

Available online at www.sciencedirect.com

Information Systems 31 (2006) 187-228

A methodology for clustering XML documents by structure $\stackrel{\mathar}{\sim}$

Theodore Dalamagas^{a,*}, Tao Cheng^b, Klaas-Jan Winkel^c, Timos Sellis^a

^aSchool of Electrical and Computer Engineering, National Technical University of Athens, 15773, Zographou, Athens, Greece ^bDepartment of Computer Science, University of California, Santa Barbara, CA 93106, USA ^cFaculty of Computer Science, University of Twente, 7500, AE Enschede, The Netherlands

Received 14 October 2003; received in revised form 15 September 2004; accepted 9 November 2004

Abstract

The processing and management of XML data are popular research issues. However, operations based on the structure of XML data have not received strong attention. These operations involve, among others, the grouping of structurally similar XML documents. Such grouping results from the application of clustering methods with distances that estimate the similarity between tree structures. This paper presents a framework for clustering XML documents by structure. Modeling the XML documents as rooted ordered labeled trees, we study the usage of structural distance metrics in hierarchical clustering algorithms to detect groups of structurally similar XML documents. We suggest the usage of structural summaries for trees to improve the performance of the distance calculation and at the same time to maintain or even improve its quality. Our approach is tested using a prototype testbed. © 2004 Elsevier B.V. All rights reserved.

Keywords: XML; Structural similarity; Tree edit distance; Structural summary; Clustering

1. Introduction

The *eXtensible Markup Language (XML)* [1] is becoming the standard data exchange format among Web applications, providing interoperability and enabling automatic processing of Web resources. An XML document is a hierarchically structured and self-describing piece of information, and consists of atomic elements or complex elements (elements with nested subelements). An XML document incorporates structure and data in one entity. To this extend, XML data is semistructured data [2].

^{*} Work supported in part by DELOS Network of Excellence on Digital Libraries, IST programme of the EC FP6, no G038-507618, and by PYTHAGORAS EPEAEK II programme, EU and Greek Ministry of Education.

^{*}Corresponding author. Tel.: +302107721602; fax: +302107721442.

E-mail addresses: dalamag@dblab.ece.ntua.gr (T. Dalamagas), taocheng@cs.ucsb.edu (T. Cheng), winkel@cs.utwente.nl (K.-J. Winkel), timos@dblab.ece.ntua.gr (T. Sellis).

While the processing and management of XML data are popular research issues (see [3] as a reference), operations based on the structure of XML data have not received strong attention. The internal structure of an XML document can be specified using a set of regular expression patterns, called *Document Type Descriptor (DTD)* [1]. Richer constraints, not only on the structure but also on the type of data in an XML document, can be set using the XML Schema [1].

Applying structural transformations and grouping together structurally similar XML documents are examples of operations based on the structure of XML data. Structural transformations are the basis for using XML as a common data exchange format: $XSLT^{1}$ uses template rules to define transformations for XML documents, while [4] presents a high level language to specify structural document transformations in a descriptive way. Grouping together structurally similar XML documents refers to the application of clustering methods using distances that estimate the similarity between tree structures in terms of the hierarchical relationships of their nodes.

1.1. Motivating examples

This paper presents a methodology for clustering XML documents by structure. The next subsections give motivation examples to show where clustering by structure can assist various application tasks.

1.1.1. Automatic extraction of DTDs

A characteristic that distinguishes XML documents from semistructured data is the optional usage of DTDs. A DTD serves as a grammar for an XML document, determining its internal structure. A valid XML document is one that has a DTD and conforms to it. A DTD, besides enabling exchange of documents through common vocabulary and standards, can generate relational schemas to efficiently store and query XML documents in relational database systems [5]. However, many XML documents are constructed massively from data sources like RDBMSs, flat files, etc., without DTDs. XTRACT [6,7] and IBM AlphaWorks DDbE² are DTD discovery tools that automatically extract DTDs from XML documents. Such tools fail to discover meaningful DTDs in case of diverse XML document collections [7]. Consider for example news articles in the form of XML documents from portals, newspaper sites, news agency sites, etc. Such documents, although related, may have such a different organization that one cannot define a meaningful DTD for all of them. See for example the four XML documents in Fig. 1. A unique DTD for these documents should define an element which might be either article or news story. This element should contain a title element and, then, either an author or a picture element. However picture in D_3 doc is identical to image in D_1 . Also, picture in D_3 comes before the author element, while the equivalent image in D_1 comes after the author element. Such irregularities make the construction of a unique, meaningful DTD a hard task.

For this reason, identifying groups of XML documents that share a similar structure is crucial for DTD discovery systems. If a collection of XML documents is first grouped into sets of structurally similar documents, then a meaningful DTD can be assigned to each set individually. For example, the XML documents in Fig. 1 can be grouped in two sets: the first set includes documents D_1 and D_2 , and the second one includes documents D_3 and D_4 . Documents in each set are structurally similar. For example, D_2 misses only the element image (inside article element), compared to D_1 . On the other hand, D_1 and D_3 are not structurally similar: picture in D_3 comes before the author element, while the equivalent image in D_1 comes after the author element.

¹http://www.w3c.org/TR/XSLT

²http://www.alphaworks.ibm.com/tech/DDbE

(D1)	(D2)	(D3)	(D4)
xml version="1.0"?	xml version="1.0"?	xml version="1.0"?	xml version="1.0"?
<article></article>	<article></article>	<news_story></news_story>	<news_story></news_story>
<title>The title</title>	<title>The title</title>	<title>The title</title>	<title>The title</title>
<author></author>	<author></author>	<picture>An image</picture>	<author></author>
<first_name></first_name>	<first_name></first_name>	<author></author>	<name></name>
Theodore	Theodore	<name></name>	Theodore Dalamagas
		Theodore Dalamagas	
<last_name></last_name>	<last_name></last_name>		
Dalamagas	Dalamagas		<summary>The summary</summary>
		<summary>The summary</summary>	<body>The main article</body>
		<body>The main article</body>	
<image/> Some images	<summary>The summary</summary>		
<summary>The summary</summary>	<main>The main article</main>		
<main>The main article</main>			

Fig. 1. Examples of related XML documents, with different structure.

(D1)	(D2)	(D3)
xml version="1.0"?	xml version="1.0"?	xml version="1.0"?
<area <="" td="" type="rectangle"/> <td><area <="" td="" type="rectangle"/><td><area <="" td="" type="rectangle"/></td></td>	<area <="" td="" type="rectangle"/> <td><area <="" td="" type="rectangle"/></td>	<area <="" td="" type="rectangle"/>
x1="100" y1="200"">	x1="130" y1="210"">	x1="300" y1="500"">
<forest <="" td="" type="rectangle"><td><forest <="" td="" type="rectangle"><td><forest <="" td="" type="rectangle"></forest></td></forest></td></forest>	<forest <="" td="" type="rectangle"><td><forest <="" td="" type="rectangle"></forest></td></forest>	<forest <="" td="" type="rectangle"></forest>
x1="20" x2="20"">	x1="30" x2="10"">	x1="50" x2="70"">
<lake <="" td="" type="circle"><td><lake <="" td="" type="circle"><td><lake <="" td="" type="circle"></lake></td></lake></td></lake>	<lake <="" td="" type="circle"><td><lake <="" td="" type="circle"></lake></td></lake>	<lake <="" td="" type="circle"></lake>
x1="5" y1="10" r1="5">>	x1="2" y1="15" r1="10">>	x1="35" y1="14" r1="30">>
The lake	The lake	The lake
<farm type="rectangle"></farm>	<farm type="rectangle"></farm>	<river type="line"></river>
The farm	The farm	The river
<river type="line"></river>		<farm type="rectangle"></farm>
The river		The farm

Fig. 2. Examples of XML documents encoding spatial information.

1.1.2. General grouping by structure

Since the XML language can encode and represent various kinds of hierarchical data, clustering XML documents by structure can be exploited in any application domain that needs management and processing of hierarchical data. Some related examples follow.

Spatial data management. Spatial data are often organized in data model catalogs expressed in XML's hierarchical format. For example, areas that include forests with lakes, rivers and farms can be represented as tree-like structures using XML documents. Clustering by structure can identify spatial entities with similar structure, e.g., entities with areas that include forests with lakes. For example, in Fig. 2, areas encoded by D_1 and D_2 are structurally similar, since D_2 only misses the river element. On the other hand, area encoded by D_3 is organized in a different way than D_1 and D_2 . Examples on using XML representation for geographical data are presented in [8].

Bioinformatics. The discovery of structurally similar macromolecular tree patterns, encoded as XML documents, is a useful task in bioinformatics. The detection of homologous protein structures encoded as XML documents (i.e., sets of protein structures sharing a similar structure) is such an example [9]. Other XML encodings for life sciences are presented in [10].

1.2. Contribution

The contribution of this paper is a methodology for clustering XML documents by structure, exploiting algorithms to calculate the minimum cost (known as tree edit distance) to transform a rooted ordered

labeled tree to another one, using operations on nodes. Specifically:

- 1. We provide an overview of algorithms that calculate the tree edit distance for two rooted ordered labeled trees.
- 2. Modeling XML documents as rooted ordered labeled trees, we suggest the usage of tree structural summaries. These summaries maintain the structural relationships between the elements of an XML document and at the same time have minimal processing requirements instead of the original trees representing the XML documents.
- 3. We propose a new algorithm to calculate tree edit distances and we define a structural distance metric to estimate the structural similarity between two rooted ordered labeled trees.
- 4. We present a prototype testbed to perform clustering of large XML datasets using the structural distance metric. Experimental results indicate that
 - (a) our algorithm for calculating the structural distance between two rooted ordered labeled trees, representing XML documents, provides high quality clustering and improved performance compared to others,
 - (b) using structural summaries to represent XML documents instead of the original trees improves further the performance of the structural distance calculation without affecting its quality.

Preliminary work has been also appeared in [11].

1.3. Outline

The paper is organised as follows. Section 2 presents background information for the representation of XML data as rooted ordered labeled trees or graphs and analyzes various algorithms related to the tree editing problem and tree editing distances. Section 3 suggests the structural summaries for rooted ordered labeled trees. Section 4 presents a new algorithm to calculate the tree edit distance between two rooted ordered labeled trees and introduces a metric of structural distance. Section 5 analyzes the clustering methodology. Section 6 describes the architecture of our testbed used for the evaluation procedure and presents the evaluation results, and finally Section 7 concludes our work.

2. Background on semistructured data and tree edit distances

XML data is semistructured data, that is a hierarchically structured and self-describing piece of information, consisting of atomic and complex objects. We next present background information related to (a) popular models used for representing semistructured data and (b) editing problems for rooted ordered labeled trees produced from such kind of models.

2.1. Modeling semistructured data

Models for semistructured data are mainly graph-based or tree-based. They are simple and flexible models which capture schemaless, self-describing and irregular data. The *object exchange model (OEM)* is a graph representation of a collection of objects. OEM was introduced in the TSIMMIS project [12,13]. Every OEM object has an identifier and a value, atomic or complex. An atomic value is an integer, real, string or any other data, while a complex value is a set of oids, each linked to the parent node using a textual label. Objects with atomic values are called atomic objects and objects with complex values are called complex objects. Fig. 3 presents an example of an OEM database. In this example there are four

Fig. 3. OEM example.

complex objects (the root, two 'SLR camera' objects and one 'Point & Shoot camera' object) and seven atomic objects (three 'brand', three 'price' and one 'color').

The *XML data model* is another graph representation of a collection of atomic and complex objects. However, while the OEM model denotes graphs with labels on edges, the XML data model denotes graphs with labels on nodes. See how the example of Fig. 3 can be expressed using the XML data model in Fig. 4. The XML data model provides a mechanism to define references that are unique. Using references, one can refer to an element using its identifier. See for example the dashed edge in Fig. 4, which is a reference from element 7 to element 4.

Without such references, the XML data model becomes a *rooted ordered labeled tree*. Since we use such rooted ordered labeled trees to represent XML data, we exploit ideas originating from editing problems for rooted ordered labeled trees.

2.2. Tree editing

A rooted ordered labeled tree T is a set of (k + 1) nodes $\{r, n_i\}$ with $i = 1 \dots k$. The children of each node are ordered. A label is associated with every node. The root of T is r and the remaining nodes $n_1 \dots n_k$ are partitioned into m sets $T_1 \dots T_m$, each of which is a tree. These trees $(T_1 \dots T_m)$ are called subtrees of the root of T. The root of T_i , $i = 1 \dots m$, is the *i*th *child* of the root of T and the root of T is the *parent* of the root of T. Generally, if $t_1 \dots t_k$ are subtrees of the root of a tree t, with t be a subtree of T, then the root of t is a *parent* for the roots of $t_1 \dots t_k$ and the roots of $t_1 \dots t_k$ are *children* of the root of t. Node x is an *ancestor* of y and y is a *descendant* of x if there is a path of nodes n_0, n_1, \dots, n_k such that $x = n_0$, $y = n_k$ and $n_i = parent(n_{i+1})$ for $i = 0 \dots k$. A *leaf* is a node with no descendants.

An *atomic tree edit operation* on a rooted ordered labeled tree is either the deletion of a node, or the insertion of a node, or the replacement of a node by another one. A *complex tree edit operation* is a set of atomic tree edit operations, treated as one single operation. An example of a complex tree edit operation is the insertion of a whole tree as a subtree in another tree, which is actually a sequence of atomic node insertion operations.

The *tree edit sequence* and the *tree edit distance* between two rooted ordered labeled trees that represent two XML documents are defined as follows:

Definition 1. Let T_1 and T_2 be rooted ordered labeled trees. A *tree edit sequence* is a sequence of tree edit operations that transforms T_1 to T_2 .

Fig. 5. An example of an edit sequence to transform T_1 to T_2 .

Definition 2. Let T_1 and T_2 be rooted ordered labeled trees. Assuming a cost model to assign costs for every tree edit operation, the *tree edit distance* between T_1 and T_2 is the minimum cost between the costs of all possible tree edit sequences that transform T_1 to T_2 .

Fig. 5 illustrates an example of a tree edit sequence of node insertions, deletions and replacements to transform a tree T_1 to a tree T_2 . Assuming unit costs for all operations, this sequence does not have the minimum cost (see Fig. 11 for the sequence of operations with the minimum cost).

There are different approaches [14–17] to determine tree edit sequences and tree edit distances. All utilize similar tree edit operations with minor variations. Before we discuss each algorithm in detail, we present a general form of those tree edit operations with the variations that the aforementioned algorithms use.

