twitter, training data are typically obtained by either assuming that
tweets’ polarities (positive, negative, neutral) can be inferred using emoticons
(Go et al., 2009; Pak and Paroubek, 2010; Kouloumpis et al., 2011; Saif et al.,
2012b) or by taking consensus from the results returned by the sentiment detection
websites (Barbosa and Feng, 2010). Moreover, supervised approaches are domain-
dependent and require re-training with the arrival of new data (Aue and Gamon,
2005). Given the great variety of topics that constantly emerge from Twitter, these
limitations affect the applicability of such approaches.

On the other hand, lexicon-based approaches do not require training data. In-
stead, they use lexicons of words weighted with their sentiment orientations to
determine the overall sentiment of a given text. These approaches have shown to
work effectively on conventional text (Liu, 2010). However, traditional lexicons
tend to be ill-suited for Twitter data, which often contains a large number of mal-
formed words and colloquial expressions (e.g, “looov”, “luv”, “gr8”). Moreover,
many lexicon-based approaches also make use of the lexical structure of a sen-
tence to determine its sentiment, which becomes problematic in Twitter, where
ungrammatical sentences are very common due to the 140-character length limit.
Aiming to overcome these limitations, Thelwall et al. (2010, 2012) introduced a
human-coded lexicon of words and phrases specifically built to work with social
data. They proposed an algorithm called SentiStrength that utilises the lexicon to
identify the sentiment strength of informal text (e.g., tweets, status updates). We
refer to this lexicon as Thelwall-Lexicon hereafter.

SentiStrength has received much attention in recent years due to its relatively
good and consistent performance on social media data. Nevertheless, similarly to
other lexicon-based approaches, SentiStrength and its underlying Thelwall-Lexicon
face two main limitations. Firstly, SentiStrength is confined with the fixed set of
words that appear in the Thelwall-Lexicon. Words that do not appear in the lexicon
are often not considered when analysing sentiment (Xu et al., 2012; Liu, 2010),
which may create a problem when dealing with Twitter data, where new expres-
sions and jargons constantly emerge. Secondly and more importantly, SentiStreg-
nth and the like offer fixed, context-independent, word-sentiment orientations
and strengths. For example, SentiStrength assigns the same sentiment strength
to the word “good” in “It is a very good phone indeed!” and in
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“I will leave you for good this time!”. Although a training al-
gorithm has been proposed to optimize the terms’ sentiment scores in Thelwall-
Lexicon (Thelwall et al., 2010), it requires frequent retraining from human-coded
data, which is labour-intensive and domain dependent.

In this paper we introduce an approach called SentiCircles (Saif et al., 2014c),
which builds a dynamic representation of words that captures their contextual
semantics (i.e., semantics inferred from the co-occurrence patterns of words in
text) in order to tune their pre-assigned sentiment strength and polarity in a given
sentiment lexicon.

Contextual semantics (aka statistical semantics) (Wittgenstein, 1953, 2001) has
been traditionally used in diverse areas of computer science, including Natural
Language Processing and Information Retrieval (Turney et al., 2010). The main
principle behind the notion of contextual semantics comes from the dictum-“You
shall know a word by the company it keeps!” (Firth, 1930- 1955). This suggests
that words that co-occur in a given context tend to have certain relation or semantic
influence, which we try to capture with our SentiCircle approach.

We assess the performance of our proposed SentiCircle approach in two dif-
ferent sentiment analysis tasks: (i) entity-level sentiment detection, which detects
sentiment towards a particular entity or topic (e.g., Obama, Microsoft, iPad), and
(ii) tweet-level sentiment detection, which identifies the overall sentiment of in-
dividual tweets. To this end, we propose three different methods, which utilise
several trigonometric identities on the SentiCircle representation to perform both
sentiment analysis tasks.

We evaluate and test our approach under different settings (three different
sentiment lexicons and three different datasets) and compare its performance
against various lexicon baseline methods. We also compare our approach against
SentiStrength, which, to our knowledge, is considered one of the best lexicon-
based sentiment detection approaches for social media. For entity-level sentiment
detection, our experimental results show that our proposed approach, based on
SentiCircles, outperforms all the other methods by nearly 20% in accuracy and
30-40% in F-measure for subjectivity detection (neutral vs. polar). For tweet-level
sentiment detection, our approach outperforms SentiStrength by 4-5% in accuracy
in two datasets, but falls marginally behind by 1% in F-measure on the third dataset.

The main contributions of this paper can be summarised as follows:

• Introduce a novel lexicon-based approach using a contextual representation
of words, called SentiCircles, which is able to capture the latent seman-
tics of words from their co-occurrence patterns and update their sentiment
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orientations accordingly.

• Propose three different methods of employing SentiCircles for tweet-level
sentiment detection.

• Conduct a series of experiments and test the effectiveness of our proposed
approach for both entity- and tweet-level sentiment detection against several
baselines, including SentiStrength.

• Perform a runtime analysis of our approach to demonstrate its scalability.

• Build and release the STS-Gold (Saif et al., 2013), a new gold-standard
dataset that allows for evaluating both, tweet- and entity-level sentiment
analysis approaches.

The remainder of this paper is structured as follows. Related work on tweet-
level and entity-level sentiment analysis is discussed in Section 2. The proposed
SentiCircle representation of words is presented in Section 3. How to apply
SentiCircles for sentiment analysis is described in Section 4. Experimental setup
and results are presented in Sections 5 and 6 respectively. Discussion and future
work are covered in Section 7. Finally, we conclude our work in Section 8.

2. Related Work

Most existing approaches to Twitter sentiment analysis focus on classifying the
individual tweets as positive or negative. They can be categorised as supervised
methods (those which need training data) and lexicon-based methods (those based
on dictionaries of terms with associated sentiment orientations).

Supervised Machine Learning Methods
Supervised methods are based on training classifiers, such as Naı̈ve Bayes

(NB), Maximum Entropy (MaxEnt), and Support Vector Machines (SVMs), from
various combinations of features, such as word n-grams (Go et al., 2009; Pak and
Paroubek, 2010; Bifet and Frank, 2010), Part-Of-Speech (POS) tags (Barbosa and
Feng, 2010; Agarwal et al., 2011) with or without words’ prior sentiment, words’
semantic concepts (Saif et al., 2012b), sentiment-topic features (Saif et al., 2012a),
semantic patterns (Saif et al., 2014d) and tweets syntax features (e.g, hashtags,
retweets, punctuations, etc.) (Kouloumpis et al., 2011). These methods have
achieved relatively good results with accuracies reported in the range of 80%-84%
as in (Saif et al., 2012a,b). However, training data are difficult to obtain (Liu, 2010),
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especially for the continuously changing and evolving Twitter data. Aiming to
overcome this limitation, the distance supervision approach (Go et al., 2009) makes
use of automatically generated training data, where emoticons such as “:-)” and
“:(” are typically used to label tweets as positive or negative. However, automatic
labelling of training data introduces errors that may affect the performance of the
classifiers (Speriosu et al., 2011). Another limitation of supervised approaches is
their domain dependence, i.e., classifiers trained on data from one domain (e.g.,
tweets relating to health reform) produce unsatisfactory performance when applied
to data from a different domain (e.g., tweets relating to products) (Aue and Gamon,
2005).

