
Embedding metadata in images at time of capture using
physical Quick Response (QR) codes

Author:
Hill, GN; Whitty, MA

Publication details:
Information Processing and Management
v. 58
Chapter No. 3
0306-4573 (ISSN); 1873-5371 (ISSN)

Publication Date:
2021-05-01

Publisher DOI:
https://doi.org/10.1016/j.ipm.2021.102504

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_74094 in https://
unsworks.unsw.edu.au on 2024-04-25

http://dx.doi.org/https://doi.org/10.1016/j.ipm.2021.102504
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_74094
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Embedding metadata in images at time of capture
using physical Quick Response (QR) codes

Gareth Hill

The New Zealand Institute for Plant and Food Research, Private Bag 92169, Auckland

1142, New Zealand

Mark Whitty∗

School of Mechanical and Manufacturing Engineering, UNSW Sydney 2052, Australia

Abstract

Maintaining metadata records for scientific imaging is challenging where the

link between the metadata and the image is labour intensive to create and can

easily be broken. We propose a method for using QR codes in images of samples

to embed the metadata, so that it can be extracted on demand. By using

a novel pipeline for generating QR codes, displaying them in images, reading

the QR codes in the images and extracting the metadata for later action such

as renaming the image file, a streamlined process for metadata management

is introduced. This method was simulated using a range of image types and

QR code parameters to identify the limits of various parameter combinations,

providing practical insight into code design and usability. The pipeline was

also tested with hundreds of images in both laboratory and field situations and

proved to be extremely efficient and robust. This method offers potential for

anyone taking images of samples who needs to guarantee the existence and

correctness of metadata without relying on an external association mechanism.

Keywords: QR code, metadata, scientific imaging, information management,

image processing

∗Corresponding author
Email address: m.whitty@unsw.edu.au (Mark Whitty)

Preprint submitted to Journal of Information Processing and Management January 4, 2021



Introduction

Metadata is vital for putting an image in context in cases where the con-

tents of the image are not immediately obvious, where the image is part of a

digital catalogue or where the image is being used to train a machine learning

algorithm (Reser & Bauman, 2012; Frisch, 2013; Greenberg et al., 2014; Saleh,5

2018). There are some common problems with how metadata is traditionally

collected and stored: insufficient or incorrect metadata, vague or non-defined

metadata, or metadata that is lost or not readily located when needed (Smith

et al., 2014). Many images have little value if the associated metadata is not

recorded and stored in a readily accessible manner, particularly in research.10

While that metadata could be stored in a database or with an associated file of

some description and referenced to the filename, there is a risk that the image

or metadata file could be copied or moved to a distinct storage location and the

link between image and metadata becomes broken or lost (Smith et al., 2014).

Even the initial data association step (as in Figure 1) is commonly time con-15

suming and fraught with human error. Because of this, there is an increasing

awareness that metadata should be embedded in the file itself, typically through

the use of structured data containers (Reser & Bauman, 2012).

Figure 1: Initially associating images with sample metadata is time consuming and fraught

with error.

The most prominent standard for using data containers to embed metadata

in image files is the Exchangeable image file format (EXIF) (JEITA, 2002),20

2



commonly used in JPEG images. This metadata format has some limitations

as it is only available for some file types and the fields are non-extensible and

therefore may not be suitable for all applications (Reser & Bauman, 2012). A

new metadata format, the eXtensible Metadata Platform (XMP), was developed

in response to these issues and intended to be format-agnostic and extensible; it25

has since become an international standard (ISO, 2019). However, any metadata

embedding system that relies on a particular storage format within an image

file outside of the pixels that make up the image itself is at risk of metadata

loss if the file is copied to a new location or operating system, or saved as a

new file or alternative file format without explicitly preserving the metadata.30

Such situations are commonly encountered when uploading images to cloud

storage or social media platforms, but can also occur through manual image

manipulations or through automated pipelines. For example, image processing

pipelines commonly use the OpenCV software library (Bradski, 2000), which

only saves the pixel information in the processed image by default, resulting in35

a loss of any metadata embedded in a data container, as illustrated in Figure 2.

Figure 2: Metadata is commonly stripped out by cloud storage systems and is also lost

whenever images are output from an image processing pipeline.

Attempts have been made to standardise not only the metadata, but how it is

recorded and stored, such as the International Press Telecommunications Coun-

cil’s (IPTC) ‘Embedded Metadata Manifesto’ (International Press Telecommu-

3



nications Council, 2019a) that outlines five guiding principles for embedding40

metadata, and the Smithsonian’s more detailed guidelines for minimal descrip-

tive embedded metadata (Christensen et al., 2010). The IPTC have also issued

a metadata standard (International Press Telecommunications Council, 2019b)