1. insert node:

- (a) Variation I ($Ins^{t}(x, y, i)$): In this variation every new node is inserted only as a leaf. Let x be a node to be inserted as the *i*th child of node y in tree t_1 and $y_1 \dots y_n$ be the children of y. In the new tree t_2 produced after inserting the node x, node y will have $y_1 \dots y_{i-1}, x, y_i, y_{i+1}, \dots, y_n$ as children.
- (b) Variation II (Ins(x, y, i)): In this variation, the restriction that a new node can be inserted only as a leaf is relaxed. Let x be a node to be inserted as the *i*th child of node y in tree t_1 and $y_1 \dots y_n$ be the children of y. In the new tree t_2 produced after inserting node x, x takes a subsequence of the children of y as its own children. Thus, given p, node y will have $y_1 \dots y_j, x, y_{p+1}, \dots, y_n$ as children and x will have $y_{i+1}, y_{i+2}, \dots, y_p$ as children.

We assign a unit cost $c_i(x)$ to the *insert node* operation for a node x.

2. delete node:

- (a) *Variation I* (*Del*(*y*)): In this variation, deletion can be applied to any node. The children of the deleted node become the children of its parent. Let *x* be a node in tree t_1 and $x_1 \dots x_n$ be the children of *x*. Let $y = x_i$ be one of $x_1 \dots x_n$ nodes with $y_1 \dots y_m$ as children. In the new tree t_2 produced after deleting the node *y*, node *x* will have $x_1 \dots x_{i-1}, y_1 \dots y_m, x_{i+1} \dots x_n$ as children.
- (b) Variation II ($Del^{l}(y)$): In this variation, only leaf nodes can be deleted. Let x be a node in tree t_1 and $x_1 \dots x_n$ be the children of x. Let $y = x_i$ be one of $x_1 \dots x_n$ nodes (y is a leaf). In the new tree t_2 produced after deleting the node y, node x will have $x_1 \dots x_{i-1}, x_{i+1} \dots x_n$ as children.

We assign a unit cost $c_d(y)$ to the *delete node* operation for a node y.

- 3. **replace node** (Rep(x, y)): Let y be a new node and x a node in tree t_1 to be replaced by y. In the new tree t_2 produced after replacing node x with y, node y will have the same father and the same children as x in t_1 . We assign a cost $c_r(x, y)$ to the *replace node* operation for a node x replaced by y. This cost may be variable (for example 1 if the node to be replaced has different label and 0 otherwise) or a constant unit.
- 4. move subtree (Mov(x, y, k)): Let x be the root of a subtree in tree t_1 . Mov(x, y, k) moves the entire subtree rooted at x, along with x, to be the kth child of y in t_2 . We assign a unit cost $c_m(x)$ to the move subtree operation.

2.3. Review of tree edit algorithms

We next discuss each algorithm [14–17] in detail. All algorithms permit tree edit operations from the set of operations presented in the previous section.

2.3.1. Selkow's algorithm

Selkow in [14] suggests a recursive algorithm to calculate the tree edit distance between two rooted ordered labeled trees. An *insert node* operation is permitted only if the new node becomes a leaf. A *delete node* operation is permitted only at leaf nodes. Any node can be updated using the *replace node* operation. So, the set of permitted tree edit operations is $\{Ins^l(x, y, i), Del^l(y), Rep(x, y)\}$, with costs $c_i(x), c_d(y)$, and $c_r(x, y) = 1$ if the node to be replaced has different label, $c_r(x, y) = 0$ otherwise), respectively (see Section 2.2). The cost $W_i(x)$ to insert a whole subtree t_2 rooted at node x, and the cost $W_d(y)$ to delete a whole subtree t_2 rooted at node x.

$$W_{i}(x) = \sum_{j=0}^{k} c_{i}(x_{j}), \quad W_{d}(y) = \sum_{j=0}^{k} c_{d}(y_{j}), \tag{1}$$

where $x_0 = x$, $y_0 = y$, $x_1 \dots x_k$ are all descendants of x, and $y_1 \dots y_k$ are all descendants of y

A tree T is denoted as $T(1, n_k)$, where 1 is the label of its root, k is the number of subtrees connected to the root, and n_k is the last node of the kth subtree in T. All nodes are labeled according to the preorder sequence. The algorithm to compute the distance \mathcal{D} between the two trees proceeds recursively by calculating the distance between their subtrees. The idea of the main recursion is that the calculation of the distance between two (sub)trees t_1 and t_2 requires the calculation of four distances: (a) t_1 without its last subtree and t_2 , (b) t_1 and t_2 without its last subtree, (c) t_1 without its last subtree and t_2 without its last subtree, and (d) last subtree of t_1 and last subtree of t_2 .

Let r be the root of current subtree t_1 of T_1 , k the number of subtrees in r, and i the last node of last subtree of t_1 ($i = i_k$). Similarly, let s be the root of current subtree t_2 of T_2 , l the number of subtrees in s, and

j the last node of last subtree of t_2 ($j = j_1$). D(r, i : s, j) denotes the structural distance between t_1 and t_2 . Analytically, the algorithm proceeds as follows:

- 1. if (r == i) and (s == j) then $\mathcal{D} = 0$: If t_1 and t_2 consist only of one node each (their roots), then the cost to transform t_1 to t_2 is equal to 0 (roots are the same).
- 2. if (s == j) then $\mathscr{D} = W_d(i_{k-1} + 1) + D(r, i_{k-1} : s, j)$: If t_2 consists only of one node then the cost to transform t_1 to t_2 is equal to the cost to delete the *k*th subtree of t_1 (which is the last subtree of the root of t_1), *plus* the cost to transform t'_1 (which is t_1 without its *k*th subtree) to t_2 .
- 3. if (r == i) then $\mathcal{D} = W_i(j_{l-1} + 1) + D(r, i : s, j_{l-1})$: If t_1 consists only of one node then the cost to transform t_1 to t_2 is equal to the cost to insert the *l*th subtree of t_2 (which is the last subtree of the root of t_2) in t_1 plus the cost to transform t_1 to t'_2 (which is t_2 without its *l*th subtree).
- 4. In any other case find the minimum between the following three costs, $\mathcal{D} = min(d_1, d_2, d_3)$:
 - (a) $d_1 = W_d(i_{k-1} + 1) + D(r, i_{k-1} : s, j)$: the cost to delete the *k*th subtree of t_1 (which is the last subtree of the root of t_1) *plus* the cost to transform t'_1 (which is t_1 without its *k*th subtree) to t_2 .
 - (b) $d_2 = W_i(j_{l-1} + 1) + D(r, i : s, j_{l-1})$: the cost to insert the *l*th subtree of t_2 (which is the last subtree of the root of t_2) in t_1 plus the cost to transform t_1 to t'_2 (which is t_2 without its *l*th subtree).
 - (c) $d_3 = D(r, i_{k-1} : s, j_{l-1}) + c_r(i_{k-1} + 1, j_{l-1} + 1) + D(i_{k-1} + 1, i_k : j_{l-1} + 1, j_l)$: the cost to transform t'_1 (which is t_1 without its kth subtree) to t'_2 (which is t_2 without its lth subtree) plus the cost to replace the root of the kth subtree of t_1 with the root of the lth subtree of t_2 plus the cost to transform the kth subtree of t_1 to the lth subtree of t_2 .

The complete algorithm follows:

```
\begin{array}{l} D(r,i:s,j) \\ \text{begin} \\ \text{if } ((r==i) \quad \text{and} \quad (s==j)) \quad \text{then} \quad \mathscr{D}=0 \quad \text{else} \\ \text{if } (s==j) \quad \text{then} \quad \mathscr{D}=W_d(i_{k-1}+1)+D(r,i_{k-1}:s,j) \quad \text{else} \\ \text{if } (r==i) \quad \text{then} \quad \mathscr{D}=W_i(j_{l-1}+1)+D(r,i:s,j_{l-1}) \quad \text{else} \\ \mathscr{D}=Min\{\{W_d(i_{k-1}+1)+D(r,i_{k-1}:s,j)\}, \\ \{W_i(j_{l-1}+1)+D(r,i:s,j_{l-1})\}, \\ \{D(r,i_{k-1}:s,j_{l-1})+c_r(i_{k-1}+1,j_{l-1}+1)+ \\ D(i_{k-1}+1,i_k:j_{l-1}+1,j_l)\}\} \\ \text{return} \quad \mathscr{D} \\ \text{end} \end{array}
```

The method should be called as $D(i_0, i_k : j_0, j_l)$, where i_0 the root of T_1 , i_k the last node of the kth subtree (the last one) of T_1 , j_0 the root of T_2 , j_l the last node of the *l*th subtree (the last one) of T_2 . T_1 and T_2 must have the same root. If not, one can create a new node and make it the root for both.

2.3.2. Zhang's algorithm

Zhang in [15] suggests a recursive algorithm to calculate the tree edit distance between two rooted ordered labeled trees, permitting tree edit operations anywhere in the trees. So, the set of permitted tree edit

operations is {Ins(x, y, i), Del(y), Rep(x, y)}, with costs $c_i(x)$, $c_d(y)$, and $c_r(x, y)$, respectively (see Section 2.2). A tree T is denoted as T[i:j], where i is the label of its root and j is the label of its rightmost leaf. All nodes are labeled according to the postorder sequence. The subtree of T rooted at node i is denoted as T[i]. Finally, t[i] refers to the node i of T, and l[i] refers to the postorder number of the leftmost leaf of the subtree rooted at t[i].

A tree mapping M on two trees T_1 and T_2 is an one-to-one relationship between nodes of T_1 and nodes of T_2 . A mapping M includes a set of pairs (i,j). For any two pairs (i_1,j_1) and (i_2,j_2) in M: (a) $i_1 = i_2$ iff $j_1 = j_2$, (b) $t_1[i_1]$ is to the left of $t_1[i_2]$ iff $t_2[j_1]$ is to the left of $t_2[j_2]$, and (c) $t_1[i_1]$ is an ancestor of $t_1[i_2]$ iff $t_2[j_1]$ is an ancestor of $t_2[j_2]$. Every mapping M corresponds to a sequence of edit operations. Nodes in T_1 which are untouched by M correspond to Del(y) operations in T_1 . Nodes in T_2 which are untouched by M correspond to Ins(x, y, i) operations in T_1 . Nodes in T_1 related to nodes in T_2 by M correspond to Rep(x, y)operations.

The algorithm calculates the minimum cost between the costs of the sequences of edit operations that transform a tree T_1 to the tree T_2 , produced by all possible valid mappings on T_1 and T_2 . Let $fd(T_1[i':i], T_2[j':j])$ be the distance between trees $T_1[i':i]$ and $T_2[j':j]$. Then:

1. fd(0,0) = 0 (one-node trees),

2. $fd(T_1[l(i_1):i], 0) = fd(T_1[l(i_1):i-1], 0) + c_d(t_1[i]),$ 3. $fd(0, T_2[l(j_1):j]) = fd(0, T_2[l(j_1):j-1]) + c_i(t_2[j]),$ 4. $fd(T_1[l(i_1):i], T_2[l(j_1):j]) = min(d_1, d_2, d_3),$ where (a) $d_1 = fd(T_1[l(i_1):i-1], T_2[l(j_1):j]) + c_d(t_1[i]),$ (b) $d_2 = fd(T_1[l(i_1):i], T_2[l(j_1):j-1]) + c_i(t_2[j]),$ (c) $d_3 = fd(T_1[l(i_1):l(i)-1], T_2[l(j_1):l(j)-1]) + fd(T_1[l(i):i-1], T_2[l(j):j-1]) + c_r(t_1[i], t_2[j]),$

where *i* and *j* are descendants of $t_1[i_1]$ and $t_2[j_1]$, respectively. Roots are labeled as 0. The recursion is similar to the one in Selkow's algorithm presented in the previous section. However, deletions and insertions are permitted anywhere in the tree. The complete algorithm follows:

int CalculateDistance (TreeNode *i*, TreeNode *j*) { fd(0,0) = 0;for $i_1 = l(i)$ to i do $fd(T_1[l(i):i_1], 0) = fd(T_1[l(i):i_1 - l], 0) + c_d(t_1[i_1]);$ for $j_1 = l(j)$ to j do $fd(0, T_2[l(j) : j_1]) = fd(0, T_2[l(j) : j_1 - 1]) + c_i(t_2[j_1]);$ for $i_1 = l(i)$ to i do for $j_1 = l(j)$ to j do if $l(i_1) = l(i)$ and $l(j_1) = l(j)$ then $fd(T_1[l(i):i_1], [T_2[l(j):j_1]) = min\{fd(T_1[l(i_1):i-1], T_2[l(j_1):j]) + c_d(t_1[i]), fd(T_1[l(i_1):i-1], T_2[l(i_1):j]) + c_d(t_1[i]), fd(T_1[l(i_1):i-1]) + c_d(t_1[i]), fd(T_1[l(i_1):i-1]) + c_d(t_1[i])) + c_d(t_1[i]), fd(T_1[l(i_1):i-1]) + c_d(t_1[i])) + c_d(t_1[i]), fd(T_1[l(i_1):i-1]) + c_d(t_1[i])) + c_d(t_1[i])) + c_d(t_1[i]), fd(T_1[l(i_1):i-1]) + c_d(t_1[i])) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i]) + c_d(t_1[i])) + c_d(t_1[i]) + c_d(t_1[i]) + c_d$ $fd(T_1[l(i_1):i], T_2[l(j_1):j-1]) + c_i(t_2[j]),$ $fd(T_1[l(i_1):i-1],T_2[l(j_1):j-1])+$ $c_r(t_1[i], t_2[j])$; $D[i_1][j_1] = fd(T_1[l(i):i_1], [T_2[l(j):j_1]);$ else $fd(T_1[l(i):i_1], T_2[l(j):j_1]) = min\{fd(T_1[l(i):i_1-1], T_2[l(j):j_1]) + c_d(t_1[i_1]), fd(T_1[l(i):i_1-1], T_2[l(j):j_1]) + c_d(t_1[i_1]), fd(T_1[t(i):i_1-1], T_2[t(j):i_1-1]) + c_d(t_1[i_1]), fd(T_1[t(i):i_1-1]) + c_d(t_1[i_1]), fd(T_1[t(i):i_1-1]) + c_d(t_1[i_1]), fd(T_1[t(i):i_1-1]) + c_d(t_1[i_1]), fd(T_1[t(i):i_1-1]) + c_d(t_1[t(i):i_1-1]) + c_d(t(i):i_1-1]) +$ $fd(T_1[l(i):i_1], T_2[l(j):j_1-1]) + c_i(t_2[j_1]),$ $fd(T_1[l(i): l(i_1) - 1], T_2[l(j): l(j_1) - 1]) +$ CalculateDistance (i_1, j_1) ; Return D[M][N]; }

At the end, the algorithm returns D[M][N] as the tree edit distance for T_1 and T_2 .