Lexicon-based Methods
Lexicon-based methods try to overcome the aforementioned limitations by us-

ing the sentiment orientation of words and phrases in a given document to calculate
its overall sentiment. Instead of using training data, lexicon-based methods rely on
sentiment lexicons, i.e. pre-built dictionaries of words with associated sentiment
orientations such as SentiWordNet (Baccianella et al., 2010), MPQA subjectivity
lexicon (Wilson et al., 2005), or the LIWC lexicon (Pennebaker et al., 2003). These
lexicons, although costly to obtain, once constructed they are applicable to a wide
variety of domains. To reduce the cost of building these sentiment lexicons, some
approaches apply bootstrapping techniques to add words to an initial subset or
seeds (Andreevskaia and Bergler, 2006; Neviarouskaya et al., 2011).

Thelwall et al. (2010, 2012) proposed SentiStrength, a lexicon-based method
for sentiment detection on the Social Web. SentiStrength overcomes the problem
of ill-formed language by applying several lexical rules, such as the existence of
emoticons, intensifiers, negation and booster words (e.g, absolutely, extremely), to
compute the average sentiment strength of an online post. Note that this method,
as well as other existing lexicon-based methods (Taboada et al., 2011), do not only
focus on polarity (positive/negative sentiment) detection, but also on identifying
sentiment strength. In the case of Taboada et al. (Taboada et al., 2011) sentiment
strength varies between -5 (very negative) to +5 (very positive).

One limitation of the lexicon-based methods is that they are restricted by their
lexicons, and more particularly, by the use of static prior sentiment values of terms
regardless of their contexts. Although authors in (Thelwall et al., 2010) have
proposed an algorithm to update the sentiment strength assigned to the terms in the
lexicon, this algorithm requires to be trained from manually annotated corpora.

Another common problem with the above approaches is their full dependence
on the presence of words or syntactical features that explicitly reflect sentiment.
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In many cases however, the sentiment of a word is implicitly associated with the
semantics of its context (Cambria, 2013).

Semantic Sentiment Methods
Several methods have been proposed for exploring semantics for sentiment anal-

ysis, which can be categorised into contextual semantic, and conceptual semantic
approaches.

Contextual semantic approaches determine semantics from the co-occurrence
patterns of words, also known as statistical semantics (Turney et al., 2010; Wittgen-
stein, 1953, 2001), and have often been used for sentiment analysis (Turney, 2002;
Turney and Littman, 2003; Takamura et al., 2005). Turney and Littman (2003),
for example, used pointwise mutual information (PMI) to measure the statistical
correlation between a given word and a balanced set of 14 positive and negative
paradigm words (e.g., good, nice, nasty, poor). The word has positive orientation
if it has a stronger degree of association to positive words than to negative ones,
and vice-versa. Although this work does not require large lexical input knowledge,
its identification speed is very limited (Xu et al., 2012) because it uses web search
engines in order to retrieve the relative co-occurrence frequencies of words. More
importantly, this approach is unable to assign sentiment to words with domain
specific orientations (Ding et al., 2008) due to its limited choice of paradigm words
and its use of the entire web as a corpus. For example, it is unable to distinguish
between “Heavy” as a negative word when describing a mobile phone and as
positive word when describing a wood dining table.

Conceptual semantic approaches use external semantic knowledge bases (e.g.,
ontologies and semantic networks) with NLP techniques to capture the conceptual
representations of words that implicitly convey sentiment. In our previous work
we showed that incorporating general conceptual semantics (e.g., “president”,
“company”) into supervised classifiers improved sentiment accuracy (Saif et al.,
2012b). SenticNet (Cambria et al., 2012)1 is a concept-based lexicon for sentiment
analysis. It contains 14k fine-grained concepts collected from the Open Mind
corpus and coupled with their sentiment orientations. SenticNet was proved
valuable for sentiment detection in conventional text (e.g., product reviews) (Garcia-
Moya et al., 2013). Unlike SentiStrength (Thelwall et al., 2010), SenticNet is not
tailored for Twitter and the like. Although conceptual semantic approaches have
been shown to outperform purely syntactical approaches (Cambria, 2013), they

1http://sentic.net/
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are usually limited by the scope of their underlying knowledge bases, which is
especially problematic when processing general Twitter streams with their rapid
semiotic evolution and language deformations.

Entity-Level Sentiment Analysis Approaches
Compared to tweet-level sentiment analysis, there has been relatively less

research on entity-level sentiment analysis. Batra and Rao (2010), propose the
use of probabilistic models measuring the sentiment of an entity as an aggrega-
tion of the sentiment of all tweets that are associated with that entity. However,
the sentiment of a tweet may or may not be related to the sentiment of an en-
tity which appears in it. For example, the tweet, “The new Twitter for
iPhone is awesome.”, expresses a positive sentiment towards “Twitter”,
but not towards “iPhone”. More recently, supervised approaches have emerged
attempting to address the problem of entity sentiment detection. Jiang et al.
(2011) proposed to train SVM binary classifiers on nearly 2000 manually an-
notated tweets about 5 chosen entities {Obama, Google, iPad, Lakers,
Lady Gaga}, achieving about 68% accuracy for entity-level sentiment clas-
sification. Meng et al. (2012) also trained a SVM classifier on 500 annotated
tweets about 6 entities {Obama, Lady Gaga, David Cameron, Nokia,
Apple, Microsoft}. The trained classifier achieved 83% F-measure on entity-
level sentiment classification based on 5-fold cross validation using the annotated
tweets. However, these approaches rely on training data, which is costly to obtain
and lack portability to other domains.

Aiming at addressing the limitations of the aforementioned works, we have
designed our SentiCircle approach in a way that: 1) it follows a lexicon-based
approach and hence it can be applied to Twitter data from different domains, 2) it
is context-sensitive, i.e., it updates the sentiment score of words on the fly based
on the contexts they appear in (i.e., their contextual semantics), and 3) it works for
entity- and tweet-level sentiment detection.

