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Abstract

Knowledge base provides a potential way to improve the intelligence of information re-

trieval (IR) systems, for that knowledge base has numerous relations between entities

which can help the IR systems to conduct inference from one entity to another entity.

Relation extraction is one of the fundamental techniques to construct a knowledge base.

Distant supervision is a semi-supervised learning method for relation extraction which

learns with labeled and unlabeled data. However, this approach suffers the problem

of relation overlapping in which one entity tuple may have multiple relation facts. We

believe that relation types can have latent connections, which we call class ties, and can

be exploited to enhance relation extraction. However, this property between relation

classes has not been fully explored before. In this paper, to exploit class ties between re-

lations to improve relation extraction, we propose a general ranking based multi-label

learning framework combined with convolutional neural networks, in which ranking

based loss functions with regularization technique are introduced to learn the latent

connections between relations. Furthermore, to deal with the problem of class imbal-

ance in distant supervision relation extraction, we further adopt cost-sensitive learning

to rescale the costs from the positive and negative labels. Extensive experiments on
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a widely used dataset show the effectiveness of our model to exploit class ties and to

relieve class imbalance problem.

Keywords: Distant supervision, relation extraction, class ties, class imbalance,

multi-label learning, cost-sensitive learning, deep ranking

1. Introduction

Relation extraction (RE) aims to classify the relations (or called relation facts) be-

tween two given named entities from natural-language text. Fig. 1 shows two sentences

with the same entity tuple but two different relation facts. RE is to accurately extract

the corresponding relation facts (place of birth, place lived) for the entity tuple (Patsy

Ramsey, Atlanta) based on the contexts of sentences. Supervised-learning methods re-

quire numerous labeled data to work well. With the rapid growth of volume of relation

types, traditional methods can not keep up with the step for the limitation of labeled

data. In order to narrow down the gap of data sparsity, [1] proposes distant supervision

(DS) for relation extraction, which automatically generates training data by aligning a

knowledge facts database (ie. Freebase [2]) to texts. For a fact (e.g. entity tuple with a

relation type) from the knowledge base, the sentences containing the entity tuple in the

fact are regarded as the training data.

Class ties mean the connections (relatedness) between relations types for relation

extraction. In general, we conclude that class ties can have two categories: weak class

ties and strong class ties. Weak class ties mainly involve the co-occurrence of rela-

tions such as place of birth and place lived, CEO of and founder of. Besides, strong

class ties mean that relations have latent logical entailments. Take the two relations of

capital of and city of for example, if one entity tuple has the relation of capital of, it

must express the relation fact of city of, because the two relations have the entailment

of capital of ⇒ city of. Obviously the opposite induction is not correct. Further take

the following sentence of

Jonbenet told me that her mother [Patsy Ramsey]e1 never left [Atlanta]e2

since she was born.

2



Patsy Ramsey Atlantahas been living in since she was born.

  place_of_birth

Patsy Ramsey Atlantaalways loves  since it is her hometown.

    place_lived

#1

#2

Figure 1: Training instances generated by freebase. The entity tuple is (Patsy Ramsey, Atlanta) and its two

relation facts are palce of birth and place lived.

for example. This sentence expresses two relation facts which are place of birth and

place lived. However, the word “born” is a strong bias to extract place of birth, so it

may not be easy to predict the relation of place lived, but extracting place of birth will

provide evidence for prediction of place lived by incorporating the weak ties between

the two relations,

Exploiting class ties is necessary for DS based relation extraction. In DS scenario,

there is a challenge that one entity tuple can have multiple relation facts which is called

relation overlapping [3, 4], as shown in Fig. 1. However, the relations of one entity tu-

ple can have class ties mentioned above which can be leveraged to enhance relation ex-

traction, for that it narrows down potential searching spaces and reduces uncertainties

between relations when predicting unknown relations, such that if one pair of entities

has CEO of relation, it will contain founder of relation with high possibility.

To exploit class ties between relations, we propose to make joint extraction by

considering pairwise connections between positive and negative labels inspired by [5,

6]. As the example for one entity tuple with two different relation types shown in Fig. 1,

by extracting the two relations jointly, we can maintain the class ties (co-occurrence)

of them and the class ties can be learned by potential models, which can be leveraged

to extract instances with unknown relations. We introduce a ranking based multi-label

learning framework to make joint extraction, to learn to rank the prediction probability

for positive relations higher than negative ones. We design ranking based loss functions

for multi-label learning. Furthermore, inspired by [7, 8], we add a regularization term

to the loss functions to better learn the relatedness between relation facts, and we only

regularize the positive relation types ignoring the relation of NR (does not express any
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Figure 2: The main architecture of our model. The features of sentences are encoded by CNN model, and

then the sentence embeddings are aggregated, finally the bag representation is used to make joint extraction.

relation) based on the assumption that the connections between relations are only in

positive relations but not in NR (see Sec. 3.4).