that has since become the most commonly used schemas in a range of indus-

tries and communities (Smith et al., 2014). These guides and standards were45

primarily developed with journalistic images and museum collections in mind,

and indeed a lot of the push for embedded metadata comes from either journal-

ism or heritage collections (Frisch, 2013; Saleh, 2018); however, proponents of

embedded metadata emphasise that the practice would have benefits in other

areas (Smith et al., 2014).50

One such area is maintaining scientific and experimental images for research,

in which embedded metadata could benefit machine learning applications, where

large volumes of images are required for training. The traditional approach for

embedding metadata has been to include a label in the image describing what

is in it (e.g. species name, date collected, etc.). This is a robust approach when55

the labels are self-explanatory and legible but also fraught with risk. There is a

limit to the amount of information one can fit in the image using this method

and it can be time consuming to generate individual labels for each image,

particularly if there are large volumes of very similar, but unique, images. A

more modern concern is that the labels must be machine-readable, and current60

optical character recognition (OCR) tools are not necessarily sufficient for read-

ing these labels (Dietrich et al., 2012), although OCR is advancing and some

systems have been developed for digitising such embedded metadata in highly

specific instances (Kirchhoff et al., 2018). An alternative to including the text

itself is to embed a unique ID, either in text form or embedded in a barcode,65

that is linked to a separate set of metadata for reference. This method has all

the pitfalls of a database mentioned above, as the ID or code is meaningless in

itself, and there is potential for total metadata loss if the associated metadata

files are lost.

The ideal solution for embedding metadata without the risk of loss is to70

4



embed everything in the pixels of the image itself. Quick response (QR) codes,

two-dimensional barcodes with in-built error correction and redundancy (ISO,

2015), offer the ability to do just that, as they can contain a lot of data in a

relatively small size. These QR codes are commonly used in marketing and

traceability applications, where they often contain a URL link to a website with75

further information. However, their potential is far greater than this (Pandya &

Galiyawala, 2014) and they have been experimented with for storing metadata,

primarily for steganographic purposes, such as hiding watermarks and other

information in an image without being easily detectable (Gaikwad & Singh,

2015; Gilsang & Hyeoncheol, 2016). There are patents for methods built into80

imaging hardware that convert metadata into a QR code to be stored as a

separate image (Cok, 2012; Tsujimoto, 2016), but these methods do not seem

to have been implemented in any existing technology.

QR codes have been used in biological collections for embedding extensive

metadata in an image itself (Diazgranados & Funk, 2013). While this is another85

example of a heritage application with relatively small numbers of images that

are only collected once per subject, it demonstrates the power of QR codes in a

research context.

Ultimately, the existing tools and techniques for metadata management do

not provide a robust solution to associating metadata with images of a scientific90

nature.

We therefore propose a method for using QR codes in high volume scientific

imaging in order to embed the metadata securely in the image, making it trans-

parent and machine readable for computer-based analysis and machine learning

applications. The Methods section describes a continuous pipeline for generat-95

ing large volumes of QR codes, displaying them in images to be permanently

embedded from the moment of capture, reading the QR codes in the images

and either renaming the files with relevant information or extracting the meta-

data into a separate but reproducible file. The robustness of this method was

investigated using a range of image types and code parameters with millions100

of randomly simulated combinations of interference, distortion and transforma-

5



tion; and results are shown in the Results and Implications sections. Other

potential uses for QR codes in research imaging are also discussed in the Im-

plications section, such as dynamic encoding of time and location information

dynamically and using standard metadata structures directly within the codes105

for enhanced machine readability.

Methods

This paper presents a method which entails four major components to en-

hance scientific data management when capturing digital imagery of samples,

as shown in Figure 3.110

Figure 3: The four steps in the process for embedding and retrieving metadata from images

of samples.

6



1. Generate QR codes: Firstly, the user generates a unique identifier for

each expected image. If a unique identifier for each image is already

known, then this can be used as the QR code content. This may simply

be computed by formulating a spreadsheet with columns representing the

metadata associated with that image, saved in Comma Separated Value115

(CSV) format with a single header row. Alternatively, the CSV file is read

and a unique QR code generated for each item in the file, comprised of

underscore or hyphen-concatenated key-value pairs (using the header as a

key). The code may also be formulated as a JSON format string. These

QR codes are generated in the form of either a series of files or pages in120

a single bookmarked document, along with human-readable text showing

their content.

2. Capture images: An image is taken of each sample, with the QR code

visible in the image. This may be done in any order and at any time, as

long as the corresponding QR code is displayed at the time of capture and125

is clearly visible.

3. Extract metadata from images: All the images are processed by a decoding

and renaming algorithm, which extracts the QR code content and renames

the file accordingly, thus linking the file with its content. Regardless of

whether metadata has been stripped out (for example by sharing through130

cloud-based services) or is unreadable on a different operating system, or

the image extension has been changed, or a copy of the file has been made

or the image has been resized; the metadata can be extracted by rerun-

ning the image through the decoding and renaming algorithm. Additional

functionality could be implemented according to the code content, but135

this is left to the user to action as per their requirements.

4. Verification: Another script is used to compare the original spreadsheet

containing expected QR code IDs with those that have actually been cap-

tured. This identifies missing samples and duplicate samples which are

highlighted to the user for further investigation (using the human-readable140

text in the image), thus improving the robustness of data capture.

