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a b s t r a c t

Learning to rank is an increasingly important scientific field that comprises the use of ma-

chine learning for the ranking task. New learning to rank methods are generally evaluated on

benchmark test collections. However, comparison of learning to rank methods based on evalu-

ation results is hindered by the absence of a standard set of evaluation benchmark collections.

In this paper we propose a way to compare learning to rank methods based on a sparse set

of evaluation results on a set of benchmark datasets. Our comparison methodology consists

of two components: (1) Normalized Winning Number, which gives insight in the ranking ac-

curacy of the learning to rank method, and (2) Ideal Winning Number, which gives insight in

the degree of certainty concerning its ranking accuracy. Evaluation results of 87 learning to

rank methods on 20 well-known benchmark datasets are collected through a structured liter-

ature search. ListNet, SmoothRank, FenchelRank, FSMRank, LRUF and LARF are Pareto optimal

learning to rank methods in the Normalized Winning Number and Ideal Winning Number di-

mensions, listed in increasing order of Normalized Winning Number and decreasing order of

Ideal Winning Number.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Ranking is a core problem in the field of information retrieval. The ranking task in information retrieval entails the ranking

of candidate documents according to their relevance to a given query. Ranking has become a vital part of web search, where

commercial search engines help users find their need in the extremely large collection of the World Wide Web. Among useful

applications of machine learning based ranking outside web search are automatic text summarization, machine translation,

drug discovery and determining the ideal order of maintenance operations (Rudin, 2009). In addition, McNee, Riedl, and Konstan

(2006) found the ranking task to be a better fit for recommender systems than the regression task (continuous scale predictions),

which is currently still frequently used within such systems.

Research in the field of ranking models has long been based on manually designed ranking functions, such as the well-

known BM25 model (Robertson & Walker, 1994). Increased amounts of potential training data have recently made it pos-

sible to leverage machine learning methods to obtain more effective ranking models. Learning to rank is the relatively

new research area that covers the use of machine learning models for the ranking task.
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In recent years, several learning to rank benchmark datasets have been proposed with the aim of enabling comparison of

learning to rank methods in terms of ranking accuracy. Well-known benchmark datasets in the learning to rank field include

the Yahoo! Learning to Rank Challenge datasets (Chapelle & Chang, 2011), the Yandex Internet Mathematics 2009 contest,2 the

LETOR datasets (Qin, Liu, Xu, & Li, 2010), and the MSLR (Microsoft Learning to Rank) datasets.3 There exists no agreement among

authors in the learning to rank field on the benchmark collection(s) to use to evaluate a new model. Comparing ranking accuracy

of learning to rank methods is largely hindered by this lack of a standard way of benchmarking.

Gomes, Oliveira, Almeida, and Gonçalves (2013) analyzed the ranking accuracy of a set of models on both LETOR 3.0 and 4.0.

Busa-Fekete, Kégl, Éltető, and Szarvas (2013) compared the accuracy of a small set of models over the LETOR 4.0 datasets, both

MSLR datasets, both the Yahoo! Learning to Rank Challenge datasets and one of the datasets from LETOR 3.0. Both studies did

not aim to be complete in benchmark datasets and learning to rank methods included in their comparisons. To our knowledge,

no structured meta-analysis on ranking accuracy has been conducted where evaluation results on several benchmark collections

are taken into account. In this paper we will perform a meta-analysis with the aim of comparing the ranking accuracy of learning

to rank methods. The paper will describe two stages in the meta-analysis process: (1) collection of evaluation results, and (2)

comparison of learning to rank methods.

2. Collecting evaluation results

We collect evaluation results on the datasets of benchmark collections through a structured literature search. Table 1 presents

an overview of the benchmark collections included in the meta-analysis. Note that all these datasets offer feature set represen-

tations of the to-be-ranked documents instead of the documents themselves. Therefore, any difference in ranking performance

is due to the ranking algorithm and not the features used.

For the LETOR collections, the evaluation results of the baseline models will be used from LETOR 2.0,4 3.05 and 4.06 as listed

on the LETOR website.

LETOR 1.0 and 3.0, Yahoo! Learning to Rank Challenge, WCL2R and AOL have accompanying papers that were released with the

collection. Authors publishing evaluation results on these benchmark collections are requested to cite these papers. We collect

evaluation measurements of learning to rank methods on these benchmark collections through forward literature search. Table 2

presents an overview of the results of this forward literature search performed using Google Scholar.

The LETOR 4.0, MSLR-web10/30k and Yandex Internet Mathematics Competition 2009 benchmark collections are not accom-

panied by a paper. To collect evaluation results for learning to rank methods on these benchmarks, a Google Scholar search is

performed on the name of the benchmark. Table 3 shows the results of this literature search.

2.1. Literature selection

Table A.5 in the appendix gives an overview of the learning to rank methods for which evaluation results were found through

the described procedure. Occurrences of L2, L3 and L4 in Table A.5 imply that these algorithms are evaluated as official LETOR

2.0, 3.0 and 4.0 baselines respectively.

Some studies with evaluation results found through the literature search procedure were not usable for the meta-analysis.

The following enumeration enumerates those properties that made one or more studies unusable for the meta-analysis. The

references between brackets are the studies to which these properties apply.

1. A different evaluation methodology was used in the study compared to what was used in other studies using the same

benchmark (Geng, Qin, Liu, Cheng, & Li, 2011; Lin, Yeh, & Liu, 2012).

2. The study focuses on a different learning to rank task (e.g. rank aggregation or transfer ranking) (Ah-Pine, 2008; Argentini,

2012; Chen et al., 2010; Dammak, Kammoun, & Ben Hamadou, 2011; De, 2013; De & Diaz, 2011, 2012; De, Diaz, & Raghavan,

2010, 2012; Derhami, Khodadadian, Ghasemzadeh, & Zareh Bidoki, 2013; Desarkar, Joshi, & Sarkar, 2011; Duh & Kirchhoff,

2011; Hoi & Jin, 2008; Lin, Yu, & Chen, 2011; Miao & Tang, 2013; Pan, Lai, Liu, Tang, & Yan, 2013; Qin, Geng, & Liu, 2010;

Volkovs & Zemel, 2012, 2013; Wang, Tang et al., 2009).