3. SentiCircle Representation of Words

In this section, we introduce our SentiCircle approach and its use for capturing
the contextual semantics and sentiment of words.

SentiCircle aims to learn the sentiment orientation of words from their contex-
tual semantics. The main notion behind this is that the sentiment of a term is not
static, as in traditional lexicon-based approaches, but rather depends on the context
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in which the term is used, i.e., it depends on its contextual semantics. We define
context as a textual corpus or a set of tweets.

To capture the words’ contextual semantics we follow the distributional hy-
pothesis that, words that occur in similar contexts tend to have similar meanings
(Wittgenstein, 1953, 2001; Turney et al., 2010). Therefore, the contextual seman-
tics of a term m in our approach is computed from its co-occurrence patterns with
other terms.

Tweets	
  
Term	
  Indexing	
  >	
  POS-­‐Tagging	
  >	
  Nega6on	
  

Sen6Circle	
  Genera6on	
  

Sen6ment	
  Iden6fica6on	
  

Term-­‐Context	
  Vector	
  
Genera6on	
  

Contextual	
  Features	
  
Genera6on	
  

Sen6ment	
  
Lexicon	
  

Figure 1: The systematic workflow of the SentiCircle approach for Sentiment Analysis

Figure 1 shows the systematic workflow of our approach, which can be sum-
marised in the following steps:

• Term Indexing: This step creates an index of terms (term-index) from a
collection of tweet messages. Several text processing procedures are applied
during the process such as: Filtering Non-English terms, Part-Of-Speech
tagging and Negation (Section 3.2). Note that we do not remove stopwords
from tweets since they tend to carry sentiment information as shown in (Saif
et al., 2014b,a).

• Term-Context Vector Generation: This step represents each term m as a
vector of all its context terms (i.e., terms that occur with m in the same
context) in the tweets. (See below for a formal definition).

• Contextual Features Generation: We compute, for each term, its degree of
correlation to all its context terms. We also assign an initial score to these
context terms using an external sentiment lexicon.

• SentiCircle Generation: This step converts the term-context vector of m into
a 2D geometric circle, which is composed of points denoting the context
terms of m. Each context term is located in the circle based on its angle
(defined by its prior sentiment), and its radius (defined by its degree of
correlation with the term m) (Section 3.1).
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• Sentiment Identification: Here, we apply different methods that utilise several
trigonometric identities on SentiCircles to perform sentiment identification
at either entity- or tweet-level (Section 4).

Definition (Term-Context Vector) Given a set of tweet messages T , the term-
context vector of a term m is a vector c = (c1, c2, ..., cn) of terms that occur with
m in any tweet in T .
The contextual semantics of m is determined by its semantic relation to each
context term ci ∈ c. We compute the individual semantic relation between m and
a context term ci, by assigning the following two main features to ci:

• Prior Sentiment Score: Each context term ci is assigned to a prior sentiment
score based on its POS tag(s) by using one of the three external sentiment
lexicons used in this paper (Section 5.3).

• Term Degree of Correlation (TDOC): This feature represents the degree of
correlation between a term m and its context term ci ∈ c (i.e., how important
ci is to m). Inspired by the TF-IDF weighting scheme, we compute the value
of this feature as:

TDOC(m, ci) = f(ci,m)× log
N

Nci

(1)

where f(ci,m) is the number of times ci occurs with m in tweets, N is the
total number of terms, and Nci is the total number of terms that occur with
ci.

3.1. SentiCircles Represention of Semantics
Now we have for each term m a vector of its context terms c along with the two

semantic mutual features between m and each ci ∈ c. From these information, we
represent the contextual semantics of the term m as a geometric circle; SentiCircle,
where the term is situated in the centre of the circle, and each point around it
represents a context term ci. The position of ci is defined jointly by its prior
sentiment and its degree of correlation (TDOC). The rational behind using this
circular representation shape, which will become clearer later, is to benefit from
the trigonometric properties it offers for estimating the sentiment orientation,
and strength, of terms. It also enables us to calculate the impact of context
words on the sentiment orientation and on the sentiment strength of a target-
word separately, which is difficult to do with traditional vector representations.
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Formally, a SentiCircle in a polar coordinate system can be represented with the
following equation:

r2 − 2rr0cos(θ − φ) + r20 = a2 (2)

Where a is the radius of the circle, (r0, φ) is the polar coordinate of the center
of the circle, and (r, θ) is the polar coordinate of a context term on the circle. For
simplicity, we assume that our SentiCircles are centred at the origin (i.e, r0 = 0).

Hence, to build a SentiCircle for a term m, we only need to calculate, for each
context term ci a radius ri and an angle θi. To do that, we use the prior sentiment
score and the T-DOC value of the term ci as:

ri = TDOC(m, ci) (3)
θi = Prior Sentiment(ci) ∗ π

Note that since each context term may have several prior sentiment scores based
on its POS tag(s) in tweets, the value returned by function Prior Sentiment(ci)
is the average sentiment score of all the term’s occurrences.

We normalise the radii of all the terms in a SentiCircle to a scale between 0 and
1. Hence, the radius a of any SentiCircle is equal to 1. Also, all angles’ values are
in radian.

Ci 

ri = TDOC(Ci) 
θi = Prior_Sentiment (Ci) 

X 

Y 

ri 

θi 

xi 

yi 

m 

Positive Very Positive 

Very Negative Negative 

+1 

-1 

+1 -1 Neutral  
Region 

Figure 2: SentiCircle of a term m

The SentiCircle in the polar coordinate system can be divided into four sen-
timent quadrants as shown in Figure 2. Terms in the two upper quadrants have
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a positive sentiment (sin θ > 0), with upper left quadrant representing stronger
positive sentiment since it has larger angle values than those in the top right
quadrant. Similarly, terms in the two lower quadrants have negative sentiment
values (sin θ < 0). Although the radius of the SentiCircle of any term m equals
to 1, points representing context terms of m in the circle have different radii
(0 ≤ ri ≤ 1), which reflect how important a context term is to m. The larger the
radius, the more important the context term to m.

We can move from the polar coordinate system to the Cartesian coordinate
system by simply using the trigonometric functions sine and cosine as:

xi = ri cos θi yi = ri sin θi (4)

Moving to the Cartesian coordinate system allows us to use the trigonometric
properties of the circle to encode the contextual semantics of a term in the circle as
sentiment orientation and sentiment strength. Y-axis in the Cartesian coordinate
system defines the sentiment of the term, i.e., a positive y value denotes a positive
sentiment and vice versa. The X-axis defines the sentiment strength of the term.
The smaller the x value, the stronger the sentiment.2 Moreover, a small region
called the “Neutral Region” can be defined. This region, as shown in Figure 2,
is located very close to X-axis in the “Positive” and the “Negative” quadrants
only, where terms lie in this region have very weak sentiment (i.e., |θ| ≈ 0). The
“Neutral Region” has a crucial role in measuring the overall sentiment of a given
SentiCircle as will be shown in the subsequent sections.