7



Evaluation with simulated images

Several aspects of the method have been evaluated to identify how robustly it

can handle many different practical situations. Background images were chosen

to represent a number of use-cases (Figure 4). The first was that of a series of145

boxes in a warehouse, with a repetitive structure and application in a commer-

cial logistics use-case. The second was that of a fish, with a white background,

representing a general specimen laid out in controlled laboratory lighting condi-

tions. The third was a TV calibration image, covering a broad gamut of colour,

intensity and many fine details which may make detection of the QR code itself150

more challenging. The fourth was an image of a vine, to represent field-based

imaging in variable and strongly contrasting lighting conditions. Finally, a plain

white background image was used to find the best parameters under which the

QR code detection and parsing could occur.

8



Figure 4: Background images used for overlaying quick response (QR) codes: ‘boxes’ (top-

left), ‘fish’ (top-right), ‘TV’ (bottom-left), and ‘vine’ (bottom-right). A fifth image containing

entirely white pixels (‘white’) was also included. The dimensions of all images were 2000 x

1500 pixels. The boxes images has been blurred here to mask company logos, although the

image was not blurred during analysis.

To model real-world use-cases, the code was distorted by several parameters,155

and the performance of a QR code detection and parsing library (pyqrcode

(v1.2.1)) was evaluated. The QR code was generated with a random number

of characters, redundancy and size. It was then manipulated according to a

random orientation and perspective. The bright value pixels (binary ‘1’) were

set to a given 8-bit value and the dark value pixels (binary ‘0’) were set to a given160

8-bit value. Onto each of the background images this manipulated QR code was

digitally superimposed, with several examples of the manipulated codes shown

in Figure 5 and an example of the superimposed image in Figure 6. Finally,

9



the resulting image was written to a file using OpenCV at a specified JPEG

compression ratio. These parameters are listed in Table 1, which also shows the165

range of values for each parameter, and further described here:

• Characters – The length of the string in characters which was encoded

in the QR code. Encoding followed the binary method as per the QR code

specifications (ISO, 2015), as this allowed more workable solutions than

the ASCII encoding which is limited to upper case letters and numerals.170

An increase in the code content could be achieved by using the ASCII

encoding, but results are not shown in this paper.

• Redundancy – The level of redundant data contained in the code, as in

the QR code specification (ISO, 2015).

• Size – The length of each edge of the QR code in the image including the175

specified 4-pixel white border on each side, noting the background image

used was 2000 x 1500 pixels. This meant the width of the QR code was

at most 10% of the width of the image, with codes larger than this being

more reliable to decode.

• Rotation – The QR code was rotated by a certain number of degrees, to180

replicate misalignment in the image.

• Perspective – The QR code was warped in two dimensions to represent

a perspective transform. The width of the code was scaled according to

the provided ratio, and the height of the right-hand side of the code also

scaled by the same amount, giving a perspective effect.185

• Noise – Salt and pepper noise (0 and 1 values) was added to the code

and the 4-pixel wide border.

• Bright value and dark value – The existing 0 and 1 values in the

code and border (including noise pixels) were correspondingly replaced

with a one bright and one dark value in the range of 0 to 255, simulating190

brightness and contrast changes.

10



• Compression – The final image was compressed to replicate data loss

by re-imaging or other means and understand the impact of this on code

readability.

Figure 5: Random sample of quick response (QR) codes generated with a range of transfor-

mation parameters. The top eight QR codes were read successfully and the bottom eight were

not. White bar indicates 100 pixels at original scale.

11



Figure 6: Example background image with overlaid random QR code for automated testing.

Parameter Description Range / list

Characters Number of random characters in QR code 32 – 512

Redundancy Parameter given to QR code generation function Low, Medium, High

Size Length of each edge of QR code in pixels 25 – 200

Rotation Amount QR code was rotated in degrees 0 – 45

Perspective Ratio of top edge to right edge after distortion 0.5 – 1.0

Noise Percentage of code covered by salt & pepper noise 0.0 – 0.1

Bright value Value of white pixels in QR code 128 – 255

Dark value Value of dark pixels in QR code 0 – 255

Compression Percentage given to JPG compression function 2 – 100

Table 1: Ranges for random parameter setting prior to QR code generation for each image.

12



Firstly, a broad analysis of these eight different parameters influencing the195

accuracy of QR code detection was undertaken. Each of the five images was

overlaid with each of 600,000 QR codes generated using a randomly selected set

of parameters (Table 1) giving a total of 3 million QR code-containing images to

test. Each image was processed by the decoding algorithm and the result com-

pared with the known code value; those which matched exactly were considered200

successful. One example is shown in Figure 6.

Code was written in Python (v3.6.5) using the following non-standard pack-

ages: pyqrcode (v1.2.1), pyzbar (v0.1.8), pillow (v7.0.0), opencv-python (v4.1.2),

and scikit-image (v0.16.2). The processing was undertaken with batches of

10,000 images in parallel on a Beowulf computing cluster and the results from205

each batch concatenated into a single dataset. It was assumed that with the high

number of possible parameter combinations no QR codes would be duplicated

using this parallelisation method.