3. The study used an altered version of a benchmark that contained additional features (Bidoki & Thom, 2009; Ding, Qin, &

Zhang, 2010).

4. The study provides no exact data of the evaluation results (e.g. results are only in graphical form) (Adams & Zemel,

2011; Agarwal & Collins, 2010; Alejo, Fernández-Luna, Huete, & Pérez-Vázquez, 2010; Benbouzid, Busa-Fekete, & Kégl,

2012; Chang & Zheng, 2009; Chen, Weinberger, Chapelle, Kedem, & Xu, 2012; Ciaramita, Murdock, & Plachouras, 2008;

Geng, Yang, Xu, & Hua, 2012; He, Ma, & Niub, 2010; Huang & Frey, 2008; Karimzadehgan, Li, Zhang, & Mao, 2011;

Kuo, Cheng, & Wang, 2009; Li, Wang, Ni, Huang, & Xie, 2008; Ni, Huang, & Xie, 2008; Pan, Luo, Tang, & Huang, 2011;

Petterson, Yu, Mcauley, & Caetano, 2009; Qin, Liu, Zhang, Wang, Xiong et al., 2008; Sculley, 2009; Shivaswamy &
2 http://imat2009.yandex.ru/en.
3 http://research.microsoft.com/en-us/projects/mslr/.
4 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor2.0/baseline.aspx.
5 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx.
6 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4baseline.aspx.

http://imat2009.yandex.ru/en
http://research.microsoft.com/en-us/projects/mslr/
http://research.microsoft.com/en-us/um/beijing/projects/letor/letor2.0/baseline.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4baseline.aspx
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Table 1

Included learning to rank evaluation benchmark collections.

Benchmark collection # of datasets

AOL 1

LETOR 2.0 3

LETOR 3.0 7

LETOR 4.0 2

MSLR 2

WCL2R 2

Yahoo! Learning to Rank Challenge 2

Yandex Internet Mathematics 2009 contest 1

Total 20

Table 2

Forward references of learning to rank benchmark papers.

Benchmark Paper # of forward references

LETOR 1.0 & 2.0 Liu et al. (2007) 307

LETOR 3.0 Qin, Liu, et al. (2010) 105

Yahoo! learning to rank challenge Chapelle and Chang (2011) 102

AOL dataset Pass et al. (2006) 339

WCL2R Alcântara et al. (2010) 2

Table 3

Google scholar search results for learning to rank benchmarks.

Search Query Google scholar search results

“LETOR 4.0” 75

“MSLR-web10k” 16

“MSLR-web30k” 15

“Yandex Internet Mathematics” 3
Joachims, 2011; Stewart & Diaz, 2012; Sun, Huang, & Feng, 2011; Swersky, Tarlow, Adams, Zemel, & Frey, 2012; Wang & Xu,

2010; Wang, Kuai, Huang, Li, & Ni, 2008; Wu et al., 2011; Xia, Liu, Wang, Zhang, & Li, 2008; Xu, Chapelle, & Weinberger, 2012;

Xu, Kersting, & Joachims, 2010; Zhu, Chen, et al., 2009; Zhou, Ding, You, & Xiao, 2011).

5. The study reported evaluation results in a different metric than the metrics chosen for this meta-analysis (Kersting & Xu,

2009; Mohan, Chen, & Weinberger, 2011; Pahikkala, Tsivtsivadze, Airola, Järvinen, & Boberg, 2009; Thuy, Vien, Viet, & Chung,

2009; Yu & Joachims, 2009).

6. The study reported a higher performance on baseline methods than official benchmark runs (Acharyya, Koyejo, & Ghosh,

2012; Asadi, 2013; Banerjee, Dubey, Machchhar, & Chakrabarti, 2009; Bian, 2010; Bian, Li, Li, Zheng, & Zha, 2010; Carvalho,

Elsas, Cohen, & Carbonell, 2008; Dubey, Machchhar, Bhattacharyya, & Chakrabarti, 2009; Peng, Macdonald, & Ounis, 2010;

Song, Ng, Leung, & Fang, 2014; Tran & Pham, 2012).

7. The study did not report any baseline performance that allowed us to check validity of the results (Buffoni, Gallinari, Usunier,

& Calauzènes, 2011; Chakrabarti, Khanna, Sawant, & Bhattacharyya, 2008; Wang, Bennett, & Collins-Thompson, 2012).

3. A methodology for comparing learning to rank methods cross-benchmark

Qin, Liu, et al. (2010) state that it may differ between datasets what the most accurate ranking methods are. They propose a

measure they call Winning Number to evaluate the overall performance of learning to rank methods over the datasets included

in the LETOR 3.0 collection. Winning Number is defined as the number of other algorithms that an algorithm can beat over the

set of datasets, or more formally

WNi(M) =
n∑

j=1

m∑
k=1

I{Mi( j)>Mk( j)}

where j is the index of a dataset, n the number of datasets in the comparison, i and k are indices of an algorithm, Mi( j) is the

performance of the i-th algorithm on the j-th dataset, M is a ranking measure (such as NDCG or MAP), and I{Mi( j)>Mk( j)} is an

indicator function such that

I{Mi( j)>Mk( j)} =
{

1 if Mi( j) > Mk( j),

0 otherwise
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The LETOR 3.0 was a comparison on a dense set of evaluation results, in the sense that there were evaluation results available

for all learning to rank algorithms on all datasets included in their comparison. The Winning Number evaluation metric relies on

the denseness of the evaluation results set. In contrast to the LETOR 3.0 comparison, our evaluation results will be a sparse set.