Note that in the extreme case, where ri = 1 and θi = π we position the context
term ci in the “Very Positive” or the “Very Negative” quadrants based on the sign of
its prior sentiment score.

Figure 3 shows the SentiCircles of the entities “iPod” and “Taylor Swift”.
Terms (i.e., points) inside each circle are positioned in a way that represents their
sentiment scores and their importance (degree of correlation) to the entity. For
example, “Awesome” in the SentiCircle of “Taylor Swift” has a positive
sentiment and a high importance score, hence it is positioned in the “Very Positive”
quadrant (See Figure 3(b)). The word “Pretty”, in the same circle, also has
positive sentiment, but it has lower importance score than the word “Awesome”,
hence it is positioned in the “Positive” quadrant. We also notice that there are
some words that appear in both circles, but in different positions. For example, the
word “Love” has a stronger positive sentiment strength with “Taylor Swift”

2This is because cos θ < 0 for large angles.
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compared to “iPod”, although it has a positive sentiment (similar y-value) in both
circles.

As described earlier, the contribution of both quantities (prior sentiment and
term degree of correlation) is calculated and represented in the SentiCircle sep-
arately by means of the projection of the context term along X-axe (sentiment
strength) and Y-axe (sentiment orientation). Such level of granularity is crucial
when we need, for example, to filter those context words that have low contribution
towards the sentiment orientations or strength of the target word.

(a) iPod. (b) Taylor Swift.

Figure 3: Example SentiCircles for “iPod” and “Taylor Swift”. We have removed points near the
origin for easy visualisation. Dots in the upper half of the circle (triangles) represent terms bearing
a positive sentiment while dots in the lower half (squares) are terms bearing a negative sentiment.

3.2. Negation
When constructing the SentiCircle representations, if a term t, with an asso-

ciated sentiment score st appears in the tweet within the vicinity of a negation,
its sentiment score is negated for the construction of the SentiCircle (−st). For
example, in the tweet “iPad is not amazing!”, the term “amazing” is
preceded by a negation. Therefore, instead of using its original sentiment score
(0.75 in the SentiWordNet lexicon for example) we use this score negated (-0.75).
The negation words are collected from the General Inquirer under the NOTLW
category.3

3http://www.wjh.harvard.edu/˜inquirer/NotLw.html
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3.3. Senti-Median - Contextual Sentiment Value
The previous examples in Section 3.1 show that, although we use external

lexicons to assign initial sentiment scores to terms, our SentiCircle representation
is able to amend these scores according to the context in which each term is used.
To compute the new sentiment of the term based on its SentiCircle we use the
Senti-Median metric.

We now have the SentiCircle of a term m, which is composed by the set
of (x, y) Cartesian coordinates of all the context terms of m, where the y value
represents the sentiment and the x value represents the sentiment strength. An
effective way to approximate the overall sentiment of a given SentiCircle is by
calculating the geometric median of all its points. Formally, for a given set of n
points (p1, p2, ..., pn) in a SentiCircle Ω, the 2D geometric median g is defined as:

g = arg min
g∈R2

n∑
i=1

||pi − g||2, (5)

where the geometric median is a point g = (xk, yk) in which its Euclidean distances
to all the points pi is minimum. We call the geometric median g the Senti-Median
as it captures the sentiment (y-coordinate) and the sentiment strength (x-coordinate)
of the SentiCircle of a given term m.

4. SentiCircles for Sentiment Analysis

In this section, we show how the SentiCircle representation can be used in two
different sentiment analysis tasks; entity- and tweet-level sentiment detection.

4.1. Entity-level Sentiment Detection
Given an entity, ei ∈ E , and its corresponding SentiCircle representation, the

sentiment of the entity is given by the Senti-Median g of the SentiCircle (i.e., by
the geometric median of all the points that compose the SentiCircle). Following the
representation provided in Figure 2, if the Senti-Median g lies inside the “Neutral
Region”, the entity will have a neutral sentiment. If g lies in one of the positive
quadrants, the entity will have a positive sentiment and, if g lies in the negative
quadrants, the entity will have a negative sentiment.

Formally, given a Senti-Median ge of an entity e, the entity-sentiment function
L works as:
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L(ge) =


negative if yg < −λ
positive if yg > +λ
neutral if —yg| ≤ λ & xg ≥ 0

(6)

where λ is the threshold that defines the Y-axis boundary of the neutral region.
Section 5.4 illustrates how this threshold is computed.

4.2. Tweet-level Sentiment Detection
Given a tweet, ti ∈ T , there are several ways in which the SentiCircle rep-

resentations of the terms that compose the tweet can be used to determine the
tweet’s overall sentiment. For example, the tweet “iPhone and iPad are
amazing” contains five terms. Each of these terms has an associated SentiCir-
cle representation. These five SentiCircles can be combined in different ways in
order to extract the sentiment associated to the tweet. In this section we propose
three different methods that exploit the SentiCircle representation for tweet-level
sentiment detection.

4.2.1. The Median Method
This method works by representing each tweet message ti ∈ T as a vector of

Senti-Medians g = (g1, g2, ..., gn) of size n, where n is the number of terms that
compose the tweet and gj is the Senti-Median of the SentiCircle associated to term
mj . Equation 5 is then used to calculate the median point q of g, which we use to
determine the overall sentiment of tweet ti using Function 6.

4.2.2. The Pivot Method
This method favours some terms in a tweet over others, based on the assumption

that sentiment is often expressed towards one or more specific targets, which we
refer to as “Pivot” terms. In the tweet example above, there are two pivot terms,
“iPhone” and “iPad” since the sentiment word “amazing” is used to describe
both of them. Hence, the method works by (1) extracting all pivot terms in a tweet
and; (2) accumulating, for each sentiment label, the sentiment impact that each
pivot term receives from other terms. The overall sentiment of a tweet corresponds
to the sentiment label with the highest sentiment impact.

