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Abstract—Teaching industrial robots by demonstration can
significantly decrease the repurposing costs of assembly lines
worldwide. To achieve this goal, the robot needs to detect
and track each component with high accuracy. To speedup the
initial object recognition phase, the learning system can gather
information from assembly manuals in order to identify which
parts and tools are required for assembling a new product
(avoiding exhaustive search in a large model database) and if
possible also extract the assembly order and spatial relation
between them. This paper presents a detailed analysis of the fine
tuning of the Stanford Named Entity Recognizer for this text
tagging task. Starting from the recommended configuration, it
was performed 91 tests targeting the main features / parameters.
Each test only changed a single parameter in relation to the
recommend configuration, and its goal was to see the impact of
the new configuration in the precision, recall and F1 metrics.
This analysis allowed to fine tune the Stanford NER system,
achieving a precision of 89.91%, recall of 83.51% and F1 of
84.69%. These results were retrieved with our new manually
annotated dataset containing text with assembly operations for
alternators, gearboxes and engines, which were written in a
language discourse that ranges from professional to informal. The
dataset can also be used to evaluate other information extraction
and computer vision systems, since most assembly operations
have pictures and diagrams showing the necessary product parts,
their assembly order and relative spatial disposition.

Index Terms—Named Entity Recognition, Natural Language
Processing, Small Parts Assembly, Stanford NER

I. INTRODUCTION

Programming of industrial robots for assembly operations
is a meticulous and arduous task that requires a significant
engineering effort with long testing and deployment phases.
For high volume manufacturing this cost is acceptable, but
it is too expensive to repurpose robots for small volume
production using traditional programming approaches. These
issues can be overcome with robots that can learn new assem-
bly skills by observing experienced operators and interacting
with them through natural language. To achieve these goals,
the robot needs to successfully recognize the objects within
its workspace and semantically track their pose with high
precision while the operator demonstrates how to perform the
assembly operations. Moreover, it must be able to understand
any instructions that the operator might give and also have the
ability to recall them if asked later on. This type of teaching
allows rapid reprogramming of flexible robotic assembly cells
for new tasks, but it can be speed up even further if there are
assembly manuals available, which allows the robotic system

to extract the objects and their assembly spatial disposition
from the textual and visual representations. By knowing which
objects to expect for a given teaching session, the object
recognition system efficiency can be significantly increased
(by limiting the object search database). Moreover, this pre-
liminary learning phase reduces the human teaching to only
the operations that lack detailed information. This type of
information extraction problem is know in the Natural Lan-
guage Processing (NLP) domain as Named Entity Recognition
(NER), and is usually tackled with Machine Learning (ML)
approaches that rely on statistical models such as Conditional
Random Fields (CRFs) or Hidden Markov Models (HMMs),
coupled with fine tuned regular expression matching systems
and gazetteers. One of the most used NER implementation for
this task is the Stanford NER1 [1], which is integrated into the
well known Stanford CoreNLP toolkit [2].

This paper provides a detailed analysis of the impact that
each of the main features available in the Stanford NER
system have in the overall entity recognition performance,
allowing to fine tune the language model training to a given
corpus. The proper selection of the CRF training features for
a given application domain can have a significant effect on the
entity recognition performance [3]. For example, simple token
level training of CRFs leads to poor performance, but if text
features such as word prefix / suffix / shape, orthographic /
morphological clues, along with word / phrasal clustering and
Part-Of-Speech (POS) tags are used, this can result in a CRF
language model that can be very effective for recognizing the
intended entities. Moreover, the performance can be improved
even further if gazetteers and external knowledge databases
are used.