We propose a normalized version of the Winning Number metric to enable comparison of a sparse set of evaluation results. This

Normalized Winning Number takes only those datasets into account that an algorithm is evaluated on and divides this by the

theoretically highest Winning Number that an algorithm would have had in case it would have been the most accurate algorithm

on all datasets on which it has been evaluated. We will redefine the indicator function I in order to only take into account those

datasets that an algorithm is evaluated on, as

I′Mi( j)>Mk( j) =

⎧⎨
⎩

1 if Mi( j) and Mk( j) are both de-

fined and Mi( j) > Mk( j),

0 otherwise

From now on this adjusted version of Winning Number will be referenced to as Normalized Winning Number (NWN). The

formal definition of Normalized Winning Number is

NWNi(M) = WNi(M)

IWNi(M)

where IWN is the Ideal Winning Number, defined as

IWNi(M) =
n∑

j=1

m∑
k=1

D{Mi( j),Mk( j)}

where j is the index of a dataset, n the number of datasets in the comparison, i and k are indices of an algorithm, Mi( j) is the

performance of the i-th algorithm on the j-th dataset, M is a ranking measure (such as NDCG or MAP), and D{Mi( j),Mk( j)} is an

evaluation function such that

D{Mi( j),Mk( j)} =
{

1 if Mi( j) and Mk( j)are both defined,

0 otherwise

NDCG@{3, 5, 10} and MAP are the most frequently used evaluation metrics in the used benchmark collections combined,

therefore we will limit our meta-analysis to evaluation results reported in one of these four metrics.

4. Results of learning to rank comparison

The following subsections provide the performance of learning to rank methods in terms of NWN for NDCG@{3, 5, 10} and

MAP. Performance of the learning to rank methods is plotted with NWN on the vertical axis and the number of datasets on

which the method has been evaluated on the horizontal axis. Moving to the right, certainty on the performance of the method

increases. The Pareto optimal learning to rank methods, that is, the learning to rank methods for which it holds that there is

no other method that has (1) a higher NWN and (2) a higher number datasets evaluated, are identified as the best performing

methods and are labeled. Table B.6 in the appendix provides raw NWN data for the learning to rank methods at NDCG@{3, 5, 10}
and MAP and their cross-metric weighted average.

4.1. NDCG@3

Fig. 1 shows the NWN of learning to rank methods based on NDCG@3 results. LambdaNeuralRank and CoList both acquired

a NWN score of 1.0 by beating all other algorithms on one dataset, with LambdaNeuralRank winning on the AOL dataset and

CoList winning on Yahoo Set 2. LARF and LRUF scored very high scores of near 1.0 on three of the LETOR 3.0 datasets, which

results in more certainty on these methods’ performance because they are validated on three datasets that additionally are more

relevant than AOL and Yahoo Set 2 (number of evaluation results for LETOR 3.0 are higher than those for AOL and Yahoo set 2).

FenchelRank, OWPC, SmoothRank, DCMP and ListNet are ordered decreasingly by NWN and at the same time increasingly in

number of datasets that they are evaluated on, resulting in a higher degree of certainty on the accuracy of the algorithms.

LambdaNeuralRank, CoList, LARF, LRUF, OWPC and DCMP evaluation results are all based on one study, therefore are subjected

to the risk of one overly optimistic study producing those results. FenchelRank evaluation result are the combined result from

two studies, although those studies have overlap in authors. SmoothRank and ListNet have the most reliable evaluation result

source, as they were official LETOR baseline runs.

4.2. NDCG@5

Fig. 2 shows the NWN of learning to rank methods based on NDCG@5 results. LambdaNeuralRank again beat all other

methods solely with results on the AOL dataset scoring a NWN of 1.0. LARF, LRUF, FenchelRank, SmoothRank, DCMP and
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Fig. 1. NDCG@3 comparison of 87 learning to rank methods.
ListNet are from left to right evaluated on an increasing number of datasets, but score decreasingly well in terms of NWN.

These results are highly in agreement with the NDCG@3 comparison. The only modification compared to the NDCG@3 com-

parison being that OWPC did show to be a method for which there were no methods performing better on both axes in

the NDCG@5 comparison, but not in the @3 comparison. Like in the NDCG@3 comparison, SmoothRank and ListNet can

be regarded as most reliable results because the evaluation measurements for these methods are based on LETOR official

baselines.

4.3. NDCG@10

Fig. 3 shows the NWN of learning to rank methods based on NDCG@10 results. LambdaMART and LambdaNeuralRank score a

NWN of 1.0 on the NDCG@10 comparison. For LambdaNeuralRank these results are again based on AOL dataset measurements.

LambdaMART showed the highest NDCG@10 performance for the MSLR-WEB10k dataset. The set of Pareto optimal learning

to rank algorithms is partly in agreement with the set of Pareto optimal methods for the NDCG@3 and @5 comparisons, both

include LARF, LRUF, FSMRank, SmoothRank, ListNet, RankSVM. In contrast to the NDCG@3 and @5 comparisons, DCMP is not a

Pareto optimal ranking method in the NDCG@10 comparison.

4.4. MAP

Fig. 4 shows the NWN of learning to rank methods based on MAP results. Comparisons on the NDCG metrics where highly

in agreement on the Pareto optimal algorithms, MAP-based NWN results show different results. RankDE scores a NWN of 1.0 on

one dataset, which is achieved by obtaining highest MAP-score on the LETOR 2.0 TD2003 which has many evaluation results are

evaluated.

LARF and LRUF score very high NWN scores, but based on only few datasets, just as in the NDCG-based comparisons. Notable

is the low performance of SmoothRank and ListNet, given that those methods were top performing methods in the NDCG-

based comparisons. Table B.6 in the appendix shows that LAC-MR-OR is evaluated on more datasets on MAP than on NDCG,

thereby LAC-MR-OR obtained equal certainty to ListNet with a higher NWN. SmoothRank performed a NWN of around 0.53 on 7

datasets, which is good in both certainty and accuracy, but not a Pareto optimum. RE-QR is one of the best performers in the MAP

comparison with a reasonable amount of benchmark evaluations. No reported NDCG performance was found in the literature

search for RE-QR. There is a lot of certainty on the accuracy of RankBoost and RankSVM as both models are evaluated on the

majority of datasets included in the comparison for the MAP metric, but given their NWN it can said that both methods are not

within the top performing learning to rank methods.