Opinion target identification is a challenging task and is beyond the scope of our
current study. For simplicity, we assume that the pivot terms are those having the
POS tags: {Common Noun, Proper Noun, Pronoun} in a tweet. For each candidate
pivot term, we build a SentiCircle from which the sentiment impact that a pivot
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term receives from all the other terms in a tweet can be computed. Formally, the
Pivot-Method seeks to find the sentiment ŝ that receives the maximum sentiment
impact within a tweet as:

ŝ = arg max
s∈S
Hs(p)

= arg max
s∈S

Np∑
i

Nw∑
j

Hs(pi, wj), (7)

where s ∈ S = {Positive,Negative,Neutral} is the sentiment label, p is a
vector of all pivot terms in a tweet, Np and Nw are the sets of the pivot terms and
the remaining terms in a tweet respectively. Hs(pi, wj) is the sentiment impact
function, which returns the sentiment impact of a term wj in the SentiCircle of a
pivot term pi. The sentiment impact of a term within a SentiCircle of a pivot term
is the term’s Euclidean distance from the origin (i.e., the term’s radius) as shown in
Figure 4. Note that the impact value is doubled for all terms located either in the
“Very Positive” or in the “Very Negative” quadrants.

w1 

X 

Y 

r1 
θ1 

Positive Very Positive 

Very Negative Negative 

w2 

pj 
r2 
θ2 

W1 W2 Pj Wn 

Sj1 

Sj2 

Tweet tk 

... 

Figure 4: The Pivot Method. The figure shows a SentiCircle of a pivot term pi. The sentiment
strength Si1 of word w1 with respective to the pivot term pi is the radius r1 in the SentiCircle, and
likewise for Si2.

4.2.3. The Pivot-Hybrid Method
The Pivot Method, as described in the previous section, relies on both the

syntactical structure of a tweet and the sentiment relations among its terms. As
such, it may suffer from the lack of pivot terms when the tweet message is too
short or it contains many ill-formed words. In such a case, we resort to the Median
method, and call this the Pivot-Hybrid method.
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5. Experimental Setup

As mentioned in Section 4, the contextual semantics captured by the SentiCircle
representation are based on terms co-occurrence from the corpus and an initial set
of sentiment weights from a sentiment lexicon. We propose an evaluation set up
that uses three different corpora (collections of tweets) and three different generic
sentiment lexicons. This enables us to assess the influence of different corpora and
lexicons on the performance of our SentiCircle approach.

5.1. Datasets
In this section, we present the three datasets used for the evaluation; OMD,

HCR and STS-Gold. We use the OMD (Diakopoulos and Shamma, 2010) and
HCR (Speriosu et al., 2011) datasets4 to assess the performance of our approach at
the tweet level only since they provide human annotations for tweets but not for
entities (i.e., each tweet is assigned a positive, negative or neutral sentiment label).

Due to the lack of gold-standard datasets for evaluating entity-level sentiment,
we have generated an additional dataset (STS-Gold) (Saif et al., 2013).5 This
dataset contains both, tweet and entity sentiment ratings and therefore, we use it in
this paper to assess the performance of SentiCircles at both the entity and the tweet
levels.

Numbers of positive and negative tweets within the three datasets are sum-
marised in Table 1 and further described below:

Dataset Tweets Positive Negative
OMD(Diakopoulos and Shamma, 2010) 1081 393 688
HCR(Speriosu et al., 2011) 1354 397 957
STS-Gold(Saif et al., 2013) 2034 632 1402

Table 1: Twitter datasets used for the evaluation

Obama-McCain Debate (OMD)
This dataset was constructed from 3,238 tweets crawled during the first U.S.

presidential TV debate in September 2008 (Diakopoulos and Shamma, 2010).
Sentiment ratings of these tweets were acquired using Amazon Mechanical Turk,
where each tweet was rated by one or more voter as either positive, negative, mixed,

4https://bitbucket.org/speriosu/updown
5http://tweenator.com
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or other. We only keep those tweets rated by at least three voters with half of
the votes being either positive or negative to ensure their sentiment polarity. This
resulted in a set of 1,081 tweets with 393 positive and 688 negative ones.

Health Care Reform (HCR)
The HCR dataset was built by crawling tweets containing the hashtag “#hcr”

(health care reform) in March 2010 [14]. A subset of this corpus was manually
annotated with three polarity labels (positive, negative, neutral) and split into
training and test sets. In this paper we focus on identifying positive and negative
tweets and therefore we exclude neutral tweets from this dataset. This resulted in a
set of 1354 tweets, 397 positive and 957 negative.

Standford Sentiment Gold Standard (STS-Gold)
We constructed this dataset as a subset of the Stanford Twitter Sentiment Corpus

(STS) (Go et al., 2009). It contains 2,034 tweets (632 positive and 1402 negative)
and 58 entities manually annotated by three different human evaluators (See Table
3). To avoid noisy or misleading data in the created dataset, the entities and tweets
selected for these dataset are those for which the three human evaluators agreed on
the same sentiment label.

In the following we describe the construction and the annotation of the STS-
Gold dataset.

Data Acquisition: To construct this dataset, we first extracted all named enti-
ties from a collection of 180K tweets randomly selected from the original Stanford
Twitter corpus (Go et al., 2009). To this end, we used AlchemyAPI,6 an online
service that allows for the extraction of entities from text along with their associated
semantic concept class (e.g., Person, Company, City). After that, we identified the
top most frequent semantic concepts and, selected under each of them, the top 2
most frequent and 2 mid-frequent entities. For example, for the semantic concept
Person we selected the top most frequent entities (Taylor Swift and Obama) as
well as two mid frequent entities (Oprah and Lebron). This resulted in 28 different
entities along with their 7 associated concepts as shown in Table 2.

The next step was to construct and prepare a collection of tweets for sentiment
annotation, ensuring that each tweet in the collection contains one or more of the
28 entities listed in Table 2. To this aim, we randomly selected 100 tweets from

6www.alchemyapi.com
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Concept Top 2 Entities Mid 2 Entities
Person Taylor Swift, Obama Oprah, Lebron
Company Facebook, Youtube Starbucks, McDonalds
City London, Vegas Sydney, Seattle
Country England, US Brazil, Scotland
Organisation Lakers, Cavs Nasa, UN
Technology iPhone, iPod Xbox, PSP
HealthCondition Headache, Flu Cancer, Fever

Table 2: 28 Entities, with their semantic concepts, used to build STS-Gold.

the remaining part of the STS corpus for each of the 28 entities, i.e., a total of
2,800 tweets. We further added another 200 tweets without specific reference to
any entities to add up a total of 3,000 tweets. Afterwards, we applied AlchemyAPI
on the selected 3,000 tweets. Apart from the initial 28 entities the extraction tool
returned 119 additional entities, providing a total of 147 entities for the 3,000
selected tweets.
Data Annotation: We asked three graduate students to manually label each
of the 3,000 tweets with one of the five classes: (Negative, Positive,
Neutral, Mixed and Other). The “Mixed” label was assigned to tweets
containing mixed sentiment and “Other” to those that were difficult to decide on
a proper label. The students were also asked to annotate each entity contained in
a tweet with the same five sentiment classes. The students were provided with a
booklet explaining both the tweet-level and the entity-level annotation tasks. The
booklet also contains a list of key instructions (Saif et al., 2013). It is worth noting
that the annotation was done using Tweenator,7 an online tool that we previously
built to annotate tweet messages (Saif et al., 2012a).

