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Abstract

The processing and management of XML data are popular research issues. However, operations based on the

structure of XML data have not received strong attention. These operations involve, among others, the grouping of

structurally similar XML documents. Such grouping results from the application of clustering methods with distances

that estimate the similarity between tree structures. This paper presents a framework for clustering XML documents by

structure. Modeling the XML documents as rooted ordered labeled trees, we study the usage of structural distance

metrics in hierarchical clustering algorithms to detect groups of structurally similar XML documents. We suggest the

usage of structural summaries for trees to improve the performance of the distance calculation and at the same time to

maintain or even improve its quality. Our approach is tested using a prototype testbed.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The eXtensible Markup Language (XML) [1] is becoming the standard data exchange format among Web
applications, providing interoperability and enabling automatic processing of Web resources. An XML
document is a hierarchically structured and self-describing piece of information, and consists of atomic
elements or complex elements (elements with nested subelements). An XML document incorporates
structure and data in one entity. To this extend, XML data is semistructured data [2].
e front matter r 2004 Elsevier B.V. All rights reserved.
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While the processing and management of XML data are popular research issues (see [3] as a reference),
operations based on the structure of XML data have not received strong attention. The internal structure of
an XML document can be specified using a set of regular expression patterns, called Document Type

Descriptor (DTD) [1]. Richer constraints, not only on the structure but also on the type of data in an XML
document, can be set using the XML Schema [1].

Applying structural transformations and grouping together structurally similar XML documents are
examples of operations based on the structure of XML data. Structural transformations are the basis for
using XML as a common data exchange format: XSLT1 uses template rules to define transformations for
XML documents, while [4] presents a high level language to specify structural document transformations in
a descriptive way. Grouping together structurally similar XML documents refers to the application of
clustering methods using distances that estimate the similarity between tree structures in terms of the
hierarchical relationships of their nodes.

1.1. Motivating examples

This paper presents a methodology for clustering XML documents by structure. The next subsections
give motivation examples to show where clustering by structure can assist various application tasks.

1.1.1. Automatic extraction of DTDs

A characteristic that distinguishes XML documents from semistructured data is the optional usage of
DTDs. A DTD serves as a grammar for an XML document, determining its internal structure. A valid
XML document is one that has a DTD and conforms to it. A DTD, besides enabling exchange of
documents through common vocabulary and standards, can generate relational schemas to efficiently store
and query XML documents in relational database systems [5]. However, many XML documents are
constructed massively from data sources like RDBMSs, flat files, etc., without DTDs. XTRACT [6,7] and
IBM AlphaWorks DDbE2 are DTD discovery tools that automatically extract DTDs from XML
documents. Such tools fail to discover meaningful DTDs in case of diverse XML document collections [7].
Consider for example news articles in the form of XML documents from portals, newspaper sites, news
agency sites, etc. Such documents, although related, may have such a different organization that one cannot
define a meaningful DTD for all of them. See for example the four XML documents in Fig. 1. A unique
DTD for these documents should define an element which might be either article or news_story. This
element should contain a title element and, then, either an author or a picture element. However
picture in D3 doc is identical to image in D1: Also, picture in D3 comes before the author element,
while the equivalent image in D1 comes after the author element. Such irregularities make the
construction of a unique, meaningful DTD a hard task.

For this reason, identifying groups of XML documents that share a similar structure is crucial for DTD
discovery systems. If a collection of XML documents is first grouped into sets of structurally similar
documents, then a meaningful DTD can be assigned to each set individually. For example, the XML
documents in Fig. 1 can be grouped in two sets: the first set includes documents D1 and D2; and the second
one includes documents D3 and D4: Documents in each set are structurally similar. For example, D2 misses
only the element image (inside article element), compared to D1: On the other hand, D1 and D3 are not
structurally similar: picture in D3 comes before the author element, while the equivalent image in D1

comes after the author element.
1http://www.w3c.org/TR/XSLT
2http://www.alphaworks.ibm.com/tech/DDbE

http://www.w3c.org/TR/XSLT
http://www.alphaworks.ibm.com/tech/DDbE
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Fig. 2. Examples of XML documents encoding spatial information.

Fig. 1. Examples of related XML documents, with different structure.
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1.1.2. General grouping by structure

Since the XML language can encode and represent various kinds of hierarchical data, clustering XML
documents by structure can be exploited in any application domain that needs management and processing
of hierarchical data. Some related examples follow.

Spatial data management. Spatial data are often organized in data model catalogs expressed in XML’s
hierarchical format. For example, areas that include forests with lakes, rivers and farms can be represented
as tree-like structures using XML documents. Clustering by structure can identify spatial entities with
similar structure, e.g., entities with areas that include forests with lakes. For example, in Fig. 2, areas
encoded by D1 and D2 are structurally similar, since D2 only misses the river element. On the other hand,
area encoded by D3 is organized in a different way than D1 and D2: Examples on using XML representation
for geographical data are presented in [8].

Bioinformatics. The discovery of structurally similar macromolecular tree patterns, encoded as XML
documents, is a useful task in bioinformatics. The detection of homologous protein structures encoded as
XML documents (i.e., sets of protein structures sharing a similar structure) is such an example [9]. Other
XML encodings for life sciences are presented in [10].
1.2. Contribution

The contribution of this paper is a methodology for clustering XML documents by structure, exploiting
algorithms to calculate the minimum cost (known as tree edit distance) to transform a rooted ordered
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labeled tree to another one, using operations on nodes. Specifically:
1.
 We provide an overview of algorithms that calculate the tree edit distance for two rooted ordered labeled
trees.
2.
 Modeling XML documents as rooted ordered labeled trees, we suggest the usage of tree structural
summaries. These summaries maintain the structural relationships between the elements of an XML
document and at the same time have minimal processing requirements instead of the original trees
representing the XML documents.
3.
 We propose a new algorithm to calculate tree edit distances and we define a structural distance metric to
estimate the structural similarity between two rooted ordered labeled trees.
4.
 We present a prototype testbed to perform clustering of large XML datasets using the structural distance
metric. Experimental results indicate that
(a) our algorithm for calculating the structural distance between two rooted ordered labeled trees,

representing XML documents, provides high quality clustering and improved performance
compared to others,

(b) using structural summaries to represent XML documents instead of the original trees improves
further the performance of the structural distance calculation without affecting its quality.
Preliminary work has been also appeared in [11].

1.3. Outline

The paper is organised as follows. Section 2 presents background information for the representation of
XML data as rooted ordered labeled trees or graphs and analyzes various algorithms related to the tree
editing problem and tree editing distances. Section 3 suggests the structural summaries for rooted ordered
labeled trees. Section 4 presents a new algorithm to calculate the tree edit distance between two rooted
ordered labeled trees and introduces a metric of structural distance. Section 5 analyzes the clustering
methodology. Section 6 describes the architecture of our testbed used for the evaluation procedure and
presents the evaluation results, and finally Section 7 concludes our work.
2. Background on semistructured data and tree edit distances

XML data is semistructured data, that is a hierarchically structured and self-describing piece of
information, consisting of atomic and complex objects. We next present background information related to
(a) popular models used for representing semistructured data and (b) editing problems for rooted ordered
labeled trees produced from such kind of models.

2.1. Modeling semistructured data

Models for semistructured data are mainly graph-based or tree-based. They are simple and flexible
models which capture schemaless, self-describing and irregular data. The object exchange model (OEM) is a
graph representation of a collection of objects. OEM was introduced in the TSIMMIS project [12,13].
Every OEM object has an identifier and a value, atomic or complex. An atomic value is an integer, real,
string or any other data, while a complex value is a set of oids, each linked to the parent node using a
textual label. Objects with atomic values are called atomic objects and objects with complex values are
called complex objects. Fig. 3 presents an example of an OEM database. In this example there are four
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Fig. 3. OEM example.
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complex objects (the root, two ‘SLR camera’ objects and one ‘Point & Shoot camera’ object) and seven
atomic objects (three ‘brand’, three ‘price’ and one ‘color’).

The XML data model is another graph representation of a collection of atomic and complex objects.
However, while the OEM model denotes graphs with labels on edges, the XML data model denotes graphs
with labels on nodes. See how the example of Fig. 3 can be expressed using the XML data model in Fig. 4.
The XML data model provides a mechanism to define references that are unique. Using references, one can
refer to an element using its identifier. See for example the dashed edge in Fig. 4, which is a reference from
element 7 to element 4.

Without such references, the XML data model becomes a rooted ordered labeled tree. Since we use such
rooted ordered labeled trees to represent XML data, we exploit ideas originating from editing problems for
rooted ordered labeled trees.
2.2. Tree editing

A rooted ordered labeled tree T is a set of ðk þ 1Þ nodes fr; nig with i ¼ 1 . . . k: The children of each node
are ordered. A label is associated with every node. The root of T is r and the remaining nodes n1 . . . nk are
partitioned into m sets T1 . . .Tm; each of which is a tree. These trees (T1 . . .Tm) are called subtrees of the
root of T. The root of Ti; i ¼ 1 . . .m; is the ith child of the root of T and the root of T is the parent of the
root of Ti:Generally, if t1 . . . tk are subtrees of the root of a tree t, with t be a subtree of T, then the root of t

is a parent for the roots of t1 . . . tk and the roots of t1 . . . tk are children of the root of t. Node x is an ancestor

of y and y is a descendant of x if there is a path of nodes n0; n1; . . . ; nk such that x ¼ n0; y ¼ nk and
ni ¼ parentðniþ1Þ for i ¼ 0 . . . k: A leaf is a node with no descendants.

An atomic tree edit operation on a rooted ordered labeled tree is either the deletion of a node, or the
insertion of a node, or the replacement of a node by another one. A complex tree edit operation is a set of
atomic tree edit operations, treated as one single operation. An example of a complex tree edit operation is
the insertion of a whole tree as a subtree in another tree, which is actually a sequence of atomic node
insertion operations.

The tree edit sequence and the tree edit distance between two rooted ordered labeled trees that represent
two XML documents are defined as follows:

Definition 1. Let T1 and T2 be rooted ordered labeled trees. A tree edit sequence is a sequence of tree edit
operations that transforms T1 to T2:
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Definition 2. Let T1 and T2 be rooted ordered labeled trees. Assuming a cost model to assign costs for
every tree edit operation, the tree edit distance between T1 and T2 is the minimum cost between the costs of
all possible tree edit sequences that transform T1 to T2:

Fig. 5 illustrates an example of a tree edit sequence of node insertions, deletions and replacements to
transform a tree T1 to a tree T2: Assuming unit costs for all operations, this sequence does not have the
minimum cost (see Fig. 11 for the sequence of operations with the minimum cost).

There are different approaches [14–17] to determine tree edit sequences and tree edit distances. All utilize
similar tree edit operations with minor variations. Before we discuss each algorithm in detail, we present a
general form of those tree edit operations with the variations that the aforementioned algorithms use.
1.
 insert node:
(a) Variation I (Inslðx; y; iÞ): In this variation every new node is inserted only as a leaf. Let x be a node to

be inserted as the ith child of node y in tree t1 and y1 . . . yn be the children of y. In the new tree t2
produced after inserting the node x, node y will have y1 . . . yi�1; x; yi; yiþ1; . . . yn as children.