4.5. Cross-metric

Fig. 5 shows NWN as function of IWN for the methods listed in Table A.5. The cross-metric comparison is based on the

NDCG@{3, 5, 10} and MAP comparisons combined. Fig. 5 labels the Pareto optimal algorithms, but also the Rank-2 Pareto optima,

which are the labels the algorithms with exactly one algorithm having a higher value on both axes. Pareto optimal are labeled

in large font while Rank-2 Pareto optima are labeled using a smaller font size. In addition, Linear Regression and the ranking

method of simply sorting on the best single feature are labeled as baselines.

LRUF, FSMRank, FenchelRank, SmoothRank and ListNet showed to be the methods that have no other method superior to

them in both IWN and NWN. LRUF is the only method that achieved Pareto optimality in all NDCG comparisons, the MAP
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Fig. 2. NDCG@5 comparison of 87 learning to rank methods.

Fig. 3. NDCG@10 comparison of 87 learning to rank methods.

Fig. 4. MAP comparison of 87 learning to rank methods.
comparison as well as the cross-metric comparison. With FenchelRank, FSMRank, SmoothRank and ListNet being Pareto op-

timal in all NDCG comparisons as well as in the cross-metric comparison, it can be concluded that the cross-metric results

are highly defined by the NDCG performance as opposed to the MAP performance. This was to be expected, because the

cross-metric comparison input data of three NDCG entries (@3, @5, and @10) enables it to have up to three times as many

weight as the MAP comparison.
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Fig. 5. Cross-benchmark comparison of 87 learning to rank methods.
LARF, IPRank and DCMP and several variants of RankSVM are the Rank-2 Pareto optima of the cross-metric comparison.

LARF was also a Pareto optima on the NDCG and MAP comparisons and DCMP was a Pareto optimal ranker in a few of the

NDCG comparisons. C-CRF, DirectRank, FP-Rank, RankCSA, LambdaNeuralRank and VFLR all have a near-perfect NWN value,

but have a low IWN value. Further evaluation runs of these methods on benchmark datasets that they are not yet evalu-

ated on are desirable. The DirectRank paper (Tan, Xia, Guo, & Wang (2013)) shows that the method is evaluated on more

datasets than the number of datasets that we included evaluation results for in this meta-analysis. Some of the DirectRank

measurements could not be used because measurements on some datasets were only available in graphical form and not

in raw data.

LAC-MR-OR and RE-QR showed very good ranking accuracy in the MAP comparison on multiple datasets. Because LAC-MR-OR

is only evaluated on two datasets for NDCG@10 and RE-QR is not evaluated for NDCG at all, LAC-MR-OR and RE-QR are not within

the Pareto front of rankers in the cross-metric comparison.

5. Sensitivity analysis

In this section we evaluate the stability of the obtained results when one of the evaluation measures (5.1) or one of the

datasets (5.2) are left out of the comparison. We scope this sensitivity analysis to those ranking methods that showed to be

Pareto optimal in the trade-off between IWN and NWN: ListNet, SmoothRank, FenchelRank, FSMRank and LRUF.

5.1. Sensitivity in the evaluation measure dimension

To analyze the sensitivity of the comparison method in the evaluation measure dimension we repeated the NWN and IWN

calculation while leaving out one evaluation measure. Table 4 shows the NWN and IWN results when all evaluation measures

are included in the computation and when MAP, NDCG@3, NDCG@5 or NDCG@10 are left out respectively. From this table we

can infer that FSMRank is not a Pareto optimal ranking method when MAP is left out of the comparison (LRUF scores higher on

both NWN and IWN) and FenchelRank is not a Pareto optimal ranking method when either NDCG@3 or NDCG@5 are left out

(FSMRank scores higher on both NWN and IWN). All other orderings of ranking methods on NWN and IWN stay intact when one

of the evaluation measures is left out of the comparison.

Notable is that all Pareto optimal ranking methods have the largest increase in IWN as well as the largest decrease in NWN

when the MAP measure is left out of the comparison. The NWN score of FSMRank increased almost 0.1 when the MAP evaluation

measure was left out, which is the highest deviation in NWN score seen in this sensitivity analysis. Note that MAP uses a binary

notion of relevance, where NDCG uses graded relevance. The fact that all Pareto optimal rankers obtain an even higher NWN

score when the MAP measure is left out shows that apparently the Pareto optimal rankers perform even better on ranking on

graded relevance, compared to non-Pareto-optimal rankers.

5.2. Sensitivity in the dataset dimension

In Table 1 in Section 2 shows the 20 datasets used in our comparison, originating from eight data collections. We analyzed

the variance in NWN and IWN scores of the Pareto optimal rankers for the situations where one of the 20 datasets is not

included in the NWN and IWN computation. The results are visualized in Fig. 6 in a series of bagplots, which is a bivariate
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Table 4

NWN and IWN scores of the Pareto optimal rankers on all evaluation metrics, and with MAP, NDCG@3, NDCG@5 or NDCG@10 left out of the comparison

respectively.

All MAP NDCG@3 NDCG@5 NDCG@10

NWN IWN NWN IWN NWN IWN NWN IWN NWN IWN

ListNet 0.4952 931 0.5127 669 0.5099 710 0.4965 707 0.4625 707

SmoothRank 0.6003 653 0.6266 474 0.5988 491 0.5900 500 0.5870 494

FenchelRank 0.7307 505 0.7628 371 0.7158 380 0.7244 381 0.7206 383

FSMRank 0.7593 482 0.8585 311 0.7403 385 0.7292 384 0.7268 366

LRUF 0.9783 460 0.9821 335 0.9767 344 0.9772 351 0.9771 350

LARF 0.9868 379 0.9891 275 0.9859 283 0.9861 288 0.9863 291

Fig. 6. Bagplots showing the variance in NWN and IWN of the Pareto optimal rankers when a dataset is left out of the comparison.
generalization of the boxplot proposed by Rousseeuw, Ruts, and Tukey (1999). Bagplot extends the univariate concept of rank as

used in a boxplot to a halfspace location depth. The depth median, shown in orange, is the deepest location. Surrounding it is a

bag, the dark blue area in Fig. 6, containing n
2 observations with the largest depth. The light blue area represents the fence, which

magnifies the bag by a factor 3.