Evaluation with field use cases

The use of QR codes at time of image capture was tested in laboratory210

conditions and in a vineyard as part of separate studies. Laboratory testing

used a Python script to generate a PDF containing a unique QR code for each

sample, uploading this to an e-reader and placing the e-reader in the frame when

capturing an image (Figure 7). The purpose of the QR code in these images was

to record the origin and virus status of the grapevine leaf being photographed.215

Field testing used plastic cards each containing a unique printed QR code, that

were fixed within grapevines (Figure 12). The purpose of the QR code in these

images was to identify a precise location that could be related to the time stamp

in the image in order to test the spatial accuracy of a precise Global Navigation

Satellite System (GNSS).220

13



Figure 7: Quick response (QR) code being used in scientific imaging under controlled con-

ditions. An e-reader containing a pre-generated PDF document displays a unique QR code

along with human-readable text for each grape leaf being imaged. The QR code contains

the character string ‘ML-R1B01-CB-L06-G6’, which indicates the variety, location and virus

status of the grapevine from which the leaf was taken, as well as the position on the vine and

number of the leaf itself.

Results

Results from simulated images

The background images used in this study varied in the distribution of pixel

brightness values (Figure 8). The Vine images had the most evenly distributed

value frequency. The TV image had a range of brightness values, but these were225

distributed at distinct values, with most pixels having a brightness value of 0,

128, or 255; this is by design as the image is used for testing colour visualisation.

Similarly, the Boxes image had a range of brightness values, but the distribution

was more skewed towards the high end of the range. Both the Fish and White

images had predominantly pixels with a brightness value of 255.230

14



Figure 8: Pixel value frequency distribution for all background images; 0 = black, 255 =

white.

Median values for each of the varied parameters where the QR code was read

successfully were consistent across many transformations (Figure 9). Number

of characters, rotation, noise, and dark value were all relatively low within the

specified range, while size, perspective, and bright value were all relatively high.

Median bright and dark values varied most between images, with the Boxes,235

Fish, and White backgrounds requiring higher values of both for QR code reads

to be successful.

15



Figure 9: Median values for successful readings of quick response (QR) codes in each back-

ground image.

A total of 13,644 of the 3 million images contained QR codes that were suc-

cessfully read, equating to 0.45% of the images tested (Figure 5). Successful

values for each parameter and the interactions between parameters are shown240

in Figure 10. The values for the parameters not shown in each plot were not

standardised; therefore, the values for parameters shown that resulted in a suc-

cessful read were assumed to be robust against other transformations and dis-

16



tortions. A lower number of characters in the code content and larger code (i.e.

larger element size) tended to overcome most transformations and distortions.245

Readability was particularly sensitive to perspective changes and the amount of

noise. Changes in the bright value of QR code elements did not have a substan-

tial effect on readability, except for the White image, where only values close

to 255 resulted in a successful read. The inverse was true for changes to the

dark value, with the Vine image also being sensitive to these changes. Rotation250

did not substantially affect readability, except for high character counts, small

codes and extreme transformation and distortion values. The images did not

appear to be affected by JPEG compression, with the exception of the White

image, for which any JPEG compression reduced the probability of the QR

code being read successfully. The redundancy setting affected the readability255

of the QR code only when the number of characters, size of code, perspective

and noise were altered (Figure 11). Higher redundancy settings meant that us-

ing fewer characters and increased code sizes were required to achieve success.

Higher redundancy settings also made the codes more vulnerable to perspective

changes because of the increased number of elements and because the imple-260

mentation of perspective reduced the size of each element. However, increasing

the redundancy made the codes more resistant to noise.

17



Figure 10: Relationships between all pairs of parameters. Plots along the diagonal show the

frequency distributions for successful values of each parameter along the x-axis (y-axis for all

these frequency plots is 0 – 1). C = characters, S = size, R = rotation, P = perspective, N =

noise, B = bright value, D = dark value, J = JPEG compression ratio.

18



Figure 11: Normalised values for successful readings of quick response (QR) codes with each

redundancy level across all images. C = characters, S = size, R = rotation, P = perspective,

N = noise, B = bright value, D = dark value, J = JPEG compression ratio.

Results from field use cases

The use of this method with an e-reader placed in images taken under labora-

tory conditions (Figure 7) was 100% successful, with all 1600 images containing265

QR codes being successfully read. The use of the method with printed plastic

cards hung on grapevines (Figure 12) resulted in successful QR code reads 70.1%

19



of the time (Table 2), with a range of possible reasons for code read failure.

QR code parsing results QR code parsing results Percentage

Correctly parsed 370 70.1%

Insufficient contrast 6 1.1%

Variable lighting across code 42 8.0%

Occlusion of code 31 5.9%

Code bent 28 5.3%

Code angle too acute 28 5.3%

No code in image 0 0.0%

Out of focus 15 2.8%

Unknown 8 1.5%

Table 2: Quick response (QR) code success and failure rates for 528 physical codes used in a

vineyard study and the likely reasons for failure.

