
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 35 (2010) 170–185
0306-43

doi:10.1

� Cor

E-m

(S.B. Da
1 Su

0740129
2 Su
journal homepage: www.elsevier.com/locate/infosys
A bi-labeling based XPath processing system
Yi Chen a,�,1, Susan B. Davidson b,2, Yifeng Zheng c

a Arizona State University, United States
b University of Pennsylvania, United States
c Amazon.com, United States
a r t i c l e i n f o

Article history:

Received 9 August 2008

Accepted 27 May 2009

Recommended by: D. Shasha

Keywords:

XML

XPath

Query processing
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.05.005

responding author.

ail addresses: yi@asu.edu (Y. Chen), susan@ci

vidson), yifeng@amazon.com (Y. Zheng).

pported by NSF CAREER award IIS-0845647

.

pported by NSF IDM 0415810 and NSF IIS 05
a b s t r a c t

We present BLAS, a Bi-LAbeling based XPath processing System. BLAS uses two labeling

schemes to speed up query processing: P-labeling for processing consecutive child (or

parent) axis traversals, and D-labeling for processing descendant (or ancestor) axis

traversals. XML data are stored in labeled form and indexed. Algorithms are presented

for translating XPath queries to SQL expressions. BLAS reduces the number of joins in

the SQL query translated from a given XPath query and reduces the number of disk

accesses required to execute the SQL query compared with the traditional XPath

processing using D-labeling alone. We also propose an approximate P-labeling scheme

and the corresponding query translation algorithm to handle XML data trees that

contain a large number of distinct tag names, and/or are very deep. This extension

captures a spectrum of XPath-to-SQL query translation schemes, ranging from existing

schemes that do not use P-labels to the one that uses exact P-labels. Experimental

results demonstrate the efficiency of the BLAS system.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

As XML has become the de facto standard for
representing data on the Web and XPath the basis of
query languages for XML data, the ability to efficiently
query XML data using XPath has received much attention.

One general approach, which has been proposed and
studied in academia [8,13,15,20,21,24,26,34,41,44] as well
as by major database vendors [7,35,39], is to design a
framework for XML data processing that leverages rela-
tional database technology. In this framework, XML nodes
are stored in table form with B+-tree indexes built on it,
and XPath expressions are logically rewritten to SQL
queries with joins implementing axis traversals. To reduce
ll rights reserved.

s.upenn.edu

and NSF Grant IIS-

13778.
the number of expensive join operations in the resulting
SQL queries, a number of labeling schemes have been
proposed [2,4,22,34,36]. This paper expands the spectrum
of existing labeling schemes to further speed up XPath
query processing.

As an example, suppose a biologist is interested in
proteins belonging to the ‘‘cytochrome c’’ family and
wants to know who has worked on this family of proteins.
Using the protein repository in XML format shown in Fig.
2, the XPath query shown in Fig. 1 could be used to
retrieve the desired information.

One of the first proposals for using relational databases
to store and process XML data was to treat an XML
document as a graph and generate a tuple for each node,
recording the identifier of the node as well as that of its
parent node [24]. In this way, a child axis traversal can be
achieved using a join.

To reduce the number of joins due to child axis
traversal, techniques based on the schema of the data
were proposed to inline each leaf node without siblings
with the same tag name into the parent tuple

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.05.005
mailto:yi@asu.edu
mailto:susan@cis.upenn.edu
mailto:susan@cis.upenn.edu
mailto:yifeng@amazon.com


ARTICLE IN PRESS

/ProteinDatabase/ProteinEntry[.//protein/calssification/super-

family=“cytochrome c”]//reference/refinfo/authors/author

Fig. 1. A sample XPath query.

Fig. 2. Sample XML protein repository.

Y. Chen et al. / Information Systems 35 (2010) 170–185 171
[8,13,15,21,41]. For example, suppose the schema for the
XML data in Fig. 2 states that each protein node has a
single child with tag name name. Then we can record
information about the name node in the same tuple as its
parent protein node, thus eliminating the need for a join
when evaluating the child axis between them. However, in
general, many joins are still needed to evaluate a single
descendant axis traversal.

To reduce the number of joins and efficiently handle
descendant axis traversals, a labeling scheme was pro-
posed [2,4,20,22,34,44], which we will refer to as D-

labeling (D stands for descendant axis). D-labeling encodes
every XML node by a pair of numbers (an interval) such
that the ancestor–descendant relationship between two
nodes can be determined simply by comparing their
intervals. The level of a node in the tree is also used to
distinguish the parent–child relationship from the ances-
tor–descendant relationship. In this way, both a descen-
dant and a child axis can be processed using one join. To
improve the performance of joins based on D-labeling,
several techniques have been proposed [3,11,17,29,30,43],
which have been shown in DeHaan et al. [20] to be
extremely efficient compared with other implementations
of XML query processing.
However, for queries such as the one in Fig. 1 the
number of joins needed using D-labeling is still too big. To
evaluate this query using D-labeling, the list of nodes
tagged with ProteinDatabase and with ProteinEntry

are retrieved, respectively, and are joined according to
their D-labels. The nodes tagged with ProteinEntry will
also be joined with the nodes tagged with protein, and
so on. Essentially, every XPath axis traversal in the query
except for the one starting from the document root entails
a join over D-labels. Thus in our example a total of eight
joins are needed.

In this paper, we address the problem of reducing the
number of joins and disk accesses required for XPath
queries, as well as enabling more efficient joins by
reducing the size of intermediate results participating in
joins. Our approach, called BLAS (a Bi-LAbeling based
System), uses two labeling schemes: P-labeling (where P
stands for path) and D-labeling. P-labeling optimizes the
processing of consecutive child axis traversals or con-
secutive parent axis traversals. D-labeling is used to
optimize the processing of descendant axis traversals or
ancestor axis traversals. An XPath query is decomposed
according to the ancestor/descendant axes and predicates,
resulting in a set of XPath subqueries. Each XPath
subquery is transformed into an SQL subquery which
can be efficiently evaluated using P-labeling. The SQL
subqueries are then combined using D-labeling to obtain
the final SQL query, which can be processed using either
an off-the-shelf RDBMS or the optimized join techniques
proposed in the literature [3,11,17,29,30,43].

Compared to the approaches based solely on D-
labeling, the SQL query generated by BLAS for a given
XPath query contains fewer selections and joins. For
example, BLAS uses three joins to process the query in Fig.
1 while the D-labeling approach requires eight joins. Its
execution also requires fewer disk accesses and produces
smaller intermediate results. For example, the need to
access nodes with tag name protein, classification,
reference, refinfo or authors by the D-labeling
approach is eliminated in BLAS.

For XML data trees that contain a large number of
distinct tag names, and/or are very deep, P-labels may
become very large and exceed the precision of the system.
To address this challenge, we propose an approximate P-
labeling scheme and the corresponding query translation
algorithm. This extension captures a spectrum of XPath-
to-SQL query translation schemes, ranging from existing
schemes that do not use P-labels
[3,11,17,20,29,30,34,43,44] to the one that uses exact P-
labels.

The contributions and outline of this paper are:
�
 The BLAS system, based on P-labeling and D-labeling, is
a generic framework for XML data storage and query
processing (Section 2).

�
 P-labeling is a novel labeling scheme for processing

consecutive child axis traversals or parent axis traver-
sals (Section 3).

�
 Algorithms for rewriting an input XPath query to an

efficient SQL query are presented (Section 4).



ARTICLE IN PRESS

Y. Chen et al. / Information Systems 35 (2010) 170–185172
�

XPa

doc
We propose approximate P-labels and present a
spectrum of XPath-to-SQL query translation alterna-
tives (Section 5).