The bagplots give insight into the degree to which the found IWN and NWN scores of the ranking methods are dependent

on evaluation results on a small subset of the datasets that these ranking methods were evaluated on. A large bag and fence

indicate that the IWN and NWN performance was not consistent over all the datasets on which the ranking method in
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question was evaluated, while a small bag and fence indicate consistent IWN and NWN performance over all the datasets on

which that ranker was evaluated.

Note that the number of unique observations on which the bagplots are created is equal to the number of dataset on

which a ranking method is evaluated (in any of the evaluation measures), as removing a dataset on which a ranking algo-

rithm is not evaluated does not have any effect on the NWN and IWN scores. The difference between the leftmost and the

rightmost points of the bags seems to be more or less equal for all ranking methods while the NWN variance seems to be

more or less consistent for all ranking methods except LRUF and LARF. As the NWN mean decreases from top-to-bottom and

left-to-right, the variance-to-mean ratio increases. It is important to stress that the low NWN variance of LRUF and LARF

does not imply high certainty about the level of ranking performance of these ranking methods, it solely shows the low vari-

ance in the evaluation results that were available for these ranking methods. As the number of evaluation results for LRUF

and LARF is lower than for the other Pareto optimal rankers, the certainty of their ranking performance is considered to

be lower.

6. Limitations

In the NWN calculation, the weight of each benchmark on the total score is determined by the number of evaluation mea-

surements on this benchmark. By calculating it in this way, we implicitly make the assumption that the learning to rank methods

are (approximately) distributed uniformly over the benchmarks, such that the average learning to rank method tested are ap-

proximately equally hard for each dataset. It could be the case however that this assumption is false and that the accurateness of

the learning to rank methods on a dataset is not dataset independent.

A second limitation is that the datasets on which learning to rank methods have been evaluated cannot always be regarded

a random choice. It might be the case that some researchers chose to publish results for exactly those benchmark datasets that

showed the most positive results for their learning to rank method.

Another limitation is that our comparison methodology relies on the correctness of the evaluation results found in the litera-

ture search step. This brings up a risk of overly optimistic evaluation results affecting our NWN results. Limiting the meta-analysis

to those studies that report comparable results on one of the baseline methods of a benchmark set reduces this limitation but

does not solve it completely. By taking IWN into account in Fig. 5 we further mitigate this limitation, as IWN is loosely related

with the number of studies that reported evaluation results for an algorithm.

Our comparison regarded evaluation results on NDCG@{3, 5, 10} and MAP. By making the decision to include NDCG at

three cut-off points and only a single MAP entry, we implicitly attain a higher weight for NDCG compared to MAP on an

analysis that combines all measurements on the four metrics. This implicit weighting could be regarded as arbitrary, but the

number of algorithm evaluation results gained by this makes it a pragmatic approach. Note that another implicit weight-

ing lies in the paper dimension. Hence, the higher number of evaluation results specified in a paper, the higher the in-

fluence of this paper on the outcome of the analysis. This implicit weighting is not harmful to the validity of our com-

parison, as papers with a large number of evaluation results are more valuable than papers with a few evaluation results.

In addition, papers with a high number of evaluation results are not expected to be less reliable than papers with fewer

evaluation results.

7. Contributions

We proposed a new way of comparing learning to rank methods based on sparse evaluation results data on a set of benchmark

datasets. Our comparison methodology comprises of two components: (1) NWN, which provides insight in the ranking accuracy

of the learning to rank method, and (2) IWN, which gives insight in the degree of certainty concerning the performance of the

ranking accuracy.

Based on our literature search for evaluation results on well-known benchmarks collections, a lot of insight has been gained

with the cross-benchmark comparison on which methods tend to perform better than others. However, no closing arguments

can be formulated on which learning to rank methods are most accurate. LRUF, FSMRank, FenchelRank, SmoothRank and List-

Net were found to be the Pareto optimal learning to rank algorithms in the NWN and IWN dimensions: for these ranking al-

gorithm it holds that no other algorithm produced both more accurate rankings (NWN) and a higher degree of certainty of

ranking accuracy (IWN). From left to right, the ranking accuracy of these methods decreases while the certainty of the ranking

accuracy increases.

More evaluation runs are needed for the methods on the left side of Fig. 5. Our work contributes to this by identifying promis-

ing learning to rank methods that researchers could focus on in performing additional evaluation runs.

Appendix A. Meta-analysis ranking methods & data sources

See Table A.5.



766 N. Tax et al. / Information Processing and Management 51 (2015) 757–772

Table A.5

Learning to rank algorithms with measurements on benchmark datasets.

Method Described in Evaluated in

AdaRank-MAP Xu and Li (2007) L2, L3, L4

AdaRank-NDCG Xu and Li (2007) L2, L3, L4, Busa-Fekete et al. (2013), Tan et al. (2013)

ADMM Duh et al. (2011) Duh et al. (2011)

ApproxAP Qin, Liu, and Li (2010) Qin, Liu, and Li (2010)

ApproxNDCG Qin, Liu, and Li (2010) Qin, Liu, and Li (2010)

BagBoo Pavlov et al. (2010) Ganjisaffar et al. (2011)

Best Single Feature Gomes et al. (2013)

BL-MART Ganjisaffar et al. (2011) Ganjisaffar et al. (2011)

BoltzRank-Single Volkovs and Zemel (2009) Volkovs and Zemel (2009, 2013)

BoltzRank-Pair Volkovs and Zemel (2009) Volkovs and Zemel (2009), Ganjisaffar et al. (2011), Volkovs and Zemel (2013)

BT Zhou et al. (2008) Zhou et al. (2008)

C-CRF Qin, Liu, Zhang, Wang et al. (2008) Qin, Liu, Zhang, Wang et al. (2008)

CA Metzler and Croft (2007) Busa-Fekete et al. (2013), Tan et al. (2013)

CCRank Wang et al. (2011) Wang et al. (2011)

CoList Gao and Yang (2014) Gao and Yang (2014)

Consistent-

RankCosine

Ravikumar et al. (2011) Tan et al. (2013)

DCMP Renjifo and Carmen (2012) Renjifo and Carmen (2012)

DirectRank Tan et al. (2013) Tan et al. (2013)

EnergyNDCG Freno et al. (2011) Freno et al. (2011)