Besides, class imbalance is the another severe problem which can not be ignored

for distant supervision relation extraction. We find that around 70% training data ex-

press NR relation type and even more than 90% in test set, so samples with NR type

count a much higher proportion comparing to the positive samples (not categorized as

NR). This problem will severely affect the model training, causing the model easily to

classify the samples to have the NR relation type [9]. To overcome this problem, based

on the ranking loss functions, we further adopt cost-sensitive learning to rescale the

costs from the positive and negative labels, by increasing the losses for positive labels

and penalizing losses from NR type (detailed in Sec. 3.5).

Furthermore, combining information across sentences will be more appropriate for

joint extraction which provides more information from other sentences to extract each

relation ([10, 11]). In Fig. 1, sentence #1 is the evidence for place of birth, but it also

expresses the meaning of “living in someplace”, so it can be aggregated with sentence

#2 to extract place lived. Meanwhile, the word of “hometown” in sentence #2 can

provide evidence for place of birth which should be combined with sentence #1 to

extract place of birth.
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In this work, we propose a unified model that integrates ranking based cost-sensitive

multi-label learning with convolutional neural network (CNN) to exploit class ties be-

tween relations and further relieve the class imbalance problem. Inspired by the effec-

tiveness of deep learning for modeling sentence features [12], we use CNN to encode

sentences. Similar to [11, 13], we use class embeddings to represent relation classes.

The whole model architecture is presented in Fig. 2. We first use CNN to embed sen-

tences, then we introduce two variant methods to combine the embedded sentences

into one bag representation vector aiming to aggregate information across sentences,

after that we measure the similarity between the bag representation and relation class

in real-valued space. Finally, we use the ranking loss functions to learn to make joint

extraction over multiple relation types.

Our experimental results on dataset of [14] are evident that: (1) Our model is much

more effective than the baselines; (2) Leveraging class ties will enhance relation ex-

traction and our model is efficient to learn class ties by joint extraction; (3) A much

better model can be trained after relieving class imbalance from NR.

Our contributions in this paper can be encapsulated as follows:

•We propose to leverage class ties to enhance relation extraction. Combined with

CNN, an effective deep ranking based multi-label learning model with regularization

technique is introduced to exploit class ties.

• We adopt the cost-sensitive learning to relieve the class imbalance problem and

experimental results show the effectiveness of our method.

2. Related Work

2.1. Relation Extraction

Previous methods on relation extraction can mainly be summarized as supervision

based and distant supervision based. Supervision based methods needs much labeled

data to work well which can not keep up with the rapid growth of relation types. To

overcome the problem of data sparsity for supervision based methods, distant supervi-

sion relation extraction has been proposed by [1]. However, DS based relation extrac-

tion suffers the two problems of wrong labelling problem and overlapping problem,
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in which the former means that sentences containing certain entities actually do not

express the relation type of the entities indicated or even do not express any relations

and the latter mean that one entity tuple may have multiple relation types. To solve the

problem of wrong labelling, [14] introduces multi-instance learning for relation extrac-

tion in which the mentions of one certain entity tuple are merged as one bag and make

the model to extract relations on mention bags, however this method can not deal with

the relation overlapping problem. Afterwards, [3] and [4] introduce the framework

of multi-instance multi-label learning to jointly overcome the two problems and im-

prove the performance significantly. Though they also propose to make joint extraction

of relations, they only use information from single sentence losing information from

other sentences. [15] tries to use Markov logic model to capture consistency between

relation labels, on the contrary, our model leverages deep ranking to learn class ties

automatically.

Recent years, deep learning has achieved remarkable success in computer vision

and natural language processing [12]. Deep learning has been applied to automatically

learn the features of sentences ([16, 17, 13, 11, 18, 19, 20, 21]). In supervision relation

extraction, [16] applies convolutional neural networks to model sentences and import

position feature for RE, which obtains significant gains in RE performance. After-

wards, [17, 13, 11] further introduce more advanced deep learning models for RE. In

distant supervision relation extraction, [22] proposes a piecewise convolutional neural

network with multi-instance learning for DS based relation extraction, which improves

the precision and recall significantly. Afterwards, [11] introduces the attention mecha-

nism ([23, 24]) to merge the sentence features aiming to construct better bag represen-

tations. [25] further proposes a multi-lingual neural relation extraction framework con-

sidering the information consistency and complementarity among cross-lingual texts.

However, the two deep learning based models only make separated extraction thus

can not model class ties between relations. Recently, [26] proposes to incorporate re-

lation paths for distant supervision relation extraction and [27] introduces to use the

description of entities to enhance distant supervision relation extraction. [28] proposes

a joint inference approach by encoding implicit relation requirements for relation ex-

traction. Joint learning is also applied to jointly study two related tasks [29]. Besides,
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a lot of works have been proposed in recent times to solve the wrong labelling prob-

lem. [30] proposes to model the noise caused by wrong labelling problem and show

that dynamic transition matrix can effectively characterize the noises. [31, 32] pro-

pose to use adversarial learning [33] to solve the wrong labelling problem. Instead,

[34, 35] adopt reinforcement learning to learn to select high-quality data for training.

[36] dynamically corrects the wrong labeled data during training by exploiting seman-

tic information from labeled entity pairs. [37] transfers the priori knowledge learned

from relevant entity classification task to make the model robust to noisy data.