It was performed 91 tests that started with the recommended
configuration and then either changed a single parameter or
enabled / disabled a given feature. This allowed to identify
which features should be used in order to obtain the optimal
model training configuration. Although these tests were per-
formed with our target corpus, we expect that the features /
parameters which either significantly improved or degraded
the recognition performance will be transversal to the corpus
used. In our new annotated dataset of assembly operations
this analysis allowed to fine tune the Stanford NER system,
which managed to achieve a precision of 89.91%, recall of
83.51% and F1 of 84.69%, corresponding to an improvement

1https://nlp.stanford.edu/software/CRF-NER.shtml978-1-5090-6234-8/17/$31.00 c©2017 IEEE
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of 3.23% in F1, 5.79% in recall and 0.35% in precision over
the recommended configuration given in the official documen-
tation. Our annotated dataset contained assembly instructions
of alternators, gearboxes and engines in several writing styles,
from highly professional and structured text to colloquial and
informal language. These assembly operations were extracted
from Portable Document Format (PDF) files that besides
textual descriptions also had assembly pictures and diagrams.
As such, this dataset can be used for evaluating systems that
combine both natural language processing algorithms and also
computer vision and information extraction systems. Besides
token level manual annotation, each assembly operation has
a list with the required parts for successfully performing
the product assembly. For speeding up testing, the dataset is
already split into 84% of training text and 16% of testing text.

In the following section it will be given a brief overview
of applications of NLP in robotics and also the main related
work on extraction of assembly information from textual
representations. Section III describes the main dataset sources
for the 3 product types with assembly operations. Section IV
presents the main steps that were performed to extract and
clean the text from the PDFs. Section V gives a brief analysis
of the fine tuning results, informing what were the features
/ parameters that either significantly increased or decreased
the recognition performance. Finally, Section VI presents the
conclusions and Section VII gives an overview of possible
future work.

II. RELATED WORK

NLP algorithms have been integrated into robotics systems
for a myriad of applications, ranging from control of industrial
robotic arms [4], [5] and mobile robots [6] to complex
interaction with humanoid systems using a combination of
voice, text and image perception analysis [7]–[9]. For the
voice and textual teaching, the objects names and relations
can be identified using NER algorithms [10], [11]. This type
of approach usually relies on syntactic and semantic parsing
of the text and also in machine learning algorithms [12] (such
as Support Vector Machines (SVMs), HMMs and CRFs) in
order to be able to recognize previously unseen object names.
It may present some challenges [13], but this methodology
can achieve multilingual entity recognition [14] if language
agnostic attributes are used. Other complementary techniques,
such as gazetteers, can improve overall recognition by provid-
ing a list of known entities that can be used for exact / partial
string matching. This might be a suitable approach when we
have extensive and representative entity lists and we are not
expecting the text we are going to annotate to have significant
new entities. Otherwise, the gazetteers might increase the
number of false negatives for unseen entities. This problem
might be overcome [15] by normalizing the gazetteer features
and using two CRF models for text tagging (one trained with
the gazetteer features and another without), that are later on
combined with a logarithmic opinion pool. This is similar to a
mixture model, but uses a weighted multiplicative combination
of models instead of a weighted additive combination.

Advanced applications of NLP algorithms include the teach-
ing of assembly operations to robot arm manipulation systems
by human operators. The JAST robot [16] was implemented
using a multi-agent system capable of learning assembly
operations by interpreting human voice commands along with
their gestures and gaze. The speech recognition system used
a Combinatory Categorial Grammar (CCG) and a semantics
module to analyze if the operator was making statements for
teaching, asking for information or giving answers to previous
questions made by the robot. The vision system besides
tracking the hands and gaze of the operator to perform a better
speech analysis, it also recognized the assembly objects within
the robot workspace using template matching techniques.

Industrial applications of NLP [17] can also rely on multi-
lingual statistical semantic parsers to extract assembly op-
erations from natural language sentences given by remote
operators. The system developed in the ROSETTA2 research
project used a client-server architecture containing a natural
language parser, a Knowledge Integration Framework (KIF)
and an engineering system. The parser main goal was to find
predicates with their respective arguments in sentences and
establish coreference chains. The KIF contained ontologies
and semantically annotated skills that were used for filtering
the predicates and return only the ones relevant for assembly
operations. Lastly, the engineering system was a high level
programming interface that used the predicates found by the
parser to select the appropriate skills for assembly while
also matching the predicates arguments with the knowledge
database in order to identify the objects and analyze in which
branch of the assembly tree they should be inserted for
achieving proper assembly order.