(b) Variation II (Insðx; y; iÞ): In this variation, the restriction that a new node can be inserted only as a
leaf is relaxed. Let x be a node to be inserted as the ith child of node y in tree t1 and y1 . . . yn be the
children of y. In the new tree t2 produced after inserting node x, x takes a subsequence of the children
of y as its own children. Thus, given p, node y will have y1 . . . yj ;x; ypþ1; . . . yn as children and x will
have yjþ1; yjþ2; . . . yp as children.
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We assign a unit cost ciðxÞ to the insert node operation for a node x.

2.
 delete node:

(a) Variation I (DelðyÞ): In this variation, deletion can be applied to any node. The children of the
deleted node become the children of its parent. Let x be a node in tree t1 and x1 . . . xn be the children
of x. Let y ¼ xi be one of x1 . . . xn nodes with y1 . . . ym as children. In the new tree t2 produced after
deleting the node y, node x will have x1 . . . xi�1; y1 . . . ym; xiþ1 . . . xn as children.

(b) Variation II (Dell
ðyÞ): In this variation, only leaf nodes can be deleted. Let x be a node in tree t1 and

x1 . . . xn be the children of x. Let y ¼ xi be one of x1 . . . xn nodes (y is a leaf). In the new tree t2
produced after deleting the node y, node x will have x1 . . . xi�1;xiþ1 . . . xn as children.
We assign a unit cost cd ðyÞ to the delete node operation for a node y.

3.
 replace node (Repðx; yÞ): Let y be a new node and x a node in tree t1 to be replaced by y. In the new tree t2

produced after replacing node x with y, node y will have the same father and the same children
as x in t1: We assign a cost crðx; yÞ to the replace node operation for a node x replaced by y. This
cost may be variable (for example 1 if the node to be replaced has different label and 0 otherwise) or a
constant unit.
4.
 move subtree (Movðx; y; kÞ): Let x be the root of a subtree in tree t1: Movðx; y; kÞ moves the entire subtree
rooted at x, along with x, to be the kth child of y in t2: We assign a unit cost cmðxÞ to the move subtree

operation.

2.3. Review of tree edit algorithms

We next discuss each algorithm [14–17] in detail. All algorithms permit tree edit operations from the set
of operations presented in the previous section.

2.3.1. Selkow’s algorithm

Selkow in [14] suggests a recursive algorithm to calculate the tree edit distance between two rooted
ordered labeled trees. An insert node operation is permitted only if the new node becomes a leaf. A delete

node operation is permitted only at leaf nodes. Any node can be updated using the replace node operation.
So, the set of permitted tree edit operations is fInslðx; y; iÞ; Dell

ðyÞ; Repðx; yÞ}, with costs ciðxÞ; cd ðyÞ; and
crðx; yÞ (crðx; yÞ ¼ 1 if the node to be replaced has different label, crðx; yÞ ¼ 0 otherwise), respectively (see
Section 2.2). The cost W iðxÞ to insert a whole subtree t2 rooted at node x, and the cost W dðyÞ to delete a
whole subtree t2 rooted at node y are:

W iðxÞ ¼
Xk

j¼0

ciðxjÞ; W dðyÞ ¼
Xk

j¼0

cd ðyjÞ; (1)

where x0 ¼ x; y0 ¼ y; x1 . . . xk are all descendants of x, and y1 . . . yk are all descendants of y

A tree T is denoted as Tð1; nkÞ; where 1 is the label of its root, k is the number of subtrees connected to
the root, and nk is the last node of the kth subtree in T. All nodes are labeled according to the preorder
sequence. The algorithm to compute the distance D between the two trees proceeds recursively by
calculating the distance between their subtrees. The idea of the main recursion is that the calculation of the
distance between two (sub)trees t1 and t2 requires the calculation of four distances: (a) t1 without its last
subtree and t2; (b) t1 and t2 without its last subtree, (c) t1 without its last subtree and t2 without its last
subtree, and (d) last subtree of t1 and last subtree of t2:

Let r be the root of current subtree t1 of T1; k the number of subtrees in r, and i the last node of last
subtree of t1 (i ¼ ik). Similarly, let s be the root of current subtree t2 of T2; l the number of subtrees in s, and
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j the last node of last subtree of t2 (j ¼ jl). Dðr; i : s; jÞ denotes the structural distance between t1 and t2:
Analytically, the algorithm proceeds as follows:
1.
 if ðr ¼¼ iÞ and ðs ¼¼ jÞ then D ¼ 0:
If t1 and t2 consist only of one node each (their roots), then the cost to transform t1 to t2 is equal to 0
(roots are the same).
2.
 if ðs ¼¼ jÞ then D ¼W dðik�1 þ 1Þ þDðr; ik�1 : s; jÞ:
If t2 consists only of one node then the cost to transform t1 to t2 is equal to the cost to delete the kth
subtree of t1 (which is the last subtree of the root of t1), plus the cost to transform t01 (which is t1 without
its kth subtree) to t2:
3.
 if ðr ¼¼ iÞ then D ¼W iðjl�1 þ 1Þ þDðr; i : s; jl�1Þ:
If t1 consists only of one node then the cost to transform t1 to t2 is equal to the cost to insert the lth
subtree of t2 (which is the last subtree of the root of t2) in t1 plus the cost to transform t1 to t02 (which is t2
without its lth subtree).
4.
 In any other case find the minimum between the following three costs, D ¼ minðd1; d2; d3Þ:
(a) d1 ¼W dðik�1 þ 1Þ þDðr; ik�1 : s; jÞ:

the cost to delete the kth subtree of t1 (which is the last subtree of the root of t1) plus the cost to
transform t01 (which is t1 without its kth subtree) to t2:

(b) d2 ¼W iðjl�1 þ 1Þ þDðr; i : s; jl�1Þ:
the cost to insert the lth subtree of t2 (which is the last subtree of the root of t2) in t1 plus the cost to
transform t1 to t02 (which is t2 without its lth subtree).

(c) d3 ¼ Dðr; ik�1 : s; jl�1Þ þ crðik�1 þ 1; jl�1 þ 1Þ þDðik�1 þ 1; ik : jl�1 þ 1; jlÞ:
the cost to transform t01 (which is t1 without its kth subtree) to t02 (which is t2 without its lth subtree)
plus the cost to replace the root of the kth subtree of t1 with the root of the lth subtree of t2 plus the
cost to transform the kth subtree of t1 to the lth subtree of t2:
The complete algorithm follows:
Dðr; i : s; jÞ
begin
if (ðr ¼¼ iÞ and ðs ¼¼ jÞ) then D ¼ 0 else

if ðs ¼¼ jÞ then D ¼W d ðik�1 þ 1Þ þDðr; ik�1 : s; jÞ else

if ðr ¼¼ iÞ then D ¼W iðjl�1 þ 1Þ þDðr; i : s; jl�1Þ else

D ¼MinffW dðik�1 þ 1Þ þDðr; ik�1 : s; jÞg;
fW iðjl�1 þ 1Þ þDðr; i : s; jl�1Þg;

fDðr; ik�1 : s; jl�1Þ þ crðik�1 þ 1; jl�1 þ 1Þþ

Dðik�1 þ 1; ik : jl�1 þ 1; jlÞgg
return D
end
The method should be called as Dði0; ik : j0; jlÞ; where i0 the root of T1; ik the last node of the kth subtree
(the last one) of T1; j0 the root of T2; jl the last node of the lth subtree (the last one) of T2: T1 and T2 must
have the same root. If not, one can create a new node and make it the root for both.
2.3.2. Zhang’s algorithm

Zhang in [15] suggests a recursive algorithm to calculate the tree edit distance between two rooted
ordered labeled trees, permitting tree edit operations anywhere in the trees. So, the set of permitted tree edit
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operations is fInsðx; y; iÞ; DelðyÞ; Repðx; yÞ}, with costs ciðxÞ; cdðyÞ; and crðx; yÞ; respectively (see Section 2.2).
A tree T is denoted as T ½i : j�; where i is the label of its root and j is the label of its rightmost leaf. All nodes
are labeled according to the postorder sequence. The subtree of T rooted at node i is denoted as T ½i�:
Finally, t½i� refers to the node i of T, and l½i� refers to the postorder number of the leftmost leaf of the
subtree rooted at t½i�:

A tree mapping M on two trees T1 and T2 is an one-to-one relationship between nodes of T1 and nodes
of T2: A mapping M includes a set of pairs ði; jÞ: For any two pairs ði1; j1Þ and ði2; j2Þ in M: (a) i1 ¼ i2 iff
j1 ¼ j2; (b) t1½i1� is to the left of t1½i2� iff t2½j1� is to the left of t2½j2�; and (c) t1½i1� is an ancestor of t1½i2� iff t2½j1�

is an ancestor of t2½j2�: Every mapping M corresponds to a sequence of edit operations. Nodes in T1 which
are untouched by M correspond to DelðyÞ operations in T1: Nodes in T2 which are untouched by M

correspond to Insðx; y; iÞ operations in T1: Nodes in T1 related to nodes in T2 by M correspond to Repðx; yÞ
operations.

The algorithm calculates the minimum cost between the costs of the sequences of edit operations that
transform a tree T1 to the tree T2; produced by all possible valid mappings on T1 and T2: Let fdðT1½i

0 :
i�;T2½j

0 : j�Þ be the distance between trees T1½i
0 : i� and T2½j

0 : j�: Then:
1.
 fdð0; 0Þ ¼ 0 (one-node trees),

2.
 fdðT1½lði1Þ : i�; 0Þ ¼ fdðT1½lði1Þ : i � 1�; 0Þ þ cdðt1½i�Þ;

3.
 fdð0;T2½lðj1Þ : j�Þ ¼ fdð0;T2½lðj1Þ : j � 1�Þ þ ciðt2½j�Þ;

4.
 fdðT1½lði1Þ : i�;T2½lðj1Þ : j�Þ ¼ minðd1; d2; d3Þ; where

(a) d1 ¼ fdðT1½lði1Þ : i � 1�;T2½lðj1Þ : j�Þ þ cdðt1½i�Þ;
(b) d2 ¼ fdðT1½lði1Þ : i�;T2½lðj1Þ : j � 1�Þ þ ciðt2½j�Þ;
(c) d3 ¼ fdðT1½lði1Þ : lðiÞ � 1�;T2½lðj1Þ : lðjÞ � 1�Þ þ fdðT1½lðiÞ : i � 1�;T2½lðjÞ : j � 1�Þ þ crðt1½i�; t2½j�Þ;
where i and j are descendants of t1½i1� and t2½j1�; respectively. Roots are labeled as 0. The recursion is similar
to the one in Selkow’s algorithm presented in the previous section. However, deletions and insertions are
permitted anywhere in the tree. The complete algorithm follows:
int CalculateDistance(TreeNode i, TreeNode j) {

fdð0; 0Þ ¼ 0;

for i1 ¼ lðiÞ to i do fdðT1½lðiÞ : i1�; 0Þ ¼ fdðT1½lðiÞ : i1 � l�; 0Þ þ cd ðt1½i1�Þ;

for j1 ¼ lðjÞ to j do fdð0;T2½lðjÞ : j1�Þ ¼ fdð0;T2½lðjÞ : j1 � 1�Þ þ ciðt2½j1�Þ;

for i1 ¼ lðiÞ to i do

for j1 ¼ lðjÞ to j do

if lði1Þ ¼ lðiÞ and lðj1Þ ¼ lðjÞ then
fdðT1½lðiÞ : i1�; ½T2½lðjÞ : j1�Þ ¼ minffdðT1½lði1Þ : i � 1�;T2½lðj1Þ : j�Þ þ cdðt1½i�Þ;

fdðT1½lði1Þ : i�;T2½lðj1Þ : j � 1�Þ þ ciðt2½j�Þ;

fdðT1½lði1Þ : i � 1�;T2½lðj1Þ : j � 1�Þþ

crðt1½i�; t2½j�Þg;
D½i1�½j1� ¼ fdðT1½lðiÞ : i1�; ½T2½lðjÞ : j1�Þ;

else
fdðT1½lðiÞ : i1�;T2½lðjÞ : j1�Þ ¼ minffdðT1½lðiÞ : i1 � 1�;T2½lðjÞ : j1�Þ þ cdðt1½i1�Þ;

fdðT1½lðiÞ : i1�;T2½lðjÞ : j1 � 1�Þ þ ciðt2½j1�Þ;

fdðT1½lðiÞ : lði1Þ � 1�;T2½lðjÞ : lðj1Þ � 1�Þþ

CalculateDistance(i1;j1)g;
Return D½M�½N�;
}

At the end, the algorithm returns D½M�½N� as the tree edit distance for T1 and T2:
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2.3.3. Chawathe’s algorithm (I)