FBPCRank Lai et al. (2011) Lai et al. (2011)

FenchelRank Lai, Pan, Liu, et al. (2013) Lai, Pan, Liu, et al. (2013, 2013), Laporte et al. (2013)

FocusedBoost Niu et al. (2012) Niu et al. (2012)

FocusedNet Niu et al. (2012) Niu et al. (2012)

FocusedSVM Niu et al. (2012) Niu et al. (2012)

FP-Rank Song et al. (2013) Song et al. (2013)

FRank Tsai et al. (2007) L2, L3, Wang, Huang et al. (2012)

FSMRank Lai et al. (2013c) Lai et al. (2013c), Laporte et al. (2013)

FSMSVM Lai et al. (2013c) Lai et al. (2013c)

GAS-E Geng et al. (2007) Lai et al. (2013c)

GP de Almeida et al. (2007) Alcântara et al. (2010)

GPRank Silva et al. (2009) Torkestani (2012a)

GRankRLS Pahikkala et al. (2010) Pahikkala et al. (2010)

GroupCE Lin, Lin, et al. (2011) Lin, Lin, et al. (2011)

GroupMLE Lin et al. (2010) Lin, Lin, et al. (2011)

IntervalRank Moon et al. (2010) Moon et al. (2010), Freno et al. (2011)

IPRank Wang, Ma et al. (2009) Wang, Ma et al. (2009), Torkestani (2012a)

KeepRank Chen et al. (2009) Chen et al. (2009)

KL-CRF Volkovs et al. (2011) Volkovs et al. (2011)

LAC-MR-OR Veloso et al. (2008) Veloso et al. (2008), Alcântara et al. (2010)

LambdaMART Burges (2010) Asadi and Lin (2013), Ganjisaffar et al. (2011)

LambdaNeuralRank Papini and Diligenti (2012) Papini and Diligenti (2012)

LambdaRank Burges et al. (2006) Papini and Diligenti (2012), Tan et al. (2013)

LARF Torkestani (2012a) Torkestani (2012a)

Linear Regression Cossock and Zhang (2006) L3, Wang, Huang et al. (2012), Volkovs et al. (2011)

ListMLE Xia et al. (2008) Lin et al. (2010, 2011), Gao and Yang (2014)

ListNet Cao et al. (2007) L2, L3, L4

ListReg Wu et al. (2011) Wu et al. (2011)

LRUF Torkestani (2012b) Torkestani (2012b)

MCP Laporte et al. (2013) Laporte et al. (2013)

MHR Qin et al. (2007) L2

MultiStageBoost Kao and Fahn (2013) Kao and Fahn (2013)

NewLoss Peng, Tang et al. (2010) Peng, Tang et al. (2010)

OWPC Usunier et al. (2009) Usunier et al. (2009)

PERF-MAP Pan et al. (2011) Torkestani (2012b)

PermuRank Xu et al. (2008) Xu et al. (2008)

Q.D.KNN Geng et al. (2008) Wang et al. (2013)

RandomForest Gomes et al. (2013) Gomes et al. (2013)

Rank-PMBGP Sato et al. (2013) Sato et al. (2013)

RankAggNDCG Wang et al. (2013) Wang et al. (2013)

RankBoost Freund et al. (2003) L2, L3, L4, Busa-Fekete et al. (2013), Alcântara et al. (2010), Sato et al. (2013)

RankBoost (Kernel-

PCA)

Duh and Kirchhoff (2008) Duh and Kirchhoff (2008), Sato et al. (2013)

RankBoost (SVD) Lin et al. (2009) Lin et al. (2009)

RankCSA He, Ma, and Wang (2010) He, Ma, and Wang (2010)

RankDE Bollegala et al. (2011) Sato et al. (2013)

RankELM

(pairwise)

Zong and Huang (2013) Zong and Huang (2013)

(continued on next page)
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Table A.5 (continued)

Method Described in Evaluated in

RankELM

(pointwise)

Zong and Huang (2013) Zong and Huang (2013)

RankMGP Lin et al. (2012) Lin et al. (2012)

RankNet Burges et al. (2005) Busa-Fekete et al. (2013), Papini and Diligenti (2012), Niu et al. (2012)

RankRLS Pahikkala et al. (2009) Pahikkala et al. (2010)

RankSVM Herbrich et al. (1999), Joachims

(2002)

L2, L3, Busa-Fekete et al. (2013), Freno et al. (2011), He, Ma, and Wang (2010),

Alcântara et al. (2010), Papini and Diligenti (2012)

RankSVM-Struct L3, L4

RankSVM-Primal L3, Lai et al. (2011)

RCP Elsas et al. (2008) Elsas et al. (2008)

RE-QR Veloso et al. (2010) Veloso et al. (2010)

REG-SHF-SDCG Wu et al. (2009) Wu et al. (2009)

Ridge Regression Cossock and Zhang (2006) L3

RSRank Sun et al. (2009) Lai, Pan, Liu, et al. (2013)

SmoothGrad Le and Smola (2007) Tan et al. (2013)

SmoothRank Chapelle and Wu (2010) L3, Chapelle and Wu (2010)

SoftRank Taylor et al. (2008), Guiver and

Snelson (2008)

Qin, Liu, and Li (2010)

SortNet Rigutini et al. (2008) Rigutini et al. (2008), Freno et al. (2011), Papini and Diligenti (2012)

SparseRank Lai, Pan, Tang, et al. (2013) Lai, Pan, Tang, et al. (2013)

SVMMAP Yue et al. (2007) L3, Wang, Huang et al. (2012), Xu et al. (2008), Niu et al. (2012)
SwarmRank Diaz-Aviles et al. (2009) Sato et al. (2013)

TGRank Lai, Pan, Liu, et al. (2013) Lai, Pan, Liu, et al. (2013)

TM Zhou et al. (2008) Zhou et al. (2008), Papini and Diligenti (2012), Tan et al. (2013)

VFLR Cai et al. (2012) Cai et al. (2012)

Appendix B. Meta-analysis raw data
See Table B.6.

Table B.6

Raw data of cross-benchmark comparison.