2.3.3. Chawathe's algorithm (I)

Chawathe in [16] suggests a recursive algorithm to calculate the tree edit distance between two rooted ordered labeled trees, using a predefined set of matching nodes between the trees. An *insert node* operation is permitted only if the new node becomes a leaf. A *delete node* operation is permitted only at leaf nodes. Any node can be updated using the *replace node* operation. A *move subtree* operation is also available. So, the set of permitted tree edit operations is $\{Ins^l(x, y, i), Del^l(y), Rep(x, y), Mov(x, y, k)\}$, with costs $c_i(x)$, $c_d(y)$, $c_r(x, y)$, and $c_m(x)$, respectively (see Section 2.2).

Let T_1 and T_2 be rooted ordered labeled-valued trees. A *partial matching* is a correspondence between nodes that have identical or similar values. The algorithm finds the edit script that transforms T_1 to T_2 with the minimum number of tree edit operations, and calculates the minimum cost to transform T_1 to T_2 using the unit costs for the operations. The algorithm proceeds in five phases:

- 1. *insert*: let r_1 and r_2 be the roots of T_1 and T_2 , respectively. If $(r_1, r_2) \notin M$, then create new roots r'_1 and r'_2 for both and assume that $(r'_1, r'_2) \in M$. Then, insert all unmatched nodes z (i.e., nodes which do not take part in a partial matching) of T_2 which have their parent matched (does take part in a partial matching) in T_1 .
- 2. *replace*: look for node pairs $(T_1, x, T_2, y) \in M$ such that their labels differ and replace every x with the corresponding y.
- 3. move: look for node pairs $(T_1.x, T_2.y) \in M$ such that their parents $(T_1.p(x), T_2.p(y)) \notin M$. In that case move the subtree rooted at x in T_1 to node u in T_1 , where u is the matching node of $T_2.p(y)$.
- 4. align: The children u, v of node $T_1.x$ and u', v' of node $T_2.y$ are misaligned if $(u, u') \in M, (v, v') \in M$ and while u is to the left of v in T_1, u' is to the right of v' in T_2 . Move operations are necessary to align the children.
- 5. *delete*: look for unmatched nodes in T_1 and delete them.

The complete algorithm that finds the minimum number of tree edit operations to transform T_1 to T_2 follows (*M*: initial partial matching):

```
E \leftarrow \varepsilon, M' \leftarrow M
while traversing the nodes of T_2 in breadth-first order do
{
       x is the current node in T_2, y = parent(x) in T_2
       find z in T_1 where z matches with y
       if x does not have a matching node in T_1:
       ł
              k \leftarrow FindPosition(x)
              k \leftarrow \text{apply } Ins(w, z, k) \text{ to } T_1
               /* w: a new node */
       else if x does have a matching node w in T_1:
       {
               if label(w) \neq label(x) then apply Rep(w, x) to T_1
               v = parent(w) in T_1, y = parent(x) in T_2
               if (y, v) \notin M' then:
                                 find z in T_1 where (z, y) \in M'
                                 k \leftarrow FindPosition(x)
                                 apply Mov(w, z, k) to T_1
       }
```

196

```
align children of w and x /* alignment problem */ }
```

```
Delete all nodes in T_1 which do not have a matching node in T_2
```

FindPosition(x)

```
If x is the leftmost child of y then return 1
else return i + 1, where i is the number assigned
to node u in T_1 (1 for the leftmost),
the matching node of v in T_2 which is
the rightmost sibling of x that is to the left of x
```

}

ł

The author treats the alignment problem as the *longest common subsequence (LCS) problem*: having two sequences S_1 and S_2 , the *LCS* of S_1 and S_2 is a sequence *S* of pairs $(x_1, y_1), \ldots, (x_k, y_k)$ such that: (a) $x_1 \ldots x_k$ and $y_1 \ldots y_k$ are subsequences of S_1 and S_2 respectively, (b) $equal(x_i, y_i)$ for some predefined equality function equal, $1 \le i \le k$, and (c) *S* is the longest possible sequence that satisfies the above conditions. Myers' algorithm [18] is used to compute the LCS *S* of the matched children of nodes *x* and *y* using the function equal(u, v) that is true if $(u, v) \in M$. Then, having the children of *x* in *S* fixed, the matched children of *y* are moved in order to be aligned.

Having the minimum number of tree edit operations to transform T_1 to T_2 , one can calculate the minimum cost \mathcal{D} to transform T_1 to T_2 using the unit costs for the operations.

2.3.4. Chawathe's algorithm (II)

Chawathe in [17] suggests a recursive algorithm to calculate the tree edit distance between two rooted ordered labeled trees, using a shortest path detection technique on an edit graph. An *insert node* operation is permitted only if the new node becomes a leaf. A *delete node* operation is permitted only at leaf nodes. Any node can be updated using the *replace node* operation. So, the set of permitted tree edit operations is $\{Ins^{l}(x, y, i), Del^{l}(y), Rep(x, y)\}$, with costs $c_{i}(x), c_{d}(y)$ and $c_{r}(x, y)$, respectively (see Section 2.2).

Let T_1 and T_2 be two rooted ordered labeled trees with M and N nodes, respectively. Edit scripts on such trees can be represented using *edit graphs*. The edit graph of T_1 and T_2 is an $(M + 1) \times (N + 1)$ grid of nodes, having a node at each (x, y) location, $x \in [0 \dots (M + 1)]$ and $y \in [0 \dots (N + 1)]$. Directed lines connect the nodes. A horizontal line ((x - 1, y), (x, y)) denotes deletion of $T_1[x]$, where $T_1[x]$ refers to the *x*th node of T_1 in its preorder sequence. Horizontal lines can be drawn only if node $T_2[y]$ is deeper than node $T_1[x]$. A vertical line ((x, y - 1), (x, y)) denotes insertion of $T_2[y]$, where $T_2[x]$ refers to the *x*th node of T_2 in its preorder sequence. Vertical lines can be drawn only if node $T_1[x]$ is deeper than node $T_2[y]$. Finally, a diagonal line ((x - 1, y - 1), (x, y)) denotes update of $T_1[x]$ by $T_2[y]$. Diagonal lines can be drawn only if nodes $T_1[x]$ and $T_2[y]$ have the same depth in trees T_1 and T_2 , respectively.

Every line has a weight equal to the cost of the corresponding edit operation. Line drawing follows certain constraints. Drawing a horizontal line to denote deletion of a node M leads to drawing more lines to denote the deletion of all nodes in M's subtree. Drawing a vertical line to denote insertion of a node N leads to drawing more lines to denote the insertion of all nodes in N's subtree. Fig. 6 shows an example of an edit graph which represents an edit script to transform tree T_1 to tree T_2 . Notice that T_1 becomes T_2 by $(Rep(T_1[2], c), Rep(T_1[3], d), Ins(T_2[4], T_1[1], 3)$. Every edit script that transforms T_1 to T_2 can be mapped to a path in an edit graph. The *tree edit distance* between two rooted ordered labeled-valued trees T_1 and T_2 is the shortest of all paths to which edit scripts are mapped in an edit graph.

Fig. 6. An example of an edit graph.

An edit graph G is constructed as a $(M + 1) \times (N + 1) \times 3$ matrix, whose cells contain the cost of the corresponding edit operation. The third dimension is used to determine the direction of the line drawing, that is the type of the operation, for example [0] for horizontal lines, i.e., *delete node*, [1] for vertical lines, i.e., *insert node*, and [2] for diagonal lines, i.e., *replace node*. If a line is missing from the edit graph, the corresponding cell contains the infinite value. For example $G[4][6][0] = \infty$ means that there is no horizontal line from node 4 to node 6 in the edit graph.

Consider any path that connects the node (0, 0) to node n(x, y) in an edit graph. Node n(x, y) is the last node in the path. The distance D of n from (0, 0) cannot be greater than that distance of its left node plus the cost of the line connecting that node to n. Similarly, D can neither be greater than that distance of n's top node plus the cost of the line connecting that node to n, nor greater than that distance of n's diagonal node plus the cost of the line connecting that node to n. Based on the above remarks, the following recurrence calculates the shortest path D[x, y] from (0, 0) to (x, y) in an edit graph G:

$$D(x, y) = \min(m_1, m_2, m_3)$$

where

- $m_1 = D[x 1, y 1] + c_r(T_1[x], T_2[y])$, if $((x 1, y 1), (x, y)) \in G$ (the distance of (x, y)'s diagonal node in G plus the cost to replace $T_1[x]$ with $T_2[y]$), or ∞ otherwise,
- $m_2 = D[x 1, y] + c_d(T_1[x])$, if $((x 1, y), (x, y)) \in G$ (the distance of (x, y)'s left node in G plus the cost to delete $T_1[x]$), or ∞ otherwise,
- $m_3 = D[x, y-1] + c_i(T_2[y])$, if $((x, y-1), (x, y)) \in G$ (the distance of (x, y)'s top node in G plus the cost to insert $T_2[y]$), or ∞ otherwise.

The complete algorithm follows: D[0, 0] = 0;

$$\begin{split} &\text{for } (\mathbf{i} = 1; \ \mathbf{i} < = \mathsf{M}; \ \mathbf{i} + +) \ \mathrm{do} \\ &D[i,0] = D[i-1,0] + c_d(T_1[i]); \\ &\text{for } (\mathbf{j} = 1; \ \mathbf{j} < = \mathsf{N}; \ \mathbf{j} + +) \ \mathrm{do} \\ &D[0,j] = D[0,j-1] + c_i(T_2[j]); \\ &\text{for } (\mathbf{i} = 1; \ \mathbf{i} < = \mathsf{M}; \ \mathbf{i} + +) \ \mathrm{do} \\ &\text{for } (\mathbf{j} = 1; \ \mathbf{j} < = \mathsf{N}; \ \mathbf{j} + +) \ \mathrm{do} \\ &\text{for } (\mathbf{j} = 1; \ \mathbf{j} < = \mathsf{N}; \ \mathbf{j} + +) \ \mathrm{do} \\ &\{ \\ & m_1 = m_2 = m_3 = \infty; \\ &\text{if } (T_1[i].depth = T_2[j].depth) \\ &\text{then } m_1 = D[i-1,j-1] + c_r(T_1[i],T_2[j]) \\ &\text{if } ((T_1[i].depth \geqslant T_2[j+1].depth) \ \mathrm{or } (j = N)) \\ &\text{then } m_2 = D[i-1,j] + c_d(T_1[i]); \end{split}$$

if $((T_2[j].depth \ge T_1[i+1].depth)$ or (i = M))then $m_3 = D[i, j-1] + c_i(T_2[j]);$ $D[i, j] = minimum(m_1, m_2, m_3);$

In the algorithm, D[i, j] keeps the tree edit distance between tree T_1 with only its *i* nodes, assuming preorder traversal, and tree T_2 with only its *j* nodes assuming pre-order traversal. For example D[3, 0] keeps the tree edit distance between tree T_1 with only its first 3 nodes (pre-order) and tree T_2 with only its root and D[0, 4] keeps the distance between T_1 with only its root and T_2 with only its first four nodes (preorder). D[0, 0] keeps the distance between T_1 and T_2 , having only their roots (initially 0, since the examined trees are assume to have same roots). The costs c_i , c_d and c_r are taken from the corresponding edit graph matrix. The tree edit distance \mathscr{D} for T_1 and T_2 is D[M, N].

2.3.5. Discussion

All of the algorithms for calculating the edit distance for two ordered labeled trees are based on dynamic programming techniques related to the string-to-string correction problem [19]. The key issue of these techniques is the detection of the set of tree edit operations which transforms a tree to another one with the *minimum cost* (assuming a cost model to assign costs for every tree edit operation). Methods for change detection (see [20] for a comparative study) can detect sets of edit operations with cost close to the minimal with significantly reduced computation time. However, minimality is important for the quality of any measure to be used as a distance metric. As a result, we do not consider such methods.

The first work that defined the tree edit distance and provided algorithms to compute it, permitting operations anywhere in the tree, was [21]. Selkow's algorithm [14] allows insertion and deletion only at leaf nodes, and relabel at every node. Its main recursion leads to increased complexity. Chawathe's (II) algorithm [17] allows insertion and deletion only at leaf nodes, and relabel at every node, too. It is based on the model of edit graphs which reduces the number of recurrences needed, compared to Selkow's. This algorithm is the only one that has been extended to efficiently calculate distances in external memory in case that tree sizes are prohibitively large, as presented in [17]. Chawathe's (I) algorithm [16] is based on a different set of tree edit operations than Chawathe's (II). It allows insertion and deletion only at leaf nodes. Its main characteristic is the need of a pre-defined set of matching nodes between the trees. This set acts like a seed for the algorithm. Zhang's algorithm [15] permits operations anywhere in the tree and uses a similar recurrence as Selkow's algorithm [14].

We believe that using insertion and deletion only at leaves fits better in the context of XML data. For example, it avoids deleting a node and moving its children up one level. The latter destroys the membership restrictions of the hierarchy and thus is not a 'natural' operation for XML data. To prevent such operations, the deletion of an internal node should require deletions of all nodes in its path, starting from the leaf node and going up to the internal node, a task which is assigned a high cost due to the deletion of all these nodes. To this extend, we consider that Selkow's and Chawathe's algorithms (I,II) are appropriate for handling XML data.

Table 1 summarizes the results. In this work, we consider Chawathe's (II) algorithm as the basic point of reference for tree edit distance algorithms. This algorithm has quadratic complexity. Also, it fits well in the context of XML data, since it permits insertion and deletion only at leaves.