�
 Experimental results show the efficiency of our

approach (Section 6).

After discussing related work in Section 7, we conclude in
Section 8.

2. Background and system architecture

Query languages: XML trees can be traversed using
XPath. The main construct of XPath is a path expression
that selects a set of nodes relative to a context node. A
path expression consists of a sequence of steps. Each step
can have three parts: an axis that defines a node
relationship with respect to the XML tree, a node test
that can specify the names of the nodes to be selected, and
(optionally) one or more predicates (or branches) denoted
as ½. . .�, each of which can be an XPath expression. A
wildcard ‘‘*’’ can be used to select nodes of any name. The
node test in the final step of an XPath expression defines
the return node. The number of axes in a query is called its
length. We use ‘‘path expression’’ and ‘‘query’’ inter-
changeably.

Queries without predicates are called path queries. We
also define suffix path queries, a subset of path queries, as
follows.

Definition 2.1. A suffix path expression is a path expression
P which optionally begins with a descendant axis
step (//),3 followed by zero or more child axis steps (/).

A simple path expression, which only contains child axis

steps, is a special type of suffix path expression.

For example, //protein/name is a suffix path expres-
sion, whereas /ProteinDatabase/ProteinEntry/

protein/name is a simple path expression.

Definition 2.2. The source path of a node x in an XML tree
T, denoted as SPðxÞ, is the simple path expression P defined
by the data path from the root to x in T.

Definition 2.3. Let 1PU denote the set of XML nodes
obtained by evaluating path expression P.4 A path
expression P is contained in a path expression Q, denoted
as P � Q , if and only if for a context node in any XML tree
T, 1PU � 1QU.

Path expressions P and Q are non-overlapping, denoted

as P \ Q ¼ ;, if and only if for a context node in any XML

tree T, 1PU \ 1QU ¼ ;.

Evaluating a suffix path query Q entails finding all the
nodes x such that SPðxÞ � Q . Notice that a simple path
expression P is contained in a suffix path expression Q if
and only if P has a suffix Q excluding the leading ‘‘//’’.
3 For conciseness, we use ‘‘//’’ to denote the descendant axis. In

th [18], ‘‘//’’ is short for ‘‘/descendant-or-self::node()/child::’’.
4 To be precise, the node set of a query result preserves the

ument order.
Therefore the evaluation of a suffix path query Q yields all
the XML nodes whose source paths have a suffix Q.

System architecture: BLAS consists of three component-
s—a data loader, a query translator, and a query
engine—as shown in Fig. 3. As discussed earlier, two
labeling schemes are exploited in BLAS for translating an
XPath query to an efficient SQL query: P-labels, which are
used to process consecutive child (parent) axis traversals,
and D-labels, which are used to process descendant
(ancestor) axis traversals. We build both P-labels and D-
labels on XML data nodes, and compute P-labels for user
queries.

The BLAS data loader takes as input an XML document,
invokes an SAX parser, and builds the P-labels and D-
labels for each node in the input document. The XML
nodes are stored in a table with their labels and text
values. Specifically, a tuple hplabel, dlabel, datai is
generated for each node in the XML tree, where data

stores the node value if there is any (otherwise, data is set
to null). The relation is clustered by fplabel, dlabelg.

The BLAS query translator rewrites an input XPath
query into an SQL query. It consists of three modules:
query decomposition, SQL generation, and SQL composi-
tion. The query decomposition module splits the query
into a set of suffix path queries, and records the
ancestor–descendant relationship between the results of
these suffix path queries. For each suffix path query, the
SQL generation module computes the query’s P-label and
generates a corresponding subquery in SQL. Finally, the
SQL subqueries are combined into a final query by the SQL
composition module based on D-labeling and the ances-
tor–descendant relationship between the suffix path
query results.

We use the holistic twig join implementation as the
query engine [11]. Selections over plabel and data

attributes in the translated SQL queries are evaluated
using Bþ tree indexes. The joins over dlabel attributes
are evaluated in a holistic fashion using the authors’
implementation of the algorithm in [11], which achieves
an optimal I/O and CPU complexity for queries containing
only ancestor and descendant axes.5

We present the data and query labeling schemes in
Section 3, and the query translator in Section 4.

3. The labeling schemes

In this section, we present the D-labeling and P-
labeling schemes. For simplicity, we focus the discussion
on a single document. The algorithm can be easily
extended to multiple documents by introducing docu-
ment id information into the labeling scheme.

3.1. D-labeling

D-labeling is used to determine the ancestor–descen-
dant relationship between two XML nodes
[2,4,20,22,34,44].
5 Alternatively, we can also use an off-the-shelf relational database

as query engine.



ARTICLE IN PRESS

   Query 
   Engine 

Query 
Decomposition  

SQL  
Generation 
(based on  
P-labeling) 

XPath 
Query 

Suffix Path 
Query 

Suffix Path 
Query 

…

SQL 
Subquery 

SQL 
Subquery 

SQL 
Composition 
(based on  
D-labeling) 

Query Translator 

Ancestor-descendant 
relationship between 
the results of the suffix 
path queries 

SQL 
Query  

XML 

P-labels 

D-labels 

Data values 
SAX  
Parser 

Events 

P-labeling  
Generator 

D-labeling  
Generator 

…

Indexes 

Data Loader 

Query 
Result 

Fig. 3. The architecture of BLAS.

Y. Chen et al. / Information Systems 35 (2010) 170–185 173
Definition 3.1. The D-label of an XML node x is a triplet
hd1; d2; d3i, where x:c denotes component c of node x’s
label. For any two nodes x and y, xay, we have:
(i)
 Validation: x:d1 � x:d2.

(ii)
 Descendant: y is a descendant of x if and only if

x:d1oy:d1 and x:d24y:d2.

(iii)
 Child: y is a child of x if and only if y is a descendant

of x and x:d3 þ 1 ¼ y:d3.

(iv)
 Nonoverlap: x and y have no ancestor–descendant

relationship if and only if x:d2oy:d1 or x:d14y:d2.
In this paper, we adopt the implementation of D-
labeling suggested in [20,44]. Let d1 and d2 for a node x be
the position of the start tag and end tag of x in the XML
document, respectively, and d3 be the level of x in the XML
tree. The level of x is defined as the length of the path from
the root to x. In what follows, a D-label is represented as
hstart; end; leveli. For example, in Fig. 2, considering each
start tag, end tag and text value as a unit, the first node
that is tagged with classification begins at position 7,
ends at position 11, and has a level of 4.

To process queries with descendant axis traversals,
such as //t1//t2, we test the ancestor–descendant
relationship between nodes in list l1 and those in list l2
using D-labeling, where l1 and l2 are the lists of nodes
reachable by //t1 and by //t2, respectively. Interpreting l1
and l2 as relations, this test is a join with the ‘‘descendant’’
property as the join predicate. We therefore call this a
D-join.
Example 3.1. Consider the query //ProteinDatabase

//refinfo and let pDB and refinfo be the relations which
store nodes tagged by ProteinDatabase and refinfo,
respectively. The D-join would be expressed in SQL as
follows:
select pDB.start, pDB.end, refinfo.start, refinfo.end

from pDB, refinfo

where pDB.start h refinfo.start and pDB.end i refinfo.end
Note that using D-labeling, a child or descendant axis
traversal can be processed as a join. In the next section we
discuss how to reduce the number of D-joins for queries
with multiple child axis steps.
3.2. P-labeling

The P-labeling scheme is designed to efficiently
process consecutive child axis steps (a suffix path query).