We measured the inter-annotation agreement using the Krippendorff’s alpha
metric (Krippendorff, 1980), obtaining an agreement of αt = 0.765 for the tweet-
level annotation task. For the entity-level annotation task, if we measured sentiment
of entity for each individual tweet, we only obtained αe = 0.416 which is relatively
low for the annotated data to be used. However, if we measured the aggregated
sentiment for each entity, we got a very high inter-annotator agreement of αe =
0.964.

7http://tweenator.com/
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To construct the final STS-Gold dataset we selected those tweets and entities for
which our three annotators agreed on the sentiment labels, discarding any possible
noisy data from the constructed dataset. As shown in Table 3 the STS-Gold dataset
contains 13 negative, 27 positive and 18 neutral entities as well as 1,402 negative,
632 positive and 77 neutral tweets.

It it worth noting that we use SentiCircles to perform polarity classification of
tweets, and therefore we only consider those positive and negative tweets in the
STS-Gold dataset for evaluation.

Class Negative Positive Neutral Mixed Other
No. of Entities 13 27 18 - -
No. of Tweets 1402 632 77 90 4

Table 3: Number of tweets and entities under each class

5.2. Sentiment Lexicons
As describe in Section 3, the initial sentiment of terms in a SentiCircle are

extracted from a sentiment lexicon (prior sentiment). We evaluate our approach
using three external sentiment lexicons in order to study how the different prior
sentiment scores of terms influence the performance of the SentiCircle represen-
tation for sentiment analysis. The aim is to investigate the ability of SentiCircles
in updating these context-free prior sentiment scores based on the contextual se-
mantics extracted from different tweets corpora. We selected three state-of-art
lexicons for this study: (i) the SentiWordNet lexicon (Baccianella et al., 2010), (ii)
the MPQA subjectivity lexicon (Wilson et al., 2005) and, (iii) Thelwall-Lexicon
(Thelwall et al., 2010, 2012).

5.3. Baselines
We compare the performance of our propose SentiCircle representation when

being used for tweet and entity sentiment analysis against the following baselines:
Lexicon Labelling Method. This method uses the MPQA and the SentiWord-

Net lexicons to extract the sentiment of a given text. If a tweet contains more
positive words than negative ones, it is labelled as positive, and vice versa. For
entity-level sentiment detection, the sentiment label of an entity is assigned based
on the number of positive and negative words that co-occur with the entity in its
associated tweets. In our evaluation, we refer to the method that uses the MPQA
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lexicon as MPQA-Method and to the method that uses the SentiWordNet lexicon
as SentiWordNet-Method.

SentiStrength. SentiStength (Thelwall et al., 2010, 2012) is a state-of-the-art
lexicon-based sentiment detection approach. It assigns to each tweet two sentiment
strengths: a negative strength between -1 (not negative) to -5 (extremely negative)
and a positive strength between +1 (not positive) to +5 (extremely positive). To use
SentiStrength for tweet-level sentiment detection, a tweet is considered positive
if its positive sentiment strength is 1.5 times higher than the negative one, and
negative otherwise8. For entity-level sentiment detection, the sentiment of an entity
is assigned based on the total number of positive, negative tweets in which the
entity occurs. It is worth noticing that SentiStrength requires the manually-defined
lexical rules, such as the existence of emoticons, intensifiers, negation and booster
words (e.g, absolutely, extremely), to compute the average sentiment strength of a
tweet.

Subjectivity Classification (Subjective vs. Objective)

Methods Accuracy Subjective Objective Average
P R F1 P R F1 P R F1

MPQA-Method 63.79 67.27 92.50 77.89 0 0 0 33.64 46.25 38.95
SentiWordNet-Method 63.79 67.27 92.50 77.89 0 0 0 33.64 46.25 38.95
SentiStrength 62.07 64.15 91.89 75.56 40.00 9.52 15.38 52.08 50.71 51.38
Senti-Median (SentiWordNet) 81.03 90.91 78.95 84.51 68.00 85.00 75.56 79.45 81.97 80.03
Senti-Median (MPQA) 77.59 90.00 72.97 80.60 64.29 85.71 73.47 77.14 79.34 77.03
Senti-Median (Thelwall-Lexicon) 79.31 84.85 80.00 82.35 72.00 78.26 75.00 78.42 79.13 78.68

Polarity Classification (Positive vs Negative)

Methods Accuracy Positive Negative Average
P R F1 P R F1 P R F1

MPQA-Method 72.5 80 92.31 85.71 71.43 45.45 55.56 75.71 68.88 70.63
SentiWordNet-Method 77.50 88.00 88.00 88.00 75.00 75.00 75.00 81.50 81.50 81.50
SentiStrength 85.00 95.65 81.48 88.00 70.59 92.31 80.00 83.12 86.89 84.00
Senti-Median (SentiWordNet) 87.50 89.29 92.59 90.91 83.33 76.92 80.00 86.31 84.76 85.45
Senti-Median (MPQA) 85.00 86.21 92.59 89.29 81.82 69.23 75.00 84.01 80.91 82.14
Senti-Median (Thelwall-Lexicon) 82.50 85.71 88.89 87.27 75.00 69.23 72.00 80.36 79.06 79.64

Table 4: Entity-level sentiment analysis results.

5.4. Thresholds and Parameters Tuning
When computing the sentiment of a point within a SentiCircle (Function 6) it is

necessary to determine beforehand the geometric boundaries of the neutral region
(the region defining the neutral terms) within the SentiCircle. While the boundaries
of the neutral region are fixed for the X-axis [0, 1] (see Section 3.1), the boundaries

8http://sentistrength.wlv.ac.uk/documentation/
SentiStrengthJavaManual.doc
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of the Y-axis need to be determined. We have observed that the neutral area of a
SentiCircle is defined by a high density of terms, since the number of neutral terms
in the SentiCircle is usually larger than the number of positive and negative terms.

Figure 5: Density geometric distribution of terms on the OMD dataset.