In the following sections, we analyze our framework for clustering XML documents by structure. We start discussing how to maintain the structural information present in XML documents using compact trees, called structural summaries, instead of the original trees representing the XML documents. Structural summaries have minimal processing requirements compared to original trees. Then, we propose a new algorithm to calculate tree edit distances and we define a structural distance metric to estimate the

Table	1		

Tree edit distance algorithms

Algorithm	Operations	Restricted to leaves	Complexity
Selkow's	Insert node, Delete node, Replace node	Insert node, Delete node	Exponential: $4^{\min(NM)}$, <i>M</i> and <i>N</i> are the numbers of nodes for each tree
Zhang's	Insert node, Delete node, Replace node		O(MNbd), M and N are the numbers of nodes for each tree, and b and d are the depths of the two trees, respectively
Chawathe's (I)	Insert node, Delete node, Replace node, Move subtree	Insert node, Delete node	O(ND), N the number of nodes in both trees and D the number of misaligned nodes
Chawathe's (II)	Insert node, Delete node, Replace node	Insert node, Delete node	O(MN), M and N are the dimensions of the matrix that represents the edit graph

structural similarity between structural summaries of two rooted ordered labeled trees. The suggested distance is used in a clustering task to identify groups of XML documents that share a similar structure.

3. Tree structural summaries

Real XML documents tend to have many repeated elements. As a result, the trees representing XML documents (see Section 2.1) can be large and deeply nested, and may have quite different size and structure even if they are based on the same DTD. Repetition and nesting affect the performance of the tree edit algorithms, since the involved trees can be too large. Moreover, repetition and nesting is a reason for having inaccurate results concerning the tree edit distance calculation. A tree edit algorithm will output a large distance between two XML documents which are based on the same DTD, with one of the two being quite long due to many repeated elements. Such an example is the pair of trees B_1 and B_2 presented in Fig. 7. A tree edit algorithm will detect that B_1 can be transformed to B_2 with four *insert node* operations. We would not expect such a large distance, since B_1 and B_2 have the same DTD (i.e., they obey the same set of structural constraints imposed by their DTD). We detect such kind of redundancy looking for nested-repeated and repeated nodes in XML documents:

- A nested-repeated node is a non-leaf node whose label is the same with the one of its ancestor.
- Following a pre-order tree traversal, a *repeated node* is a node whose path (starting from the root down to the node itself) has already been traversed before.

Fig. 7 presents examples of redundancy. Trees A_1 and A_2 differ because of the nesting of node R (nested-repeated node), but they share DTD-1. Trees B_1 and B_2 differ because of the repeated node C, but they share DTD-2.

We perform (a) nesting reduction and (b) repetition reduction to extract *structural summaries* for rooted ordered labeled trees which represent XML documents. Structural summaries maintain the structural relationships between the elements of an XML document, keeping the minimum structural information provided by the tree representing an XML document. Nested and repeated nodes provide the same structural information many times, causing redundancy. For example, only one edge from tree B_2 in Fig. 7 is enough to provide the structural information that C is the descendant of B. Structural summaries have minimal processing requirements to extract and use instead of the original XML documents in the clustering procedure.

200

Fig. 7. Element repetition and nesting.

Structural summaries resemble the *dataguide* summaries [22]. However, a dataguide is a summary of the structure of semistructured data described by the OEM model, while structural summaries are based on the XML data model (see Section 2.1 for the differences between these two models). Summaries in the form of synopses for XML databases have also been exploited in [23]. Such synopses approximate the path and branching distribution of the structure of XML data. They are used to support optimization for queries posed on XML data, and especially to enable accurate selectivity estimates for complex path expressions over graph-structured XML data.

The next sections show how we exploit nesting reduction and repetition reduction to construct structural summaries.

3.1. Nesting reduction

The aim of this phase is to reduce the nesting in the original tree so that there will be no nested-repeated nodes. We traverse the tree using pre-order traversal. For the current node, we check if there is an ancestor with the same label. If there is no such ancestor, we go on to the next node. If there is such ancestor, then we move all current node's subtrees to that ancestor. We add the subtrees at the end of the ancestor's child list so that we will traverse these nodes later. Nothing will be moved if the current node is a leaf. This process may cause non-repeated nodes to become repeated ones. This is why we deal first with the nesting reduction and then with the repetition reduction. Nesting reduction requests only a pre-order traversal on the original tree. The algorithm follows:

```
void reduceNesting(TreeNode node) {
  TreeNode pos = FindAncestor(node);
  if (pos = = null) {
    for (int i = 0; i < node.numOfChildren(); i++)
        reduceNesting(node.getChild(i));
  }
  else {
    for (int i = 0; i < node.numOfChildren(); i++) {
        node.getChild(i).setParentNode(pos);
        pos.addChild(node.getChild(i));
        node.getChildNodes().remove(i);
        i--;
    }
  }
}</pre>
```

3.2. Repetition reduction

The aim of this phase is to reduce the repeated nodes in the original tree. We traverse the tree using preorder traversal. At each node, we check whether the path from the root to the node already exists or not by looking it up in a hash table keeping the paths. If there is no such a path, we store this node in the hash table, with its path being the index. If there is already one such path in the hash table, then this node is a repeated node, and in that case:

- 1. we move all its subtrees to the destination node that we find in the hash table by using the path as index,
- 2. we add the subtrees at the end of the destination node's child list to traverse these subtrees later, and
- 3. we delete the current node and start to traverse the subtrees which have been moved to the destination node.

After traversing all the nodes that have been moved, we go on to traverse the right sibling of the node which is deleted. If there is no such node the traversal ends. Repetition reduction requests only a pre-order traversal on the original tree. The algorithm follows:

```
void reduceRepeat (TreeNode node, String currentPath) {
  String path = currentPath + "/" + node.getNodeName();
  if (!h.containsKey(path)) {
     h.put(path, node);
     for (int i = 0; i < node.numOfChildren(); i++)</pre>
               reduceRepeat(node.getChild(i), path);
  }
  else {
     TreeNode destination = (TreeNode)h.get(path);
     int numOfOldChildren = destination.numOfChildren();
     for (int i = 0; i < node.numOfChildren(); i++)</pre>
               destination.addChild(node.getChild(i));
     node.DeleteNode();
  }
  for (int i = numOfOldChildren;
          i<destination.numOfChildren(); i++)</pre>
          reduceRepeat(destination.getChild(i), path);
}
```

Fig. 8 illustrates an example of structural summary extraction. Applying the nesting reduction phase on T_1 we get T_2 , where there are no nested/repeated nodes. Applying the repetition reduction on T_2 we get T_3 which is the structural summary tree without nested/repeated and repeated nodes.

Once trees have been compacted using structural summaries, so that nesting and repetition are reduced, structural distances can be computed. We next describe our method for computing such distances.

4. Tree structural distance

Our algorithm for calculating the tree edit distance between structural summaries of rooted ordered labeled trees that represent XML documents uses a dynamic programming algorithm which is close to

202

Fig. 8. Structural summary extraction: T_3 is the structural summary of T_1 .

Chawathe's algorithm (II) [17] in terms of the tree edit operations that are used. However, the recurrence that we use does not need the costly edit graph calculation of the latter (see the timing analysis in Section 6.4). A similar recurrence but for a different set of tree edit operations has been used in [24] (see Section 7).

An *insert node* operation is permitted only if the new node becomes a leaf. A *delete node* operation is permitted only at leaf nodes. Any node can be updated using the *replace node* operation. So, the set of permitted tree edit operations for our approach is $\{Ins^{l}(x, y, i), Del^{l}(y), Rep(x, y)\}$, with costs $c_{i}(x) = 1$, $c_{d}(y) = 1$, and $c_{r}(x, y) = 1$ if the node to be replaced has different label $(c_{r}(x, y) = 0$ otherwise), respectively (see Section 2.2). The cost $W_{i}(x)$ to insert a whole subtree t_{2} , rooted at node x, anywhere in a tree t_{1} , is actually the number of nodes in t_{2}

$$W_i(x) = \sum_{j=0}^k c_i(x_j) = k+1,$$
(2)

where $x_0 = x$ and $x_1 \dots x_k$ are all descendants of x. The cost $W_d(y)$ to delete a whole subtree t_2 , rooted at node y, anywhere in a tree t_1 , is actually the number of nodes in t_2

$$W_d(y) = \sum_{j=0}^k c_d(y_j) = k+1,$$
(3)

where $y_0 = y$ and $y_1 \dots y_k$ are all descendants of y.

Given T_1 and T_2 with roots r_1 and r_2 respectively, the following method calculates their tree edit distance (*CalculateDistance*(r_1 , r_2)):

```
int CalculateDistance (TreeNode s, TreeNode t) {
    int[][] D = new int[numOfChildren(s)+1][numOfChildren(t)+1];
    D[0][0] = UpdateCost(LabelOf(s), LabelOf(t));
    for (int i = 1; i <= numOfChildren(s); i++)
        D[i][0] = D[i-1][0] + numOfNodes(s_i);
    for (int j = 1; j <= numOfChildren(t); j++)
        D[0][j] = D[0][j-1] + numOfNodes(t_j);
    for (int i = 1; i <= numOfChildren(s); i++)
        for (int j = 1; j <= numOfChildren(t); j++)
            D[i][j] = Min(D[i][j-1] + numOfNodes(t_j),
            D[i-1][j] + numOfNodes(s_i),
            D[i-1][j] + numOfNodes(s_i),
            D[i-1][j-1] + CalculateDistance(s_i,t_j));
    Return D[numOfChildren(s)][numOfChildren(t)];
}
</pre>
```

where:

- 1. s_i is the *i*th child of node *s* and t_i is the *j*th child of node *t*.
- 2. numOfChildren(s) returns the number of child nodes of node s.
- 3. *numOfNodes*(*s*) returns the number of nodes of the subtree rooted at *s* (including *s*).
- 4. *LabelOf*(*s*) returns the label of node *s*.
- 5. UpdateCost(LabelOf(s), LabelOf(t)) returns the cost c_r to make the label of node *s* the same as the label of node *t*: 1 if LabelOf(s) = LabelOf(t) or 0 otherwise.

We call the function CalculateDistance once for each pair of nodes s and t at the same depth in the two structural summary trees. D[i][j] keeps the tree edit distance between tree rooted at s with only its first i subtrees and tree rooted at t with only its first j subtrees. D[0][0] keeps the distance between tree rooted at s and tree rooted at t, both having only their roots. The main for nested loop first calculates the tree edit distance between tree rooted at s with only its first subtree and tree rooted at t with only its first subtree and tree rooted at t with only its first subtree, and then proceeds by adding more subtrees to the explored trees. At the end, the algorithm returns the distance between tree rooted at $s = r_1$ (the root of T_1) with all its subtrees and tree rooted at $t = r_2$ (the root of T_2) with all its subtrees. Since CalculateDistance is called once for each pair of nodes at the same depth in the two structural summary trees, the complexity is O(MN), where M is the number of nodes in the tree rooted at s.

We next describe in detail how the algorithm computes the minimum distance between s and t:

- 1. Having the value D[i][j-1] and the number of nodes in the subtree rooted at t_j , we spend $d_1 = D[i][j-1] + numOfNodes(t_j)$ to transform the subtree rooted at s to the subtree rooted at t. Since the cost of an *insert node* operation is 1, we use *numOfNodes*(t_j) to represent the cost to insert the jth subtree of node t in the subtree rooted at s.
- 2. Similarly, having the value D[i 1][j] and the number of nodes in the subtree rooted at s_i , we spend $d_2 = D[i 1][j] + numOfNodes(s_i)$ to transform the subtree rooted at s to the subtree rooted at t. Since the cost of a *delete node* operation is 1, we use *numOfNodes(s_i)* to represent the cost to delete the *i*th subtree of s.
- 3. Having the value D[i-1][j-1], we spend $d_3 = D[i-1][j-1] + CalculateDistance(s_i, t_j)$ to transform the subtree rooted at s to the subtree rooted at t. CalculateDistance is recursively called for the *i*th and *j*th children of nodes s and t, respectively.

D[i][j] keeps the minimum from d_1, d_2 and d_3 values. Fig. 9 shows an example of D[i][] calculation. D[2][3] is the distance between T_1 with only its first two subtrees and T_2 with only its first three subtrees.

A trace of the algorithm using trees T_1 and T_2 in Fig. 10 is presented in Table 2. In the step where subtrees t_1 and t_2 , rooted at B of T_1 and K of T_2 , respectively, are explored (example 1 in Fig. 10), we note the following calculations (all operations are applied in t_1):

- 1. D[0][0] = 1: the roots of t_1 and t_2 are different, so the algorithm spends $c_r = 1$ to replace B in t_1 with K.
- 2. D[0][1] = 3: D[0][1] keeps the distance between t_1 with only its root B and t_2 with only its first subtree (the path K/C/P). Having only the root node B from t_1 , the algorithm spends $c_r = 1$ to replace B with K, $c_i = 1$ to insert node C under K and $c_i = 1$ to insert node P under C, getting K/C/P: a cost of three units.
- 3. D[1][0] = 2: D[1][0] keeps the distance between t_1 with only its first subtree (the path B/D) and t_2 with only its root K. The algorithm spends $c_d = 1$ to delete D and $c_r = 1$ to replace B with K, getting K: a cost of two units.

204

Fig. 9. Calculating D[2][3] for T_1 and T_2 .

Fig. 10. An example of tree distance calculation (see also Table 2).

Table 2 A trace of the algorithm running for trees T_1 and T_2 in Fig. 10

Subtrees t_1, t_2	D[i,j]
Root of $t_1 = C$, Root of $t_2 = K$	D[0][0] = 1, D[0][1] = 3
Root of $t_1 = B$, Root of $t_2 = K$	D[0][0] = 1, D[0][1] = 3, D[1][0] = 2, D[1][1] = 3
Root of $t_1 = R$, Root of $t_2 = R$	D[0][0] = 0, D[0][1] = 1, D[0][2] = 2, D[0][3] = 5, D[0][4] = 6, D[1][0] = 1, D[1][1] = 0, D[1][2] = 1, D[1][3] = 4, D[1][4] = 5, D[2][0] = 3, D[2][1] = 2, D[2][2] = 2, D[2][3] = 4, D[2][4] = 5, D[3][0] = 4, D[3][1] = 3, D[3][2] = 3, D[3][3] = 5, D[3][4] = 5
	(Distance = 5, Totalcost = 0.417)

4. D[1][1] = 3: D[1][1] keeps the distance between t_1 with only its first subtree (the path B/D) and t_2 with only its first subtree (the path K/C/P). The algorithm spends $c_r = 1$ to replace B with K, $c_r = 1$ to replace D with C and $c_i = 1$ to insert P under C, getting K/C/P: a cost of three units.

Fig. 11. The sequence of tree edit operations to transform T_1 to T_2 with minimum cost (see also Fig. 10).