P-labeling properties: The intuition is that each XML
node x is annotated with a label according to its source
path SPðxÞ and each suffix path query Q is also assigned a
P-label, such that the containment relationship between
SPðxÞ and Q can be determined by examining their labels.
Since the evaluation of a suffix path query Q entails
finding all the XML nodes x such that SPðxÞ is contained in
Q, it can be processed efficiently using P-labeling.

Definition 3.2. The P-label for a suffix path expression Q is
an interval ½p; qÞ, denoted as IQ ¼ hp;qi, such that for any



ARTICLE IN PRESS

Fig. 4. Illustration of interval partition.

Y. Chen et al. / Information Systems 35 (2010) 170–185174
two suffix path expressions Q, Q 0:
(i)
 Validation: Q :poQ :q.

(ii)
 Containment: Q � Q 0 if and only if interval IQ is

contained in IQ 0 , i.e. Q 0:p � Q :p and Q 0:q � Q :q.

(iii)
 Nonintersection: Q \ Q 0 ¼ ; if and only if IQ and IQ 0 do

not overlap, i.e. Q :p4Q 0:q or Q :qoQ 0:p.
6 In our implementation, we choose ri ¼ 1=k where 2k�1
� nþ 1 �

2k so that the P-labeling computation is done by bit-operations instead

of multiplications and divisions to achieve better performance. The extra
We also assign each XML node a P-label according to its
source path’s P-label. Notice that here the concept of P-
label is overloaded for suffix paths and XML nodes.

Definition 3.3. For an XML node x, let the P-label of its
source path SPðxÞ be hp; qi. Then the P-label for node x,
denoted as x:plabel, is p.

Using the P-label definition for suffix paths (Definition
3.2) and the P-label definition for XML nodes (Definition
3.3), a suffix path query Q can be evaluated by selecting
the set of XML nodes whose P-labels are contained in the
P-label of Q.

Proposition 1. Let Q be a suffix path query. Then

1QU ¼ fxjQ :p � x:plabeloQ :qg. Furthermore, if Q is a simple

path, then 1QU ¼ fxjx:plabel ¼ Q :pg.

If we consider the P-label of a node to be an attribute in
a relation, this test is essentially a select operation using
‘‘containment’’ on P-labels as the predicate. If we build a
Bþ tree on P-labels, this can be evaluated very efficiently.
The advantage of P-labeling is that we do not need to
evaluate every child axis in a suffix path P; qualified nodes
can be found by checking their P-labels. In contrast, using
D-labeling, a total of (l� 1) D-joins are needed, where l is
the number of axis steps in P.

P-label construction: For illustration purpose, let the
domain of the numbers in a P-label be the integers in
½0;mÞ. Let the length of the P-label of a suffix path
expression be the number of integers contained in the P-
label interval. Suppose that there are n distinct tags
(t1; . . . ; tn) in the XML data, and that there is an ordering of
tags; the particular ordering used is not important and can
be arbitrary. We assign ‘‘/’’ a ratio r0, and each tag ti a ratio

ri, where 1 � i � n, such that
Pn

i¼0 ri ¼ 1. Using the tag
ratios and the order, the construction of P-labels for suffix
path expressions can be illustrated as follows:
encoding space is left for future new tags. Furthermore, in the case

where future changes to the document may result in a larger number of

tags, we can choose an even smaller ri to reserve enough space for these

tags.
(i)
 Path //is assigned an interval (P-label) of h0;mi.
(ii)
 Partition the interval h0;mi in tag order proportional
to /’s ratio r0 and ti’s ratio ri (1 � i � n). Assuming
that the order of tags is t1; t2; . . . ; tn, this means that
we allocate an interval hp0; p1i to / and hpi; piþ1i to
each ti, such that ðpiþ1 � piÞ=m ¼ ri and p0 ¼ 0.
Intuitively, we allocate hp0; p1i to path ‘‘/’’, and
hpi; piþ1i to suffix paths ‘‘==ti’’.
(iii)
 For the interval of a path ==ti, we further partition it
into subintervals by tags in order according to their
ratios. Each path ==tj=ti (or /ti), 1 � j � n, is now
assigned a subinterval, and the proportion of the
length of the interval of ==tj=ti (or /ti) over the length
of the interval of ==ti is the ratio rj (or r0). Intuitively,
since 1==tj=tiU � 1==tiU and 1=tiU � 1==tiU, we par-
tition the interval for ==ti into subintervals according
to the ratio of all tags tj and the ratio for /.
(iv)
 Continue to partition over each subinterval to obtain
P-labels for successively longer suffix paths as found
in the XML data or queries.
For simplicity, in the rest of the paper we assign the
same ratio for each tag, that is, ri ¼ 1=ðnþ 1Þ, 1 � i � n.6

As an example, the partitioning procedure for m ¼ 10 000
and tags t1; t2; t3; . . . ; t9 is illustrated in Fig. 4. The P-label
assigned to path =t1=t2 is h2100;2110i.

As we can see, this technique partitions the interval of
a suffix path Q to subintervals and assigns these
subintervals to the suffix paths that are contained in Q.
Suffix paths that are non-overlapping are assigned disjoint
intervals. Therefore this implementation of P-labeling is
valid with respect to Definition 3.2. So far we assume that
the length of a suffix path h satisfies ðnþ 1Þh � m, where
½0;mÞ is the domain of P-labels and n is the number of
distinct tag names in the XML data tree. Section 5 presents
how to construct P-labels when suffix paths have lengths
larger than h.

As shown in Proposition 1, to evaluate a suffix path
query Q we check whether the P-label of a node is
contained in Q’s P-label.



ARTICLE IN PRESS

0 10000

/ //t1 //t2

1000 2000 3000

//t3

4000

..

2000 3000

/t2 //t1/t2 //t2/t2

2100 2200 2300

..

2100 2200

/t1/t2

2110

..

//t3/t2

Y. Chen et al. / Information Systems 35 (2010) 170–185 175
Example 3.2. To construct P-labels for the sample XML
data in Fig. 2, let us assume that m ¼ 1012 and that there
are 99 tags. Each tag is assigned a ratio 0.01. Suppose the
order is /, ProteinDatabase, ProteinEntry, protein,
name, . . . . Fig. 5 shows how to construct a P-label for the
suffix path P ¼ /ProteinDatabase/ProteinEntry/

protein=name. According to Definition 3.3, every node
reachable by P is assigned the P-label 4:030201� 1010.

Now suppose we wish to evaluate the query //

protein/name. First we compute its P-label,

h4:03� 1010;4:04� 1010
i, as shown in Fig. 5. We

then find all nodes x such that

4:03� 1010
� x:plabelo4:04� 1010. Assuming that the

XML nodes are stored in a relation nodes with attribute

plabel, the suffix path query can be evaluated by the

following SQL statement:
select * from nodes

where nodes:plabel � 4:03� 1010

and nodes:plabelo4:04� 1010
As illustrated above, nodes with source path /Pro-

tein- Database/ProteinEntry/protein/name have

a plabel 4:030201� 1010, and are therefore part of the

answer to this query.

Note that the P-labeling construction technique dis-
cussed so far assumes that all the tags are known.
However, it is clearly desirable to construct P-labels as
needed when new tags are met without prior knowledge
of all the tags. Algorithm 1 constructs the P-labels for an
XML tree during a single traversal of the tree given only an
upper bound of the number of distinct tags. For each XML
node, its P-label is computed according to the P-label of its
parent, its tag interval and ratio. We use Algorithm 1 to
compute P-labels for both XML nodes and suffix path
queries. For a suffix path Q, we return the P-label
interval obtained after processing the last node in Q. If Q

starts with a child axis ‘/’, one more step needs to be
performed at the end to refine the interval according to
the ratio of ‘/’.