2.2. Deep Learning to Rank

Learning to rank (LTR) is an important technique in information retrieval (IR) [38].

The methods to train a LTR model include pointwise, pairwise and listwise. We apply

pairwise LTR in our paper. Deep learning to rank has been widely used in many prob-

lems to serve as a classification model. In image retrieval, [39] applies deep semantic

ranking for multi-label image retrieval. In text matching, [40] adopts learning to rank

combined with deep CNN for short text pairs matching. In traditional supervised re-

lation extraction, [13] designs a pairwise loss function based on CNN for single label

relation extraction. Based on the advantage of deep learning to rank, we propose pair-

wise learning to rank (LTR) [38] combined with CNN in our model aiming to jointly

extract multiple relations.

2.3. Cost-sensitive Learning

Cost-sensitive learning is one of the techniques for class imbalance problem, which

assigns higher wrong classification costs to classes with small proportion. For exam-

ple, [41] proposes a regularized softmax to deal with the imbalanced edge label classi-

fication. [42] adopts cost-sensitive learning to learn deep feature representations from

imbalanced data. Another approach to relieve class imbalance problem is re-sampling

[43, 44] including over-sampling and under-sampling, which aims to balance the dis-

tributions of data in different labels.

This paper is the extension of [45]. Compared to original work in [45], this paper

has several improvements:
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Methods: (a) We further fully consider the class imbalance problem. We propose

a novel ranking based cost-sensitive loss function combined with multi-label learning.

(b) To better learn class ties between relations, we further introduce a regularization

term to ranking loss functions.

Experiments: (a) We further do experiments to analyze the effectiveness of our

novel cost-sensitive ranking loss functions. (b) The evaluation experiments on the ef-

fectiveness of regularization have further be conducted.

Content: (a) We rewrite the description of our methods from the view of multi-

label learning and cost-sensitive learning to gain more theoretical justification improve-

ment.

3. Methodology

We introduce our methods in this section. Firstly, we describe the widely used

CNN architecture for sentence encoding. Then we discuss the ranking based multi-

label learning framework with regularization technique. After that, we introduce the

proposed cost-sensitive learning to overcome the NR effects for model training.

3.1. Notation

We define the relation classes as L = {1, 2, · · · , C}, entity tuples as T = {ti}Mi=1

and mentions1 as X = {xi}Ni=1. Dataset is constructed as follows: for entity tuple

ti ∈ T and its relation class set Li ⊆ L, we collect all the mentions Xi that contain

ti, the dataset we use is D = {(ti, Li, Xi)}Hi=1. Given a data (tk, Lk, Xk) ∈ D, the

sentence embeddings ofXk encoded by CNN are defined as Sk = {si}|Xk|
i=1 and we use

class embeddings W ∈ R|L|×d to represent the relation classes, which will be learned

in model training.

3.2. CNN for sentence embedding

We take the effective piecewise CNN architecture adopted from [22, 11] to encode

sentence and we will briefly introduce PCNN in this section. More details of PCNN

1The sentence containing one certain entity is called mention.
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can be obtained from previous work.

3.2.1. Words Representations

•Word Embedding Given a word embedding matrix V ∈ Rlw×d1

where lw is the

size of word dictionary and d1 is the dimension of word embedding, the words of a

mention x = {w1, w2, · · · , wn} will be represented by real-valued vectors from V .

• Position Embedding The position embedding of a word measures the distance

from the word to entities in a mention. We add position embeddings into words repre-

sentations by appending position embedding to word embedding for every word. Given

a position embedding matrix P ∈ Rlp×d2

where lp is the number of distances and d2

is the dimension of position embeddings, the dimension of words representations be-

comes dw = d1 + d2 × 2.

3.2.2. Convolution, Piecewise max-pooling

After transforming words in x to real-valued vectors, we get the sentence q ∈

Rn×dw

. The set of kernelsK is {Ki}d
s

i=1 where ds is the number of kernels. Define the

window size as dwin and given one kernel Kk ∈ Rdwin×dw

, the convolution operation

is defined as follows:

m[i] = q[i:i+dwin−1] �Kk + b[k] (1)

where m is the vector after conducting convolution along q for n− dwin + 1 times and

b ∈ Rds

is the bias vector. For these vectors whose indexes out of range of [1, n], we

replace them with zero vectors.

By piecewise max-pooling, when pooling, the sentence is divided into three parts:

m[p0:p1], m[p1:p2] and m[p2:p3] (p1 and p2 are the positions of entities, p0 is the begin-

ning of sentence and p3 is the end of sentence). This piecewise max-pooling is defined

as follows:

z[j] = max(m[pj−1:pj ]) (2)
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where z ∈ R3 is the result of mention x processed by kernel Kk; 1 ≤ j ≤ 3. Given

the set of kernels K, following the above steps, the mention x can be embedded to o

where o ∈ Rds∗3.