The limits of the neutral region vary from one SentiCircle to another. For sim-
plicity, we assume the same neutral region boundary for all SentiCircles emerging
from the same corpus and sentiment lexicon. To compute these thresholds we
first build the SentiCircle of the complete corpus by merging all SentiCircles of
each individual term and then we plot the density distribution of the terms within
the constructed SentiCircle. The boundaries of the neutral area delimited by an
increase/decrease in the density of terms.

SentiWordNet MPQA Thelwall-Lexicon
OMD [-0.01, 0.01] [-0.01, 0.01] [-0.01, 0.01]
HCR [-0.1, 0.1] [-0.05, 0.05] [-0.05, 0.05]
STS-Gold [-0.1, 0.1] [-0.05, 0.05] [-0.001, 0.001]

Table 5: Neutral region boundaries for Y-axis.

Figure 5 shows the three density distribution plots for the OMD dataset with
SentiWordNet, MPQA and Thelwall lexicons. The boundaries of the neutral area
are delimited by the density increase, falling in the [−0.01, 0.01] range. Note that
the generated SentiCircles vary depending on the corpus and sentiment lexicon.
For evaluation, we have computed nine different neutral regions, one for each
corpus and sentiment lexicon used, as shown in Table 5.
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6. Experiment Results

We report the performance of our proposed approaches in comparison with
the baselines in both the entity- and tweet-level sentiment detection tasks. For
entity-level sentiment detection, we conduct experiments on the STS-Gold dataset,
while for tweet-level sentiment detection, we use the OMD, HCR and STS-Gold
datasets.

6.1. Entity-Level Sentiment Detection
For entity-level sentiment detection, we employ our proposed Senti-Median

method (See Section 4.1) with SentiWordNet, MPQA and Thelwall lexicons to
identify the overall sentiment of the SentiCircle of a given entity. We report the
results in accuracy, precision, recall and F-measure on two identification tasks: sub-
jectivity detection, which identifies whether a given entity is subjective (positive
or negative) or objective (neutral). The second task is polarity detection, which
identifies whether the entity has positive or negative sentiment. Both identification
tasks are applied on 58 different entities (See Section 5.1).

It can be observed from the upper panel of Table 4 that, for subjectivity identi-
fication, our proposed Senti-Median method outperforms all the baselines with a
large margin. In particular, merely using MPQA or SentiWordNet for sentiment
labelling fails to detect any objective (neutral) entities. SentiStrength only achieves
an F-measure of 15% for objective entity detection. On the contrary, our proposed
Senti-Median method gives relatively balanced results on both subjective and
objective identification. Senti-Median, with the word prior sentiment obtained
from SentiWordNet, attains the best overall result with 81% in accuracy and 80%
in F-measure, which outperforms the baselines by nearly 20% in accuracy and
30-40% in F-measure.

The lower panel of Table 4 shows the results of binary polarity identification
(positive vs. negative) at entity-level. SentiStrength performs better than MPQA-
Method and SentiWordNet-Method, with 85% in accuracy and 84% in F-measure.
Although our Senti-Median method, with word prior sentiment obtained from
either MPQA or Thelwall-Lexicon, does not seem to bring any improvement over
SentiStrength, Senti-Median based on SentiWordNet outperforms SentiStrength by
2.5% in accuracy and 1.5% in F-measure.

6.2. Tweet-Level Sentiment Detection
For tweet-level sentiment detection, we report the evaluation results using the

Median method, the Pivot method and the Pivot-Hybrid method with SentiWordNet,
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Figure 6: Tweet-level sentiment detection results (Accuracy and F-measure), where ML: MPQA-
Method, SL: SentiWordNet-Method, SS: SentiStrength, Mdn: SentiCircle with Median method,
Pvt: SentiCircle with Pivot method, Hbd: SentiCircle with Pivot-Hybrid

SentiWN MPQA Thelwall-Lex Avg
Words found in the lexicon 54.86 16.81 9.61 27.10
Hidden words 45.14 83.19 90.39 72.90
Words flipped their sentiment orientation 65.35 61.29 53.05 59.90
Words changed their sentiment strength 29.30 36.03 46.95 37.43
New opinionated words 49.03 32.89 34.88 38.93

Table 6: Average percentage of words in three datasets, which their sentiment orientation or strength
were updated by their SentiCircles

MPQA and Thelwall lexicons on OMD, HCR and STS-Gold datasets. We also
compare these results with those obtained from the baselines described in Section
5.3.

Figure 6 shows the results in accuracy (left column) and average F-measure
(right column) of all the methods and across all the datasets. It can be observed that
all our three methods outperform the MPQA-Method and SentiWordNet-Method
baseline in both accuracy and average F-measure on all the datasets. On the OMD
dataset, we observe a trend that Median < Pivot < Pivot-Hybrid. Both of our
Pivot and Pivot-Hybrid methods give an average performance gain of 3.17% in
accuracy and 4.3% in F-measure over SentiStrength with word prior sentiments
obtained from either MPQA or Thelwall-Lexicon. The Median method does not
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bring any performance gain over SentiStrength. Overall, the best result is achieved
by our Hybrid-Pivot method with word prior sentiments obtained from MPQA. It
outperforms SentiStrength by nearly 5% in accuracy and 6% in F-measure.

On the HCR dataset all our three methods gave higher accuracy than Sen-
tiStrength, with word prior sentiments obtained from either MPQA or Thelwall-
Lexicon. In particular, The Median method coupled with MPQA outperforms
SentiStrength by nearly 4% in accuracy. In terms of F-measure, the Median
method based on MPQA gives a similar result as SentiStrength.

While the best sentiment classification accuracy on the OMD or HCR datasets is
only about 70%, we managed to achieve 80% on the STS-Gold dataset in sentiment
classification accuracy. We observe that the Pivot-Hybrid method outperforms both
the Median and the Pivot methods, regardless of where the word prior sentiments
are obtained from, for the STS-Gold dataset. Nevertheless, the Pivot-Hybrid
method using Thelwall-Lexicon gives 1% lower accuracy and F-measure than
SentiStrength which uses the same lexicon.

The above results show a close competition between our three SentiCircle
methods and the SentiStrength method. The average accuracy of SentiCircle and
SentiStrength across all three datasets is 72.39% and 71.7% respectively, and for
F-measure it is 65.98% and 66.52%. Also, the average precision and recall for
SentiCircle are 66.82% and 66.12% and for SentiStrength are 67.07% and 66.56%
respectively.