Algorithm 1. P-Label(Tree: T).
1:
 Stack s
2:
 for i ¼ 1; i � n; iþþ do

3:
 hpi ; qii ¼ P-Label(==ti)
fLet i be the position of ti in tag order.g
4:
 end for

5:
 push(s, h0;mi)
6:
 Depth-first search(T){
7:
 if current tag is htii then

8:
 hp; qi ¼ top(s)
9:
 p ¼ pi þ p 	 ri
10:
 q ¼ pi þ q 	 ri
11:
 push(s, hp; qi)
12:
 label this node with p
13:
 end if

14:
 if current tag is h=tii then

15:
 pop(s)
16:
 end if

17:
 }
4. Query translation

In this section, we discuss how to translate an XPath
query into an efficient SQL query using our labeling
scheme.

For illustration purpose, we start with the discussion
on a subset of XPath queries that contain child axes (‘/’),
descendant axes (‘//’) and predicates. This subset of XPath
expressions is commonly referred to as tree queries, since
they can be represented as trees. For example, the query Q

in Fig. 6 is represented as the query tree in Fig. 7. We
create a node for each node test in the query, and annotate
the node with the tag name or wildcard. The return node
title is darkened. An unannotated line between two
nodes represents a child axis, and a line annotated with //

represents a descendant axis. The root has an incoming
edge to indicate whether the query starts with an axis / or
//. If a node has more than one child then it is called a
branching point, such as the nodes tagged with Protei-

nEntry and refinfo. If the return node is not a leaf then it
is also called a branching point.

Processing general XPath queries will be discussed in
Section 4.3.

4.1. Split algorithm

The Split algorithm splits the input query tree into one
or more suffix path queries. This is done in two steps:
descendent axis elimination and branch elimination. These
two steps can be performed in any order or can be
interleaved.

Descendant axis elimination (Algorithm 2) performs a
depth-first traversal on the input query tree, and
splits any descendent axis form p==q into p and ==q.
Branch elimination (Algorithm 3) performs a depth-first
traversal on the query tree and splits any branch form
p½q1 and q2 and . . . and ql�=r into p, ==q1; ==q2; . . . ; ==ql; ==r.
The function answer (line 9) is an abstract function. If Q

contains branching points, branch elimination is invoked;
if Q contains descendant axes, descendant elimination is
invoked; or if Q is a suffix path query, it is translated to a
selection and evaluated using P-labeling. A D-join is then

Fig. 5. P-labels for some suffix path expressions.



ARTICLE IN PRESS

Fig. 6. An XPath query Q.

“cytochrome c” 

superfamily // 

title 

protein 

ProteinDatabase 

ProteinEntry 

year 

“2001” 

reference 

refinfo 

Q 

“Evans, M.J.” 

author 
// 

Fig. 7. Query tree of Q.

title 

protein 

ProteinDatabase 

ProteinEntry 

year 

“2001” 

reference 

refinfo 

Q1

“cytochrome c” 

superfamily // 
Q2

“Evans, M.J.” 

author 
// Q3

Y. Chen et al. / Information Systems 35 (2010) 170–185176
used to join intermediate results by their D-labels as
discussed in Section 3.1. The required level difference
between intermediate results is specified in the where
clause of the generated SQL statement.

Algorithm 2. D-elimination(query tree Q).
1:
 List intermediate-result
2:
 Depth-first search(Q){
3:
 if current node reached by a // edge then

4:
 Q 0 ¼ the subtree rooted at the current // edge
5:
 Cut Q 0 from Q;
6:
 intermediate-result.add(D-elimination(Q 0), //)
7:
 end if

8:
 }
9:
 result ¼ answer(Q)
10:
 for all r in intermediate-result do

11:
 result ¼ D-join(result,r)
12:
 end for

13:
 return result
Algorithm 3. B-elimination(query tree Q).
1:
 List intermediate-result
2:
 Depth-first search(Q){
3:
 if current node has more than one child then

4:
 for all child of Q: Q 0 do

5:
 cut Q 0 from Q
6:
 Q 0 ¼ ==Q 0
7:
 intermediate-result.add(B-elimination(Q 0), the axis between

current node and Q 0)
8:
 end for

9:
 end if

10:
 }
11:
 result ¼ answer(Q)
12:
 for all r in intermediate-result do

13:
 result ¼ D-join(result,r)
7 Using ‘‘//’’ as the leading axes of subqueries potentially leads to
14:
 end for
larger intermediate results. We address this inefficiency in Section 4.2.
15:
 return result
Example 4.1. To translate query Q in Fig. 7, suppose we
first eliminate descendant axes as shown in Fig. 8,
generating subqueries Q1, Q2 and Q3. Since Q1 contains
branching points, it is further decomposed into queries
Q4, Q5, Q7, Q8 and Q9, as shown in Fig. 9. Notice that each
subquery is evaluated from the root of the XML tree, and
that therefore its leading axis should be ‘‘//’’.7 Each
resulting subquery is a suffix path query and is evaluated
as a selection on node P-labels. Suppose the evaluation of
Q4 //ProteinDatabase/ProteinEntry and Q7 //

reference/refinfo results in a list of nodes pEntry

and refinfo, respectively. The lists pEntry and refinfo

are D-joined as follows:

Fig. 8. Descendant axis elimination for Q.
select pEntry.start, pEntry.end, refinfo.start, refinfo.end

from pEntry, refinfo

where pEntry.start h refinfo.start and pEntry.end i

refinfo.start and pEntry.level ¼ refinfo.level � 2
Notice that we have pEntry.level ¼ refinfo.level -

2 in the where clause, which is different from the general
D-join where no level predicate is specified. This is
because the paths in Q4 and Q7 are connected directly
in the original query (Fig. 7); therefore we choose the
pEntry nodes returned by Q4 that are the grandparent of
one of the refinfo nodes returned by Q7 rather than a
general ancestor. The information about level difference
can be obtained from the branch elimination procedure.
The D-labels of both pEntry and refinfo are also
recorded since they may be involved in D-joins with
other intermediate results.



ARTICLE IN PRESS

title 
title 

protein 

ProteinDatabase 

ProteinEntry 

year 

“2001” 

reference 

refinfo 

year 

“2001” 

reference 

refinfo 

protein 

ProteinDatabase 

ProteinEntry 

protein 

ProteinDatabase 

ProteinEntry 

year 

“2001” 

reference 

refinfo 

// // // 
// 

// // 

title 

Q1 Q4

Q5 Q6

Q4

Q5 Q7

Q8 Q9

Fig. 9. Branch elimination for Q1.

proteinDatabase

proteinEntry

Q4

Q’
5

Q’7

Q’8

protein

proteinDatabase

proteinEntry

proteinEntry

proteinDatabase

reference

refinfo

title

proteinEntry

proteinDatabase

reference

refinfo

“2001”
year

proteinEntry

proteinDatabase

reference

refinfo

Q’9

Fig. 10. Push-up branch elimination for Q1.