3.2.3. Non-Linear Layer, Regularization

To learn high-level features of mentions, we apply a non-linear layer after pooling

layer. After that, a dropout layer is applied to prevent over-fitting. We define the final

fixed sentence representation as r ∈ Rdf

(df = ds ∗ 3).

s = g(o) ◦ h (3)

where g(·) is a non-linear function and we use tanh(·) in this paper; h is a Bernoulli

random vector with probability p to be 1.

3.3. Combine Information across Sentences

We propose two options to combine sentences to provide enough information for

multi-label learning.

• AVE The first option is average method. This method regards all the sentences

equally and directly average the values in all dimensions of sentence embedding. This

AVE function is defined as follows:

r =
1

n

∑
si∈Sk

si (4)

where n is the number of sentences and r is the bag representation combining all sen-

tence embeddings. Because it weights the importance of sentences equally, this method

may bring much noise data from two aspects: (1) the wrong labelling data; (2) irrelated

mentions for one relation class, for all sentences containing the same entity tuple being

combined together to construct the bag representation.

•ATT The second one is a sentence-level attention algorithm used by [11] to measure

the importance of sentences aiming to relieve the wrong labelling problem. For every

sentence, ATT will calculate a weight by comparing the sentence to one relation. We

first calculate the similarity between one sentence embedding and relation class as

follows:

ej = a ·W[c] · sj (5)
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where ej is the similarity between sentence embedding sj and relation class c and a

is a bias factor. In this paper, we set a as 0.5. Then we apply Softmax to rescale e

(e = {ei}|Xk|
i=1 ) to [0, 1]. We get the weight αj for sj as follows:

αj =
exp(ej)∑

ei∈e exp(ei)
(6)

so the function to merge r with ATT is as follows:

r =

|Xk|∑
i=1

αi · si (7)

3.4. Learning Class Ties via Ranking based Multi-label Learning with Regularization

Firstly, we have to present the score function to measure the similarity between bag

representation r and relation c.

• Score Function We use dot function to produce score for r to be predicted as

relation c. The score function is as follows:

F(r, c) = W[c] · r (8)

There are other options for score function. In [46], they propose a margin based

loss function that measures the similarity between r and W[c] by distance. Because

score function is not an important issue in our model, we adopt dot function, also used

by [13] and [11], as our score function.

Now we start to introduce the ranking loss functions.

Pairwise ranking aims to learn the score function F(r, c) that ranks positive classes

higher than negative ones. This goal can be summarized as follows:

∀c+ ∈ Lk,∀c− ∈ L − Lk : F(r, c+) > F(r, c−) + β (9)

where β is a margin factor which controls the minimum margin between the positive

scores and negative scores. Inspired by [13], given c+ and c−, we adopt the following

function to learn the score function:

H(c+, c−, r) = ln(1 + exp(ρ[0, σ+ −F(r, c+)]))

+ ln(1 + exp(ρ[0, σ− + F(r, c−)])) (10)
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where [0, ·] = max(0, ·), ρ is the rescale factor, σ+ is positive margin and σ− is nega-

tive margin. This loss function is designed to rank positive classes higher than negative

ones controlled by the margin of σ+ − σ−. In reality, F(r, c+) will be higher than σ+

and F(r, c−) will be lower than σ−. In our work, we set ρ as 2, σ+ as 2.5 and σ−

as 0.5 adopted from [13]. To simplify the loss functions given in the followings, we

use ρ[0, σ+ − F(r, c+)] to replace the first term in H and use ρ[0, σ− + F(r, c−)] to

replace the second term.

To model the class ties (co-occurrence) of the labels, we have the assumption that

the positive labels have the same class ties and are connected with each other. Out

of this assumption, we have two mechanisms to learn the class ties, which are making

joint extraction of relations and explicitly modeling the connections by regularizing the

learning of positive labels. In the followings, we will first introduce the loss functions

for multi-label learning extended from Eq. 10; then we discuss the regularization term.

To learn class ties between relations, we firstly extend the Eq. 10 to make multi-

label learning. Followings are the proposed ranking based loss functions:

• with AVE (Variant-1) We define the margin-based loss function with option of

AVE to aggregate sentences as follows:

G[ave] =
∑

c+∈Lk

ρ[0, σ+ −F(r, c+)]

+ρ|Lk|[0, σ− + F(r, c−)] (11)

Similar to [47] and [13], we update one negative class at every training round but to

balance the loss between positive classes and negative ones, we multiply |Lk| before the

right term in Eq. 11 to expand the negative loss. We apply mini-batch based stochastic

gradient descent (SGD) to minimize the loss function. The negative class is chosen as

the one with highest score among all negative classes [13], i.e.:

c− = argmax
c∈L−Lk

F(r, c) (12)

• with ATT (Variant-2) Now we define the loss function for the option of ATT to
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combine sentences as follows:

G[att] =
∑

c+∈Lk

{
ρ[0, σ+ −F(rc

+

, c+)]

+ρ[0, σ− + F(rc
+

, c−)]
}

(13)

where rc means the attention weighted representation r where attention weights are

merged by comparing sentence embeddings with relation class c and c− is chosen by

the following function:

c− = argmax
c∈L−Lk

F(rc
+

, c) (14)

which means we update one negative class in every training round. We keep the values

of ρ, σ+ and σ− same as values in Eq. 11. In Eq. 13, for every c+ ∈ Lk, we need to

sample c− ∈ L − Lk according to Eq. 14, so different from Eq. 11, we do not extend

the negative loss by multiplying |Lk|.