Besides voice and textual input from humans, the assembly
information can also be retrieved from online web pages
or knowledge repositories. During the RoboHow3 research
project it was developed a system [18] that could extract
the assembly graph by performing a syntactic and semantic
analysis using a Probabilistic Context-Free Grammar (PCFG)
parser and a POS tagger followed by word sense retrieval and
disambiguation using the WordNet database and the Cyc ontol-
ogy. After having a preliminary assembly plan, it was executed
in simulation in order to perform a high level validation and
allow the optimization of the robot movements. If ambiguous
or missing information was detected, the system tried to
generate a valid assembly plan by analyzing the objects’
environment, assembly context and also similar operations
stored in its knowledge database.

Named entity recognition can also be useful to identify
key information from mission operation orders given to op-
erators of robotics systems, such as Unmanned Aerial Ve-
hicles (UAVs). Highlighting entities such as persons, times,
locations, coordinates, targets and organizations allows the
human operators to extract the necessary mission information
faster. Moreover, in the future it might even be possible to

2http://www.fp7rosetta.org
3http://www.robohow.eu
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Table I
DATASET SOURCES OVERVIEW

Alternators Engines Gearboxes Global
No of pages 84 148 221 453
No of assembly procedures 2 40 53 95
No of words 9312 22747 31798 63857
No of characters 58418 136297 201438 396153

have the robotic system autonomously extract all the required
information to carry on the mission without human assistance.
This task can be performed using a machine learning approach
[19] that relies on CRF statistical models that use features
such as word lists, regular expressions, prefixes / suffixes,
word case and also unigram / bigram / trigrams models. The
evaluation of the NER system was performed using metrics
such as precision, recall and accuracy and used 9-fold cross
validation for having a rotating train / test dataset in order to
avoid model over-fitting.

Several NER systems and datasets have been presented over
the years for news and tweets [20], [21]. This paper aims to
provide an evaluation of the Stanford NER system within the
assembly operations domain using our new manually anno-
tated corpus containing a diverse range of assembly manuals
for small complex objects (alternators, gearboxes and engines)
written in a language discourse that ranges from professional
to informal.

III. DATASET SOURCES

Our new dataset is composed of 10 English instruction
manuals with 453 pages detailing assembly operations of alter-
nators, engines and gearboxes (more details shown in Table I).
These object categories were selected because they have small,
light and diverse components that a typical industrial robot
arm can manipulate and also because they have increasing
complexity (from the simple gearboxes to the much more
complex fuel / steam engines). These manuals were selected
for performing NER because they are a representative sample
of the several types of manuals that are available for operators
working in small parts assembly and also because they were
written with a language discourse ranging from very concise
and professional to a more colloquial and unstructured type.
Moreover they provide tables / lists with the parts and tools
required for the assembly operations which are very useful for
evaluating NER systems.

Most of these assembly instruction manuals are single col-
umn (two of them are dual column) and have Computer Aided
Design (CAD) drawings or pictures alongside the assembly
procedures. Moreover, some of these procedures are very long,
with the description of all the necessary parts for the entire
assembly operation while others have the assembly operations
split across the main object components.

A. Alternators

Alternators are electrical generators that can convert me-
chanical energy into electrical energy in the form of alternating

current. Their assembly is quite complex, involving a lot of
small parts and intricate wire bending.

This part of the dataset includes the detailed assembly
of two automotive alternators (used to power the electric
equipment of cars and charge their battery). One of them was
written in a dual column layout with a lot of diagrams and
in a professional and concise language style while the other
one was written in single column informal language discourse
while using mostly pictures instead of technical diagrams.

B. Gearboxes

Gearboxes are mechanical transmission systems that provide
speed and torque conversion while also giving the option
of forward and backwards wheel movement. They allow a
typical car engine that operates at [600, 7000] Rotations Per
Minute (RPM) to move the wheels that usually rotate at [0,
1800] RPM. They can provide more torque when using lower
gears and greater speed when employing higher gears. They
also give the user more control over the engine performance,
allowing better fuel efficiency while also reducing engine
wear. Given the high variability in gearbox designs and their
interconnecting gears, they can have a complex assembly
sequence using mostly medium size parts.

This part of the dataset contains a detailed instruction man-
ual for a car gearbox and another with an extensive collection
of small assembly procedures for 52 industrial gearboxes
(mainly used in agricultural vehicles such as tractors). Both
manuals were written with a professional discourse and in a
single column layout. The first had a lot of pictures and CAD
drawings, while the second only had technical diagrams for
each gearbox assembly procedure.