Chawathe in [16] suggests a recursive algorithm to calculate the tree edit distance between two rooted
ordered labeled trees, using a predefined set of matching nodes between the trees. An insert node operation
is permitted only if the new node becomes a leaf. A delete node operation is permitted only at leaf nodes.
Any node can be updated using the replace node operation. A move subtree operation is also available. So,
the set of permitted tree edit operations is fInslðx; y; iÞ; Dell

ðyÞ; Repðx; yÞ; Movðx; y; kÞ}, with costs ciðxÞ;
cdðyÞ; crðx; yÞ; and cmðxÞ; respectively (see Section 2.2).

Let T1 and T2 be rooted ordered labeled-valued trees. A partial matching is a correspondence between
nodes that have identical or similar values. The algorithm finds the edit script that transforms T1 to T2 with
the minimum number of tree edit operations, and calculates the minimum cost to transform T1 to T2 using
the unit costs for the operations. The algorithm proceeds in five phases:
1.
 insert: let r1 and r2 be the roots of T1 and T2; respectively. If ðr1; r2ÞeM ; then create new roots r01 and r02
for both and assume that ðr01; r

0
2Þ 2M : Then, insert all unmatched nodes z (i.e., nodes which do not take

part in a partial matching) of T2 which have their parent matched (does take part in a partial matching)
in T1:
2.
 replace: look for node pairs ðT1:x;T2:yÞ 2M such that their labels differ and replace every x with the
corresponding y.
3.
 move: look for node pairs ðT1:x;T2:yÞ 2M such that their parents ðT1:pðxÞ; T2:pðyÞÞeM : In that case
move the subtree rooted at x in T1 to node u in T1; where u is the matching node of T2:pðyÞ:
4.
 align: The children u; v of node T1:x and u0; v0 of node T2:y are misaligned if ðu; u0Þ 2M;ðv; v0Þ 2M and
while u is to the left of v in T1; u0 is to the right of v0 in T2: Move operations are necessary to align the
children.
5.
 delete: look for unmatched nodes in T1 and delete them.

The complete algorithm that finds the minimum number of tree edit operations to transform T1 to T2

follows (M: initial partial matching):
E �;M 0  M

while traversing the nodes of T2 in breadth-first order do
{

x is the current node in T2; y ¼ parentðxÞ in T2
find z in T1 where z matches with y
if x does not have a matching node in T1:

{

k FindPositionðxÞ
k apply Insðw; z; kÞ to T1
/* w: a new node */

}

else if x does have a matching node w in T1:

{

if labelðwÞalabelðxÞ then apply Repðw; xÞ to T1
v ¼ parentðwÞ in T1; y ¼ parentðxÞ in T2
if ðy; vÞeM 0 then:

find z in T1 where ðz; yÞ 2M 0
k FindPositionðxÞ
apply Movðw; z; kÞ to T1
}
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align children of w and x /* alignment problem */

}
Delete all nodes in T1 which do not have a matching node in T2
FindPositionðxÞ

{

If x is the leftmost child of y then return 1

else return i þ 1; where i is the number assigned
to node u in T1 (1 for the leftmost),

the matching node of v in T2 which is

the rightmost sibling of x that is to the left of x
}

The author treats the alignment problem as the longest common subsequence (LCS) problem: having two
sequences S1 and S2; the LCS of S1 and S2 is a sequence S of pairs ðx1; y1Þ; . . . ; ðxk; ykÞ such that: (a)
x1 . . . xk and y1 . . . yk are subsequences of S1 and S2 respectively, (b) equalðxi; yiÞ for some predefined
equality function equal, 1pipk; and (c) S is the longest possible sequence that satisfies the above
conditions. Myers’ algorithm [18] is used to compute the LCS S of the matched children of nodes x and y

using the function equalðu; vÞ that is true if ðu; vÞ 2M : Then, having the children of x in S fixed, the matched
children of y are moved in order to be aligned.

Having the minimum number of tree edit operations to transform T1 to T2; one can calculate the
minimum cost D to transform T1 to T2 using the unit costs for the operations.
2.3.4. Chawathe’s algorithm (II)

Chawathe in [17] suggests a recursive algorithm to calculate the tree edit distance between two rooted
ordered labeled trees, using a shortest path detection technique on an edit graph. An insert node operation is
permitted only if the new node becomes a leaf. A delete node operation is permitted only at leaf nodes. Any
node can be updated using the replace node operation. So, the set of permitted tree edit operations is
fInslðx; y; iÞ; Dell

ðyÞ; Repðx; yÞ}, with costs ciðxÞ; cdðyÞ and crðx; yÞ; respectively (see Section 2.2).
Let T1 and T2 be two rooted ordered labeled trees with M and N nodes, respectively. Edit scripts on such

trees can be represented using edit graphs. The edit graph of T1 and T2 is an ðM þ 1Þ � ðN þ 1Þ grid of
nodes, having a node at each ðx; yÞ location, x 2 ½0 . . . ðM þ 1Þ� and y 2 ½0 . . . ðN þ 1Þ�: Directed lines
connect the nodes. A horizontal line ððx� 1; yÞ; ðx; yÞÞ denotes deletion of T1½x�; where T1½x� refers to the
xth node of T1 in its preorder sequence. Horizontal lines can be drawn only if node T2½y� is deeper than
node T1½x�: A vertical line ððx; y� 1Þ; ðx; yÞÞ denotes insertion of T2½y�; where T2½x� refers to the xth node of
T2 in its preorder sequence. Vertical lines can be drawn only if node T1½x� is deeper than node T2½y�:
Finally, a diagonal line ððx� 1; y� 1Þ; ðx; yÞÞ denotes update of T1½x� by T2½y�: Diagonal lines can be drawn
only if nodes T1½x� and T2½y� have the same depth in trees T1 and T2; respectively.

Every line has a weight equal to the cost of the corresponding edit operation. Line drawing follows
certain constraints. Drawing a horizontal line to denote deletion of a node M leads to drawing more lines to
denote the deletion of all nodes in M’s subtree. Drawing a vertical line to denote insertion of a node N leads
to drawing more lines to denote the insertion of all nodes in N’s subtree. Fig. 6 shows an example of an edit
graph which represents an edit script to transform tree T1 to tree T2: Notice that T1 becomes T2 by
ðRepðT1½2�; cÞ; RepðT1½3�; dÞ; InsðT2½4�;T1½1�; 3Þ: Every edit script that transforms T1 to T2 can be mapped
to a path in an edit graph. The tree edit distance between two rooted ordered labeled-valued trees T1 and T2

is the shortest of all paths to which edit scripts are mapped in an edit graph.



ARTICLE IN PRESS

1  2  3 (preorder sequence)

0  1  1 (depth)
a  b  d

a
c
d
a

1
2
3
4
(preorder sequence)

0
1
1
1

(depth)

Tree T1 (nodes: a,b,d)

Tree T2
(nodes: a,c,d,a)

A

DB
A

DC A

Fig. 6. An example of an edit graph.
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An edit graph G is constructed as a ðM þ 1Þ � ðN þ 1Þ � 3 matrix, whose cells contain the cost of the
corresponding edit operation. The third dimension is used to determine the direction of the line drawing,
that is the type of the operation, for example ½0� for horizontal lines, i.e., delete node, ½1� for vertical lines,
i.e., insert node, and ½2� for diagonal lines, i.e., replace node. If a line is missing from the edit graph, the
corresponding cell contains the infinite value. For example G½4�½6�½0� ¼ 1 means that there is no horizontal
line from node 4 to node 6 in the edit graph.

Consider any path that connects the node ð0; 0Þ to node n ðx; yÞ in an edit graph. Node n ðx; yÞ is the last
node in the path. The distance D of n from ð0; 0Þ cannot be greater than that distance of its left node plus the
cost of the line connecting that node to n. Similarly, D can neither be greater than that distance of n’s top
node plus the cost of the line connecting that node to n, nor greater than that distance of n’s diagonal node
plus the cost of the line connecting that node to n. Based on the above remarks, the following recurrence
calculates the shortest path D½x; y� from ð0; 0Þ to ðx; yÞ in an edit graph G:

Dðx; yÞ ¼ minðm1;m2;m3Þ

where
�
 m1 ¼ D½x� 1; y� 1� þ crðT1½x�;T2½y�Þ; if ððx� 1; y� 1Þ; ðx; yÞÞ 2 G (the distance of ðx; yÞ’s diagonal
node in G plus the cost to replace T1½x� with T2½y�), or 1 otherwise,

�
 m2 ¼ D½x� 1; y� þ cdðT1½x�Þ; if ððx� 1; yÞ; ðx; yÞÞ 2 G (the distance of ðx; yÞ’s left node in G plus the cost

to delete T1½x�), or 1 otherwise,

�
 m3 ¼ D½x; y� 1� þ ciðT2½y�Þ; if ððx; y� 1Þ; ðx; yÞÞ 2 G (the distance of ðx; yÞ’s top node in G plus the cost

to insert T2½y�), or 1 otherwise.

The complete algorithm follows: D½0; 0� ¼ 0;
for ði ¼ 1; io ¼ M; iþþÞ do

D½i; 0� ¼ D½i � 1; 0� þ cdðT1½i�Þ;
for ðj ¼ 1; jo ¼ N; jþþÞ do

D½0; j� ¼ D½0; j � 1� þ ciðT2½j�Þ;
for ði ¼ 1; io ¼ M; iþþÞ do

for ðj ¼ 1; jo ¼ N; jþþÞ do

{

m1 ¼ m2 ¼ m3 ¼ 1;

if ðT1½i�:depth ¼ T2½j�:depthÞ
then m1 ¼ D½i � 1; j � 1� þ crðT1½i�;T2½j�Þ;

if ððT1½i�:depthXT2½j þ 1�:depthÞ or ðj ¼ NÞÞ
then m2 ¼ D½i � 1; j� þ cdðT1½i�Þ;
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if ððT2½j�:depthXT1½i þ 1�:depthÞ or ði ¼MÞÞ
then m3 ¼ D½i; j � 1� þ ciðT2½j�Þ;

D½i; j� ¼ minimumðm1;m2;m3Þ;
}

In the algorithm, D½i; j� keeps the tree edit distance between tree T1 with only its i nodes, assuming pre-
order traversal, and tree T2 with only its j nodes assuming pre-order traversal. For example D½3; 0� keeps
the tree edit distance between tree T1 with only its first 3 nodes (pre-order) and tree T2 with only its root
and D½0; 4� keeps the distance between T1 with only its root and T2 with only its first four nodes (pre-
order). D½0; 0� keeps the distance between T1 and T2; having only their roots (initially 0, since the examined
trees are assume to have same roots). The costs ci; cd and cr are taken from the corresponding edit graph
matrix. The tree edit distance D for T1 and T2 is D½M;N�:
2.3.5. Discussion

All of the algorithms for calculating the edit distance for two ordered labeled trees are based on dynamic
programming techniques related to the string-to-string correction problem [19]. The key issue of these
techniques is the detection of the set of tree edit operations which transforms a tree to another one with the
minimum cost (assuming a cost model to assign costs for every tree edit operation). Methods for change
detection (see [20] for a comparative study) can detect sets of edit operations with cost close to the minimal
with significantly reduced computation time. However, minimality is important for the quality of any
measure to be used as a distance metric. As a result, we do not consider such methods.