According to this loss function, we can see that: for each class c+ ∈ Lk, it will cap-

ture the most related information from sentences to merge rc
+

, then rank F(rc
+

, c+)

higher than all negative scores which each is F(rc
+

, c−) (c− ∈ L − Lk). We use the

same update algorithm to minimize this loss.

Based on the assumption that all positive labels have the same class ties, making

joint extraction of the relations can capture the co-occurrence of the labels. If the

relations for the same entity pair usually appear together, then extracting them jointly

can learn the statistical property of their co-appearance.

• Regularization To learn the class ties between relations, we have proposed the rank-

ing based loss functions above. Inspired by [7, 8], we further capture the relation

connections by adding an extra regularization term to the loss functions. We only con-

sider the relatedness between positive labels ignoring NR. The relatedness is measured

by the mean function Wave:

Wave =
1

T

∑
c∈L−cNR

W[c] (15)

where T = |L− cNR|. Wave is the center of the labels, and we hope the positive labels
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Table 1: The proportions of NR samples from Riedel’s dataset.

Pro. (%) Training Test

Riedel 72.52 96.26

can be close to the center which can be measured by:

1

T

∑
c∈L−cNR

‖W[c] −Wave‖2 (16)

Following [7], to model the class ties we need to minimize the loss function as follows:

Θ(W ) = ε‖Wave‖2 + η
1

T

∑
L−cNR

‖W[c] −Wave‖2 (17)

where ε and η are hyper-parameters. Eq. 17 is designed based on the consideration that

the labels in which class ties exist should be clustered together and should be close to

the center of these labels. According to Eq. 15, Eq. 16 can be re-written as:

−‖Wave‖2 +
1

T

∑
c∈L−cNR

‖W[c]‖2 (18)

By merging Func. 18 into Eq. 17, we have the our final regularization term:

Θ(W ) = ε‖Wave‖2 + η
1

T

∑
c∈L−cNR

‖W[c]‖2 (19)

In this paper, we set η as 10−3 and ε is set as 10−6.

3.5. Ranking based Cost-sensitive Multi-label Learning

In relation extraction, the dataset will always contain certain negative samples

which do not express any relation types and are classified as NR type (no relation).

Table 1 presents the proportion of NR samples in the dataset from [14], which shows

that the almost data is about NR. Data imbalance will severely affect the model train-

ing and cause the model only sensitive to classes with high proportion [44], causing a

positive sample to be classified as NR. In order to relieve this problem, we adopt cost-

sensitive learning to construct the loss function. Based onG[att], the cost-sensitive loss
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function which is Variant-3 is as follows:

G[cost att] =
∑

c∗∈Lk

{
g(c∗)

(
ρ[0, σ+ −F(rc

∗
, c∗)]

)
+ρ[0, σ− + F(rc

∗
, c−)]

+
∑

c+∈Lk−c∗
γρ[0, σ+ −F(rc

∗
, c+)]

+γ1(c∗ 6= cNR)ρ[0, σ− + F(rc
∗
, cNR)]

}
(20)

where g(c∗) = 1(c = cNR)λ + 1(c 6= cNR)1; 1(·) is an indicate function. Similar to

Eq. 14, we select c− as follows:

c− = argmax
c∈L−Lk

F(rc
∗
, c) (21)

Because NR counts a high proportion in the training set, without controlling, the

model will receive large costs from NR. In order to relieve the effects from NR, we

penalize the losses from NR. Specifically, we have two strategies to do that. We adopt

two hyper-parameters which are λ (λ < 1) and γ to penalize the losses from NR. If

c∗ ∈ Lk is a positive label, to balance the costs between the positive labels and the

NR label, we further add the costs from the left positive relations c+ ∈ Lk − c∗ and

at the same time, the extra cost from NR is calculated. The default value of γ is 1 and

if γ is small enough, this loss function will be similar to loss Eq. 13. Based on the

experimental results, we find that the best results are achieved when λ is set to 0, so

we set λ as 0 in this paper. How the λ and γ affect model performance is discussed in

Sec. 4.5 and Sec. 4.6. We also add the regularization term Θ(W ) to G[cost att] to better

capture the class ties between relations.

We give out the pseudocode of merging G[cost att] in algorithm 1.