20



Figure 12: Examples of misread QR codes in images captured in a trial in grapevines testing

the accuracy of a precise global navigation satellite system (GNSS). Possible explanations for

read failure are occlusion (top-left), distortion or reflection (top-right), contrast (bottom-left),

and perspective warp (bottom-right).

Implications

Discussion of simulated image results270

The method of placing QR codes in images to embed metadata has been

shown to be not only possible, but also robust against a range of distortions

and transformations. The low overall success rate (0.46%) is not an indication

21



of the reliability of the method in general, but rather a reflection of the extremely

large feature space in terms of possible parameter combinations, which resulted275

in the vast majority of QR codes being unreadable. In reality, these parameters

would not be effective to the extent they were in this study, especially with

changes to all the other parameters happening simultaneously.

Somewhat surprisingly, JPEG compression did not affect readability for most

images until it was set very low (e.g. below 10%). The exception to this was the280

White image, for which any compression reduced the probability of a successful

read. This is possibly due to the entropy within the White image since every

pixel was the same value. This meant that any compression applied to the image

must have been applied to the pixels belonging to the QR code, whereas the

other images had greater variation in pixel values, and thus greater entropy, and285

so compression could be applied to any part of the image. Therefore, the ability

to compress an image containing a QR code and retain readability of that code

is dependent on the complexity of the image.

The TV and Vine images had the highest variances in their brightness values

(Figure 8), with more pixels at the darker end of the spectrum than other images,290

hence they were more sensitive to a reduction in the QR code pixel brightness

values, which is analogous to shading in the real world. Conversely, the White

image had pixel values entirely at the brighter end of the spectrum and was

therefore sensitive to increases in the QR code pixel brightness value, which

is analogous to glare or over-saturation of an image. The Fish image suffered295

from this problem, although to a lesser extent. This sensitivity to changes in

pixel brightness was likely due to the use of automatic thresholding, such as

Otsu’s method (Otsu, 1979), in the QR code extraction algorithm, which relies

on having easily distinguishable bright and dark values in the QR code. As the

QR code only makes up a small portion of the image, the threshold is primarily300

set on the image itself, so that all the pixels in the QR code can be left on

one side of the threshold if the contrast in the code’s pixels is not sufficient.

As demonstrated here, a darker image will be more susceptible to failure when

the QR code pixels are made darker (e.g. shading) and a lighter image will

22



be more susceptible to failure when the QR code pixels are made brighter (e.g.305

glare). This means care should be taken when collecting such images that there

is sufficient contrast in the QR code pixel values, avoiding shading or glare as

much as possible.

Increased redundancy requires a larger number of pixels to store the same

number of characters, so results in either an increased code size or reduced pixel310

size. This predominantly influenced the performance in respect of perspective

changes, which resulted in smaller pixels on one side of the code and thereby

impacted the resolving power of the decoding algorithm. Thus, holding all

other parameters equal, the only parameter which was improved by increasing

redundancy was the ability to handle noise in the image. This could be a trade-315

off that is made in the real world if for some reason the images being taken are

particularly prone to noise or physical analogues (e.g. dirt), although it appears

that a lower redundancy would be suitable for most applications as it would

allow for more information to be stored in the codes.

Despite the complex interactions between these parameters, it is perhaps320

useful to indicate which values of parameters might be used as a starting point

when designing an experiment. From the median normalised values in Figure

9, combined with the ranges of values prior to normalisation in Table 1, and

noting the original resolution of the background images was 2000 x 1500 pixels,

we make the recommendations in Table 3. A higher value for the compression325

function here means less compression applied.

23



Parameter Description Recommended value

Characters Number of random characters in QR code <80 characters

Redundancy Parameter given to QR code generation function Medium

Size Length of each edge of QR code in pixels >165 pixels

Rotation Amount QR code was rotated in degrees (Arbitrary)

Perspective Ratio of top edge to right edge after distortion >0.9

Noise Percentage of code covered by salt & pepper noise <1%

Bright value Value of white pixels in QR code (/255) >205

Dark value Value of dark pixels in QR code (/255) <50

Compression Percentage given to JPEG compression function >60%

Table 3: Recommended parameter settings for how the QR code should appear in a captured

image of 2000 x 1500 pixels to be successfully read.