NDCG@3 NDCG@5 NDG@10 MAP CROSS

Method NWN #ds NWN #ds NWN #ds NWN #ds WN IWN NWN

AdaRank-MAP 0.3529 12 0.3884 12 0.3648 13 0.3206 12 334 940 0.3553

AdaRank-NDCG 0.3122 12 0.3259 12 0.3158 16 0.2863 12 295 954 0.3092

ADMM – – – – 0.4444 1 – – 4 9 0.4444

ApproxAP – – – – – – 0.5000 2 33 66 0.5000

ApproxNDCG 0.8000 1 0.7500 1 0.8611 1 – – 93 116 0.8017

BagBoo 0.8333 2 0.8400 1 – – 0.6545 2 97 128 0.7578

Best Single Feature – – – – 0.1615 8 – – 26 161 0.1615

BL-MART 0.8776 3 0.7200 1 – – 0.8036 3 106 130 0.8154

BoltzRank-Pair 0.8286 4 0.8350 4 – – 0.5804 5 256 351 0.7293

BoltzRank-Single 0.7524 4 0.7184 4 – – 0.4336 5 215 351 0.6125

BT 0.7273 3 0.7879 3 – – 0.7500 3 75 99 0.7576

C-CRF – – 0.9500 2 – – – – 19 20 0.9500

CA – – – – 0.6522 4 – – 15 23 0.6522

CCRank – – – – – – 0.6154 2 24 39 0.6154

CoList 1.0000 1 1.0000 1 0.1667 1 – – 3 8 0.3750

Consistent-RankCosine – – – – 0.7692 2 – – 10 13 0.7692

DCMP 0.5477 9 0.5079 9 0.5888 9 – – 322 587 0.5486

DirectRank – – – – 0.9231 2 – – 12 13 0.9231

EnergyNDCG 0.3778 2 0.3778 2 0.4146 2 – – 51 131 0.3893

FBPCRank 0.4235 3 0.5529 3 – – – – 83 170 0.4882

FenchelRank 0.7760 5 0.7500 5 0.7623 5 0.6418 5 369 505 0.7307

FocusedBoost 0.3753 2 0.4545 2 0.6863 2 – – 73 143 0.5105

FocusedNet 0.4583 2 0.6364 2 0.8627 2 – – 94 143 0.6573

FocusedSVM 0.2371 2 0.2727 2 0.6078 2 – – 55 143 0.3846

FP-Rank – – 0.9000 1 – – – – 18 20 0.9000

FRank 0.3137 11 0.2849 10 0.3029 11 0.2623 11 244 842 0.2898

FSMRank 0.8351 4 0.8776 4 0.8621 5 0.5789 7 366 482 0.7593

FSMSVM 0.2292 2 0.4082 4 0.5426 4 0.3500 4 149 389 0.3830

GAS-E 0.3814 4 0.4694 4 0.4574 4 0.4100 4 167 389 0.4293

GP – – – – 0.6667 2 0.5000 2 7 12 0.5833

GPRank 0.8750 3 0.7253 3 0.6591 3 0.8173 3 293 379 0.7731

(continued on next page)
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Table B.6 (continued)