We now look into the step where subtrees t_1 and t_2 are rooted at R of T_1 and R of T_2 (example 2 in Fig. 10), that is $t_1 = T_1$ and $t_2 = T_2$ (all operations are applied in t_1):

- 1. D[2][3] = 4: D[2][3] keeps the distance between t_1 with only its first two subtrees and t_2 with only its first three subtrees. The algorithm spends $c_r = 1$ to replace B with K, $c_r = 1$ to replace D with C, $c_i = 1$ to insert P under C and $c_i = 1$ to insert D under R: a cost of four units.
- 2. D[3][4] = 5: D[3][4] keeps the distance between t_1 with its first three subtrees and t_2 with its first four subtrees. Actually, this is the distance between T_1 and T_2 . The algorithm spends $c_r = 1$ to replace B with K, $c_r = 1$ to replace D with C, $c_i = 1$ to insert P under C, $c_i = 1$ to insert D under R and $c_r = 1$ to replace C with O: a cost of 5 units.

Fig. 11 presents the sequence of tree edit operations to transform T_1 to T_2 with minimum cost (see also Fig. 10).

We can now define the structural distance \mathscr{S} between two structural summaries for rooted ordered labeled trees which represent XML documents.

Definition 3. Let T_1 and T_2 be two structural summaries for rooted ordered labeled trees that represent two XML documents, $\mathscr{D}(T_1, T_2)$ be their tree edit distance and $\mathscr{D}'(T_1, T_2)$ be the cost to delete all nodes from T_1 and insert all nodes from T_2 . The structural distance \mathscr{S} between T_1 to T_2 is defined as $\mathscr{S}(T_1, T_2) = \frac{\mathscr{D}(T_1, T_2)}{\mathscr{D}(T_1, T_2)}$.

The $\mathscr{S}(T_1, T_2)$ value is (a) 0 when the trees have exactly the same structure and the same labels in their matching nodes, (b) 1 when the trees have totally different structure and not even two pairs of matching nodes with the same ancestor/descendant relationship, (c) low when the trees have similar structure and high percentage of matching nodes, and (d) high when the trees have different structure and low percentage of matching nodes.

In the example illustrated in Fig. 10 and Table 2, $\mathscr{D}'(T_1, T_2) = 12$, since five nodes must be deleted from T_1 and seven nodes must be inserted from T_2 , thus $\mathscr{S}(T_1, T_2) = 0.4166$, since tree distance is 5.

5. Clustering XML documents

We deal with the problem of clustering XML documents using (a) structural summaries of their representative rooted ordered labeled trees, (b) tree edit distances between these summaries, (c) structural distances calculated from these tree edit distances, and (d) clustering algorithms, well-known from text information retrieval, that use pairwise structural distances to detect groups of data. Fig. 12 illustrates our framework.

5.1. Clustering algorithms

Clustering methods are usually divided into two broad categories. Non-hierarchical methods group a data set into a number of clusters. Hierarchical methods produce nested sets of data (hierarchies), in which pairs of elements or clusters are successively linked until every element in the data set becomes connected. Non-hierarchical methods have low computational requirements, (O(kn)), if for example *n* documents need to be grouped into *k* clusters), but certain parameters like the number of formed clusters must be known a priori. Hierarchical methods are computationally expensive, with time requirements of $O(n^2)$, if *n* documents need to be clustered. However, hierarchical methods have been used extensively as a means of increasing the effectiveness and efficiency of retrieval [25–27]. For a wide ranging overview of clustering methods one can refer to [28,29]. Single link, complete link and group average link are known as hierarchical clustering methods. All these methods are based on a similar idea:

- 1. Each element of the data set to be clustered is considered to be a single cluster.
- 2. The clusters with the minimum distance (i.e., maximum similarity) are merged and the distance between the remaining clusters and the new, merged one is recalculated.
- 3. While there are more than one clusters, go again to step 2.

In single link (complete link), the distance between two non-single clusters is defined as the minimum (maximum) of the distances between all pairs of elements so that one element is in the first cluster and the other element is in the second cluster. In group average link, the distance between two non-single clusters is defined as the mean of the distances between all pairs of elements so that one element is in the one cluster and the other element is in the other cluster. We chose single link to be the basic clustering algorithm for the core part of the experiments for our work since it has been shown to be theoretically sound, under a certain number of reasonable conditions [30].

Fig. 12. Clustering XML documents by structure.

Fig. 13. Minimum spanning tree (MST) detection and single link clustering at level 0.6.

5.1.1. Single link

We implemented a single link clustering algorithm using Prim's algorithm [31] for computing the *minimum spanning tree* (*MST*) of a graph. Given a graph G with a set of weighted edges E and a set of vertices V, a MST is an acyclic subset $T \subseteq E$ that links all the vertices and whose total weight W(T) (the sum of the weights for the edges in T) is minimized. It has been shown [32] that an MST contains all the information needed in order to perform single link clustering.

Given *n* structural summaries of rooted labeled trees that represent XML documents, we form a fully connected graph *G* with *n* vertices $\in V$ and n(n-1)/2 weighted edges $\in E$. The weight of an edge corresponds to the structural distance between the vertices (trees) that this edge connects. The single link clusters for a *clustering level l*₁ can be identified by deleting all the edges with weight $w \ge l_1$ from the MST of *G*. The connected components of the remaining graph are the single link clusters. Fig. 13a shows a graph with seven nodes that correspond to seven structural summaries, and 10 edges. The weight of an edge is the structural distance between the involved structural summaries. For example the structural distance between summaries one and two is 0.2. The missing edges, that is the extra edges that make the graph fully connected, are those that have weight 1. Fig. 13b shows the minimum spanning tree of Fig. 13a. Fig. 13c presents the graph remaining after deleting all edges with weight ≥ 0.4 . There are two connected components that include nodes (1,2,3,6) and nodes (7,5), respectively. This indicates the presence of two clusters: cluster 1 with (1,2,3,6) as members and cluster 2 with (7,5) as members. Nodes which are not connected to other nodes will be considered as single-node clusters.

A stopping rule is necessary to determine the most appropriate clustering level for the single link hierarchies. Milligan et al. present 30 such rules [33]. Among these rules, *C*-index [34] exhibits excellent performance (found in the top 3 stopping rules). We next present the way we adopt the *C*-index in a hierarchical clustering procedure.

5.1.2. C-index for hierarchical clustering

C-index is a vector of pairs $((i_1, n_1), (i_2, n_2), \dots, (i_p, n_p))$, where i_1, i_2, \dots, i_p are the values of the index and n_1, n_2, \dots, n_p the number of clusters in each clustering arrangement produced by varying the clustering level of a hierarchical clustering procedure in *p* different steps. Let l_1 be the first selected clustering level, which produces an arrangement of N_1 clusters (that is $n_1 = N_1$): C_1 with c_1 elements, C_2 with c_2 elements, \dots, C_{N_1} with c_{N_1} elements. We can calculate i_1 in order to have the first pair (i_1, n_1) of *C*-index vector:

$$i_1 = (d_w - \min(d_w)) / (\max(d_w) - \min(d_w)),$$

where:

1. $d_w = Sum(d_{w_1}) + Sum(d_{w_2}) + \dots + Sum(d_{w_{N_1}})$, with $Sum(d_{w_i})$ to be the sum of pairwise distances of all members of cluster $C_i, 1 \le i \le n_1$,

- 2. $max(d_w)$: the sum of the n_d highest pairwise distances in the whole set of data (that is, sort distances, highest first, and take the Top- n_d sum),
- 3. $min(d_w)$: the sum of the n_d lowest pairwise distances in the whole set of data (that is, sort distances, highest first, and take the Bottom- n_d sum),

with $n_d = c_1 * (c_1 - 1)/2 + c_2 * (c_2 - 1)/2 + \dots + c_{N_1} * (c_{N_1} - 1)/2$ (that is the number of all within cluster pairwise distances). Similarly we calculate all values of *C*-index for all different *p* clustering levels, getting the vector $((i_1, n_1), (i_2, n_2), \dots, (i_p, n_p))$. We point out that:

- Although all pairwise structural distances are needed to compute the C-Index, this does not require any additional computation because these distances need to be computed anyway for the hierarchical clustering procedure itself.
- Since multiple successive clustering levels can generate the same number of clusters, we compute the *C*-Index not for each level but for each number of clusters generated by different levels.
- The number of clusters with the lowest C-Index is chosen as the correct clustering, as [33] suggests.

6. Experimental evaluation

We have developed a prototype and performed extended evaluation of our framework for clustering XML documents. We tested the performance as well as the quality of the clustering results using synthetic and real data.

6.1. Architecture

The prototype testbed is a java-based software that can (a) generate synthetic XML documents or use existing ones, (b) extract structural summaries from XML documents, (c) calculate pairwise structural distances between these summaries, (d) perform single link clustering as well as utilize clustering algorithms provided by other software packages, (e) perform k-NN classification, using already discovered clusters, and (f) calculate evaluation metrics to judge the performance and the quality of the clustering results. Fig. 14 presents the various modules of the evaluation testbed.

6.2. Data sets and clustering algorithms

Experiments were performed on both synthetic and real data. For the real data set we used documents from the ACM SIGMOD Record and ADC/NASA³: 70 XML documents from IndexTermsPage.dtd, OrdinaryIssuePage.dtd and adml.dtd (Astronomical Dataset Markup Language DTD). Fig. 15 presents IndexTermsPage.dtd, OrdinaryIssuePage.dtd, both used in the ACM SIGMOD Record, and part of adml.dtd. For the latter, the reader is referred to ADC/NASA's site, due to its size.

Synthetic XML documents were generated in our prototype using IBM's AlphaWorks XML generator.⁴ We used 10 real-case DTDs⁵ and two sets of 1000 XML documents, generated from these DTDs. Both datasets were generated by varying the parameter *MaxRepeats* that determines the number of times a node will appear as a child of its parent node (when + or * is used in the DTD). The actual number of repeats generated is a random value between 0 and *MaxRepeats*. The first set of synthetic XML documents was

³www.acm.org/sigmod/record/xml,xml.gsfc.nasa.gov

⁴www.alphaworks.ibm.com/tech/xmlgenerator

⁵From www.xmlfiles.com and http://www.w3schools.com

Fig. 14. Evaluation testbed.

OrdinaryIssuePage.dtd

<!ELEMENT OrdinaryIssuePage (volume, number, month, year, sectionList)> <!ELEMENT volume (#PCDATA)> <!ELEMENT number (#PCDATA)> <!ELEMENT month (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT sectionList (sectionListTuple)*> <!ELEMENT sectionListTuple (sectionName, articles)> <!ELEMENT sectionName (#PCDATA)> <!ATTLIST sectionName id CDATA #IMPLIED> <!ELEMENT articles (articlesTuple)*> <!ELEMENT articlesTuple (toArticle, initPage, endPage, authors)> <!ELEMENT toArticle (title)?> <!ELEMENT title (#PCDATA)> <!ATTLIST title id CDATA #IMPLIED> <!ELEMENT initPage (#PCDATA)> <!ELEMENT endPage (#PCDATA)> <!ELEMENT authors (author)*> <!ELEMENT author (#PCDATA)> <!ATTLIST author id CDATA #IMPLIED>

```
IndexTermsPage.dtd
                                           adml.dtd
<!ELEMENT IndexTermsPage
 (title,authors,confName,confYear,
 volume, number, initPage, endPage,
fullText, abstract, generalTerms,
categoryAndSubjectDescriptors)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST title id CDATA #IMPLIED>
<!ELEMENT authors (author)*>
<!ELEMENT author (#PCDATA)>
<!ATTLIST author id CDATA #IMPLIED>
<!ELEMENT confName (#PCDATA)>
<!ELEMENT confYear (#PCDATA)>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT initPage (#PCDATA)>
<!ELEMENT endPage (#PCDATA)>
<!ELEMENT fullText (size)?>
<!ELEMENT size (#PCDATA)>
<!ELEMENT abstract (#PCDATA)>
<!ELEMENT generalTerms (term)*>
<!ELEMENT term (#PCDATA)>
<! ELEMENT
 categoryAndSubjectDescriptors
 (categoryAndSubjectDescriptorsTuple)*>
<! ELEMENT
categoryAndSubjectDescriptorsTuple
(category, content)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT content (#PCDATA)>
```

<!ELEMENT dataset (title, altname*, references, references?, references?, keywords*, descriptions, astroObjects?, tables?, images?, spectra?, textFile*, footnotes?, history, identifier)> <! ELEMENT author ((prefix?, firstName?, (initial* | middleName*)*, (lastName | institution? | team), suffix?), address?, email?, phone?, url?)> <! ELEMENT journal (name, volume?, pageno?, date, bibcode?)> <!ELEMENT book (series?, volume?, publisher, city, date, bibcode?)> <!ELEMENT description (#PCDATA | heading | para)*> <!ELEMENT heading (#PCDATA)> <!ELEMENT para (#PCDATA | address | institution | observatory | telescope | instrument | equinox | epoch | reference | database | fileName | hardware | software | project | url | footnote | sub | sup)*> <!ELEMENT parameter ((units, (value | valueList | valueGroup)+)?, note*)> <!ELEMENT array ((parameter | parameterGroup)*, axis*, (fieldAxis | (units, dataFormat))?, axis*, read, data, notes?)> <!ELEMENT axis (((axisUnits, (value | valueList | valueGroup)+) | unitDirection)*)>

Fig. 15. DTDs for real data.

generated with that parameter set to 3 and the second one was generated with that parameter set to 6. Parameter numLevels that determines the maximum number of tree levels was set to 7. Fig. 16 presents the 10 DTDs used to generate the synthetic data set of XML documents.

personal.dtd

fruitbasket.dtd

<!ELEMENT personnel (person)+> <!ELEMENT FruitBasket (#PCDATA|Apple| <!ELEMENT person (name,email*,url*,link?)>Orange)*> <!AITLIST person id D #REQUIRED> <!ELEMENT CitrusBasket (Orange*)> <!ELEMENT family (#PCDATA)> <!ELEMENT Tample EMPTY> <!ELEMENT given (#PCDATA)> <!ELEMENT Orange (#PCDATA)> <!ELEMENT name (#PCDATA)> <!AITLIST Apple kid CDAT "McIntosh" <!ELEMENT mane (#PCDATA)> <!AITLIST Apple kid CDATA' "McIntosh" <!ELEMENT mane (#PCDATA)> <!AITLIST Orange sizeCm NMTOKEN "15"> <!AITLIST Orange sizeCm NMTOKEN "15">