Discussion of field use case results

Testing of the method in two real-world scenarios demonstrated that the

method is much more reliable than the overall result suggests. Under laboratory

conditions, with controlled photographic conditions, there was a 100% success330

rate. This was using a relatively short code, although it is likely that a much

more information-dense code could be used in this scenario, so long as the

camera was of adequate quality. The method was less successful in a field

setting using QR codes printed on tags and hung in grapevines. The success

rate for reading the codes in the images was 60.1%, and was likely due to lighting335

factors as well as physical factors, such as distortion and occlusion (Figure 12,

Table 2). These issues could be resolved through the use of larger QR codes

and more care with how the codes are secured and how they are imaged. Other

solutions such as artificial lighting to remove shadows could also improve the

success rate.340

The information format contained in the QR codes in this study was random

strings of alphanumeric characters simulating the sort of unique IDs that might

be used in other studies. Likewise, the QR codes used in the field studies con-

24



tained short strings that were either unique IDs or shortened codes referencing

metadata stored elsewhere. We propose that a more useful method would be to345

embed all the metadata using a string stored in the JavaScript Object Notation

(JSON) format (Figure 13). Strings formatted in this way, with human-readable

keys and values, would remove the reliance on a separate data dictionary to make

sense of typical unique IDs that in themselves contain no meaningful informa-

tion. As an additional advantage to using JSON-formatted strings, when the350

QR code is read with Python the string is easily converted into the dictionary

data structure, from which extracting specific pieces of information is partic-

ularly easy. This method would result in smaller element sizes, and therefore

require larger QR codes to ensure reliable content reads, but we consider this

a worthwhile trade-off for embedding all metadata, not just a unique ID, in an355

image to create a more robust metadata storage mechanism.

Figure 13: An example of a string stored in JavaScript Object Notation (JSON) data format

embedded in a quick response (QR) code and the resulting dictionary object when read and

interpreted by Python.

Conclusion

In this study we have presented and tested a useful method for embedding

metadata in images using physical QR codes at the time of capture. These

codes are subject to failure under certain conditions, but with careful QR code360

placement and image capture, the embedded metadata will be retained, as long

25



as the image is not cropped. We have included recommended parameter values

in Table 3 as a guide to practitioners applying this method.

Metadata is crucial to contextualising images, and without it the image itself

may have little value, particularly in a research context. Previous publication365

have discussed the problems with storing metadata separate from images (Smith

et al., 2014), and the importance of embedding metadata in the image itself

(Reser & Bauman, 2012). Data container standards have been established to

ensure embedded metadata is in a consistent format and as interoperable as

possible (JEITA, 2002; ISO, 2019), although these are vulnerable to data loss370

through image duplication, or system or format changes. Including metadata

information in the image itself is a common approach, although text labels can

be difficult for computers to read (Dietrich et al., 2012), and barcoded IDs

rely on a separate reference file to retrieve the metadata from an otherwise

meaningless ID.375

We believe that containing visible QR codes within images is the next logi-

cal step forward in embedded metadata, and offers two novel components over

common approaches to metadata management: robustness and openness.

The use of QR codes provide the ability to retain image metadata within

the image itself in a machine-readable format, robust to metadata stripping by380

many cloud computing services and image processing pipelines, and tolerant

of image manipulation and file format changes. Like many image processing

pipelines, the method we describe used OpenCV to duplicate, transform and

save images (Bradski, 2000). If data containers such as EXIF (JEITA, 2002)

were relied on to store metadata in these case, that metadata would have be385

lost after the first image duplication. If cloud services were being used as part

of the pipeline, close attention would need to be paid to how the images and

the metadata within them are treated to ensure the metadata is not being lost.

By embedding the information within the pixels themselves as a visible QR

code, the metadata cannot be lost without substantial alterations to the pixel390

values or by being cropped out of the image. As the analysis above shows, these

alterations need to be relatively severe to affect readability and subsequent loss

26



of metadata.

While the QR codes themselves are governed by a set of standards (ISO,

2015), the information contained within them is almost completely without395

restriction. This is in contrast to standard data containers, which have a set

list of fields that may not be appropriate for the use case (Reser & Bauman,

2012). Storing as a JSON-formatted string (Figure 13) would provide the triple

benefits of structure, flexibility, and clarity. Naturally, this could contain a URI

which specifies further instructions for parsing the data, as suggested in the400

Linked Data method (Berners-Lee, 2009), however for simple applications this

is unnecessary, and adds a dependency on an external resource which is not

guaranteed to exist in the future.

Embedding visible QR codes may present a problem in a machine learning

context as there is a very real risk of training an algorithm that does nothing405

more than read QR codes. However, this problem is easily solved by extracting

the metadata from the QR code in the image then using the detection component

of the reading software to identify the boundaries of the QR code and replace

it with a black rectangle before feeding the image into the training step. The

requirement for a 4-cell wide blank border around the QR code as stipulated in410

the standards makes this relatively straightforward.

An additional benefit of the specific pipeline described here is that users

are provided with a log of images which have been captured to verify that

everything necessary has been captured correctly. The key limitation is that

the user taking the images needs to ensure the correct QR code is visible at the415

time of capture. This is challenging in large datasets, but the use of human-

readable text along with the code reduces this risk, as does the use of bookmarks

to find the appropriate code and the ability to double-check the existence of the

image once the images have been decoded.

Furthermore, ensuring the metadata is correct at time of capture is essen-420

tial. There is always scope for a hybrid approach, where essential metadata

is embedded in the image, as well as a unique code for linking to a database.

This would enable editing of the metadata where errors have occurred as well

27



as the addition of data such as experimental results pertaining to this sample.

The tradeoff between maintaining the database and the simplicity of having the425

metadata embedded in the image is a decision which is best made by the user.