The first work that defined the tree edit distance and provided algorithms to compute it, permitting
operations anywhere in the tree, was [21]. Selkow’s algorithm [14] allows insertion and deletion only at leaf
nodes, and relabel at every node. Its main recursion leads to increased complexity. Chawathe’s (II)
algorithm [17] allows insertion and deletion only at leaf nodes, and relabel at every node, too. It is based on
the model of edit graphs which reduces the number of recurrences needed, compared to Selkow’s. This
algorithm is the only one that has been extended to efficiently calculate distances in external memory in case
that tree sizes are prohibitively large, as presented in [17]. Chawathe’s (I) algorithm [16] is based on a
different set of tree edit operations than Chawathe’s (II). It allows insertion and deletion only at leaf nodes.
Its main characteristic is the need of a pre-defined set of matching nodes between the trees. This set acts like
a seed for the algorithm. Zhang’s algorithm [15] permits operations anywhere in the tree and uses a similar
recurrence as Selkow’s algorithm [14].

We believe that using insertion and deletion only at leaves fits better in the context of XML data. For
example, it avoids deleting a node and moving its children up one level. The latter destroys the membership
restrictions of the hierarchy and thus is not a ‘natural’ operation for XML data. To prevent such
operations, the deletion of an internal node should require deletions of all nodes in its path, starting from
the leaf node and going up to the internal node, a task which is assigned a high cost due to the deletion of all
these nodes. To this extend, we consider that Selkow’s and Chawathe’s algorithms (I,II) are appropriate for
handling XML data.

Table 1 summarizes the results. In this work, we consider Chawathe’s (II) algorithm as the basic point of
reference for tree edit distance algorithms. This algorithm has quadratic complexity. Also, it fits well in the
context of XML data, since it permits insertion and deletion only at leaves.

In the following sections, we analyze our framework for clustering XML documents by structure. We
start discussing how to maintain the structural information present in XML documents using compact
trees, called structural summaries, instead of the original trees representing the XML documents. Structural
summaries have minimal processing requirements compared to original trees. Then, we propose a new
algorithm to calculate tree edit distances and we define a structural distance metric to estimate the
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Table 1

Tree edit distance algorithms

Algorithm Operations Restricted to leaves Complexity

Selkow’s Insert node, Delete node,

Replace node

Insert node, Delete

node
Exponential: 4minðNMÞ; M and N are the

numbers of nodes for each tree

Zhang’s Insert node, Delete node,

Replace node

OðMNbdÞ; M and N are the numbers of nodes

for each tree, and b and d are the depths of the

two trees, respectively

Chawathe’s (I) Insert node, Delete node,

Replace node, Move subtree

Insert node, Delete

node

OðNDÞ; N the number of nodes in both trees

and D the number of misaligned nodes

Chawathe’s (II) Insert node, Delete node,

Replace node

Insert node, Delete

node

OðMNÞ; M and N are the dimensions of the

matrix that represents the edit graph

T. Dalamagas et al. / Information Systems 31 (2006) 187–228200
structural similarity between structural summaries of two rooted ordered labeled trees. The suggested
distance is used in a clustering task to identify groups of XML documents that share a similar structure.
3. Tree structural summaries

Real XML documents tend to have many repeated elements. As a result, the trees representing XML
documents (see Section 2.1) can be large and deeply nested, and may have quite different size and structure
even if they are based on the same DTD. Repetition and nesting affect the performance of the tree edit
algorithms, since the involved trees can be too large. Moreover, repetition and nesting is a reason for having
inaccurate results concerning the tree edit distance calculation. A tree edit algorithm will output a large
distance between two XML documents which are based on the same DTD, with one of the two being quite
long due to many repeated elements. Such an example is the pair of trees B1 and B2 presented in Fig. 7. A
tree edit algorithm will detect that B1 can be transformed to B2 with four insert node operations. We would
not expect such a large distance, since B1 and B2 have the same DTD (i.e., they obey the same set of
structural constraints imposed by their DTD). We detect such kind of redundancy looking for nested-
repeated and repeated nodes in XML documents:
�
 A nested-repeated node is a non-leaf node whose label is the same with the one of its ancestor.

�
 Following a pre-order tree traversal, a repeated node is a node whose path (starting from the root down

to the node itself) has already been traversed before.

Fig. 7 presents examples of redundancy. Trees A1 and A2 differ because of the nesting of node R (nested-
repeated node), but they share DTD-1. Trees B1 and B2 differ because of the repeated node C, but they
share DTD-2.

We perform (a) nesting reduction and (b) repetition reduction to extract structural summaries for rooted
ordered labeled trees which represent XML documents. Structural summaries maintain the structural
relationships between the elements of an XML document, keeping the minimum structural information
provided by the tree representing an XML document. Nested and repeated nodes provide the same
structural information many times, causing redundancy. For example, only one edge from tree B2 in Fig. 7
is enough to provide the structural information that C is the descendant of B. Structural summaries have
minimal processing requirements to extract and use instead of the original XML documents in the
clustering procedure.
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Fig. 7. Element repetition and nesting.

T. Dalamagas et al. / Information Systems 31 (2006) 187–228 201
Structural summaries resemble the dataguide summaries [22]. However, a dataguide is a summary of the
structure of semistructured data described by the OEM model, while structural summaries are based on the
XML data model (see Section 2.1 for the differences between these two models). Summaries in the form of
synopses for XML databases have also been exploited in [23]. Such synopses approximate the path and
branching distribution of the structure of XML data. They are used to support optimization for queries
posed on XML data, and especially to enable accurate selectivity estimates for complex path expressions
over graph-structured XML data.

The next sections show how we exploit nesting reduction and repetition reduction to construct structural
summaries.

3.1. Nesting reduction

The aim of this phase is to reduce the nesting in the original tree so that there will be no nested-repeated
nodes. We traverse the tree using pre-order traversal. For the current node, we check if there is an ancestor
with the same label. If there is no such ancestor, we go on to the next node. If there is such ancestor, then we
move all current node’s subtrees to that ancestor. We add the subtrees at the end of the ancestor’s child list
so that we will traverse these nodes later. Nothing will be moved if the current node is a leaf. This process
may cause non-repeated nodes to become repeated ones. This is why we deal first with the nesting reduction
and then with the repetition reduction. Nesting reduction requests only a pre-order traversal on the original
tree. The algorithm follows:
void reduceNesting(TreeNode node) {

TreeNode pos ¼ FindAncestor(node);

if (pos ¼ ¼ null) {
for (int i ¼ 0; i o node.numOfChildren(); i++)

reduceNesting(node.getChild(i));
}

else {
for (int i ¼ 0; i o node.numOfChildren(); i++) {

node.getChild(i).setParentNode(pos);

pos.addChild(node.getChild(i));

node.getChildNodes().remove(i);

i��;
}

}

}
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3.2. Repetition reduction

The aim of this phase is to reduce the repeated nodes in the original tree. We traverse the tree using pre-
order traversal. At each node, we check whether the path from the root to the node already exists or not by
looking it up in a hash table keeping the paths. If there is no such a path, we store this node in the hash
table, with its path being the index. If there is already one such path in the hash table, then this node is a
repeated node, and in that case:
1.
 we move all its subtrees to the destination node that we find in the hash table by using the path
as index,
2.
 we add the subtrees at the end of the destination node’s child list to traverse these subtrees later, and

3.
 we delete the current node and start to traverse the subtrees which have been moved to the destination

node.

After traversing all the nodes that have been moved, we go on to traverse the right sibling of the node which
is deleted. If there is no such node the traversal ends. Repetition reduction requests only a pre-order
traversal on the original tree. The algorithm follows:
void reduceRepeat(TreeNode node, String currentPath) {

String path ¼ currentPath + "/" + node.getNodeName();

if (!h.containsKey(path)) {
h.put(path, node);

for (int i ¼ 0; i o node.numOfChildren(); i++)
reduceRepeat(node.getChild(i), path);

}

else {
TreeNode destination ¼ (TreeNode)h.get(path);

int numOfOldChildren ¼ destination.numOfChildren();

for (int i ¼ 0; ionode.numOfChildren(); i++)
destination.addChild(node.getChild(i));

node.DeleteNode();
}

for (int i ¼ numOfOldChildren;
iodestination.numOfChildren(); i++)

reduceRepeat(destination.getChild(i), path);
}

Fig. 8 illustrates an example of structural summary extraction. Applying the nesting reduction phase on
T1 we get T2; where there are no nested/repeated nodes. Applying the repetition reduction on T2 we get T3

which is the structural summary tree without nested/repeated and repeated nodes.
Once trees have been compacted using structural summaries, so that nesting and repetition are reduced,

structural distances can be computed. We next describe our method for computing such distances.
4. Tree structural distance

Our algorithm for calculating the tree edit distance between structural summaries of rooted ordered
labeled trees that represent XML documents uses a dynamic programming algorithm which is close to
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Chawathe’s algorithm ðIIÞ [17] in terms of the tree edit operations that are used. However, the recurrence
that we use does not need the costly edit graph calculation of the latter (see the timing analysis in
Section 6.4). A similar recurrence but for a different set of tree edit operations has been used in [24] (see
Section 7).