NDCG@3 NDCG@5 NDG@10 MAP CROSS

Method NWN #ds NWN #ds NWN #ds NWN #ds WN IWN NWN

GRankRLS – – – – 0.2895 2 – – 11 38 0.2895

GroupCE 0.7292 3 – – 0.7273 3 0.7212 3 209 288 0.7257

GroupMLE 0.5208 3 – – 0.6250 3 0.6538 3 173 288 0.6007

IntervalRank 0.6000 1 0.3750 1 – – 0.3158 1 51 118 0.4322

IPRank 0.9375 3 0.8132 3 0.7955 3 0.8514 6 360 423 0.8511

KeepRank – – – – – – 0.5385 3 56 104 0.5385

KL-CRF 0.5946 2 0.5789 2 – – – – 44 75 0.5867

LAC-MR-OR – – – – 0.6667 2 0.7642 12 179 235 0.7617

LambdaMART 0.4082 3 – – 1.0000 1 0.6786 3 62 109 0.5688

LambdaNeuralRank 1.0000 1 1.0000 1 1.0000 1 – – 15 15 1.0000

LambdaRank 0.2000 1 0.2000 1 0.5714 2 – – 10 24 0.4167

LARF 0.9896 3 0.9890 3 0.9886 3 0.9808 3 374 379 0.9868

Linear Regression 0.0754 9 0.1099 9 0.0829 8 0.0650 8 64 771 0.0830

ListMLE 0.0000 2 0.0000 1 0.0213 4 0.00962 3 3 240 0.0125

ListNet 0.4480 12 0.4911 12 0.5982 12 0.4504 12 461 931 0.4952

ListReg 0.7292 3 0.6923 3 – – 0.4327 3 178 291 0.6117

LRUF 0.9828 4 0.9817 4 0.9818 4 0.9680 4 450 460 0.9783

MCP – – – – – – 0.5714 2 40 70 0.5714

MHR 0.7500 1 0.6000 1 0.6250 1 0.0000 1 17 41 0.5714

MultiStageBoost – – – – – – 0.1364 2 6 44 0.1364

NewLoss 0.5208 3 0.4286 3 0.3977 3 – – 124 275 0.4509

OWPC 0.6475 6 – – – – 0.6241 6 167 263 0.6350

PERF-MAP 0.3966 4 0.2661 4 0.2000 4 0.7680 4 193 460 0.4196

PermuRank – – – – – – 0.4091 3 18 44 0.4091

Q.D.KNN – – 0.3205 3 0.5000 3 0.5584 3 105 229 0.4585

RandomForest – – – – 0.4224 8 0.4389 8 147 341 0.4311

Rank-PMBGP – – 0.7692 1 0.2727 1 0.8750 1 27 40 0.6750

RankAggNDCG – – 0.5000 3 0.8784 3 0.7922 3 165 229 0.7205

RankBoost 0.3303 12 0.2794 10 0.3936 17 0.3134 14 312 942 0.3312

RankBoost (Kernel-PCA) – – 0.2857 3 – – – – 26 91 0.2857

RankBoost (SVD) – – 0.2727 3 0.5556 3 0.5682 3 49 104 0.4712

RankCSA – – – – – – 0.9167 2 33 36 0.9167

RankDE – – 0.5385 1 0.1818 1 1.0000 1 25 40 0.6250

RankELM (pairwise) 0.6475 1 0.6500 1 0.6944 1 0.5143 2 112 186 0.6022

RankELM (pointwise) 0.7000 1 0.7000 1 0.8056 1 0.5429 2 123 186 0.6613

RankMGP – – – – – – 0.2222 1 4 18 0.2222

RankNet 0.1887 3 0.2857 3 0.5915 5 – – 66 173 0.3815

RankRLS – – – – 0.3684 2 – – 14 38 0.3684

RankSVM 0.3014 12 0.3613 11 0.4496 17 0.3400 13 324 888 0.3649

RankSVM-Primal 0.3911 8 0.4509 8 0.4591 7 0.3520 7 284 690 0.4116

RankSVM-Struct 0.3518 9 0.4136 9 0.4467 9 0.3624 9 316 805 0.3925

RCP – – 0.5758 3 0.7407 3 0.3636 3 55 104 0.5288

RE-QR – – – – – – 0.8659 7 155 179 0.8659

REG-SHG-SDCG 0.4000 1 0.4500 1 – – 0.6579 1 59 118 0.5000

Ridge Regression 0.4074 7 0.3333 7 0.3648 7 0.2905 7 227 653 0.3476

RSRank 0.5773 4 0.5306 4 0.6277 4 0.6600 4 233 389 0.5990

SmoothGrad – – – – 0.3846 2 – – 5 13 0.3846

SmoothRank 0.6049 7 0.6340 7 0.6415 7 0.5307 7 392 653 0.6003

SoftRank 0.2500 1 0.2750 1 0.6111 1 – – 43 116 0.3707

SortNet 0.2667 2 0.5147 4 0.5667 4 0.5000 2 114 239 0.4770

SparseRank 0.8241 4 0.8173 4 0.7944 4 – – 259 319 0.8119

SVMMAP 0.2901 7 0.3801 8 0.3591 8 0.3498 10 255 737 0.3460

SwarmRank – – 0.1538 1 0.0909 1 0.1250 1 5 40 0.1250

TGRank 0.5464 4 0.6122 4 0.5000 4 0.4600 4 206 389 0.5296

TM 0.5909 3 0.7576 3 – – 0.6136 3 65 99 0.6566

VFLR – – – – – – 0.9744 2 38 39 0.9744
References

Acharyya, S., Koyejo, O., & Ghosh, J. (2012). Learning to rank with Bregman divergences and monotone retargeting. In Proceedings of the 28th conference on

uncertainty in artificial intelligence (UAI).
Adams, R. P., & Zemel, R. S. (2011). Ranking via Sinkhorn Propagation. Available from: <arXiv:1106.1925>.

Agarwal, S., & Collins, M. (2010). Maximum Margin Ranking Algorithms for Information Retrieval. In Proceedings of the 32nd European conference on information
retrieval research (ECIR) (pp. 332–343).

Ah-Pine, J. (2008). Data fusion in information retrieval using consensus aggregation operators. In Proceedings of the IEEE/WIC/ACM international conference on Web
intelligence and intelligent agent technology (WI-IAT) (Vol. 1, pp. 662–668).

arxiv:1106.1925


N. Tax et al. / Information Processing and Management 51 (2015) 757–772 769
Alcântara, O. D., Pereira, Á. R., Jr., Almeida, H. M., Gonçalves, M. A., Middleton, C., & Baeza-Yates, R. (2010). Wcl2r: A benchmark collection for learning to rank
research with clickthrough data. Journal of Information and Data Management, 1(3), 551.

Alejo, O., Fernández-Luna, J. M., Huete, J. F., & Pérez-Vázquez, R. (2010). Direct optimization of evaluation measures in learning to rank using particle swarm. In
Proceedings of the workshop on database and expert systems applications (DEXA) (pp. 42–46).

Argentini, A. (2012). Ranking aggregation based on belief function theory. PhD thesis, University of Trento.
Asadi, N. (2013). Multi-stage search architectures for streaming documents. PhD thesis, University of Maryland.

Asadi, N., & Lin, J. (2013). Training efficient tree-based models for document ranking. In Proceedings of the 25th European conference on advances in information

retrieval (Vol. 7814, pp. 146–157).
Banerjee, S., Dubey, A., Machchhar, J., & Chakrabarti, S. (2009). Efficient and accurate local learning for ranking. In SIGIR workshop on learning to rank for information

retrieval (pp. 1–8).
Benbouzid, D., Busa-Fekete, R., & Kégl, B. (2012). Fast classification using sparse decision DAGs. In Proceedings of the 29th international conference on machine

learning (ICML) (pp. 951–958).
Bian, J. (2010). Contextualized Web search: Query-dependent ranking and social media search. PhD thesis, Georgia Institute of Technology.

Bian, J., Li, X., Li, F., Zheng, Z., & Zha, H. (2010). Ranking specialization for Web search: A divide-and-conquer approach by using topical RankSVM. In Proceedings
of the 19th international conference on World Wide Web.

Bidoki, A. M. Z., & Thom, J. (2009). Combination of documents features based on simulated click-through data. In Proceedings of the 31st European conference on

information retrieval research (ECIR) (Vol. 5478, pp. 538–545).
Bollegala, D., Noman, N., & Iba, H. (2011). RankDE: Learning a ranking function for information retrieval using differential evolution. In Proceedings of the 13th

annual conference on genetic and evolutionary computation (pp. 1771–1778).
Buffoni, D., Gallinari, P., Usunier, N., & Calauzènes, C. (2011). Learning scoring functions with order-preserving losses and standardized supervision. In Proceedings

of the 28th international conference on machine learning (ICML) (pp. 825–832).
Burges, C. J. C. (2010). From RankNet to LambdaRank to LambdaMART: An overview. Technical report, Microsoft research.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international

conference on machine learning (pp. 89–96).
Burges, C. J. C., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In Advances in neural information processing systems (NIPS) (Vol. 6,

pp. 193–200).
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