Y. Chen et al. / Information Systems 35 (2010) 170–185 177
4.2. Push-up algorithm

Recall that the branch elimination step in Section 4.1
decomposes a branch form p½q1 and q2 and . . . and ql�=r

into p, ==q1; ==q2; . . . ; ==ql; ==r. We observe that the roots of
qi (1 � i � l) and r are children of the leaf of p. Therefore
we can push up the path expressions qi and r toward the
root, and decompose the branch into p,
p=q1; p=q2; . . . ; p=ql, and p=r (Algorithm 4). Since p=qi and
p=r are more specific than ==qi and ==r, the number of disk
accesses and the size of the intermediate results can be
reduced without affecting the final query result. The key
difference between Algorithms 3 and 4 is that we use a
variable SP to record the complete path from the root of
the input query tree Q to the root of a subtree Q 0. Then we
concatenate SP with Q 0 and evaluate SP=Q 0. We call this
step push-up branch elimination, and the whole query
processing algorithm the Push-up algorithm.

Algorithm 4. PushUp B-elimination(query tree Q).
1:
 return PushUp B-eliminate-sub(Q,‘/’);
function PushUp B-eliminate-sub(query tree Q, path expression P)
1:
 List intermediate-result
2:
 Boolean Path ¼ true
3:
 Depth-first search (Q){
4:
 if current node x has more than one child then

5:
 Path ¼ false
6:
 for all child of x: Q 0 do

7:
 cut Q 0 from Q
8:
 end for

9:
 x:SP ¼ P=Q
10:
 for all child of x: Q 0 do

11:
 intermediate-result.add(PushUp B-eliminate-sub(Q 0 ,SP), axis

between Q 0 with x)
12:
 end for

13:
 end if

14:
 }
15:
 if Path then

16:
 SP ¼ P=Q
17:
 end if

18:
 result ¼ answer(SP)
19:
 for all r in intermediate-result do

20:
 result ¼ D-join(result,r)
21:
 end for

22:
 return result
In contrast to the Split algorithm, the ordering of the

descendant axis elimination and push-up branch elimina-
tion in the Push-up algorithm matters in terms of
performance. If we apply descendant axis elimination
first, as shown in the example in Fig. 10, each SP=Q 0 is a
suffix path expression and can be evaluated using P-
labeling. This is because the input to push-up branch
elimination is a subquery tree without any descendant
axis steps in the middle of the query, as a result of the
descendant axis elimination algorithm. Therefore SP is
suffix path, Q 0 is a simple path, and their concatenation is
a suffix path. However, if we apply push-up branch
elimination first, the same descendant axis may be
pushed up by all subquery trees below it. Although all
descendant edges will eventually be cut, the descendant
elimination will be invoked over the same path fragment
repeatedly. We therefore apply descendant-elimination
before push-up branch elimination.
4.3. Processing general XPath queries

Now we discuss how to process an XPath query with
parent, child, descendant and ancestor axes. The query
tree representation introduced in Section 4 can be
generalized by allowing the annotation for edges to be
child (‘/’), parent, descendant (‘//’), or ancestor. Note that



ARTICLE IN PRESS

superfamily 

protein 

classification 

ProteinEntry 

ProteinDatabase 

 ancestor 

// 

 parent 

superfamily 

protein 

classification 

ProteinEntry 

ProteinDatabase 

 // 

// 

// 

Fig. 11. Query representation. (a) A query tree. (b) The corresponding query DAG.

Y. Chen et al. / Information Systems 35 (2010) 170–185178
all the query trees are directed, and we show edge
directions explicitly in this section. For example, an XPath
query /protein/classification[./ancestor::Pro-

tein Entry/parent::ProteinDatabase]/super-

family can be represented as the query tree of Fig.
11(a). Equivalently, such a query tree can be converted to a
directed acyclic graph (DAG) with the same set of nodes,
but with edge annotations which are child or descendant
[6]. The query DAG G is obtained from a query tree T as
follows. First, the edges in a query tree T annotated with /
or // become edges in the G. For each edge in T annotated
with parent, create an edge connecting the same pair of
nodes in the reverse direction and annotated with /.
Similarly, edges annotated with ancestor are reversed and
annotated with //. Finally, for any node in G that has no
incoming edges, add an edge annotated with // as its
incoming edge. As we see, there can be more than one root
in a query DAG. For example, the sample query above can
be represented as the DAG shown in Fig. 11(b).

To decompose a query DAG to suffix path queries, first
we apply Algorithm 2 to eliminate descendant axes. Then
we invoke Algorithm 5 to remove branches. Notice that
there are several salient differences between Algorithms 5
and 4.

Algorithm 5. PushUp B-elimination(query DAG Q).
1: L
ist nodes ¼ Topological-sort(Q)
2: f
or i ¼ 0; iolength(nodes); iþþ do

3:
 node x ¼ nodes[i]
4:
 if x has no parent node then

5:
 x:SP ¼ concatenate(x:axis, x:tag)
6:
 x:JP ¼ �

7:
 end if

8:
 if x is a branching point or a leaf then

9:
 for all parent of x:x0 do

10:
 generate a selection for suffix path: concatenation(x0 :SP,

x:axis, x:tag)
11:
 end for

12:
 x:query ¼ join all the selections generated
13:
 end if

14:
 for all child of x:x0 do

15:
 if length(x0 :SP) o length(x:sp) þ1 then

16:
 x0 :SP ¼ concatenation(x:SP, x0 :axis, x0 :tag)
17:
 if x is a branching point then

18:
 x0 :JP ¼ x
19:
 else

20:
 x0 :JP ¼ x:JP
21:
 end if

22:
 end if

23:
 end for

24: e
nd for

25: r
eturn the join of all the branching or leaf nodes x:query with

x:JP:query if exists

First, since a node can have more than one parent, there
can be several incoming suffix paths to which we can push
up the node. For example, for the node with tag
classification, there are two possible incoming suffix
paths: //protein/classification and //classifica-

tion. We should choose the most specific suffix path to
decrease the number of disk accesses and the size of
intermediate results. If we have statistics about the
selectivity of each suffix path, we choose the most
selective one. Otherwise, we choose the longest one based
on the heuristic that a longer path is more selective.

In Algorithm 5, to obtain the longest suffix path of each
node, we first topologically sort the nodes in Q and
generate a list of nodes such that each ancestor of a node
appears before it in the list. For each node x in the list, we
then compute its longest incoming suffix path x:SP in one
scan of the node list. If x does not have a parent, we
initialize x:SP to be its tag (lines 4–7). Then for each of x’s
children, x0, if the concatenation of x:SP and the tag of x0 is
longer than the current x0:SP, we replace x0:SP with the
concatenated path (lines 15–16).

Second, during the node list scan, we record for each
node x in Q the nearest branching point x:JP (lines 17–21).
Note that in a query DAG, a node is a branching point if it
has more than one incoming edge, more than one
outgoing edge, or is the return node.

Third, if a node is a branching point or a leaf, we build
an SQL subquery, x:query, according to its incoming suffix
paths (lines 8–13).

Finally, for each branching point or leaf node x, we join
its associated subquery, x:query, with its nearest branch-
ing point’s subquery, x:JP:query, according to the axis
between them to form the final SQL query.

Example 4.2. Consider the query in Fig. 11. First, we apply
Algorithm 2 and get two subqueries: Q1 //Protein

Database/ProteinEntry and Q2 //protein/classi-



ARTICLE IN PRESS

Table 1
Axes and corresponding conditions on D-labels.

Node relationship Conditions on D-labels

y 2 following(x) x:d2oy:d1

y 2 preceding(x) y:d2ox:d1

y 2 following-sibling(x) following(x; y), parent(y) ¼ parent(x)

y 2 preceding-sibling(x) preceding(x; y), parent(y) ¼ parent(x)

y 2 descendant-or-self(x) x:d1 � y:d1, x:d2 � y:d2

y 2 ancestor-or-self(x) x:d1 � y:d1 and x:d2 � y:d2.