An insert node operation is permitted only if the new node becomes a leaf. A delete node operation is
permitted only at leaf nodes. Any node can be updated using the replace node operation. So, the set of
permitted tree edit operations for our approach is fInslðx; y; iÞ; Dell

ðyÞ; Repðx; yÞ}, with costs ciðxÞ ¼ 1;
cdðyÞ ¼ 1; and crðx; yÞ ¼ 1 if the node to be replaced has different label (crðx; yÞ ¼ 0 otherwise), respectively
(see Section 2.2). The cost W iðxÞ to insert a whole subtree t2; rooted at node x, anywhere in a tree t1; is
actually the number of nodes in t2

W iðxÞ ¼
Xk

j¼0

ciðxjÞ ¼ k þ 1; (2)

where x0 ¼ x and x1 . . . xk are all descendants of x. The cost W dðyÞ to delete a whole subtree t2; rooted at
node y, anywhere in a tree t1; is actually the number of nodes in t2

W dðyÞ ¼
Xk

j¼0

cdðyjÞ ¼ k þ 1; (3)

where y0 ¼ y and y1 . . . yk are all descendants of y.
Given T1 and T2 with roots r1 and r2 respectively, the following method calculates their tree edit distance

(CalculateDistanceðr1; r2Þ):
int CalculateDistance(TreeNode s, TreeNode t) {

int[][] D ¼ new int[numOfChildren(s)+1][numOfChildren(t)+1];

D[0][0] ¼ UpdateCost(LabelOf(s), LabelOf(t));

for (int i ¼ 1; i o ¼ numOfChildren(s); i++)
D[i][0] ¼ D[i-1][0] + numOfNodes(si);

for(int j ¼ 1; j o ¼ numOfChildren(t); j++)
D[0][j] ¼ D[0][j-1] + numOfNodes(tj);
for (int i ¼ 1; i o ¼ numOfChildren(s); i++)

for (int j ¼ 1; j o ¼ numOfChildren(t); j++)
D[i][j] ¼ Min(D[i][j-1] + numOfNodes(tj),
D[i-1][j] + numOfNodes(si),

D[i-1][j-1] + CalculateDistance(si;tj));
Return D[numOfChildren(s)][numOfChildren(t)];

}
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where:
1.
 si is the ith child of node s and tj is the jth child of node t.

2.
 numOfChildrenðsÞ returns the number of child nodes of node s.

3.
 numOfNodesðsÞ returns the number of nodes of the subtree rooted at s (including s).

4.
 LabelOf ðsÞ returns the label of node s.

5.
 UpdateCostðLabelOf ðsÞ;LabelOf ðtÞÞ returns the cost cr to make the label of node s the same as the label

of node t: 1 if LabelOf ðsÞ ¼ LabelOf ðtÞ or 0 otherwise.

We call the function CalculateDistance once for each pair of nodes s and t at the same depth in the
two structural summary trees. D½i�½j� keeps the tree edit distance between tree rooted at s with only its first i

subtrees and tree rooted at t with only its first j subtrees. D½0�½0� keeps the distance between tree rooted at s

and tree rooted at t, both having only their roots. The main for nested loop first calculates the tree edit
distance between tree rooted at s with only its first subtree and tree rooted at t with only its first subtree, and
then proceeds by adding more subtrees to the explored trees. At the end, the algorithm returns the distance
between tree rooted at s ¼ r1 (the root of T1) with all its subtrees and tree rooted at t ¼ r2 (the root of T2)
with all its subtrees. Since CalculateDistance is called once for each pair of nodes at the same depth in
the two structural summary trees, the complexity is OðMNÞ; where M is the number of nodes in the tree
rooted at s, and N is the number of nodes in the tree rooted at t.

We next describe in detail how the algorithm computes the minimum distance between s and t:
1.
 Having the value D½i�½j � 1� and the number of nodes in the subtree rooted at tj ; we spend d1 ¼

D½i�½j � 1� þ numOfNodesðtjÞ to transform the subtree rooted at s to the subtree rooted at t. Since the cost
of an insert node operation is 1, we use numOfNodesðtjÞ to represent the cost to insert the jth subtree of
node t in the subtree rooted at s.
2.
 Similarly, having the value D½i � 1�½j� and the number of nodes in the subtree rooted at si; we spend
d2 ¼ D½i � 1�½j� þ numOfNodesðsiÞ to transform the subtree rooted at s to the subtree rooted at t. Since
the cost of a delete node operation is 1, we use numOfNodesðsiÞ to represent the cost to delete the ith
subtree of s.
3.
 Having the value D½i � 1�½j � 1�; we spend d3 ¼ D½i � 1�½j � 1� þ CalculateDistanceðsi; tjÞ to transform
the subtree rooted at s to the subtree rooted at t. CalculateDistance is recursively called for the ith
and jth children of nodes s and t, respectively.

D½i�½j� keeps the minimum from d1; d2 and d3 values. Fig. 9 shows an example of D½ �½ � calculation.
D½2�½3� is the distance between T1 with only its first two subtrees and T2 with only its first three
subtrees.

A trace of the algorithm using trees T1 and T2 in Fig. 10 is presented in Table 2. In the step where
subtrees t1 and t2; rooted at B of T1 and K of T2; respectively, are explored (example 1 in Fig. 10), we note
the following calculations (all operations are applied in t1):
1.
 D½0�½0� ¼ 1: the roots of t1 and t2 are different, so the algorithm spends cr ¼ 1 to replace B in t1 with K.

2.
 D½0�½1� ¼ 3: D½0�½1� keeps the distance between t1 with only its root B and t2 with only its first

subtree (the path K=C=P). Having only the root node B from t1; the algorithm spends cr ¼ 1 to replace B

with K, ci ¼ 1 to insert node C under K and ci ¼ 1 to insert node P under C, getting K=C=P: a cost of
three units.
3.
 D½1�½0� ¼ 2: D½1�½0� keeps the distance between t1 with only its first subtree (the path B=D) and t2 with
only its root K. The algorithm spends cd ¼ 1 to delete D and cr ¼ 1 to replace B with K, getting K: a cost
of two units.
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Fig. 10. An example of tree distance calculation (see also Table 2).

Table 2

A trace of the algorithm running for trees T1 and T2 in Fig. 10

Subtrees t1; t2 D½i; j�

Root of t1 ¼ C; D½0�½0� ¼ 1; D½0�½1� ¼ 3

Root of t2 ¼ K

Root of t1 ¼ B; D½0�½0� ¼ 1; D½0�½1� ¼ 3; D½1�½0� ¼ 2; D½1�½1� ¼ 3

Root of t2 ¼ K

Root of t1 ¼ R; D½0�½0� ¼ 0; D½0�½1� ¼ 1; D½0�½2� ¼ 2; D½0�½3� ¼ 5; D½0�½4� ¼ 6;
Root of t2 ¼ R D½1�½0� ¼ 1; D½1�½1� ¼ 0; D½1�½2� ¼ 1; D½1�½3� ¼ 4; D½1�½4� ¼ 5;

D½2�½0� ¼ 3; D½2�½1� ¼ 2; D½2�½2� ¼ 2; D½2�½3� ¼ 4; D½2�½4� ¼ 5;
D½3�½0� ¼ 4; D½3�½1� ¼ 3; D½3�½2� ¼ 3; D½3�½3� ¼ 5; D½3�½4� ¼ 5

(Distance ¼ 5; Totalcost ¼ 0:417)
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4.
 D½1�½1� ¼ 3: D½1�½1� keeps the distance between t1 with only its first subtree (the path B=D) and t2 with
only its first subtree (the path K=C=P). The algorithm spends cr ¼ 1 to replace B with K, cr ¼ 1 to
replace D with C and ci ¼ 1 to insert P under C, getting K=C=P: a cost of three units.
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We now look into the step where subtrees t1 and t2 are rooted at R of T1 and R of T2 (example 2 in
Fig. 10), that is t1 ¼ T1 and t2 ¼ T2 (all operations are applied in t1):
1.
 D½2�½3� ¼ 4: D½2�½3� keeps the distance between t1 with only its first two subtrees and t2 with only its first
three subtrees. The algorithm spends cr ¼ 1 to replace B with K, cr ¼ 1 to replace D with C, ci ¼ 1 to
insert P under C and ci ¼ 1 to insert D under R: a cost of four units.
2.
 D½3�½4� ¼ 5: D½3�½4� keeps the distance between t1 with its first three subtrees and t2 with its first four
subtrees. Actually, this is the distance between T1 and T2: The algorithm spends cr ¼ 1 to replace B with
K, cr ¼ 1 to replace D with C, ci ¼ 1 to insert P under C, ci ¼ 1 to insert D under R and cr ¼ 1 to replace
C with O: a cost of 5 units.
Fig. 11 presents the sequence of tree edit operations to transform T1 to T2 with minimum cost (see also
Fig. 10).

We can now define the structural distance S between two structural summaries for rooted ordered
labeled trees which represent XML documents.

Definition 3. Let T1 and T2 be two structural summaries for rooted ordered labeled trees that represent two
XML documents, DðT1;T2Þ be their tree edit distance and D0ðT1;T2Þ be the cost to delete all nodes from
T1 and insert all nodes from T2: The structural distance S between T1 to T2 is defined as SðT1;T2Þ ¼
DðT1;T2Þ

D0ðT1;T2Þ
:

The SðT1;T2Þ value is (a) 0 when the trees have exactly the same structure and the same labels in their
matching nodes, (b) 1 when the trees have totally different structure and not even two pairs of matching
nodes with the same ancestor/descendant relationship, (c) low when the trees have similar structure and
high percentage of matching nodes, and (d) high when the trees have different structure and low percentage
of matching nodes.

In the example illustrated in Fig. 10 and Table 2, D0ðT1;T2Þ ¼ 12; since five nodes must be
deleted from T1 and seven nodes must be inserted from T2; thus SðT1;T2Þ ¼ 0:4166; since tree
distance is 5.
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5. Clustering XML documents

We deal with the problem of clustering XML documents using (a) structural summaries of their
representative rooted ordered labeled trees, (b) tree edit distances between these summaries, (c) structural
distances calculated from these tree edit distances, and (d) clustering algorithms, well-known from text
information retrieval, that use pairwise structural distances to detect groups of data. Fig. 12 illustrates our
framework.

5.1. Clustering algorithms

Clustering methods are usually divided into two broad categories. Non-hierarchical methods group a data
set into a number of clusters. Hierarchical methods produce nested sets of data (hierarchies), in which pairs
of elements or clusters are successively linked until every element in the data set becomes connected. Non-
hierarchical methods have low computational requirements, (OðknÞ; if for example n documents need to be
grouped into k clusters), but certain parameters like the number of formed clusters must be known a priori.
Hierarchical methods are computationally expensive, with time requirements of Oðn2Þ; if n documents need
to be clustered. However, hierarchical methods have been used extensively as a means of increasing the
effectiveness and efficiency of retrieval [25–27]. For a wide ranging overview of clustering methods one can
refer to [28,29]. Single link, complete link and group average link are known as hierarchical clustering
methods. All these methods are based on a similar idea:
1.
 Each element of the data set to be clustered is considered to be a single cluster.

2.
 The clusters with the minimum distance (i.e., maximum similarity) are merged and the distance between

the remaining clusters and the new, merged one is recalculated.

3.
 While there are more than one clusters, go again to step 2.

In single link (complete link), the distance between two non-single clusters is defined as the minimum
(maximum) of the distances between all pairs of elements so that one element is in the first cluster and the
other element is in the second cluster. In group average link, the distance between two non-single clusters is
defined as the mean of the distances between all pairs of elements so that one element is in the one cluster
and the other element is in the other cluster. We chose single link to be the basic clustering algorithm for the
core part of the experiments for our work since it has been shown to be theoretically sound, under a certain
number of reasonable conditions [30].
XML documents

representative rooted
ordered labeled trees

structural summaries

tree edit distances

structural distances

cluster  1 cluster  2

clustering algorithm

Fig. 12. Clustering XML documents by structure.
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5.1.1. Single link

We implemented a single link clustering algorithm using Prim’s algorithm [31] for computing the
minimum spanning tree (MST) of a graph. Given a graph G with a set of weighted edges E and a set of
vertices V, a MST is an acyclic subset T � E that links all the vertices and whose total weight W ðTÞ (the
sum of the weights for the edges in T) is minimized. It has been shown [32] that an MST contains all the
information needed in order to perform single link clustering.