C. Engines

An engine is a machine designed to convert a given source
of energy (such as fuel, electricity, compressed air, elastic /
chemical energy, etc) into useful mechanical energy.

This part of the dataset provides an instruction manual
with the detailed assembly procedures (35) of a small aircraft
engine and also 5 more manuals with the assembly operations
of small steam engines. All engine assembly manuals were
written with a professional language style and had a single
column structure with a lot of accompanying figures.

IV. DATASET PREPARATION

Automatic extraction of text from PDF files with multi-
column text, tables and large number of images and diagrams
is a challenging task for any NLP system. As such, the dataset
preparation included the automatic extraction of text from
the PDF files, followed by a manual cleaning and inspection
phase in which all the text that was not related to assembly
operations was removed. To speedup this process and ensure
proper text cleaning across the entire dataset, it was applied
a set of regular expressions in order to remove page headers
and footers and correct formating issues related with the text
extraction. After this preprocessing stage (which may not be
required in deployed NLP systems, since the language models



Table II
ANNOTATED DATASET OVERVIEW

Alternators Engines Gearboxes Global

No of train tokens 4450 9101 6819 20370
No of test tokens 781 1852 1344 3977
No of PART train tokens 738 1709 1477 3924
No of PART test tokens 156 372 327 855
No of RPOS train tokens 83 258 546 887
No of RPOS test tokens 25 52 96 173
No of TOOL train tokens 72 33 33 138
No of TOOL test tokens 5 11 0 16
No of OPER train tokens 182 342 435 959
No of OPER test tokens 30 73 72 175
No of ID train tokens 2 49 76 127
No of ID test tokens 0 35 138 173
No of QTY train tokens 45 41 70 156
No of QTY test tokens 4 22 23 49
No of DIM train tokens 0 67 0 67
No of DIM test tokens 0 5 0 5
No of WGT train tokens 0 2 0 2
No of WGT test tokens 0 0 0 0
No of PROP train tokens 36 63 2 101
No of PROP test tokens 13 2 0 15

are already computed), the dataset was proofread to correct
spelling errors. Later on the lists / tables with the information
about the required assembly parts / tools was moved into
validation files in order to allow the evaluation of information
extraction systems.

Given that the evaluation of NER systems normally requires
text annotated with the expected entities at the token level,
a small yet representative part of the dataset was manually
annotated using the IO (Inside / Outside) encoding and saved
in the Tab Separated Value (TSV) file format expected by the
Stanford NER system (examples of annotations in Tables III
to V). This subset of he dataset contained assembly operations
from the 3 categories of objects (alternators, engines, gear-
boxes) and was annotated with 9 types of entities (detailed
entity counts in Table II) plus a neutral class that represents
no entity (O). Most of them are product parts (PART), their
relative position (RPOS) and the operations (OPER) in which
they are involved, followed by the tools (TOOL) required.
Other minority classes include the parts unique identifica-
tion numbers (ID), their quantity (QTY), dimensions (DIM),
weight (WGT) and general properties (PROP), such as surface
color.

In order to speeding up testing for other developers, the
dataset is already split into 84% of training text and 16% of
test text and is available at4.

V. STANFORD NER TUNING ANALYSIS

Analyzing Tables VI and VII it can be seen that the fine
tuning of the CRF training features allowed to achieve an
absolute improvement (in relation to the official recommended
configuration) of 3.23% in F1, 5.79% in recall and 0.35%

4https://github.com/carlosmccosta/Assembly-Named-Entity-Recognition

Table III
ALTERNATORS

DATASET
ANNOTATIONS

Token Class
Use O
5/16 DIM
" DIM
hex TOOL
wrench TOOL
or O
5/16 DIM
" DIM
hex TOOL
drive TOOL
, O
in O
the O
end RPOS
of RPOS
the O
shaft PART
, O
to O
hold OPER
while O
removing OPER
shaft PART
nut PART
. O

Table IV
ENGINES
DATASET

ANNOTATIONS

Token Class
Remove OPER
the O
black PROP
outer RPOS
jacket PART
and O
the O
white PROP
insulation PART
core PART
to O
expose OPER
a O
3/8 DIM
" DIM
length DIM
of O
the O
inner RPOS
conductor PART
. O