Although the potential is evident, clearly there is a need for more research
to determine the specific conditions under which SentiCircle performs better or
worse. One likely factor that influences the performance of SentiCircle is the
balance of positive to negative tweets in the dataset. For example, we notice that
SentiCircle produces, on average, 2.5% lower recall than SentiStrength on positive
tweet detection. This is perhaps not surprising since our evaluation dataset contain
more negative tweets than positive ones with the number of the former more than
double the number of the latter (see Table 1).

6.3. Impact on Words’ Prior Sentiment
Remember that the motivation behind SentiCircle is that sentiment of words

may vary with context. By capturing the contextual semantics of these words,
using the SentiCircle representation, we aim to adapt the strength and polarity of
words. We show here the average percentage of words in our three datasets for
which SentiCircle changed their prior sentiment orientation or strength.

Table 6 shows that on average 27.1% of the unique words in our datasets were
covered by the sentiment lexicons and were assigned prior sentiments accordingly.
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Using the SentiCircle representation, however, resulted in 59.9% of these words
flipping their sentiment orientations (e.g., from positive to negative, or to neutral)
and 37.43% changing their sentiment strength while keeping their prior sentiment
orientation. Hence only 2.67% of the words were left with their prior sentiment
orientation and strength unchanged. It is also worth noting that our model was
able to assign sentiment to 38.93% of the hidden words that were not covered by
the sentiment lexicons. In future work we plan to investigate these results further
to understand the influence of these type of changes individually on the overall
sentiment analysis performance.

Our evaluation results showed that our SentiCircle representation coupled
with the MPQA or Thelwall lexicons gives the highest performance amongst the
other three lexicons. However, Table 6 shows that only 9.61% of the words in
the three datasets were covered by the Thelwall-Lexicon, and 16.81% by MPQA.
Nevertheless, SentiCircle performed best with these two lexicons, which suggests
that it was able to cope with this low coverage by assigning sentiment to a large
proportion of the hidden words.

6.4. Runtime Analysis
In this section we perform runtime analysis of the various methods and algo-

rithms that constitute our SentiCircle model. To this end, we apply our model to the
STS-Gold dataset using a computer with a i7 core CPU 2.3GHz and 8G memory.
According to the results reported in Table 7, building a term-index out of 2034
tweets (5035 unique terms) takes 13.8 seconds. This is not surprising given that
this task involves several subtasks (tokenization, part-of-speech tagging, negation,
Non-English text filtering). We also construct context-term vectors and extract the
terms’ contextual features during this task as they all happen together. Although
13.8 seconds sounds relatively slow, building a term-index for a tweet collection
is a one-time task, i.e., once it is built, the term-index can be used to perform
various tasks in a relatively short time. For example, composing a SentiCircle from
the term-index takes only 47.18 milliseconds. Moreover, the term-index can be
updated with new tweets on the fly, where it takes 6.6 milliseconds to add a new
tweet to the index.

We also estimate the runtime of our sentiment detection methods at entity and
tweet levels. For entity-level, calculating Senti-Median takes 10 milliseconds per
entity. For tweet-level, the Median method takes 16.9 milliseconds per tweet while
the Pivot and Pivot-Hybrid methods take 0.01 and 4.53 milliseconds respectively.
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Task Run Time
Term-Index(Generate) 13.8 second
Term-Index(Update) 6.6 millisecond
SentiCircle 47.18 millisecond
Senti-Median Method 10 millisecond
Median Method Method 16.9 millisecond
Pivot Method 0.01 millisecond
Pivot-Hybrid Method 4.53 millisecond

Table 7: Runtime analysis of the SentiCircle model on the STS-Gold dataset

7. Discussion and Future Work

We showed the potential of using SentiCircles for sentiment detection at the
entity and tweet levels. Due to the sheer lack of gold-standard datasets for evaluat-
ing entity-level sentiment, we constructed our own. We hope this will encourage
further of such datasets to be made and released to help us expand this part of
our evaluation, which is showing a high increase in performance in comparison to
other methods.

We have seen that merely using MPQA or SentiWordNet for sentiment labelling
fails to detect any neutral entities. This is expected since words in both lexicons are
oriented with positive and negative scores, but not with neutral ones. SentiCircles,
on the other hand, was able to amend sentiment scores of words in both lexicons
based on contexts - hence achieving a much higher performance in detecting neutral
entities than all the baselines. We plan to compare our approach against more
sophisticated methods including machine learning ones, such as those based on
Support Vector Machine (SVM) and Maximum Entropy (MaxEnt) classifiers. We
also plan to evaluate our approach on new datasets of entities of different topic
foci.

At the tweet-level, the evaluation was performed on three Twitter datasets and
using three different sentiment lexicons. The results showed that our SentiCircle
approach outperforms significantly the MPQA-Method and SentiWordNet-Method.
Compared to SentiStrength, the results were not as conclusive, since SentiStrength
slightly outperformed SentiCircles on the STS-Gold dataset, and also yielded
marginally better F-measure for the HCR dataset. This might be due to the dif-
ferent topic distribution in the datasets. The STS-Gold dataset contains random
tweets, with no particular topic focus, whereas OMD and HCR consist of tweets
that discuss specific topics, and thus the contextual semantics extracted by Senti-
Circle are probably more representative in these datasets than in STS-Gold. Other
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important characteristics could be the sparseness degree of data and the positive
and negative distribution of tweets. As a future work, we plan to further investigate
these issues and their influence on the performance of our approach.

We extracted opinion targets (Pivot terms) in the Pivot-Method by looking
at their POS-tags, assuming that all pivot terms in a given tweet receive similar
sentiment. We plan to consider cases, where the tweet contains several pivot terms
of different sentiment orientations.

Since all the baselines used in our evaluation are purely syntactical methods,
we aim in the future to compare our approach to other, which take word semantics
into account for sentiment detection, such as SenticNet.

With regards to scalability, we plan to test our model on Twitter streams, which
will require further optimisation steps such as controlling the size of the term-
index by keeping only trending terms and removing fading ones, and updating the
SentiCircles directly with new terms rather than re-computing them.

8. Conclusions

In this paper, we proposed a novel semantic sentiment representation of words,
called SentiCircle, which is able to assign context-specific sentiment orientation to
words. We described the use of SentiCircles for lexicon-based sentiment identifi-
cation at both entity-level and tweet-level using different methods. Our proposed
approach outperformed other lexicon labelling methods for both entity-level and
tweet-level sentiment detection. For tweet-level sentiment detection, our approach
also gave a better overall result than the state-of-the-art lexicon-based approach
SentiStrength on two out of three datasets. While SentiStrength uses a fixed set
of lexicon words and keeps the strength of each sentiment term unchanged across
different data, our SentiCircle representation effectively updated the sentiment
strength of many terms dynamically based on their contextual semantics in tweets.
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