4. Experiments

In this section, we conduct two sets of experiments, in which the first one is for

comparing our method with the baselines and the second one is used to evaluate our

model. Without the special statement, we will adhere to the methods and settings

mentioned above to conduct the following experiments.
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Algorithm 1: Ranking based Cost-sensitive Multi-label Learning
input : L, (tk, Lk, Xk) and Sk;

output: G[cost att];

1 G[cost att] ← 0;

2 for c∗ ∈ Lk do

3 Merge representation rc
∗

by Eq. 5, 6, 7;

4 G[cost att] ← g(c∗)(ρ[0, σ+ −F(rc
∗
, c∗)]);

5 c− ← argmaxc∈L−Lk
F(rc

∗
, c);

6 G[cost att] ← G[cost att] + ρ[0, σ− + F(rc
∗
, c−)];

7 for c+ ∈ Lk − c∗ do

8 G[cost att] ← G[cost att] + γρ[0, σ+ −F(rc
∗
, c+)];

9 G[cost att] ← G[cost att] + γ1(c∗ 6= cNR)ρ[0, σ− + F(rc
∗
, cNR)];

10 return G[cost att];

4.1. Dataset and Evaluation Criteria

Dataset. We conduct our experiments on a widely used dataset, developed by [14] and

has been used by [3, 4, 22, 11]. The dataset aligns Freebase relation facts with the New

York Times corpus, in which training mentions are from 2005-2006 corpus and test

mentions from 2007. The training set contains 522,611 sentences, 281,270 entity pairs

and 18,252 relation facts. In test set, there are 172,448 sentences, 96,678 entity pairs

and 1,950 relation facts. In all, there are 53 relation labels including the NR relation.

Following [1], we adopt held-out evaluation framework in all experiments. We use all

training dataset to train our model and then test the trained model on test dataset to

compare the predicted relations to gold relations.

Evaluation Criteria. To evaluate the model performance, we draw the precision/recall

(P/R) curves and precision@N (P@N) is reported to illustrate the model performance.

For the metric of P/R curve, the bigger of the area contained under the curve, the better

of the model performance.
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Table 2: Hyper-parameter settings.

Parameter Name Symbol Value

Window size dwin 3

Sentence. emb. dim. df 690

Word. emb. dim. d1 50

Position. emb. dim. d2 5

Batch size B 160

Learning rate µ 0.03

Dropout pos. p 0.5

4.2. Experimental Settings

Word Embeddings. We adopt the trained word embeddings from [11]. Similar

to [11], we keep the words that appear more than 100 times to construct word dictionary

and use “UNK” to represent the other ones.

Hyper-parameter Settings. Three-fold validation on the training dataset is adopted

to tune the parameters following [4]. We select word embedding size from {50, 100, 150, 200, 250, 300}.

Batch size is tuned from {80, 160, 320, 640}. We determine learning rate among {0.01, 0.02, 0.03, 0.04}.

The window size of convolution is tuned from {1, 3, 5}. We keep other hyper-parameters

same as [22]: the number of kernels is 230, position embedding size is 5 and dropout

rate is 0.5. Table 2 shows the detailed parameter settings.

4.3. Comparisons with Baselines

Baseline. We compare our model with the following baselines:

• Mintz [1] is the first original model which incorporates distant supervision for

relation extraction.

• MultiR [3] is the multi-instance learning based graphical model which aims to

address overlapping relation problem.

•MIML [4] is a multi-instance multi-label framework which jointly considers the

wrong labelling problem and overlapping problem.

• PCNN+ATT [11] is the previous state-of-the-art model in dataset of [14] which

applies sentence-level attention to relieve the wrong labelling problem in DS based
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Figure 3: Performance comparison of our model and the baselines. “Rank+Cost” is using the loss function

of G[cost att], “Rank+ATT” is using G[att] and “Rank+AVE” is using G[ave].

relation extraction. This model applies piece-wise convolutional neural network [22]

to model sentences.

Besides comparing to the above methods, we also compare our variant models

represented by Rank+AVE (using loss function of G[ave]), Rank+ATT (using loss of

G[att])and Rank+Cost (using loss of G[costatt]).

Results and Discussion. We compare our three variants of loss functions with the

baselines and the results are shown in Fig. 3. From the results we can see that:

• Rank+AVE (Variant-1) lags behind PCNN+ATT, whose reason may lie in that

Rank+AVE does not use the attention mechanism to aggregate the information

among the sentences, which brings much noise for encoding sentence contexts;

• After adopting the attention mechanism, Rank+ATT achieves much better per-

formances comparing to Rank+AVE, and even better than PCNN+ATT;

• Comparing PCNN+ATT and Rank+ATT, we can see that Rank+ATT is superior

to PCNN+ATT, which comes from the strategy that we model the class ties into

the relation extraction;

• Our variant method of Rank+Cost achieves the best performance among all the

18



0 0.1 0.2 0.3 0.4

recall

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

Rank+ATT+Joint
Rank+ATT+Sep.

0 0.1 0.2 0.3 0.4

recall

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

Rank+AVE+Joint
Rank+AVE+Sep.

0 0.1 0.2 0.3 0.4

recall

0.4

0.5

0.6

0.7

0.8

0.9

1
pr

ec
is

io
n

Rank+Cost+Joint
Rank+Cost+Sep.

Figure 4: Results for impact of ranking based loss function with methods of Rank + AVE, Rank + ATT and

Rank + Cost

baselines; by comparing to Rank+ATT, our cost-sensitive learning method can

really work for relieving the negative effects from NR.