<!ELEMENT link EMPTY>

bookstore.dtd

<!ELEMENT bib (book*)>
<!ELEMENT bob (title, (author+
 | editor+),
 publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first,
 affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT aptilisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
</ELEMENT price (#PCDATA)>
<

tvschedule.dtd

<!ELEMENT TVSCHEDULE (CHANNEL+)> <!ELEMENT CHANNEL (BANNER, DAY+)> <!ELEMENT BANNER (#PCDATA)> <!ELEMENT DAY (DATE, (HOLIDAY) PROGRAMSLOT+))+> <!ELEMENT HOLIDAY (#PCDATA)> <!ELEMENT DATE (#PCDATA)> <!ELEMENT PROGRAMSLOT (TIME, TITLE, DESCRIPTION?)> <!ELEMENT TIME (#PCDATA)> <!ELEMENT TITLE (#PCDATA)> <!ELEMENT DESCRIPTION (#PCDATA)> <! ATTLIST TVSCHEDULE NAME CDATA #REQUIRED> <! ATTLIST CHANNEL CHAN CDATA #REQUIRED> <!ATTLIST PROGRAMSLOT VTR CDATA #IMPLIED> <! ATTLIST TITLE RATING CDATA #IMPLIED> <!ATTLIST TITLE LANGUAGE CDATA #IMPLIED>

<!ATTLIST Orange sizeCm NMTOKEN "15"> population.dtd <!ELEMENT populationdata (continent*)> <!ELEMENT continent (name, country*)> <!ELEMENT country (name, province*)> <!ELEMENT province (name, city*)>

<!ELEMENT province (name, city*)> <!ELEMENT city (name, pop)> <!ELEMENT name (#PCDATA)> <!ELEMENT pop (#PCDATA)>

newspaper.dtd

<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE (HEADLINE,
BYLINE,LEAD,BODY,NOTES)>
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>
<!ATTLIST ARTICLE AUTHOR
CDATA #REQUIRED>
<!ATTLIST ARTICLE DATE
CDATA #IMPLIED>
<!ATTLIST ARTICLE EDITION
CDATA #IMPLIED>
<!ATTLIST ARTICLE #IMPLIED>
<!ATTLIST ARTICLE #IMPLIED>
<!ATTLIST ARTICLE #IMPLIED>
<!ATTLIST #IMPLIED>
<!ATTL

customer.dtd

<!ELEMENT customer (name,address)>
<!ELEMENT name (firstname,lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address (street+, city,
state,zip)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT tate (#PCDATA)>
<!ELEMENT zip (#PCDATA)></PCDATA)>

memo.dtd

<!ELEMENT memo (to, from, date, subject?, body) > <!ATTLIST memo security (public | cern) 'public'> <!ATTLIST memo lang CDATA #IMPLIED> <!ELEMENT to (#PCDATA) > <!ELEMENT to (#PCDATA) > <!ELEMENT date (#PCDATA) > <!ELEMENT bady (para+1) > <!ELEMENT bara (#PCDATA) > <!ELEMENT bara (#PCDATA) = <!ELEMENT memb (#PCDATA) = <!ELEMENT emph (#PCDATA) = >

recipes.dtd

<! ELEMENT collection (description, recipe*)> <!ELEMENT description ANY> <! ELEMENT recipe (title, ingredient*, preparation, comment?, nutrition)> <! ELEMENT title (#PCDATA)> <! ELEMENT ingredient (ingredient*, preparation) ?> <! ATTLIST ingredient name CDATA #REQUIRED amount CDATA #IMPLIED unit CDATA #IMPLIED> <!ELEMENT preparation (step*)>
<!ELEMENT step (#PCDATA)> <! ELEMENT comment (#PCDATA)> <! ELEMENT nutrition EMPTY> <!ATTLIST nutrition protein CDATA #REQUIRED carbohydrates CDATA #REQUIRED fat CDATA #REQUIRED calories CDATA REQUIRED alcohol CDATA #IMPLIED>

catalog.dtd

<!ELEMENT CATALOG (PRODUCT+)> <! ELEMENT PRODUCT (SPECIFICATIONS+, OPTIONS?, PRICE+, NOTES?)> <!ATTLIST PRODUCT NAME CDATA #IMPLIED CATEGORY (HandTool|Table|Shop-Professional) "HandTool" PARTNUM CDATA #IMPLIED PLANT (Pittsburgh|Milwaukee|Chicago) "Chicago' INVENTORY (InStock|Backordered| Discontinued) "InStock"> <!ELEMENT SPECIFICATIONS (#PCDATA)> <!ATTLIST SPECIFICATIONS WEIGHT CDATA #IMPLIED POWER CDATA #IMPLIED> <!ELEMENT OPTIONS (#PCDATA)> <!ATTLIST OPTIONS FINISH (Metal|Polished|Matte) "Matte" ADAPTER (Included|Optional|NotApplicable) "Included' CASE (HardShell|Soft|NotApplicable) "HardShell"> <!ELEMENT PRICE (#PCDATA)> <!ATTLIST PRICE MSRP CDATA #IMPLIED WHOLESALE CDATA #IMPLIED STREET CDATA #IMPLIED SHIPPING CDATA #IMPLIED> <! ELEMENT NOTES (#PCDATA)>

Fig. 16. DTDs for synthetic data.

Table 3			
Information	about	datasets	used

Real dataset		Synthetic-3 datase	et	Synthetic-6 dataset		
Size (KB)	Number of docs	Size (KB)	Number of docs	Size (KB)	Number of docs	
0–3.0	70	0-0.5	416	0–2.0	453	
3.0-5.0	43	0.5-1.0	231	2.0-5.0	181	
5.0-7.0	29	1.0-1.5	109	5.0-10.0	121	
7.0–9.0	24	1.5-2.0	105	10.0-15.0	103	
9.0-11.0	21	2.0-2.5	60	15.0-20.0	97	
11.0-70.0	23	2.5-3.0	27	20.0-80.0	45	
		3.0-3.5	26			
		3.5-4.0	16			
		4.0-4.5	10			
Avg doc size: 6.5 KB		Avg doc size: 0.9 KB		Avg doc size: 5.2 KB		
Num. of nodes	Number of docs	Num. of nodes	Number of docs	Num. of nodes	Number of docs	
0-50	65	0–20	492	0-100	450	
50-100	50	20-40	278	100-200	250	
100-150	44	40-60	149	200-300	100	
150-200	28	60-80	58	300-400	72	
200-2000	23	80-100	23	400-500	40	
		100-143	9	500-600	32	
				600-700	23	
				700-800	17	
				800-1708	16	
Num. of nodes (to	tal): 26809	Num. of nodes (to	otal): 19780	Num. of nodes (to	<i>tal</i>): 126648	
Num. of nodes (di	stinct): 5727	Num. of nodes (di	stinct): 7991	Num. of nodes (di	<i>stinct</i>): 8761	

Table 3 presents information about the documents conforming to DTDs for real and synthetic data (synthetic-3 data set refers to the one with MaxRepeats = 3, while synthetic-6 data set refers to the one with MaxRepeats = 6). We next clarify some points concerning these data sets.

- 1. The size of XML documents in terms of bytes is not indicative for the performance of the experiments that will follow. For example, the synthetic dataset, which is more complex than the real data set, appears to have documents with less size on average than documents of the real data set. This is due to the fact that the XML generator puts little or no text between the elements of the generated XML files. Since the experiments include computation on trees representing the structure of XML documents, as defined by the relationship of their elements, we consider the number of nodes for these trees as a more appropriate measure.
- 2. A node in such trees corresponds to a pair of tags (i.e., start tag and end tag) that define an element in an XML document (see the XML data model discussed in Section 2.1).
- 3. The "Num. of nodes (total)" refers to the total number of nodes of all trees obtained from the dataset. The "Num. of nodes (distinct)" refers to the number of distinct nodes obtained from the dataset.
- 4. Looking at the distribution of documents constructed by the generator in relation with the number of their nodes, we observe that as the number of nodes increases, the number of XML documents having such number of nodes decreases.

We chose single link to be the basic clustering algorithm for the core part of the experiments, providing our own implementation. However, preliminary results with other clustering algorithms are also presented, using libraries of CLUTO⁶, a tool for clustering datasets and analyzing the characteristics of the various clusters.

All the experiments were performed on a PC, Pentium III 800 MHz, 512 MB RAM, using the JAVA programming language (Java HotSpot(TM) Client VM, build 1.4.2-b28, mixed mode).

6.3. Evaluation procedure

While checking time performance is straightforward, checking clustering quality involves the calculation of metrics based on priori knowledge of which documents should be members of the appropriate cluster. Thus, the evaluation procedure raises the following issues:

- 1. The number of clusters discovered should ideally match the number of DTDs of XML documents. To estimate the number of clusters, we adopt the C-index method in the single link clustering method (see Section 5.1.2).
- 2. The clusters discovered should be mapped to the original DTDs where the XML documents are based on. For this reason, we performed the following tasks:
 - (a) We derived DTDs $D_1^c, D_2^c, \ldots, D_k^c$ for every cluster C_1, C_2, \ldots, C_k , using the XML documents assigned to that cluster⁷.
 - (b) We parsed the derived DTDs $D_1^c, D_2^c, \ldots, D_k^c$ and the original DTDs D_1, D_2, \ldots, D_m , creating derived
 - trees $t_1^c, t_2^c, \ldots, t_k^c$ trees and original trees t_1, t_2, \ldots, t_m , respectively⁸. For every original tree t_i , $1 \le i \le m$, we calculated (c) For the structural distances $\mathscr{S}(t_i, t_1^c), \mathscr{S}(t_i, t_2^c), \dots, \mathscr{S}(t_i, t_k^c)$. The lowest of these values $\mathscr{S}_{\min}(t_i, t_p^c), 1 \leq p \leq k$, indicates that the original DTD D_i corresponds to cluster C_p . After that, we had a mapping between the original DTDs and the clusters produced.

We note that the C-index method might give a number of clusters which is different than the number of DTDs where the XML documents are based on $(m \neq k)$, that is there might be clusters not mapped to any of the original DTDs. In such case, clustering quality metrics will be affected (see next paragraphs).

To evaluate the clustering results, we used two metrics quite popular in information retrieval: precision *PR* and *recall R* [30,35,36]. For an extracted cluster C_i that corresponds to a DTD D_i let:

- 1. a_i be the number of the XML documents in C_i that were indeed members of that cluster (correctly clustered),
- 2. b_i be the number of the XML documents in C_i that were not members of that cluster (misclustered),
- 3. c_i be the number of the XML documents not in C_i , although they should be C_i 's members.

Then:

$$PR = \frac{\sum_{i} a_i}{\sum_{i} a_i + \sum_{i} b_i}, \quad R = \frac{\sum_{i} a_i}{\sum_{i} a_i + \sum_{i} c_i}.$$
(4)

⁶www-users.cs.umn.edu/~karypis/cluto/

⁷Using AlphaWorks Data Descriptors by Example: www.alphaworks.ibm.com/tech/DDbE

⁸DTD parser: www.wutka.com/dtdparser.html

High precision means high accuracy of the clustering task for each cluster while low recall means that there are many XML documents that were not in the appropriate cluster although they should. High precision and high recall indicate excellent clustering quality. In the case where there are clusters not mapped to any of the original DTD, *PR* and *P* will be affected, since all XML documents in such clusters will be treated as misclustered documents.

Based on the above, we present the timing analysis for calculating structural distances and then we evaluate the clustering results.

6.4. Efficiency of structural distance algorithms

We compared

- the time to derive the two structural summaries from two rooted ordered labeled trees representing two XML documents *plus*
- 2. the time to calculate the structural distance between those two summaries,

vs the time to calculate the structural distance between two rooted ordered labeled trees of two XML documents (without using structural summaries).

We compared Chawathe's algorithm and our algorithm using randomly generated XML documents (synthetic-6,3 datasets in Table 3). This analysis gives an indication of how fast a file for storing pairwise structural distances is constructed. Such a file can then be used as an input to any clustering algorithm to discover clusters. Recall that a clustering algorithm needs to calculate N * (N - 1)/2 pairwise structural distances, where N is the number of documents to be clustered.

Fig. 17 shows the percentage of time decrease for calculating the structural distance between two XML documents using their summaries instead of using the original trees, for Chawathe's algorithm. All plots present results with varying number of nodes for T_1 and having certain sizes ([200–300], [800–900] and [1400–1500]) for T_2 . In case there are pairs of trees which include trees with the same number N of nodes, the average time decrease is taken into account for that value of N. At the point where we have increase instead of decrease, one of the two trees has only a few nodes compared to the other. For example, at a point where we have around 25% time increase using summaries, in plot (b) of Fig. 17, T_1 and T_2 have three and 880 nodes, respectively. However, for such cases the cost to calculate the structural distance is anyway quite low. Fig. 18 shows similar results concerning the percentage of time decrease for calculating the structural distance between two XML documents using their summaries instead of decrease, the one of the two trees has only a few nodes compared to the other. Comparing Figs. 17 and 18, we observe that the plots for our algorithm tend to have a move on the right compared to plots for Chawathe's. As a result, the decrease achieved with Chawathe's algorithm using summaries is in general greater than the decrease achieved with our algorithm using summaries, especially for trees having low number of nodes.

Fig. 19 shows the percentage of time decrease (average) for calculating structural distances with structural summaries for different values of the *MaxRepeat* parameter. In the left figure (parameter *MaxRepeats* = 3), values 50, 100, 150, 200 refer to trees having [0-50], [50-100], [100-150] and [150-200] nodes, respectively. In the right figure (parameter *MaxRepeats* = 6), values 500, 1000, 1500, 2000 refer to trees having [0-500], [500-1000], [500-1000], [1000-1500] and [1500-2000] nodes, respectively. For a given value of *MaxRepeats*, the decrease becomes high as the size of the trees representing the XML documents increases, since longer XML documents of the data set tend to have more nested-repeated and repeated nodes. The decrease is higher for greater values of *MaxRepeats* (e.g., 6) than for lower values (e.g., 3), since in the former case there are more nested-repeated and repeated nodes, too.

Fig. 17. Calculating the structural distance using Chawathe's algorithm: percentage of time decrease using summaries instead of the original trees.