Y. Chen et al. / Information Systems 35 (2010) 170–185 179
fication[./ancestor::*]/superfamily. Note that
node classification is a branching point with two
parents in the original query; we use * to denote the one
that has been cut by descendant axis elimination. Q1 does
not have branching points, so we apply Algorithm 5 on Q2.

We first obtain a list of query nodes in their topological

order: protein, *, classification, superfamily.

For the first node in the list, protein, we obtain SP ¼ //

protein (line 5), JP ¼ � (line 6). For its child classi-

fication, we have SP ¼ //protein/classification

(line 16), JP ¼ � (line 20). Then we process node * and

obtain SP ¼ JP ¼ �. After processing the branching point

classification, we have: classification.query ¼ //

protein/classification t //classification (lines

9–12). For its child superfamily, we have SP ¼ //

protein/classification/superfamily (line 16), JP ¼

classification (line 18). After processing the last node,

superfamily, we get: superfamily.query ¼ //pro-

tein/classification/superfamily (lines 9–12). Fi-

nally, the query translated from Q2 is superfamily.query

t classification.query (line 25).

Other XPath axes can be evaluated as joins on D-labels
using the techniques proposed in previous work [29]. The
join conditions are listed in Table 1. Attributes are treated
as a special type of children whose names start with ‘@’.

5. Approximate P-labeling

In Section 3, we discussed P-label construction for
suffix paths whose lengths h satisfy ðnþ 1Þh � m, where
½0;mÞ is the domain size and n is the number of distinct
tags appear in the XML data tree. In this section, we
discuss how to extend P-labels to approximate P-labels
which encode suffix paths of any lengths. We start by
discussing how to construct approximate P-labels for XML
nodes. We then discuss how to compute approximate P-
labels for suffix path queries, and how to translate an
XPath query correctly to an SQL query based on approx-
imate P-labels.

5.1. Approximate P-labels for XML nodes

In exact P-labeling, we associate with each XML node a
label which encodes the source path of the node. We do
the same in approximate P-labeling for short source paths.
However, if a source path is long and an exact P-label
cannot be computed within the given domain, we assign
an approximate P-label to the XML node. A k-approximate
P-label encodes the suffix path of length k which enters
the data node. More precisely, let the source path of an
XML node x be =ts=ts�1= . . . =t1. The k-approximate P-label
of x is the P-label for the path ==tk= . . . =t1. If we think of
nodes as being grouped into equivalence classes according
to their P-labels, then accurate P-labeling groups nodes
according to their source paths, while k-approximate P-
labeling groups nodes according to the paths of length k

entering the nodes.
How should the level of approximation k for a given

domain be chosen? If the given domain is ½0;mÞ, we set k

so that ðnþ 1Þk � moðnþ 1Þkþ1. Note that if k � h, then
the P-labels for all XML nodes are accurate. To compute k-
approximate P-labels, we use Algorithm 1.

Proposition 2. Algorithm 1 computes k-approximate P-

labels for nodes, where the domain for P-labels is ½0;mÞ and

ðnþ 1Þk � moðnþ 1Þkþ1.

5.2. Query translation for approximate P-labeling

We begin with suffix path query evaluation using k-
approximate P-labeling, and then discuss how to evaluate
a general XPath query.

Since k-approximate P-labeling does not affect the P-
labels for suffix paths of length � k, we can restate
Proposition 1 as:

Corollary 5.1. Given a k-approximate P-labeling scheme, let

Q be a suffix path query of length � k. Then

1QU ¼ fxjQ :p1 � x:plabeloQ :p2g

Furthermore, if Q is a simple path of length � k, then:

1QU ¼ fxjQ :p1 ¼ x:plabelg

To evaluate a suffix path query Q : ats= . . . =t1, . . .

where a 2 f=; ==g and s4k, first we cut Q into shorter
suffix paths, such that each of them has a length � k and
therefore can be evaluated according to Corollary 5.1.
Specifically, let g be an integer such that
g 	 kos � ðg þ 1Þ 	 k, and cut Q into a set of suffix paths:
Q1 : ==tk= . . . =t1; . . . ;Qg : ==tg	k= . . . =tðg�1Þ	kþ1,
Qgþ1 : a ts= . . . =tg	kþ1, as shown in Fig. 12. Notice that we
change the leading child axis to a descendant axis in each
suffix path query Qj, 1 � j � g. We then retrieve the set of
XML nodes reachable by Qi (1QiU), 1 � i � ðg þ 1Þ, by
selecting all the nodes whose P-label is contained in the P-
label of Qi according to Corollary 5.1. Finally, we stitch
together the query results of the Qi’s to compute the
results of query Q based on the following proposition.

Proposition 3. Let Q1 be a simple path expression and Q2

be a suffix path expression. For an XML node x 2 1==Q1U, we

have x 2 1Q2=Q1U if and only if x has an ancestor y such that

y 2 1Q2U and the depth difference between y and x is equal

to the length of Q2.

Recall that D-labeling allows us to detect the ances-
tor–descendant relationship between XML nodes. To
evaluate the suffix path query Q, we D-join the inter-



ARTICLE IN PRESS

Fig. 12. Illustration for suffix path query decomposition.

Shakespeare Protein Auction TEI

Size 26MB 70MB 68MB 13.5M

Nodes 639500 2276620 1237800 1121370

Tags 19 66 77 314

Depth 7 7 12 50

Y. Chen et al. / Information Systems 35 (2010) 170–185180
mediate results 1QiU with 1Qiþ1U, where 1 � i � g, with a
level difference of k as part of the join condition.
Fig. 13. XML data sets.

Example 5.2. Continuing Example 3.2, since there are 99
distinct tags, the domain of P-label ½0;1012

Þ supports a 6-
approximate P-labeling scheme. To evaluate query Q: /

ProteinDatabase/ProteinEntry/reference /re-

finfo/xrefs/xref/db/url, which has a length of 8,
we first decompose Q into two shorter suffix paths: Q1: //
reference/refinfo/xrefs/xref/db/url, and Q2: /

ProteinDatabase/ProteinEntry. After performing a
selection on P-labels to get the set of nodes reachable by
Q1 and Q2, denoted as url and PE, respectively, we
perform the following D-join to find the final query result:
select PE:start; PE:end; url:start; url:end

from PE; url

where PE:start hurl:start and PE.endi url:end

and PE:level ¼ url:levelþ 6
To evaluate a general XPath query, we first use the

algorithms presented in Section 4 to decompose the query
into suffix path queries. If a suffix path query obtained
from the decomposition is longer than k, we further
decompose it to suffix path queries of length � k. Then we
translate each suffix path query to an SQL selection.
Finally, the intermediate results of selections are stitched
together by D-joins according to the ancestor–descendant
relationship between XML nodes. The number of joins in
the SQL query translated from an XPath query depends on
the number of suffix paths of length � k after decomposi-
tion.