Given n structural summaries of rooted labeled trees that represent XML documents, we form a fully
connected graph G with n vertices 2 V and nðn� 1Þ=2 weighted edges 2 E: The weight of an edge
corresponds to the structural distance between the vertices (trees) that this edge connects. The single link
clusters for a clustering level l1 can be identified by deleting all the edges with weight wXl1 from the MST of
G. The connected components of the remaining graph are the single link clusters. Fig. 13a shows a graph
with seven nodes that correspond to seven structural summaries, and 10 edges. The weight of an edge is the
structural distance between the involved structural summaries. For example the structural distance between
summaries one and two is 0.2. The missing edges, that is the extra edges that make the graph fully
connected, are those that have weight 1. Fig. 13b shows the minimum spanning tree of Fig. 13a. Fig. 13c
presents the graph remaining after deleting all edges with weight X0:4: There are two connected
components that include nodes (1,2,3,6) and nodes (7,5), respectively. This indicates the presence of two
clusters: cluster 1 with (1,2,3,6) as members and cluster 2 with (7,5) as members. Nodes which are not
connected to other nodes will be considered as single-node clusters.

A stopping rule is necessary to determine the most appropriate clustering level for the single link
hierarchies. Milligan et al. present 30 such rules [33]. Among these rules, C-index [34] exhibits excellent
performance (found in the top 3 stopping rules). We next present the way we adopt the C-index in a
hierarchical clustering procedure.

5.1.2. C-index for hierarchical clustering

C-index is a vector of pairs ðði1; n1Þ; ði2; n2Þ; . . . ; ðip; npÞÞ; where i1; i2; . . . ; ip are the values of the index and
n1; n2; . . . ; np the number of clusters in each clustering arrangement produced by varying the clustering level
of a hierarchical clustering procedure in p different steps. Let l1 be the first selected clustering level, which
produces an arrangement of N1 clusters (that is n1 ¼ N1): C1 with c1 elements, C2 with c2 elements, . . . ;CN1

with cN1
elements. We can calculate i1 in order to have the first pair ði1; n1Þ of C-index vector:

i1 ¼ ðdw �minðdwÞÞ=ðmaxðdwÞ �minðdwÞÞ;

where:
1.
 dw ¼ Sumðdw1
Þ þ Sumðdw2

Þ þ � � � þ SumðdwN1
Þ; with Sumðdwi

Þ to be the sum of pairwise distances of all
members of cluster Ci; 1pipn1;
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3

4

5

maxðdwÞ: the sum of the nd highest pairwise distances in the whole set of data (that is, sort distances,
highest first, and take the Top-nd sum),
3.
 minðdwÞ: the sum of the nd lowest pairwise distances in the whole set of data (that is, sort distances,
highest first, and take the Bottom-nd sum),

with nd ¼ c1 � ðc1 � 1Þ=2þ c2 � ðc2 � 1Þ=2þ � � � þ cN1
� ðcN1

� 1Þ=2 (that is the number of all within cluster
pairwise distances). Similarly we calculate all values of C-index for all different p clustering levels, getting
the vector ðði1; n1Þ; ði2; n2Þ; . . . ; ðip; npÞÞ: We point out that:
�
 Although all pairwise structural distances are needed to compute the C-Index, this does not require any
additional computation because these distances need to be computed anyway for the hierarchical
clustering procedure itself.

�
 Since multiple successive clustering levels can generate the same number of clusters, we compute the C-

Index not for each level but for each number of clusters generated by different levels.

�
 The number of clusters with the lowest C-Index is chosen as the correct clustering, as [33] suggests.
6. Experimental evaluation

We have developed a prototype and performed extended evaluation of our framework for clustering
XML documents. We tested the performance as well as the quality of the clustering results using synthetic
and real data.

6.1. Architecture

The prototype testbed is a java-based software that can (a) generate synthetic XML documents or use
existing ones, (b) extract structural summaries from XML documents, (c) calculate pairwise structural
distances between these summaries, (d) perform single link clustering as well as utilize clustering
algorithms provided by other software packages, (e) perform k-NN classification, using already discovered
clusters, and (f) calculate evaluation metrics to judge the performance and the quality of the clustering
results. Fig. 14 presents the various modules of the evaluation testbed.

6.2. Data sets and clustering algorithms

Experiments were performed on both synthetic and real data. For the real data set we used documents
from the ACM SIGMOD Record and ADC/NASA3: 70 XML documents from IndexTermsPage.dtd,
OrdinaryIssuePage.dtd and adml.dtd (Astronomical Dataset Markup Language DTD). Fig. 15 presents
IndexTermsPage.dtd, OrdinaryIssuePage.dtd, both used in the ACM SIGMOD Record, and part of
adml.dtd. For the latter, the reader is referred to ADC/NASA’s site, due to its size.

Synthetic XML documents were generated in our prototype using IBM’s AlphaWorks XML generator.4

We used 10 real-case DTDs5 and two sets of 1000 XML documents, generated from these DTDs. Both
datasets were generated by varying the parameter MaxRepeats that determines the number of times a node
will appear as a child of its parent node (when + or * is used in the DTD). The actual number of repeats
generated is a random value between 0 and MaxRepeats. The first set of synthetic XML documents was
www.acm.org/sigmod/record/xml,xml.gsfc.nasa.gov

www.alphaworks.ibm.com/tech/xmlgenerator

From www.xmlfiles.com and http://www.w3schools.com

http://www.acm.org/sigmod/record/xml,xml.gsfc.nasa.gov
http://www.alphaworks.ibm.com/tech/xmlgenerator
http://www.xmlfiles.com
http://www.w3schools.com
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Fig. 15. DTDs for real data.
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generated with that parameter set to 3 and the second one was generated with that parameter set to 6.
Parameter numLevels that determines the maximum number of tree levels was set to 7. Fig. 16 presents the
10 DTDs used to generate the synthetic data set of XML documents.
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Fig. 16. DTDs for synthetic data.
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Table 3

Information about datasets used

Real dataset Synthetic-3 dataset Synthetic-6 dataset

Size (KB) Number of docs Size (KB) Number of docs Size (KB) Number of docs

0–3.0 70 0–0.5 416 0–2.0 453

3.0–5.0 43 0.5–1.0 231 2.0–5.0 181

5.0–7.0 29 1.0–1.5 109 5.0–10.0 121

7.0–9.0 24 1.5–2.0 105 10.0–15.0 103

9.0–11.0 21 2.0–2.5 60 15.0–20.0 97

11.0–70.0 23 2.5–3.0 27 20.0–80.0 45

3.0–3.5 26

3.5–4.0 16

4.0–4.5 10

Avg doc size: 6.5KB Avg doc size: 0.9KB Avg doc size: 5.2KB

Num. of nodes Number of docs Num. of nodes Number of docs Num. of nodes Number of docs

0–50 65 0–20 492 0–100 450

50–100 50 20–40 278 100–200 250

100–150 44 40–60 149 200–300 100

150–200 28 60–80 58 300–400 72

200–2000 23 80–100 23 400–500 40

100–143 9 500–600 32

600–700 23

700–800 17

800–1708 16

Num. of nodes (total): 26809 Num. of nodes (total): 19780 Num. of nodes (total): 126648

Num. of nodes (distinct): 5727 Num. of nodes (distinct): 7991 Num. of nodes (distinct): 8761
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Table 3 presents information about the documents conforming to DTDs for real and synthetic data
(synthetic-3 data set refers to the one with MaxRepeats ¼ 3; while synthetic-6 data set refers to the one with
MaxRepeats ¼ 6). We next clarify some points concerning these data sets.
1.
 The size of XML documents in terms of bytes is not indicative for the performance of the experiments
that will follow. For example, the synthetic dataset, which is more complex than the real data set,
appears to have documents with less size on average than documents of the real data set. This is due to
the fact that the XML generator puts little or no text between the elements of the generated XML files.
Since the experiments include computation on trees representing the structure of XML documents, as
defined by the relationship of their elements, we consider the number of nodes for these trees as a more
appropriate measure.
2.
 A node in such trees corresponds to a pair of tags (i.e., start tag and end tag) that define an element in an
XML document (see the XML data model discussed in Section 2.1).
3.
 The ‘‘Num. of nodes (total)’’ refers to the total number of nodes of all trees obtained from the dataset.
The ‘‘Num. of nodes (distinct)’’ refers to the number of distinct nodes obtained from the dataset.
4.
 Looking at the distribution of documents constructed by the generator in relation with the number of
their nodes, we observe that as the number of nodes increases, the number of XML documents having
such number of nodes decreases.
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We chose single link to be the basic clustering algorithm for the core part of the experiments, providing
our own implementation. However, preliminary results with other clustering algorithms are also presented,
using libraries of CLUTO6, a tool for clustering datasets and analyzing the characteristics of the various
clusters.

All the experiments were performed on a PC, Pentium III 800MHz, 512MB RAM, using the JAVA
programming language (Java HotSpot(TM) Client VM, build 1.4.2-b28, mixed mode).

6.3. Evaluation procedure

While checking time performance is straightforward, checking clustering quality involves the calculation
of metrics based on priori knowledge of which documents should be members of the appropriate cluster.
Thus, the evaluation procedure raises the following issues:
1.
6

7

8

The number of clusters discovered should ideally match the number of DTDs of XML documents. To
estimate the number of clusters, we adopt the C-index method in the single link clustering method (see
Section 5.1.2).
2.
 The clusters discovered should be mapped to the original DTDs where the XML documents are based
on. For this reason, we performed the following tasks:
(a) We derived DTDs Dc

1;D
c
2; . . . ;D

c
k for every cluster C1;C2; . . . ;Ck; using the XML documents

assigned to that cluster7.
(b) We parsed the derived DTDs Dc

1;D
c
2; . . . ;D

c
k and the original DTDs D1;D2; . . . ;Dm; creating derived

trees tc
1; t

c
2; . . . ; t

c
k trees and original trees t1; t2; . . . ; tm; respectively

8.
(c) For every original tree ti; 1pipm; we calculated the structural distances

Sðti; tc
1Þ;Sðti; tc

2Þ; . . . ;Sðti; tc
kÞ: The lowest of these values Sminðti; tc

pÞ; 1pppk; indicates that the
original DTD Di corresponds to cluster Cp: After that, we had a mapping between the original DTDs
and the clusters produced.
www

Usin

DTD
We note that the C-index method might give a number of clusters which is different than the number of
DTDs where the XML documents are based on (mak), that is there might be clusters not mapped to
any of the original DTDs. In such case, clustering quality metrics will be affected (see next paragraphs).

To evaluate the clustering results, we used two metrics quite popular in information retrieval: precision

PR and recall R [30,35,36]. For an extracted cluster Ci that corresponds to a DTD Di let:
1.
 ai be the number of the XML documents in Ci that were indeed members of that cluster (correctly
clustered),
2.
 bi be the number of the XML documents in Ci that were not members of that cluster (misclustered),

3.
 ci be the number of the XML documents not in Ci; although they should be Ci’s members.