4.4. Impact of Class Ties

In this section, we conduct experiments to reveal the effectiveness of our model

to learn class ties with three variant loss functions mentioned above, and the impact

of class ties for relation extraction. As mentioned above, we adopt two techniques to

model the class ties: multi-label learning with ranking based loss functions and regular-

ization term to better model class ties. In the followings, we will conduct experiments

to reveal the two aspects for modeling class ties. We will adopt P/R curves and preci-

sions@N (100, 200, · · · , 500) to show the model performances.

• Ranking based Loss Function. The effectiveness of ranking loss functions to

learn class ties lies in the joint extraction of relations to conduct multi-label leaning,

so to reveal the impact of ranking loss function to learn class ties, we will compare the
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Table 3: Precisions for top 100, 200, 300, 400, 500 and average of them for impact of joint extraction and

class ties.

P@N(%) 100 200 300 400 500 Ave.

R.+AVE+J. 79.1 73.8 70.4 66.0 63.1 70.5

R.+AVE+S. 80.2 74.9 72.2 67.8 64.0 71.8

R.+ATT+J. 86.8 80.6 78.4 75.2 71.1 78.4

R.+ATT+S. 82.4 82.7 75.3 70.1 66.2 75.3

R.+ExATT+J. 86.8 83.2 81.1 76.7 73.5 80.3

R.+ExATT+S. 85.7 78.5 75.6 72.4 69.0 76.3

joint extraction with separated extraction. Regularization term is added to all variant

models. To conduct the experiment of separated extraction, we divide the labels of en-

tity tuple into single label and for one relation label we select the sentences expressing

this relation to construct the bag, then we use the re-constructed dataset to train our

model with our three variant loss functions.

Experimental results are shown in Fig. 4 and Table 3. From the results we can

see that: (1) For Rank+ATT and Rank+Cost, joint extraction exhibits better perfor-

mance than separated extraction, which demonstrates class ties will improve relation

extraction and the two methods are effective to learn class ties; (2) For Rank+AVE,

surprisingly joint extraction does not keep up with separated extraction. For the second

phenomenon, it may come from the strategy of AVE method to aggregate sentences.

To make joint extraction, we will combine all the sentences containing the same entity

tuple, however, not all sentences have the same relation, the fact is that one part of the

sentences express one relation type and some will have another one. Simply averaging

the sentence representations will hinder the model to learn the latent mapping from the

sentences to the corresponding relation type, because averaging operation will gender

redundant information from other unrelated sentences.

• Regularization. To see the impact of regularization technique for modeling class

ties, we compare the methods using regularization with the ones without using regu-

larization. All variant models are in setting of joint extraction. The results are shown

in Fig. 5 and Table 4. From the results, we can see that after regularizing the learn-
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Figure 5: Results for impact of regularization to model class ties.

Table 4: Precisions for top 100, 200, 300, 400, 500 and average of them for impact of regularization to

model class ties

P@N(%) 100 200 300 400 500 Ave.

R.+AVE+no-regu. 78.0 72.3 69.8 66.5 64.0 70.1

R.+AVE+regu. 79.1 73.8 70.4 66.0 63.1 70.5

R.+ATT+no-regu. 84.6 77.5 72.9 69.6 68.0 74.5

R.+ATT+regu. 86.8 80.6 78.4 75.2 71.1 78.4

R.+Cost+no-regu. 85.7 81.7 80.1 75.2 71.3 78.8

R.+Cost+regu. 86.8 83.2 81.1 76.7 73.5 80.3
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Figure 6: Results for impact of cost-sensitive learning. “ATT” means the loss function of Variant-2;

“ATT+NR” means only considering the cost of NR controlled by λ ignoring the cost controlled by γ based

on Variant-2 and λ is set to 0; “ATT+P” means considering the cost controlled by γ based on Variant-2 ig-

noring the cost of NR and γ is set to 1; “ATT+NR+P” is the loss function of Variant-3 and jointly considers

the two kinds of costs mentioned above, λ is set to 0 and γ is 1.

ing of relations, the model performance can be further improved indicated by meth-

ods of Rank+Cost and Rank+ATT, which demonstrates the effectiveness of regulariza-

tion to model class ties. We do not see many effects of regularization for method of

Rank+AVE. Noises brought by averaging sentence embeddings may hinder the positive

effects of regularization.

Table 5: Precisions for top 100, 200, 300, 400, 500 and average of them for impact of cost-sensitive learning.

P@N(%) 100 200 300 400 500 Ave.

ATT 86.8 80.6 78.4 75.2 71.1 78.4

ATT+NR 82.4 84.3 80.1 76.2 73.5 79.3

ATT+P 85.7 77.5 75.6 73.7 69.9 76.5

ATT+NR+P 86.8 83.2 81.1 76.7 73.5 80.3
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Figure 7: Effect of λ for model performance based on the loss function of Variant-3.