We believe the power of QR codes for the purpose of storing metadata in an

open and robust way has not yet been fully utilised. By combining the methods

described here with more advanced data formatting and display technology, the

issue of missing metadata and contextually meaningless images could become a430

thing of the past.

Code Availability

A program for generating the QR codes from a spreadsheet of sample data is

available here: https: // github. com/ markwhittyunsw/ QR_ image_ renamer .

A program to extract the metadata, rename the images and verify which sam-435

ples were images is available here: https: // github. com/ markwhittyunsw/

GenerateQRCode

1. Acknowledgements

We wish to thank Karmun Chooi, Kai Lewis and Mark Wohlers (Plant &

Food Research New Zealand) for their help in testing the QR code method. We440

would also like to thank Plant & Food Research New Zealand, the Strategic Sci-

ence Investment Fund (SSIF), and the Collaborative Research Council – Spatial

Information (CRC-SI) for funding the projects in which the method was tested.

References

Berners-Lee, T. (2009). Linked data - design issues. URL: https://www.w3.445

org/DesignIssues/LinkedData.html.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, .

28

https://github.com/markwhittyunsw/QR_image_renamer
https://github.com/markwhittyunsw/GenerateQRCode
https://github.com/markwhittyunsw/GenerateQRCode
https://github.com/markwhittyunsw/GenerateQRCode
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html


Christensen, S. O., Dunlop, D., Pilsk, S., Snyder, R., Nguyen, D., Stauderman,

S., Smith, S., Ferrante, R., Rahaim, K., & Roby, M. (2010). Basic Guide-450

lines for Minimal Descriptive Embedded Metadata in Digital Images. Report

Embedded Metadata Working Group. URL: https://repository.si.edu/

handle/10088/9719.

Cok, R. S. (2012). Digital image file including optical code. URL: https:

//patents.google.com/patent/US20120273579.455

Diazgranados, M., & Funk, V. A. (2013). Utility of qr codes

in biological collections. PhytoKeys, (pp. 21–34). URL: https:

//www.ncbi.nlm.nih.gov/pubmed/24198709https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3819127/. doi:10.3897/phytokeys.25.5175.

24198709[pmid] PMC3819127[pmcid].460

Dietrich, C., Hart, J., Raila, D., Ravaioli, U., Sobh, N., Sobh, O., &

Taylor, C. (2012). Invertnet: a new paradigm for digital access to in-

vertebrate collections. Zookeys, (pp. 165–181). URL: <GotoISI>://WOS:

000308267500013. doi:10.3897/zookeys.209.3571. Times Cited: 17 Si Di-

etrich, Christopher/0000-0003-4005-4305 1 17 1313-2970.465

Frisch, S. (2013). Embedded metadata in cultural image collections and beyond:

Embedding metadata in image files at calpoly, san luis obispo. VRA Bul-

letin, 39 , 3. URL: https://online.vraweb.org/cgi/viewcontent.cgi?

article=1031&context=vrab.

Gaikwad, A., & Singh, K. (2015). Information hiding using image embedding470

in qr codes for color images: A review. International Journal of Computer

Science and Information Technologies, 6 , 278–283. URL: http://ijcsit.

com/docs/Volume%206/vol6issue01/ijcsit2015060163.pdf.

Gilsang, Y., & Hyeoncheol, K. (2016). Embedding qr code in the wavelet

domain of image for metadata hiding. Indian Journal of Science and Technol-475

ogy , 9 . URL: https://koreauniv.pure.elsevier.com/en/publications/

embedding-qr-code-in-the-wavelet-domain-of-image-for-metadata-hid.

29

https://repository.si.edu/handle/10088/9719
https://repository.si.edu/handle/10088/9719
https://repository.si.edu/handle/10088/9719
https://patents.google.com/patent/US20120273579
https://patents.google.com/patent/US20120273579
https://patents.google.com/patent/US20120273579
https://www.ncbi.nlm.nih.gov/pubmed/24198709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819127/
https://www.ncbi.nlm.nih.gov/pubmed/24198709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819127/
https://www.ncbi.nlm.nih.gov/pubmed/24198709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819127/
https://www.ncbi.nlm.nih.gov/pubmed/24198709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819127/
https://www.ncbi.nlm.nih.gov/pubmed/24198709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819127/
http://dx.doi.org/10.3897/phytokeys.25.5175
<Go to ISI>://WOS:000308267500013
<Go to ISI>://WOS:000308267500013
<Go to ISI>://WOS:000308267500013
http://dx.doi.org/10.3897/zookeys.209.3571
https://online.vraweb.org/cgi/viewcontent.cgi?article=1031&context=vrab
https://online.vraweb.org/cgi/viewcontent.cgi?article=1031&context=vrab
https://online.vraweb.org/cgi/viewcontent.cgi?article=1031&context=vrab
http://ijcsit.com/docs/Volume%206/vol6issue01/ijcsit2015060163.pdf
http://ijcsit.com/docs/Volume%206/vol6issue01/ijcsit2015060163.pdf
http://ijcsit.com/docs/Volume%206/vol6issue01/ijcsit2015060163.pdf
https://koreauniv.pure.elsevier.com/en/publications/embedding-qr-code-in-the-wavelet-domain-of-image-for-metadata-hid
https://koreauniv.pure.elsevier.com/en/publications/embedding-qr-code-in-the-wavelet-domain-of-image-for-metadata-hid
https://koreauniv.pure.elsevier.com/en/publications/embedding-qr-code-in-the-wavelet-domain-of-image-for-metadata-hid


Greenberg, J., Murillo, A., Ogletree, A., Boyles, R., Martin, N., & Romeo, C.