Table V
GEARBOXES

DATASET
ANNOTATIONS

Token Class

Install OPER
Slotted PART
Hex PART
Bearing PART
Adjusting PART
Nut PART
( O
# ID
770730 ID
) O
with O
Cotter TOOL
Pin TOOL
( O
# ID
770421 ID
) O
. O

in precision, resulting in an overall entity recognition perfor-
mance of 85.91% in precision, 83.51% in recall and 84.69% in
F1. As expected, the entity classes with more training samples
(such as PART, OPER, RPOS) performed much better than the
classes with few instances (which were the case of TOOL,
PROP, DIM, QTY, WGT), with the exception of the ID class,
that although it had a modest number of samples, it was the
best performing entity class, with a F1 metric of 97.87%. This
was due to the effectiveness of the word shape and previous
word features that were able to capture the fact that in our
corpus the IDs usually contain the "#" or "ACV" prefix or are
preceded with "P/N".

Looking at Table VIII it can be seen that in isolation most
of the main configuration parameters / features available in
the Stanford NER do not affect the F1 metric significantly.
The feature that provided the best improvement was the
lowercasing of the words for the n-gram language models,
which provided a relative boost of 1.6%. This is due to the fact
that in some assembly operations the entities are capitalized
while in other they are not. As such, lowercasing helps to
avoid this issue in the testing corpus.

Other features that also improved the F1 metric were the
adjusting of the word shape algorithm parameters, along with
the increase of the n-gram model length and usage of the
middle n-grams. As expected, the usage of gazetteers (built
from the manuals list of necessary parts and tools along with

https://github.com/carlosmccosta/Assembly-Named-Entity-Recognition


the provided IDs) also helped to slightly improve the recog-
nition performance. Besides tuning and activating processing
modules, disabling the class features and the usage of the
next word also helped improved the F1 metric. Changing the
inference type algorithm from Viterbi to Beam slightly im-
proved the recognition performance while increasing the CRF
order from 1 to 2 significantly increase the computation time
(10 times more) with almost no improvement in recognition
performance.

On the other hand, looking at Tables IX and X it can be
seen that disabling or lowering the n-gram model length to
just unigrams was the change that most decreased the F1
metric (with a relative reduction of 8.2%), followed closely
by the usage of the bag of words features and the sigma
smoothing. Disabling the previous word feature also decreased
the recognition performance (with a relative decrease of F1
metric of 1.2%).

When inspecting the training time, it can be seen that
disabling the usage of sequences and previous sequences,
along with disabling the usage of the previous word and
activating the usage of only the observed sequences managed
to reduce the training time to almost half. On the other
hand, using the bag of words features drastically increased
the training time (up to 50 times higher) but it managed to
reduce the false positives by 22.1% (while almost tripling the
false positives).

Moving to the tagging time performance, we can see that the
Viterbi inference algorithm is almost twice as fast as the Beam
algorithm while being able to achieve the same recognition
performance. Moreover, increasing the CRF order from 1 to 2
or using the bag of words features made the tagger run around
5 times slower.

Monitoring the memory usage we can confirm that reducing
the number of past guesses used by the limited memory quasi
Newton optimizer (L-BFGS) from 25 to 2 managed to reduce
the maximum memory consumption from 2.7 GB to 1.8 GB
with very low impact on the recognition performance (less
than 1%). We can also confirm that dropping features with a
absolute weight value below 0.1 allowed to reduce the seri-
alized model size from 16.5 MB to 7.6 MB while improving
the CRF tagging speed by 10% and slightly increasing the F1
metric (less than 1%).

There are a lot of more parameters and features than the
ones previously discussed and presented in Tables VIII to X
that can be fine tuned. Moreover, given how easy it is to add
new ones to the Stanford NER processing pipeline and the
growing community using the CoreNLP toolkit, we think that
this analysis is a useful starting point to anyone interested in
using and improving the Stanford NER tagging system.