Using accurate P-labeling together with D-labeling
(discussed in Section 3) and using D-labeling alone are
two extreme cases of using k-approximate P-labeling
together with D-labeling. Suppose that we set k ¼ 1, then
the P-label of each node in an XML tree encodes only the
tag information of the node. The query translator in BLAS
decomposes an XPath query Q to suffix path queries of
length 1. In this case, the translated SQL query is the same
as the previous approach using D-labeling only
[2,4,20,34,44]. On the other hand, when we set k � h,
where h is the height of the XML tree, the translated SQL
query is the same as the one using accurate P-labeling and
D-labeling. Thus, k-approximate P-labeling presents a
spectrum of solutions for XPath-to-SQL query translation.
To choose an appropriate value for k, note that the larger
the value of k the fewer number of joins are produced in
the translated SQL query. Therefore given the domain
½0;mÞ set by the machine word size to achieve maximal
efficiency for P-label computation and comparison, we
propose to choose the value of k such that
ðnþ 1Þk � moðnþ 1Þkþ1.
6. Experimental evaluation

We compared the Split and Push-up approaches in
BLAS with the approach of using D-labeling alone. Our
experimental evaluation shows that Push-up outperforms
Split, and that both have a substantial performance
improvement over D-labeling.
6.1. Experimental setup

The experiments were performed on a 1.5 GHz Pentium
4 machine with 512 MB memory and one 40 GB hard disk
(7200 rpm). All experiments were repeated 10 times
independently on a cold cache, and the average processing
time was calculated discarding the maximum and mini-
mum values.

The data sets used are Shakespeare [10], Protein [25],
Auction [1] and TEI [19], as summarized in Fig. 13. Size

denotes the disk space used to store the original XML file.
Nodes is the number of nodes in the XML file. Tags is the
number of distinct tags. Depth is the length of the longest
path in the XML tree.

We tested several types of XPath queries: suffix path
queries (type 1), path queries (type 2), tree queries with
child, descendant axes and predicates (type 3), and XPath
queries containing parent and ancestor axes (type 4), as
listed in Fig. 14. The names of the queries are encoded by
‘‘QXY’’, where ‘‘X’’ is one of ‘‘S’’ (Shakespeare), ‘‘P’’
(Protein) or ‘‘A’’ (Auction), and ‘‘Y’’ is the query type. For
the Auction data set, we also tested a set of benchmark
queries provided by XMark [1] listed as Q1; . . . ;Q5. For
the TEI data set, we choose queries with length ranging
from 1 to 34 to test the effectiveness of the approximate P-
labeling scheme.

The XML data sets were stored in table form. We
created two relations for each data set, one to implement
our approach and the other to implement D-labeling. The
schema of the relation used for our approach is SP(plabel,
start, end, level, data), with primary key {start}. Attribute
fdatag stores PCDATA or attribute values. The relation is
clustered by {plabel, start}. The schema of the relation SD

implementing D-labeling is the same, except that the
plabel attribute is replaced by a tag attribute. The relation
is clustered by {tag, start}. Indexes are built for all the
attributes involved in the queries to achieve the best
possible performance for both approaches. The query
engine for both approaches is based on the holistic twig
join algorithm implemented in Cþþ [11].



ARTICLE IN PRESS

Fig. 14. Query sets.

Y. Chen et al. / Information Systems 35 (2010) 170–185 181
6.2. Query processing time

Fig. 15 shows the query processing time of each
approach on the Shakespeare, Protein and Auction data
sets. Since the cost of output generation (XML tree
reconstruction) is the same regardless of the algorithm
applied, it is not included in the figure.

As we can see, for a query with l-axis steps, the
conventional approach using D-labeling requires ðl� 1Þ D-
joins. The number of D-joins needed in BLAS depends on
the number of predicates and descendant/ancestor axis
steps rather than on the total number of axis steps, and
therefore fewer D-joins are needed. Furthermore, BLAS
does not need to access XML nodes whose source path
expressions are not contained in the decomposed suffix
path expressions, and therefore requires fewer disk
accesses. The size of intermediate results is also smaller
due to the fact that more specific SQL subqueries are
generated. In particular, BLAS uses a single select opera-
tion with fewer disk accesses over the P-labels for suffix
path queries (query type 1) compared with D-labeling. It
uses a single D-join and two selections for the path
queries tested (query type 2). Also, observe that for suffix
path queries and path queries, Split and Push-up are the
same: they generate the same subqueries, which are
stitched together using the same number of joins, and
therefore have the same execution time. As for general
queries (query type 3), consider the SQL queries generated
for QS3. D-labeling requires five D-joins, whereas BLAS
only requires two D-joins. Furthermore, since Push-up
restricts each subquery to be as specific as possible, it
further reduces disk accesses and the size of intermediate
results, and performs better than Split. For QS3, Split
requires two range selections and one equality selection;
Push-up requires one range selection and two equality
selections with a smaller intermediate result generated
compared with Split. Therefore Push-up has better
performance than Split. Experiments show that for all
test queries and data sets, BLAS is more efficient than the
traditional D-labeling approach.

6.3. Scalability

To test scalability, we replicated the Auction data set.
Fig. 16 shows the execution time and the number of
elements read by each approach for suffix path query QA1

on different data set sizes. As the file size increases, the
difference between the execution time of D-labeling and
that of BLAS increases. Performance results for tree query
QA3 are shown in Fig. 17; again Split and Push-up
outperform D-labeling. For this query, Push-up outper-
forms Split: although Push-up uses the same number of
joins as Split, the select operations are more selective.
Therefore the number of disk accesses is fewer and the
execution time is smaller for Push-up. We also observe
that the performance difference increases with the file
size.

6.4. Approximate P-labeling

To test the effectiveness of approximate P-labeling, we
used 6-approximate P-labeling and tested path queries of
length ranging from 1 to 34 on the TEI data set. As shown
in Fig. 18, when the query length increases, the time used
by the Push-up algorithm increases in a stair-wise fashion.



ARTICLE IN PRESS

0

2

4

6

8

10

12

14

QS1
QS2

QS3
QS4

QP1
QP2

QP3
QP4

QA1
QA2

QA3
QA4 Q1 Q2 Q3 Q4 Q5

Queries

Ti
m

e 
(s

ec
on

ds
)

D-labeling Split Push Up

1828
68

33

21
18

18

Fig. 15. Query execution time of D-labeling, Split and Push-up on different data sets.

QA1

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

34.8M

FileSize (Byte)

Ti
m

e 
(s

ec
on

ds
)

DLabeling Split PushUp

QA1

0

50

100

150

200

250

300

350

400

450

FileSize (Byte)

 V
is

ite
d 

el
em

en
ts

 (K
)

DLabeling Split PushUp

69.7M 104.5 M139M 174M 34.8M 69.7M 104.5 M139M 174M

Fig. 16. The performance of D-labeling, Split and Push-up for a suffix path query. (a) Execution time. (b) Number of elements read.

QA3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

FileSize (Byte)

Ti
m

e 
(s

ec
on

ds
)

DLabeling Split PushUp

QA3

0
20
40
60
80

100
120
140
160
180

FileSize (Byte)

Vi
si

te
d 

el
em

en
ts

 (K
)

DLabeling Split PushUp

34.8M 69.7M 104.5 M139M 174M 34.8M 69.7M 104.5 M139M 174M

Fig. 17. The performance of D-labeling, Split and Push-up for a tree query. (a) Execution time. (b) Number of elements read.

Y. Chen et al. / Information Systems 35 (2010) 170–185182
Within each group of six queries, Push-up takes roughly
the same time since the SQL queries generated for the
XPath queries in the same group have the same number of
selections and joins. On the other hand, since D-labeling
requires one more join when the query length is increased
by one, the time it takes is proportional to the length of
the query.

As shown in the experiments, BLAS outperforms
the traditional approach which only uses D-labeling. The
performance enhancement is achieved by reducing the



ARTICLE IN PRESS

0

0.2

0.4

0.6

0.8

1

1.2

1
Query Length

Ti
m

e 
(s

ec
on

ds
)

D-labeling Push-up

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 

Fig. 18. Query time for TEI data set when query length increases.