(2014). Metadata capital: Automating metadata workflows in the niehs viral

vector core laboratory. In S. Closs, R. Studer, E. Garoufallou, & M. A. Sicilia480

(Eds.), Metadata and Semantics Research, Mtsr 2014 (pp. 1–13). volume 478

of Communications in Computer and Information Science. URL: <GotoISI>:

//WOS:000363269900001.

International Press Telecommunications Council (2019a). Embedded

metadata manifesto. URL: http://www.embeddedmetadata.org/485

embedded-metatdata-manifesto.php.

International Press Telecommunications Council (2019b). IPTC photo meta-

data standard. URL: https://iptc.org/standards/photo-metadata/

iptc-standard/.

ISO (2015). Information technology — automatic identification and data490

capture techniques — qr code bar code symbology specification, iso/iec

18004:2015 [iso/iec 18004:2015], international organization for standardiza-

tion, geneva, switzerland., . URL: https://www.iso.org/standard/62021.

html.

ISO (2019). Graphic technology — extensible metadata platform (xmp) — part495

1: Data model, serialization and core properties, iso 16684-1:2019, interna-

tional organization for standardization, geneva, switzerland.

JEITA (2002). Exchangeable image file format for digital still cameras: Exif

version 2.2. jeita cp-3451. URL: https://www.exif.org/Exif2-2.PDF.

Kirchhoff, A., Buegel, U., Santamaria, E., Reimeier, F., Roepert, D., Tebbje, A.,500

Guentsch, A., Chaves, F., Steinke, K.-H., & Berendsohn, W. (2018). Toward

a service-based workflow for automated information extraction from herbar-

ium specimens. Database-the Journal of Biological Databases and Curation, .

URL: <GotoISI>://WOS:000447034100002. doi:10.1093/database/bay103.

Times Cited: 0 0.505

30

<Go to ISI>://WOS:000363269900001
<Go to ISI>://WOS:000363269900001
<Go to ISI>://WOS:000363269900001
http://www.embeddedmetadata.org/embedded-metatdata-manifesto.php
http://www.embeddedmetadata.org/embedded-metatdata-manifesto.php
http://www.embeddedmetadata.org/embedded-metatdata-manifesto.php
https://iptc.org/standards/photo-metadata/iptc-standard/
https://iptc.org/standards/photo-metadata/iptc-standard/
https://iptc.org/standards/photo-metadata/iptc-standard/
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://www.exif.org/Exif2-2.PDF
<Go to ISI>://WOS:000447034100002
http://dx.doi.org/10.1093/database/bay103


Otsu, N. (1979). A threshold selection method from gray-level histograms.

IEEE Transactions on Systems, Man, and Cybernetics, 9 , 62–66. doi:10.

1109/TSMC.1979.4310076.

Pandya, K. H., & Galiyawala, H. J. (2014). A survey on qr codes: in context of

research and application. International Journal of Emerging Technology and510

Advanced Engineering , 4 .

Reser, G., & Bauman, J. (2012). The past, present, and future of embed-

ded metadata for the long-term maintenance of and access to digital im-

age files. International Journal of Digital Library Systems (IJDLS), 3 , 53–

64. URL: http://services.igi-global.com/resolvedoi/resolve.aspx?515

doi=10.4018/jdls.2012010104. doi:10.4018/jdls.2012010104.

Saleh, E. I. (2018). Image embedded metadata in cultural heritage digital col-

lections on the web: An analytical study. Library Hi Tech, 36 , 339–357. URL:

<GotoISI>://WOS:000432185900010. doi:10.1108/lht-03-2017-0053.

Smith, K. R., Saunders, S., & Kejser, U. B. (2014). Making the case for embed-520

ded metadata in digital images. In Archiving Conference (pp. 52–57). Society

for Imaging Science and Technology volume 2014.

Tsujimoto, T. (2016). Apparatus and method for automatically generating

an optically machine readable code for a captured image. URL: https://

patents.google.com/patent/US20160269675.525

31

http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdls.2012010104
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdls.2012010104
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdls.2012010104
http://dx.doi.org/10.4018/jdls.2012010104
<Go to ISI>://WOS:000432185900010
http://dx.doi.org/10.1108/lht-03-2017-0053
https://patents.google.com/patent/US20160269675
https://patents.google.com/patent/US20160269675
https://patents.google.com/patent/US20160269675

	Acknowledgements