VI. CONCLUSIONS

This paper presented a detailed analysis of the fine tuning
of the Stanford NER system in our annotated corpus with
assembly operations. It was performed 91 tests targeting the
main configurations / features of the Stanford NER implemen-
tation, in which the recommended configuration was used as

Table VI
NER RESULTS USING THE RECOMMENDED CONFIGURATION

Entity Precision Recall F1
True

positives
False

positives
False

negatives

DIM 0.0714 0.5000 0.1250 1 13 1
ID 0.9886 0.9158 0.9508 87 1 8

OPER 0.8896 0.8286 0.8580 145 18 30
PART 0.8513 0.7740 0.8108 435 76 127
PROP 0.8889 0.5333 0.6667 8 1 7
QTY 0.3333 0.1724 0.2273 5 10 24
RPOS 0.8777 0.8188 0.8472 122 17 27
TOOL 1.0000 0.3000 0.4615 3 0 7
Totals 0.8556 0.7772 0.8146 806 136 231

Table VII
NER RESULTS USING THE FINE TUNED CONFIGURATION

Entity Precision Recall F1
True

positives
False

positives
False

negatives

DIM 0.0625 0.5000 0.1111 1 15 1
ID 0.9892 0.9684 0.9787 92 1 3

OPER 0.8935 0.8629 0.8779 151 18 24
PART 0.8667 0.8327 0.8494 468 72 94
PROP 0.6000 0.6000 0.6000 9 6 6
QTY 0.5926 0.5517 0.5714 16 11 13
RPOS 0.8681 0.8389 0.8532 125 19 24
TOOL 1.0000 0.4000 0.5714 4 0 6
Totals 0.8591 0.8351 0.8469 866 142 171

a starting point and then each test either changed a numeric
parameter or enabled / disabled a given feature. This allowed
to select the best training configuration for the statistical
language models (CRFs), which achieved 85.91% in precision,
83.51% in recall and 84.69% in F1 (corresponding to an
improvement of 3.23% in F1, 5.79% in recall and 0.35% in
precision over the recommended configuration given in the
official documentation). Although these tests were performed
with our target corpus, we expect that the parameters / features
which either significantly improved or degraded the NER
recognition performance will be transversal to the dataset
used, allowing other researchers to use this configuration as a
starting point for their specific corpus.

Our dataset contains assembly operations of alternators,
engines and gearboxes in textual form and is complemented
with object pictures and assembly diagrams. For evaluating
NER systems using this dataset, each assembly operation
has associated a list with the parts and quantities needed to
successfully perform the product assembly. In order to have
a representative dataset, it is provided assembly operations
written in a professional / structured manner and also in an
informal and colloquial language register. Moreover, a small
yet representative part is manually annotated at the token level
in a TSV format.

This dataset was built for evaluating NER systems, but can
also be used to evaluate information extraction and computer
vision systems, given the large textual and image information
that it provides for each assembly operation.



VII. FUTURE WORK

The main goals of this paper were the creation of a dataset
for NER within the domain of assembly operations along with
the testing of the effectiveness of state of the art NER systems
for tagging / extraction of the intended textual entities. Future
work would include the development of a system capable of
build on top of a given NER processing pipeline and create
the assembly graph containing in each node the installation
of a given part with associated metadata, such as the tools
required, its relative position in relation to already assembled
parts and other information that may be useful to other higher
level systems (for example the part ID, its dimensions and
weight along with other related information, such as the
torque necessary to apply when performing mating / screwing
operations). Moreover, it would be useful to manually annotate
the remaining of the dataset and add other types of assembly
operations in order to broaden the scope of the presented
corpus.

APPENDIX

The appendix contains Tables VIII to X with the detailed
fine tuning results of the Stanford NER system when using our
new corpus of assembly operations. Each line in the tables
corresponds to a single test in which a given parameter /
feature was changed in relation to the recommended configura-
tion. Besides the standard NER evaluation metrics (precision,
recall, F1 with associated true positives, false positives and
false negatives) it is also provided the language model training
time and the classifier performance (in words / second) when
tagging the test corpus. Moreover, to allow easy analysis of
the test results, it is provided extra columns with the relative
performance in relation to the recommended configuration
results (each relative result is computed by dividing the current
test result with the corresponding result achieved with the rec-
ommended configuration given in the official documentation).
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