Then:

PR ¼

P
iaiP

iai þ
P

ibi

; R ¼

P
iaiP

iai þ
P

ici

: (4)
-users.cs.umn.edu/�karypis/cluto/

g AlphaWorks Data Descriptors by Example: www.alphaworks.ibm.com/tech/DDbE

parser: www.wutka.com/dtdparser.html

http://www-users.cs.umn.edu/karypis/cluto/
http://www-users.cs.umn.edu/karypis/cluto/
http://www.alphaworks.ibm.com/tech/DDbE
http://www.wutka.com/dtdparser.html
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High precision means high accuracy of the clustering task for each cluster while low recall means that there
are many XML documents that were not in the appropriate cluster although they should. High precision
and high recall indicate excellent clustering quality. In the case where there are clusters not mapped to any
of the original DTD, PR and P will be affected, since all XML documents in such clusters will be treated as
misclustered documents.

Based on the above, we present the timing analysis for calculating structural distances and then we
evaluate the clustering results.
6.4. Efficiency of structural distance algorithms

We compared
1.
 the time to derive the two structural summaries from two rooted ordered labeled trees representing two
XML documents plus
2.
 the time to calculate the structural distance between those two summaries,

vs the time to calculate the structural distance between two rooted ordered labeled trees of two XML
documents (without using structural summaries).

We compared Chawathe’s algorithm and our algorithm using randomly generated XML documents
(synthetic-6,3 datasets in Table 3). This analysis gives an indication of how fast a file for storing pairwise
structural distances is constructed. Such a file can then be used as an input to any clustering algorithm to
discover clusters. Recall that a clustering algorithm needs to calculate N � ðN � 1Þ=2 pairwise structural
distances, where N is the number of documents to be clustered.

Fig. 17 shows the percentage of time decrease for calculating the structural distance between two XML
documents using their summaries instead of using the original trees, for Chawathe’s algorithm. All plots
present results with varying number of nodes for T1 and having certain sizes ([200–300], [800–900] and
[1400–1500]) for T2: In case there are pairs of trees which include trees with the same number N of nodes,
the average time decrease is taken into account for that value of N. At the point where we have increase
instead of decrease, one of the two trees has only a few nodes compared to the other. For example, at a
point where we have around 25% time increase using summaries, in plot (b) of Fig. 17, T1 and T2 have
three and 880 nodes, respectively. However, for such cases the cost to calculate the structural distance is
anyway quite low. Fig. 18 shows similar results concerning the percentage of time decrease for calculating
the structural distance between two XML documents using their summaries instead of using the original
trees, for our algorithm. Again, we observe that at the point where we have increase instead of decrease, the
one of the two trees has only a few nodes compared to the other. Comparing Figs. 17 and 18, we observe
that the plots for our algorithm tend to have a move on the right compared to plots for Chawathe’s. As a
result, the decrease achieved with Chawathe’s algorithm using summaries is in general greater than the
decrease achieved with our algorithm using summaries, especially for trees having low number of nodes.

Fig. 19 shows the percentage of time decrease (average) for calculating structural distances with
structural summaries for different values of the MaxRepeat parameter. In the left figure (parameter
MaxRepeats ¼ 3), values 50, 100, 150, 200 refer to trees having [0–50], [50–100], [100–150] and [150–200]
nodes, respectively. In the right figure (parameter MaxRepeats ¼ 6), values 500, 1000, 1500, 2000 refer to
trees having [0–500], [500–1000], [1000–1500] and [1500–2000] nodes, respectively. For a given value of
MaxRepeats, the decrease becomes high as the size of the trees representing the XML documents increases,
since longer XML documents of the data set tend to have more nested-repeated and repeated nodes. The
decrease is higher for greater values of MaxRepeats (e.g., 6) than for lower values (e.g., 3), since in the
former case there are more nested-repeated and repeated nodes, too.
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Fig. 17. Calculating the structural distance using Chawathe’s algorithm: percentage of time decrease using summaries instead of the

original trees.
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Figs. 20 and 21 present detailed analysis of the timing performance for both algorithms, with or without
summaries. All plots show the time needed to calculate structural distances between trees T1 and T2;
varying the number of nodes for T1 and having certain sizes ([200–300], [800–900] and [1400–1500]) for T2:
In Fig. 21, we provide separate plots for [200–300], [800–900] and [1400–1500] sizes for our algorithm to
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Fig. 18. Calculating the structural distance using our algorithm: percentage of time decrease using summaries instead of the original

trees.
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avoid having too dense black parts near the begining of the axes. For two sample trees having around 1000
nodes each, the time needed to calculate their structural distance is: 2600ms (Chawathe’s algorithm, no
summaries), 23ms (Chawathe’s algorithm, summaries), 700ms (our algorithm, no summaries), 17ms (our
algorithm, summaries). Since the synthetic-6 dataset that was used contains many repeated elements, the
resulting trees (summaries) have only a few distinct nodes. Thus, the performance for such trees for both



ARTICLE IN PRESS

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 50 100 150 200

%
 T

im
e 

de
cr

ea
se

Num of nodes in T1,T2

MAXREPEAT=3 MAXREPEAT=6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 500 1000 1500 2000

%
 T

im
e 

de
cr

ea
se

Num of nodes in T1,T2

Fig. 19. Calculating the structural distance using our algorithm: percentage of time decrease (average) using summaries instead of the

original trees for certain tree sizes and different values of MaxRepeat.
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Fig. 20. Calculating the structural distance using Chawathe’s algorithm: time performance with or without summaries (ms).
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algorithms is similar, as Figs. 20 and 21 show (notice the plot refering to calculations with summaries).
However, Chawathe’s algorithm is significantly slower than our algorithm as the size of these trees
increases. This is due to the pre-calculation of the editgraph, as Fig. 22 illustrates. Editgraph calculation
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Fig. 21. Calculating the structural distance using our algorithm: time performance with or without summaries (ms).
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Fig. 22. Calculating the editgraph for Chawathe’s algorithm: percentage of time spent out of the whole time needed for structural

distance calculation.
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spends around 73% on average of the time needed for the overall distance calculation. Fig. 23 presents the
percentage of time decrease for calculating the structural distance between two XML documents, using our
algorithm instead of Chawathe’s algorithm.
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In both Figs. 22 and 23, x and y axes refer to distinct nodes. To give a sense about the scaling of the
calculations for our algorithm, we next present information about time performance for larger tree sizes. Fig.
24 shows the average time performance for calculating the structural distance between two trees for certain
large tree sizes, using our algorithm, while Fig. 25 shows the percentage of time decrease (average) for those
calculations. Fig. 26 gives the time performance for calculating the structural distance between two trees using
our algorithm for some trees of our sample. All plots show the time needed to calculate structural distances
between trees T1 and T2; varying the number of nodes for T1 and having certain sizes ([3000–3500],
[6000–6500] and [9500–10000]) for T2: Finally, Fig. 27 gives an overall plot to show the time performance for
calculating the structural distance between two trees using our algorithm for large tree sizes.
6.5. Clustering results

We performed single link clustering using Chawathe’s algorithm and our algorithm on synthetic and real
data, with or without structural summaries, and calculated PR and R values.
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Fig. 26. Calculating the structural distance using our algorithm: time performance with or without summaries (ms) for certain large

tree sizes.
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In all presented tables (Tables 4–7) that follow, NumOfClusters is the number of clusters discovered from
the single link clustering task, using C-index. Cluster:level is the level where the single link task was stopped,
that is the level with low value of C-index (see Section 5.1). After the mapping of the discovered clusters to
the original DTDs (see Section 6.3), some clusters remain unmapped. For example, single link clustering
discovered 11 clusters in the test case that Table 4 presents. The documents of the cluster which was not
mapped to any of the 10 original DTDs were treated as misclustered documents, increasing the b value. See
for example the b value for clusters 6 and 9 in Table 4.

6.5.1. Working on synthetic data

Tables 4 and 5 present the ða; b; cÞ values as well as the PR and R values, using Chawathe’s algorithm on
synthetic data with maxRepeats ¼ 3 and 6. Notice that for small trees (maxRepeats ¼ 3) with only a few
repeated elements and, thus, with the structural summaries being actually the original trees, the clustering
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Table 4

Chawathe’s algorithm on synthetic data with MaxRepeats ¼ 3

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1 (DTD 1) 60 0 40 1 (DTD 1) 60 0 40

2 (DTD 2) 62 0 38 2 (DTD 2) 62 0 38

3 (DTD 3) 80 0 20 3 (DTD 3) 80 0 20

4–5 (DTDs 4–5) 100 0 0 4–5 (DTDs 4–5) 100 0 0

6 (DTD 6) 100 185 0 6 (DTD 6) 100 185 0

7–8 (DTDs 7–8) 100 0 0 7–8 (DTDs 7–8) 100 0 0

9 (DTD 9) 100 185 0 9 (DTD 9) 100 185 0

10 (DTD 10) 100 0 0 10 (DTD 10) 100 0 0

NumOfClusters ¼ 11; Cluster: level ¼ 0:37 NumOfClusters ¼ 11; Cluster: level ¼ 0:37
PR ¼ 0:71; R ¼ 0:90 PR ¼ 0:71; R ¼ 0:90
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Fig. 27. Calculating the structural distance using our algorithm: time performance with or without summaries (ms) for larger tree sizes.
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results are the same with or without summaries. On the other hand, for larger trees (maxRepeats ¼ 6) with
many repeated elements there is a clear improvement using summaries, especially in the precision value
(PR).

Tables 6 and 7 present the ða; b; cÞ values as well as the PR and R values, using our algorithm on
synthetic data with maxRepeats ¼ 3 and 6. Summary usage keeps the already high quality clustering
results obtained by clustering without using summaries. In any case, with or without summaries, our
algorithm shows better clustering quality either with small trees and only a few repeated elements or with
larger trees and many repeated elements. Notice that PR and R reach excellent values
(PR ¼ 1:00;R ¼ 0:97; 0:98).
6.5.2. Working on real data

Tables 8 and 9 present the ða; b; cÞ values as well as the PR and R values, using Chawathe’s algorithm and
our algorithm on real data. The summary usage maintains the already high quality clustering
results obtained by clustering without using summaries. PR and R reach excellent values
(PR ¼ 1:00;R ¼ 0:98; 1:00).
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Table 5

Chawathe’s algorithm on synthetic data with MaxRepeats ¼ 6

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1 (DTD 1) 28 0 72 1–2 (DTDs 1–2) 87 0 13

2 (DTD 2) 87 0 13 3 (DTD 3) 84 0 16

3 (DTD 3) 84 0 16 4 (DTD 4) 100 100 0

4 (DTD 4) 100 200 0 5–7 (DTDs 5–7) 100 0 0

5 (DTD 5) 100 0 0 8 (DTD 8) 100 100 0

6 (DTD 6) 100 42 0 9 (DTD 9) 100 4 0

7 (DTD 7) 100 0 0 10 (DTD 10) 100 0 0

8–9 (DTDs 8–9) 100 200 0

10 (DTD 10) 100 0 0

NumOfClusters ¼ 11; Cluster: level ¼ 0:51 NumOfClusters ¼ 12; Cluster: level ¼ 0:50
PR ¼ 0:58; R ¼ 0:89 PR ¼ 0:83; R ¼ 0:96

Table 6

Our algorithm on synthetic data with MaxRepeats ¼ 3

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1–2 (DTDs 1–2) 100 0 0 1–2 (DTDs 1–2) 100 0 0

3 (DTD 3) 80 0 20 3 (DTD 3) 80 0 20

4–10 (DTDs 4–10) 100 0 0 4–10 (DTDs 4–10) 100 0 0

NumOfClusters ¼ 11; Cluster: level ¼ 0:51 NumOfClusters ¼ 11; Cluster: level ¼ 0:51
PR ¼ 1:00; R ¼ 0:98 PR ¼ 1:00; R ¼ 0:98