Figs. 20 and 21 present detailed analysis of the timing performance for both algorithms, with or without summaries. All plots show the time needed to calculate structural distances between trees T_1 and T_2 , varying the number of nodes for T_1 and having certain sizes ([200–300], [800–900] and [1400–1500]) for T_2 . In Fig. 21, we provide separate plots for [200–300], [800–900] and [1400–1500] sizes for our algorithm to

Fig. 18. Calculating the structural distance using our algorithm: percentage of time decrease using summaries instead of the original trees.

avoid having too dense black parts near the begining of the axes. For two sample trees having around 1000 nodes each, the time needed to calculate their structural distance is: 2600 ms (Chawathe's algorithm, no summaries), 23 ms (Chawathe's algorithm, summaries), 700 ms (our algorithm, no summaries), 17 ms (our algorithm, summaries). Since the synthetic-6 dataset that was used contains many repeated elements, the resulting trees (summaries) have only a few distinct nodes. Thus, the performance for such trees for both

Fig. 19. Calculating the structural distance using our algorithm: percentage of time decrease (average) using summaries instead of the original trees for certain tree sizes and different values of *MaxRepeat*.

Fig. 20. Calculating the structural distance using Chawathe's algorithm: time performance with or without summaries (ms).

algorithms is similar, as Figs. 20 and 21 show (notice the plot refering to calculations with summaries). However, Chawathe's algorithm is significantly slower than our algorithm as the size of these trees increases. This is due to the pre-calculation of the editgraph, as Fig. 22 illustrates. Editgraph calculation

Fig. 21. Calculating the structural distance using our algorithm: time performance with or without summaries (ms).

% time spent for editgraph calculation in Chawathe's algorithm -----

Fig. 22. Calculating the editgraph for Chawathe's algorithm: percentage of time spent out of the whole time needed for structural distance calculation.

spends around 73% on average of the time needed for the overall distance calculation. Fig. 23 presents the percentage of time decrease for calculating the structural distance between two XML documents, using our algorithm instead of Chawathe's algorithm.

In both Figs. 22 and 23, x and y axes refer to distinct nodes. To give a sense about the scaling of the calculations for our algorithm, we next present information about time performance for larger tree sizes. Fig. 24 shows the average time performance for calculating the structural distance between two trees for certain large tree sizes, using our algorithm, while Fig. 25 shows the percentage of time decrease (average) for those calculations. Fig. 26 gives the time performance for calculating the structural distance between two trees using our algorithm for some trees of our sample. All plots show the time needed to calculate structural distances between trees T_1 and T_2 , varying the number of nodes for T_1 and having certain sizes ([3000–3500], [6000–6500] and [9500–10000]) for T_2 . Finally, Fig. 27 gives an overall plot to show the time performance for calculating the structural distance between two trees sizes.

6.5. Clustering results

We performed single link clustering using Chawathe's algorithm and our algorithm on synthetic and real data, with or without structural summaries, and calculated PR and R values.

Fig. 23. Calculating the structural distance using Chawathe's and our algorithm: percentage of time decrease using our algorithm.

Fig. 24. Calculating the structural distance using our algorithm: time performance (average) with or without summaries (ms) for certain large tree sizes. Values 2000, 4000, ..., 12,000 refer to trees having [0-2000], [2000-4000], ..., [10,000-12,000] nodes, respectively.

Fig. 25. Calculating the structural distance using our algorithm: percentage of time decrease (average) using summaries for certain large tree sizes. Values $2000, 4000, \ldots, 12, 000$ refer to trees having $[0-2000], [2000-4000], \ldots, [10, 000-12, 000]$ nodes, respectively.

Fig. 26. Calculating the structural distance using our algorithm: time performance with or without summaries (ms) for certain large tree sizes.

In all presented tables (Tables 4–7) that follow, *NumOfClusters* is the number of clusters discovered from the single link clustering task, using C-index. *Cluster.level* is the level where the single link task was stopped, that is the level with low value of C-index (see Section 5.1). After the mapping of the discovered clusters to the original DTDs (see Section 6.3), some clusters remain unmapped. For example, single link clustering discovered 11 clusters in the test case that Table 4 presents. The documents of the cluster which was not mapped to any of the 10 original DTDs were treated as misclustered documents, increasing the *b* value. See for example the *b* value for clusters 6 and 9 in Table 4.

6.5.1. Working on synthetic data

Tables 4 and 5 present the (a, b, c) values as well as the *PR* and *R* values, using Chawathe's algorithm on synthetic data with maxRepeats = 3 and 6. Notice that for small trees (maxRepeats = 3) with only a few repeated elements and, thus, with the structural summaries being actually the original trees, the clustering

Fig. 27. Calculating the structural distance using our algorithm: time performance with or without summaries (ms) for larger tree sizes.

Table 4 Chawathe's algorithm on synthetic data with MaxRepearts = 3

Without structural summaries				With structural summaries			
Cluster No	а	b	С	Cluster No	а	b	С
1 (DTD 1)	60	0	40	1 (DTD 1)	60	0	40
2 (DTD 2)	62	0	38	2 (DTD 2)	62	0	38
3 (DTD 3)	80	0	20	3 (DTD 3)	80	0	20
4-5 (DTDs 4-5)	100	0	0	4-5 (DTDs 4-5)	100	0	0
6 (DTD 6)	100	185	0	6 (DTD 6)	100	185	0
7-8 (DTDs 7-8)	100	0	0	7-8 (DTDs 7-8)	100	0	0
9 (DTD 9)	100	185	0	9 (DTD 9)	100	185	0
10 (DTD 10)	100	0	0	10 (DTD 10)	100	0	0
NumOfClusters = 11, $Cluster$. $level = 0.37$			NumOfClusters = 11, Cluster, level = 0.37				
PR = 0.71, R = 0.90				PR = 0.71, R = 0.90			

results are the same with or without summaries. On the other hand, for larger trees (maxRepeats = 6) with many repeated elements there is a clear improvement using summaries, especially in the precision value (PR).

Tables 6 and 7 present the (a, b, c) values as well as the *PR* and *R* values, using our algorithm on synthetic data with *maxRepeats* = 3 and 6. Summary usage keeps the already high quality clustering results obtained by clustering without using summaries. In any case, with or without summaries, our algorithm shows better clustering quality either with small trees and only a few repeated elements or with larger trees and many repeated elements. Notice that *PR* and *R* reach excellent values (*PR* = 1.00, *R* = 0.97, 0.98).

6.5.2. Working on real data

Tables 8 and 9 present the (a, b, c) values as well as the *PR* and *R* values, using Chawathe's algorithm and our algorithm on real data. The summary usage maintains the already high quality clustering results obtained by clustering without using summaries. *PR* and *R* reach excellent values (PR = 1.00, R = 0.98, 1.00).

Without structural summaries			With structural summaries				
Cluster No	а	b	С	Cluster No	а	b	С
1 (DTD 1)	28	0	72	1-2 (DTDs 1-2)	87	0	13
2 (DTD 2)	87	0	13	3 (DTD 3)	84	0	16
3 (DTD 3)	84	0	16	4 (DTD 4)	100	100	0
4 (DTD 4)	100	200	0	5-7 (DTDs 5-7)	100	0	0
5 (DTD 5)	100	0	0	8 (DTD 8)	100	100	0
6 (DTD 6)	100	42	0	9 (DTD 9)	100	4	0
7 (DTD 7)	100	0	0	10 (DTD 10)	100	0	0
8-9 (DTDs 8-9)	100	200	0				
10 (DTD 10)	100	0	0				
NumOfClusters = 11, $Cluster$. $level = 0.51$			NumOfClusters = 12, Cluster. level = 0.50				
PR = 0.58, R = 0.89				PR = 0.83, R = 0.96			

Table 5 Chawathe's algorithm on synthetic data with MaxRepearts = 6

Table 6 Our algorithm on synthetic data with *MaxRepeats* = 3

Without structural summaries				With structural summaries			
Cluster No	а	b	С	Cluster No	а	b	С
1-2 (DTDs 1-2)	100	0	0	1-2 (DTDs 1-2)	100	0	0
3 (DTD 3)	80	0	20	3 (DTD 3)	80	0	20
4-10 (DTDs 4-10)	100	0	0	4-10 (DTDs 4-10)	100	0	0
NumOfClusters = 11, Cluster. level = 0.51			NumOfClusters = 11, Cluster, level = 0.51				
PR = 1.00, R = 0.98				PR = 1.00, R = 0.98			

Table 7 Our algorithm on synthetic data with MaxRepeats = 6

Without structural summaries				With structural summaries			
Cluster No	а	b	С	Cluster No	а	b	С
1 (DTD 1)	100	0	0	1-2 (DTDs 1-2)	100	0	0
2 (DTD 2)	87	0	13	3 (DTD 3)	84	0	16
3 (DTD 3)	84	0	16	4-10 (DTDs 4-10)	100	0	0
4-10 (DTDs 4-10)	100	0	0				
NumOfClusters = 12, Cluster. level = 0.61			NumOfClusters = 11, Cluster. level = 0.56				
PR = 1.00, R = 0.97				PR = 1.00, R = 0.98			

6.5.3. Remarks

The evaluation results indicate the following:

• Structural summaries maintain the clustering quality, that is they do not hurt clustering. Also, using structural summaries we can clearly improve the performance of the whole clustering procedure, since the calculation of structural distances using the summaries instead of the original trees is more efficient.

Table 8			
Chawathe's	algorithm	on rea	al data

Without structural summaries			With structural summaries				
Cluster No	а	b	С	Cluster No	а	b	С
1 (DTD 1)	70	0	0	1 (DTD 1)	70	0	0
2 (DTD 2)	70	0	0	2 (DTD 2)	70	0	0
3 (DTD 3)	66	0	4	3 (DTD 3)	70	0	0
NumOfClusters = 4, $Cluster$. $level = 0.63$			NumOfClusters = 3, Cluster. $level = 0.63$				
PR = 1.00, R = 0.98			PR = 1.00, R = 1.00				

Table 9 Our algorithm on real data

Without structural summaries				With structural summaries			
Cluster No	а	b	С	Cluster No	а	b	С
1 (DTD 1)	70	0	0	1 (DTD 1)	70	0	0
2 (DTD 2)	70	0	0	2 (DTD 2)	70	0	0
3 (DTD 3)	66	0	4	3 (DTD 3)	70	0	0
NumOfClusters = 4, $Cluster$. $level = 0.63$			NumOfClusters = 3, $Cluster$. $level = 0.63$				
PR = 1.00, R = 0.98				PR = 1.00, R = 1.00			

• With or without summaries, our algorithm shows excellent clustering quality, and improved performance compared to Chawathe's.

We should note that the differences in the clusters obtained by the two algorithms in identical datasets, although both calculate the minimum cost to transform a tree to another one, are due to the cost models used for the tree edit operations. This does not affect the evaluation procedure, since our concern is to show the effect of summaries on clustering quality in both algorithms.

6.5.4. Further discussion

We confirmed our results using hierarchical clustering methods from CLUTO. Since CLUTO expects the desired amount of clusters as an input, we experimented using 10 and x clusters, where x is the *NumOfClusters* returned by *C*-index in every test case in order to:

- 1. check if the algorithms have the potential of 100% correct clustering, having the right number of clusters, which is 10, and
- 2. check the performance of the algorithms using what C-index gave as an estimation of the number of clusters in each test case.

Notice that a 100% correct clustering means that exactly 10 clusters with 100 files originating from the same DTD were generated (PR = R = 1). CLUTO made similar cluster configurations using its single link algorithm. Having 10 clusters as an input, both single link and complete link performed 100% correctly. Having *NumOfClusters* as an input, the results were similar to ours. Non-hierarchical methods, like repeated bisections algorithms [37], showed similar results.

We also performed the single link clustering task using IBM's TreeDiff⁹, a set of Java beans that enable efficient differentiation and updating of DOM trees, providing its own tree distance. We used the synthetic dataset used in our main experiments. The results gave PR and R values lower than 0.7.

Having DTDs which are different from each other makes the clustering procedure successful. It is interesting to see how clustering groups together XML data from similar DTDs related to the same domain. This is a very hard clustering task, in the sense that such data sets do not have the tendency to have well-formed clusters, since they do not have distinguishing information. Also, some of the documents might belong to more than one DTD, since DTD are quire similar. For this reason, we performed single link clustering on 300 synthetic XML documents generated using three DTDs: bookstore1.dtd, bookstore2.dtd and bookstore3.dtd (see Fig. 28). These DTDs were quite similar to each other, making the clustering task quite hard. Preliminary results showed that we were unable to identify groups of XML documents using clustering without tree summaries. Calculated *PR* values were lower than 0.3. On the other hand, we got good quality results using our algorithm and tree summaries. Table 10 presents the (a, b, c) values as well as *PR*, *R* values for synthetic data with *maxRepeats* = 6, using our algorithm and tree summaries.

Methods were discussed to cluster a set of existing XML documents by structure at once. However, sometimes there is a need to assign new incoming XML documents to already discovered clusters, instead of applying a clustering method again to the whole set of documents, including the new ones. The latter costs time since all pairwise distances should be calculated again. Classification algorithms can assign new data to clusters already present. k-NN classification is a simple yet quite effective method [38]. A set of M training XML documents is randomly selected from each cluster. Having a new, incoming XML document, we rank the training documents according to their structural distance with the incoming one (the training document with the lowest distance will be on the top). Recall that the structural distance is calculated between the structural summaries of these trees. Then the k top-ranked documents are used to decide the winning cluster(s) by adding the distances for the training documents which represent the same cluster [39,38]

$$y(\mathbf{x}, c_j) = \sum_{\mathbf{d}_i \in kNN} S(\mathbf{x}, \mathbf{d}_i) \times y(\mathbf{d}_i, c_j),$$
(5)

where:

- 1. **x** is an incoming document, \mathbf{d}_i is a training document, c_i is a category,
- 2. $y(\mathbf{d}_i, c_j) = 1$ if \mathbf{d}_i belongs to c_j or 0 otherwise,
- 3. $S(\mathbf{x}, \mathbf{d}_i)$ is the structural distance between the incoming document \mathbf{x} and the training document \mathbf{d}_i ,

Using thresholds on these scores we obtain binary cluster assignments and we allow the method to assign a document to more than one cluster. Instead, we can just use the cluster with the lowest score as the right one for the incoming document. In our work we followed the second approach. Preliminary results showed excellent classification performance. Having a number of discovered clusters, we tested the kNN classification method for five new data sets of 1000 XML synthetic documents each. The method proved quite reliable, since it gave the right decision for 99.7% of the documents without using structural summaries and 100% using structural summaries.