4.5. Impact of Cost-sensitive Learning

In this section, we conduct experiments to reveal the effectiveness of cost-sensitive

learning to relieve the impact of NR for model training and model performance. For

the loss function of G[cost att], we have two parts for cost-sensitive learning: the first

is the one penalized by γ, and the second is the NR cost penalized by λ. Based on the

loss function of Variant-3, we respectively relieve the cost controlled by γ and the cost

of NR controlled by λ to see the impact of cost-sensitive learning. We will adopt P/R

curves and precisions@N (100, 200, · · · , 500) to show the model performances.

The results are shown in Fig. 6 and Table 5. From the results, we can see that

considering the cost controlled by γ can sightly improve the performance in low recall

range and considering the cost of NR controlled by λ can boost the performance signif-

icantly. Considering both of the two kinds of costs can achieve the best performance.

From these results, we can see that relieving NR impact is really important to improve

the extraction performance.

4.6. Impact of NR

From the discussion above, we can know that NR can have much significant impact

for model performance, so in this section, we conduct more experiments to reveal the

impact of NR cost controlled by λ for model performance.
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Table 6: Precisions for top 100, 200, 300, 400, 500 and average of them for impact of cost-sensitive learning.

P@N(%) 100 200 300 400 500 Ave.

λ = 0 86.8 83.2 81.1 76.7 73.5 80.3

λ = 0.001 82.4 82.2 77.0 73.9 71.1 77.3

λ = 0.01 85.7 84.3 77.7 75.7 70.5 78.8

λ = 0.1 85.7 80.1 76.3 73.1 68.6 76.8
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Figure 8: Impact of NR for model convergence. “+NR” means not relieving NR impact with λ of 1; “-NR”

is opposite with λ of 0. ExATT is based on the loss function of Variant-3.

• Effect of λ Penalty. We conduct experiments on the choice of λ. Based on the

loss function of Variant-3, we select λ from {0, 0.001, 0.01, 0.1} to see how much ef-

fect of NR can gender to the performance. We also adopt P/R curves and precisions@N

(100, 200, · · · , 500) to show the model performances. Models are set with joint ex-

traction and regularization. The results are shown in Fig. 7 and Table 6. From the

results we can find that when λ becomes larger (from 0 to 0.1), the model performance

will decrease because NR will have more negative impact on model performance, so in

order to achieve better model performance, the value of λ should be set smaller.

• Effect of NR for Model Convergence. Then we further evaluate the impact

of NR for convergence behavior of our model in model training. Also with the three
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variant loss functions, in each iteration, we record the maximal value of F-measure 2

to represent the model performance at current epoch. Models are with setting of joint

extraction but without regularization. Model parameters are tuned for 15 times and the

convergence curves are shown in Fig. 8. From the result, we can find out: “+NR” con-

verges quicker than “-NR” and arrives to the final score at the around 11 or 12 epoch.

In general, “-NR” converges more smoothly and will achieve better performance than

“+NR” in the end.

5. Conclusion and Future Works

In this work, we propose a ranking based cost-sensitive multi-label learning for dis-

tant relation extraction aiming to leverage class ties to enhance relation extraction and

relieving class imbalance problem. To exploit class ties between relations to improve

relation extraction, we propose a general ranking based multi-label learning framework

combined with convolutional neural networks, in which ranking based loss functions

with regularization technique are introduced to learn the latent connections between

relations. Furthermore, to deal with the problem of class imbalance in distant super-

vision relation extraction, we further adopt cost-sensitive learning to rescale the costs

from the positive and negative labels. In the experimental study, we further do exper-

iments to analyze the effectiveness of our novel cost-sensitive ranking loss functions.

The evaluation experiments on the effectiveness of regularization have further be con-

ducted.

In the future, we will focus on the following aspects: (1) Our method in this paper

considers pairwise intersections between labels, so to better exploit class ties, we will

extend our method to exploit all other labels’ influences on each relation for relation

extraction, transferring second-order to high-order [48]; (2) We will regard the task

of distant supervision relation extraction as a multi-instance based learning-to-rank

problem, and will take the view from learning-to-rank to design the algorithms and

combine other advanced tricks from information retrieval field; (3) What effects will

2F = 2 ∗ P ∗R/(P +R)
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entity pairs take to the relation extraction performance? Can we use a general entity

pair replacement (e1, e2) to represent all entity pairs? Answering the two problems

may help the transfer learning of RE systems.

Acknowledgment

This work was supported by the National High-tech Research and Development

Program (863 Program) (No. 2014AA015105) and National Natural Science Founda-

tion of China (No. 61602490).

References

References

[1] M. Mintz, S. Bills, R. Snow, D. Jurafsky, Distant supervision for relation extrac-

tion without labeled data, in: Proceedings of ACL-IJCNLP, 2009.

[2] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collabora-

tively created graph database for structuring human knowledge, in: Proceedings

of KDD, 2008, pp. 1247–1250.

[3] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, D. S. Weld, Knowledge-based

weak supervision for information extraction of overlapping relations, in: Pro-

ceedings of ACL-HLT, 2011.

[4] M. Surdeanu, J. Tibshirani, R. Nallapati, C. D. Manning, Multi-instance multi-

label learning for relation extraction, in: Proceedings of EMNLP, 2012.
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