Table 7

Our algorithm on synthetic data with MaxRepeats ¼ 6

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1 (DTD 1) 100 0 0 1–2 (DTDs 1–2) 100 0 0

2 (DTD 2) 87 0 13 3 (DTD 3) 84 0 16

3 (DTD 3) 84 0 16 4–10 (DTDs 4–10) 100 0 0

4–10 (DTDs 4–10) 100 0 0

NumOfClusters ¼ 12; Cluster: level ¼ 0:61 NumOfClusters ¼ 11; Cluster: level ¼ 0:56
PR ¼ 1:00; R ¼ 0:97 PR ¼ 1:00; R ¼ 0:98
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6.5.3. Remarks

The evaluation results indicate the following:
�
 Structural summaries maintain the clustering quality, that is they do not hurt clustering. Also, using
structural summaries we can clearly improve the performance of the whole clustering procedure, since the
calculation of structural distances using the summaries instead of the original trees is more efficient.
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Table 9

Our algorithm on real data

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1 (DTD 1) 70 0 0 1 (DTD 1) 70 0 0

2 (DTD 2) 70 0 0 2 (DTD 2) 70 0 0

3 (DTD 3) 66 0 4 3 (DTD 3) 70 0 0

NumOfClusters ¼ 4; Cluster: level ¼ 0:63 NumOfClusters ¼ 3; Cluster: level ¼ 0:63
PR ¼ 1:00; R ¼ 0:98 PR ¼ 1:00; R ¼ 1:00

Table 8

Chawathe’s algorithm on real data

Without structural summaries With structural summaries

Cluster No a b c Cluster No a b c

1 (DTD 1) 70 0 0 1 (DTD 1) 70 0 0

2 (DTD 2) 70 0 0 2 (DTD 2) 70 0 0

3 (DTD 3) 66 0 4 3 (DTD 3) 70 0 0

NumOfClusters ¼ 4; Cluster: level ¼ 0:63 NumOfClusters ¼ 3; Cluster: level ¼ 0:63
PR ¼ 1:00; R ¼ 0:98 PR ¼ 1:00; R ¼ 1:00
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�
 With or without summaries, our algorithm shows excellent clustering quality, and improved performance
compared to Chawathe’s.

We should note that the differences in the clusters obtained by the two algorithms in identical datasets,
although both calculate the minimum cost to transform a tree to another one, are due to the cost models
used for the tree edit operations. This does not affect the evaluation procedure, since our concern is to show
the effect of summaries on clustering quality in both algorithms.
6.5.4. Further discussion

We confirmed our results using hierarchical clustering methods from CLUTO. Since CLUTO expects the
desired amount of clusters as an input, we experimented using 10 and x clusters, where x is the
NumOfClusters returned by C-index in every test case in order to:
1.
 check if the algorithms have the potential of 100% correct clustering, having the right number of
clusters, which is 10, and
2.
 check the performance of the algorithms using what C-index gave as an estimation of the number of
clusters in each test case.

Notice that a 100% correct clustering means that exactly 10 clusters with 100 files originating from the same
DTD were generated (PR ¼ R ¼ 1). CLUTO made similar cluster configurations using its single link
algorithm. Having 10 clusters as an input, both single link and complete link performed 100% correctly.
Having NumOfClusters as an input, the results were similar to ours. Non-hierarchical methods, like
repeated bisections algorithms [37], showed similar results.
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We also performed the single link clustering task using IBM’s TreeDiff9, a set of Java beans
that enable efficient differentiation and updating of DOM trees, providing its own tree distance.
We used the synthetic dataset used in our main experiments. The results gave PR and R values
lower than 0.7.

Having DTDs which are different from each other makes the clustering procedure successful.
It is interesting to see how clustering groups together XML data from similar DTDs related to
the same domain. This is a very hard clustering task, in the sense that such data sets do not have the
tendency to have well-formed clusters, since they do not have distinguishing information. Also,
some of the documents might belong to more than one DTD, since DTD are quire similar.
For this reason, we performed single link clustering on 300 synthetic XML documents generated
using three DTDs: bookstore1.dtd, bookstore2.dtd and bookstore3.dtd (see Fig. 28). These DTDs were
quite similar to each other, making the clustering task quite hard. Preliminary results showed that
we were unable to identify groups of XML documents using clustering without tree summaries. Calculated
PR values were lower than 0.3. On the other hand, we got good quality results using our algorithm and tree
summaries. Table 10 presents the ða; b; cÞ values as well as PR, R values for synthetic data with
maxRepeats ¼ 6; using our algorithm and tree summaries.

Methods were discussed to cluster a set of existing XML documents by structure at once. However,
sometimes there is a need to assign new incoming XML documents to already discovered clusters, instead
of applying a clustering method again to the whole set of documents, including the new ones. The latter
costs time since all pairwise distances should be calculated again. Classification algorithms can assign new
data to clusters already present. k-NN classification is a simple yet quite effective method [38]. A set of M

training XML documents is randomly selected from each cluster. Having a new, incoming XML document,
we rank the training documents according to their structural distance with the incoming one (the training
document with the lowest distance will be on the top). Recall that the structural distance is calculated
between the structural summaries of these trees. Then the k top-ranked documents are used to decide the
winning cluster(s) by adding the distances for the training documents which represent the same cluster
[39,38]

yðx; cjÞ ¼
X

di�kNN

Sðx; diÞ � yðdi; cjÞ; (5)

where:
1.
9

x is an incoming document, di is a training document, cj is a category,

2.
 yðdi; cjÞ ¼ 1 if di belongs to cj or 0 otherwise,

3.
 Sðx; diÞ is the structural distance between the incoming document x and the training document di;
Using thresholds on these scores we obtain binary cluster assignments and we allow the method to
assign a document to more than one cluster. Instead, we can just use the cluster with the lowest
score as the right one for the incoming document. In our work we followed the second
approach. Preliminary results showed excellent classification performance. Having a number of
discovered clusters, we tested the kNN classification method for five new data sets of 1000 XML
synthetic documents each. The method proved quite reliable, since it gave the right decision
for 99.7% of the documents without using structural summaries and 100% using structural
summaries.
http://www.alphaworks.ibm.com/tech/xmltreediff

http://www.alphaworks.ibm.com/tech/xmltreediff
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Table 10

Homogeneous synthetic data, MaxRepeats ¼ 6

Cluster No a b c

1 (DTD 1) 70 0 0

2 (DTD 2) 70 0 0

3 (DTD 3) 66 0 4

NumOfClusters ¼ 3; Cluster: level ¼ 0:20
PR ¼ 0:78; R ¼ 0:78

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ),
publisher, price )>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>
<!ELEMENT affiliation (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT price (#PCDATA )>

<!ELEMENT entry (book* )>
<!ELEMENT book (title, author+,
publisher, price )>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT author (last, first )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT price (#PCDATA )>

<!ELEMENT bib (book* )>
<!ELEMENT book (title, author+,
publisher, cost )>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT cost (#PCDATA )>

bookstore1.dtd bookstore2.dtd bookstore3.dtd

Fig. 28. Three similar DTDs.
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7. Conclusions

This work presented a methodology for clustering XML documents by structure. Structural clustering
refers to the task of grouping together structurally similar data. In the case of XML documents, the
application of clustering methods needs distances that estimate the similarity between tree structures in
terms of the hierarchical relationship of their nodes.

Modeling XML documents as rooted ordered labeled trees, we faced the ‘clustering XML documents by
structure’ problem as a ‘tree clustering’ problem. We proposed the usage of tree structural summaries that
have minimal processing requirements instead of the original trees representing the XML documents.
Those summaries maintain the structural relationships between the elements of an XML document,
reducing repetition and nesting of elements and making its structure closer to the structure of its unknown
DTD. Also, we presented a new algorithm to calculate tree edit distances and defined a structural distance
metric to estimate the structural similarity between the structural summaries of two rooted ordered labeled
trees.

In order to experimentally validate our proposals, we implemented a testbed using clustering methods
and data sets. We adapted the C-index stopping rule in hierarchical clustering methods to determine the
most appropriate clustering level for the cluster hierarchies in order to discover the clusters. We performed
extensive evaluation using synthetic and real data sets, providing timing analysis as well as precision PR

and recall R values for each test case. Our results showed that:
1.
 Structural summaries clearly improved the performance of the whole clustering procedure, since the
decrease on the time needed to calculate the tree distances using summaries is high. On the other hand,
summaries maintained or even improved the clustering quality.
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2.
 The proposed structural distance algorithm showed excellent clustering quality, and improved
performance compared to Chawathe’s.
3.
 Excellent results were also obtained when assigning new incoming XML documents to already
discovered clusters using the kNN classification method with structural summaries, instead of applying a
clustering method again to the whole set of documents, including the new ones. Re-clustering is
expensive since all pairwise distances should be calculated again.
4.
 Preliminary results showed also that structural summaries can clearly help even at clustering XML data
coming from similar DTDs, while clustering without summaries failed even to identify groups using such
data.

Methods for file change detection [20] are related to our work, but they do not compute the minimal tree
edit sequence (see also the discussion in Section 2.3.5). Other methods, like in [40], concentrate on
unordered trees. Research has also been conducted in the Information Retrieval Community [41–43] to
evaluate similarity by content in a document-centric approach of XML data. Other works that exploit
structural distances are [24,44]. In [24], the set of tree edit operations include two new ones which refer to
whole trees (insert_tree and delete_tree operations) rather than nodes. Trees are pre-processed for checking
whether a subtree is contained in another tree. Such pre-processing is needed to precalculate costs for
sequences of single insert_tree operations, or combinations of insert_tree operations and insert node

operations. The approach requires the same amount of computation with Chawathe’s algorithm. There are
no detailed evaluation results, showing PR and R values. Instead, only the number of misclustered
documents is presented. In [44], the authors discuss how to group together structurally similar XML
documents to improve the cost of query processing and evaluation in case these documents are stored in
tables of relational database systems. Such a grouping decreases the number of join operations needed
between tables during the query evaluation. The metric (originally suggested in [45]) is applied on graphs
representing XML data, and it is based on the number of the common edges between graphs. The approach
does not take into account the position of the edges in the graphs.

In our work, we diminish the possibility of having repeated subtrees using structural summaries instead
of expanding the tree edit operations. Structural summaries are used as an index structure to speed up the
tree distance calculation. Such an approach has the advantage of being useful to reduce the performance
cost in every algorithm that estimates the structural distance between rooted ordered labeled trees.

To conclude, this work successfully applied clustering methodologies for grouping XML documents
which have similar structure, by modeling them as rooted ordered labeled trees, and utilizing their
structural summaries to reduce time cost while maintaining the quality of the clustering results. As future
work, several directions are pursued. First, certain properties of the structural distance should be explored
and confirmed. Positivity, symmetry and triangular inequality are such properties. The experimental results
show that these properties hold (see for example Fig. 27 for the symmetry) but formal study is needed to
confirm it. Also, we will study how to employ vector-based representation of tree structures (like in [46,47])
to further explore the problem of clustering by structure. Other interesting issues involve (a) the application
of the framework in collections where the repetition of nodes has a certain meaning, so as structural
summaries should not eliminate repeated nodes, and (b) the problem of clustering XML documents
conforming to similar DTDs.
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