⁹http://www.alphaworks.ibm.com/tech/xmltreediff

bookstore1.dtd	bookstore2.dtd	bookstore3.dtd
<pre><!--ELEMENT entry (book*)--> <!--ELEMENT book (title, author+, publisher, price)--> <!--ATTLIST book year CDATA #REQUIRED--> <!--ELEMENT author (last, first)--> <!--ELEMENT title (#PCDATA)--> <!--ELEMENT first (#PCDATA)--> <!--ELEMENT first (#PCDATA)--> <!--ELEMENT publisher (#PCDATA)--> <!--ELEMENT price (#PCDATA)--></pre>	<pre><!--ELEMENT bib (book*)--> <!--ELEMENT book (title, (author+ editor+), publisher, price)--> <!--ATTLIST book year CDATA #REQUIRED--> <!--ELEMENT author (last, first, affiliation)--> <!--ELEMENT editor (last, first, affiliation)--> <!--ELEMENT title (#PCDATA)--> <!--ELEMENT last (#PCDATA)--> <!--ELEMENT first (#PCDATA)--> <!--ELEMENT affiliation (#PCDATA)--> <!--ELEMENT publisher (#PCDATA)--> <!--!ELEMENT publisher (#PCDATA)--> <!--!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</th--><th><pre><!--ELEMENT bib (book*)--> <!--ELEMENT book (title, author+, publisher, cost)--> <!--ATTLIST book year CDATA #REQUIRED: <!ELEMENT author (#PCDATA)--> <!--ELEMENT title (#PCDATA)--> <!--ELEMENT publisher (#PCDATA)--> <!--ELEMENT cost (#PCDATA)--></pre></th></pre>	<pre><!--ELEMENT bib (book*)--> <!--ELEMENT book (title, author+, publisher, cost)--> <!--ATTLIST book year CDATA #REQUIRED: <!ELEMENT author (#PCDATA)--> <!--ELEMENT title (#PCDATA)--> <!--ELEMENT publisher (#PCDATA)--> <!--ELEMENT cost (#PCDATA)--></pre>
	ELEIVIEN DRICE (#PGDATA)	

Fig. 28. Three similar DTDs.

Table 10 Homogeneous synthetic data, MaxRepeats = 6

Cluster No	а	b	С
1 (DTD 1)	70	0	0
2 (DTD 2)	70	0	0
3 (DTD 3)	66	0	4
NumOfClusters = 3, Cluster. let	vel = 0.20		
PR = 0.78, R = 0.78			

7. Conclusions

This work presented a methodology for clustering XML documents by structure. Structural clustering refers to the task of grouping together structurally similar data. In the case of XML documents, the application of clustering methods needs distances that estimate the similarity between tree structures in terms of the hierarchical relationship of their nodes.

Modeling XML documents as rooted ordered labeled trees, we faced the 'clustering XML documents by structure' problem as a 'tree clustering' problem. We proposed the usage of tree structural summaries that have minimal processing requirements instead of the original trees representing the XML documents. Those summaries maintain the structural relationships between the elements of an XML document, reducing repetition and nesting of elements and making its structure closer to the structure of its unknown DTD. Also, we presented a new algorithm to calculate tree edit distances and defined a structural distance metric to estimate the structural similarity between the structural summaries of two rooted ordered labeled trees.

In order to experimentally validate our proposals, we implemented a testbed using clustering methods and data sets. We adapted the C-index stopping rule in hierarchical clustering methods to determine the most appropriate clustering level for the cluster hierarchies in order to discover the clusters. We performed extensive evaluation using synthetic and real data sets, providing timing analysis as well as precision PR and recall R values for each test case. Our results showed that:

1. Structural summaries clearly improved the performance of the whole clustering procedure, since the decrease on the time needed to calculate the tree distances using summaries is high. On the other hand, summaries maintained or even improved the clustering quality.

- 2. The proposed structural distance algorithm showed excellent clustering quality, and improved performance compared to Chawathe's.
- 3. Excellent results were also obtained when assigning new incoming XML documents to already discovered clusters using the kNN classification method with structural summaries, instead of applying a clustering method again to the whole set of documents, including the new ones. Re-clustering is expensive since all pairwise distances should be calculated again.
- 4. Preliminary results showed also that structural summaries can clearly help even at clustering XML data coming from similar DTDs, while clustering without summaries failed even to identify groups using such data.

Methods for file change detection [20] are related to our work, but they do not compute the minimal tree edit sequence (see also the discussion in Section 2.3.5). Other methods, like in [40], concentrate on unordered trees. Research has also been conducted in the Information Retrieval Community [41–43] to evaluate similarity by content in a document-centric approach of XML data. Other works that exploit structural distances are [24,44]. In [24], the set of tree edit operations include two new ones which refer to whole trees (*insert tree* and *delete tree* operations) rather than nodes. Trees are pre-processed for checking whether a subtree is contained in another tree. Such pre-processing is needed to precalculate costs for sequences of single insert tree operations, or combinations of insert tree operations and insert node operations. The approach requires the same amount of computation with Chawathe's algorithm. There are no detailed evaluation results, showing PR and R values. Instead, only the number of misclustered documents is presented. In [44], the authors discuss how to group together structurally similar XML documents to improve the cost of query processing and evaluation in case these documents are stored in tables of relational database systems. Such a grouping decreases the number of join operations needed between tables during the query evaluation. The metric (originally suggested in [45]) is applied on graphs representing XML data, and it is based on the number of the common edges between graphs. The approach does not take into account the position of the edges in the graphs.

In our work, we diminish the possibility of having repeated subtrees using structural summaries instead of expanding the tree edit operations. Structural summaries are used as an index structure to speed up the tree distance calculation. Such an approach has the advantage of being useful to reduce the performance cost in every algorithm that estimates the structural distance between rooted ordered labeled trees.

To conclude, this work successfully applied clustering methodologies for grouping XML documents which have similar structure, by modeling them as rooted ordered labeled trees, and utilizing their structural summaries to reduce time cost while maintaining the quality of the clustering results. As future work, several directions are pursued. First, certain properties of the structural distance should be explored and confirmed. Positivity, symmetry and triangular inequality are such properties. The experimental results show that these properties hold (see for example Fig. 27 for the symmetry) but formal study is needed to confirm it. Also, we will study how to employ vector-based representation of tree structures (like in [46,47]) to further explore the problem of clustering by structure. Other interesting issues involve (a) the application of the framework in collections where the repetition of nodes has a certain meaning, so as structural summaries should not eliminate repeated nodes, and (b) the problem of clustering XML documents conforming to similar DTDs.

References

- [1] W3C: http://www.w3c.org.
- [2] S. Abiteboul, Querying semi-structured data, in: Proceedings of the ICDT Conference, Delphi, Greece, 1997.
- [3] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann, Los Altas, CA, 2000.

- [4] X. Tang, F.W. Tompa, Specifying transformations for structured documents, in: Proceedings of the WebDB Workshop, Santa Barbara, CA, USA, 2001, pp. 67–72.
- [5] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J. Naughton, Relational databases for querying XML documents: limitations and opportunities, in: Proceedings of the 25nd VLDB Conference, Edinburgh, Scotland, 1999, pp. 302–314.
- [6] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, XTRACT: a system for extracting document type descriptors from XML documents, in: Proceedings of the ACM SIGMOD Conference, Texas, USA, 2000.
- [7] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, XTRACT: learning document type descriptors from xml document collections, Data Mining and Knowledge Discovery 7, 2003.
- [8] R. Wilson, M. Cobb, F. McCreedy, R. Ladner, D. Olivier, T. Lovitt, K. Shaw, F. Petry, M. Abdelguerfi, Geographical data interchange using xml-enabled technology within the GIDB system, in: A.B. Chaudhri, A. Rashid, R. Zicari (Eds.), XML Data Management, Addison Wesley, Reading, MA, 2003.
- [9] D. Sankoff, J. Kruskal, Time warps, string edits and macromolecules, The Theory and Practice of Sequence Comparison, CSLI Publications, 1999.
- [10] H.G. Direen, M.S. Jones, Knowledge management in bioinformatics, in: A.B. Chaudhri, A. Rashid, R. Zicari (Eds.), XML Data Management, Addison Wesley, Reading, MA, 2003.
- [11] T. Dalamagas, T. Cheng, K.J. Winkel, T. Sellis, Using a structural distance metric to cluster xml documents by structure, in: Proceedings of the EDBT Workshop on Clustering Information over the Web (ClustWeb04), Heraklion, Greece, 2004.
- [12] Y. Papakonstantinou, H. Garcia-Molina, J. Widom, Object exchange across heterogenous information sources, in: Proceedings of the IEEE International Conference on Data Engineering, 1995, pp. 251–260.
- [13] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.D. Ullman, V. Vassalos, J. Widom, The TSIMMIS approach to mediation: Data models and languages, Journal of Intelligent Information Systems 8 (2) (1997) 117–132.
 [14] S.M. Selberg, The true to the addition methods, J. Bergerg, J. et al. (1077) 184–186.
- [14] S.M. Selkow, The tree-to-tree editing problem, Inform. Process. Lett. 6 (1977) 184–186.
- [15] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related problems, SIAM J. Comput. 18 (1989) 1245–1262.
- [16] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom, Change Detection in Hierarchically Structured Information, in: Proceedings of the ACM SIGMOD Conference, USA, 1996, pp. 493–504.
- [17] S.S. Chawathe, Comparing hierarchical data in external memory, in: Proceedings of the VLDB Conference, Edinburgh, Scotland, UK, 1999, pp. 90–101.
- [18] E.W. Myers, An O(ND) difference algorithm and its variations, Algorithmica 1 (1986) 251-256.
- [19] R. Wagner, M. Fisher, The string-to-string correction problem, J. ACM 21 (1) (1974) 168-173.
- [20] G. Cobena, S. Abiteboul, A. Marian, Detecting changes in XML documents, in: Proceeding of the ICDE Conference, San Jose, USA, 2002.
- [21] K.C. Tai, The tree-to-tree correction problem, J. ACM 26 (1979) 422-433.
- [22] R. Goldman, J. Widom, DataGuides: enabling query formulation and optimization in semistructured databases, in: Proceedings of the VLDB Conference, Athens, Greece, 1997, pp. 436–445.
- [23] N. Polyzotis, M. Garofalakis, Statistical synopses for graph-structured xml databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, June, 2002, Madison, Wisconsin, USA, 2002, pp. 358–369.
- [24] A. Nierman, H.V. Jagadish, Evaluating structural similarity in xml documents, in: Proceedings of the WebDB Workshop, Madison, Wisconsin, USA, 2002.
- [25] N. Jardine, C.J. van Rijsbergen, The use of hierarchical clustering in information retrieval, Information storage and retrieval 7 (1971) 217–240.
- [26] E. Voorhees, The effectiveness and efficiency of agglomerative hierarchic clustering in document retrieval, Ph.D. Thesis, Cornell University, Ithaca, New York, October 1985.
- [27] M. Hearst, J.O. Pedersen, Reexamining the cluster hypothesis: Scatter/gather on retrieval results, in: Proceedings of the ACM SIGIR Conference, Zurich, Switzerland, 1996, pp. 76–84.
- [28] E. Rasmussen, Clustering algorithms, in: W. Frakes, R. Baeza-Yates (Eds.), Information Retrieval: Data Structures and Algorithms, Prentice Hall, 1992.
- [29] M. Halkidi, Y. Batistakis, M. Vazirgiannis, Clustering algorithms and validity measures, in: SSDBM Conference, Virginia, USA, 2001.
- [30] C.J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979.
- [31] T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, MIT Press, 1990.
- [32] J.C. Gower, G.J.S. Ross, Minimum spanning trees and single linkage cluster analysis, Appl. Stat. 18 (1969) 54-64.
- [33] G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of clusters in a data set, Psychometrika 50 (1985) 159–179.
- [34] L.J. Hubert, J.R. Levin, A general statistical framework for accessing categorical clustering in free recall, Psychol. Bull. 83 (1976) 1072–1082.
- [35] D. Lewie, Evaluating text categorization, in: Proceedings of the Speech and Natural Language Workshop, 1991.

- [36] Y. Yang, An evaluation of statistical approaches to text categorization, Inform. Retrieval 1 (1) (1999).
- [37] Y. Zhao, G. Karypis, Evaluation of hierarchical clustering algorithms for document datasets, Tr-02–022, Department of Computer Science, University of Minnesota, Minneapolis, 2002.
- [38] Y. Yang, X. Liu, A re-examination of text categorization methods, in: Proceedings of the 22nd Annual International Conference on Research and Development in Information Retrieval, ACM-SIGIR'99, 1999, pp. 42–49.
- [39] Y. Yang, Expert network: Effective and efficient learning from human decisions in text categorization and retrieval, in: Proceedings of the ACM SIGIR Conference, London, UK, 1994, pp. 13–22.
- [40] Y. Wang, D. DeWitt, J.Y. Cai, X-Diff: an effective change detection algorithm for XML documents, in: Proceedings of ICDE'03 International Conference, Bangalore, India, 2003.
- [41] N. Fuhr, K. Großjohann, XIRQL: a query language for information retrieval in XML documents, in: Proceedings of the ACM SIGIR, 2001.
- [42] D. Carmel, Y.S. Maarek, M. Mandelbrod, Y. Mass, A. Soffer, Searching xml documents via xml fragments, in: Proceedings of the ACM SIGIR, 2003.
- [43] S. Liu, Q. Zou, W. Chu, Configurable indexing and ranking for xml information retrieval, in: Proceedings of the ACM SIGIR'04 International Conference, 2004.
- [44] W. Lian, D. W. Cheung, N. Mamoulis, S. Yiu, An efficient and scalable algorithm for clustering xml documents by structure, IEEE Transactions on Knowledge and Data Engineering (TKDE) 16 (1) (2004).
- [45] H. Bunke, K. Shearer, A graph distance metric based on the maximal common subgraph, Pattern Recogn. Lett. 19 (3) (1998).
- [46] S. Flesca, G. Manco, E. Masciari, L. Pontieri, A. Pugliese, Detecting similarities between XML documents, in: Proceedings of the WebDB'02, 2002.
- [47] J. Yoon, V.C.V. Raghavan, Bitmap indexing-based clustering and retrieval of xml documents, in: ACM SIGIR'01 Workshop on Mathematical/Formal Methods in IR New Orleans, Louisiana, 2001.