Y. Chen et al. / Information Systems 35 (2010) 170–185 183
number of joins and disk accesses. BLAS gracefully
handles data sets with a large number of tag names and
long suffix path queries using approximate P-labeling.
Furthermore, Push-up should be chosen over Split as an
implementation strategy for BLAS.
7. Related work

XML storage and query processing using relational

databases: A lot of research has been done on storing
XML data using relations and translating XML queries to
SQL queries, in order to leverage the mature indexing and
query processing techniques of relational databases. The
‘‘edge approach’’ was the first proposal, where an XML
document is treated as a graph and a tuple is generated for
every edge [24]. It also provides a simple and general
approach to map an XML query to an SQL query. However,
since a self-join is required to determine the parent–child
relationship over two lists of XML nodes, an XML query is
typically translated to an SQL query with many joins.

To enable efficient query processing, one theme is to
reduce the number of joins in the translated SQL queries.
The ‘‘inlining’’ approach inlines the information of unique
child into its parent tuple based on the data schema
[8,15,21,32,41]. Query translation in the presence of
recursive data schemas has also been studied [23,33].
Compared to the edge approach, inlining eliminates the
joins between a node and its unique child. However, the
mapping from an XML query to an SQL query is complex
and requires schema information. To process a descendant
and/or ancestor axis traversal, both the edge and inlining
approaches require several joins, depending on the depth
of the XML tree.

D-labeling was proposed to translate either a descen-
dant or child axis to a single join, and has been shown to
reduce the number of joins as compared to the edge and
inlining approaches when the XML query involves
descendant axis traversals [3,11,17,20,29,30,34,43,44]. For
an XML query with l-axis traversals, D-labeling requires
ðl� 1Þ joins over D-labels. The effectiveness of leveraging
D-labeling in processing XQuery queries compared with
other XQuery engines has been shown [20].
Our work further decreases the number of joins in the
SQL query translated from an XML query by eliminating
the joins translated from consecutive child axis traversals.
For an XML query containing l-axis traversals, the number
of joins that BLAS requires is equal to the number of suffix
paths that are in the XML query, which is in general fewer
than (and in the worst case equal to) ðl� 1Þ.

In Georgiadis and Vassalos’s work [26], the source path
of each XML node is recorded as a string and a path query
is processed as a complex regular expression matching
over strings. Another related approach is to record the
‘‘reversed’’ representation of the source path of each XML
node and process a suffix path query using ‘‘prefix match’’
of the reversed source paths [7,39]. The results of the
subqueries are joined based on node ancestor–descendant
relationships using Dewey labeling or its variant [38].
While the implementation of D-labeling can be either
based on node regions or Dewey labeling, selections
involving integer equality/range testing on P-labels in the
SQL queries generated by BLAS are more efficient than
selections involving string matching.

This paper extends our earlier work [14] to consider
general XPath query processing on XML data. Since
accurate P-labeling presented in our earlier work cannot
handle XML data with large tag sets and/or tree depth, we
propose in Section 5 an approximate P-labeling scheme
and an extended query translation algorithm. BLAS with
approximate P-labeling presents a spectrum of XPath-to-
SQL query translation algorithms, in which existing work
[3,11,17,20,29,34,44] and our earlier work [14] represent
two extreme cases. Furthermore, we extend our previous
work to support all XPath axes in Section 4.3, rather than
just child and descendant axes.

There are several orthogonal research themes in
speeding up the performance of XML query processing.
Since the join operation based on D-labeling or Dewey-
labeling is common in the translated SQL queries, the
problem of efficiently implementing this type of join has
been extensively studied [3,17,29,34,44]. To process tree
queries that contain only descendant axes, algorithms
with time complexity linear in the size of the input and
output have been proposed [11]. Specialized indexes for
optimizing joins over D-labels have also been designed



ARTICLE IN PRESS

Y. Chen et al. / Information Systems 35 (2010) 170–185184
[12,17,30,43]. The problem of optimizing joins translated
from XQuery queries was studied [9], such as handling
joins embedded in nested for-loops, recognizing join
patterns in a way that is immune to syntactic variance
in the query, and avoiding expensive sorting operations.
Problems such as generating pipelineable plans and
picking the right physical organization, have also been
studied [27]. Schema information has been exploited so
that the wildcards and descendant axes in XPath queries
can be expanded to speed up evaluation [35]. Techniques
for generating an information-preserving mapping
scheme from XML to relational databases that satisfies
losslessness and validation properties have also been
proposed [5]. A survey on how to efficiently query XML
data repositories was done by Gou and Chirkova [28].

Labeling schemes: Several D-labeling implementations
have been proposed [2,4,22,34,36]. The problem of
building D-labels with the smallest label size has been
studied [2,4]. XPRESS [37] proposes an XML data com-
pression technique that uses reverse arithmetic encoding
to encode paths as a distinct interval within [0,1). Our P-
labeling borrows the idea of labeling a path, but focuses
on the optimization of query processing instead of
compression. During P-label construction, the intervals
are partitioned uniformly from an integer domain. In
Kannan et al. [31], labels of size logarithmic in the data
size have been designed to encode a graph structure, such
that testing the adjacency of any two nodes can be
performed in time linear in the size of the labels.
Techniques for dynamically updating D-labels when the
underlying XML data is updated have also been proposed
[16,38,42].

As with approximate P-labeling, the A(k)-index [32]
and D(k)-index [40] exploit the idea of designing an
approximate index for paths of length k entering data
nodes. However, there are several salient differences. First,
an A(k) or D(k)-index is a structural summary of a data
graph, and a query is evaluated by traversing the index
graph. In BLAS, by augmenting XML data with P-labels and
D-labels, a query is evaluated by accessing B+-trees that
index integer labels. Second, an A(k) or D(k)-index does
not support queries containing predicates, and it provides
complete but not sound answers for queries containing
descendant axes. In contrast, BLAS supports those types of
queries correctly. On the other hand, an A(k) or D(k)-index
can handle graph-structured XML data, while BLAS
processes XML trees.
8. Conclusions

This paper presents BLAS as a generic and efficient
system for XML storage and XPath query processing by
leveraging relational databases. It maps XML data to
relations and translates an input XPath query to an SQL
query. BLAS has several advantages compared to existing
work. First, the number of selections in the translated SQL
query is reduced. The number of selections required by
BLAS is equal to the number of suffix paths in an XPath
query, while the number of selections required in existing
work is equal to the number of axis steps in the query.
Second, as a consequence of reducing the number of
selections, the number of disk accesses required to
execute the SQL query is reduced. Third, BLAS requires
fewer joins; the number of joins is one less than the
number of selections in the generated SQL query. Finally,
the intermediate results that participate in joins in BLAS
are smaller since the SQL subqueries generated in BLAS
are longer and more specific.

To achieve these benefits, BLAS uses a bi-labeling
scheme which consists of P-labeling to speed up suffix
path query evaluation, and D-labeling to speed up queries
involving descendant axis traversals. To translate an XPath
query to an SQL query, we first decompose an XPath query
into a set of suffix path subqueries. P-labels of these
subqueries are then calculated, based on which each suffix
path subquery is translated to an SQL selection. The final
SQL query is obtained by stitching together the set of
selections using joins on D-labels.

We also propose approximate P-labeling and corre-
sponding query translation algorithm when we run out of
enough precision to compute exact P-labels. Approximate
P-labeling represents a spectrum of XPath-to-SQL query
translation, in which BLAS with exact P-labeling and
existing work that only uses D-labeling represent two end
points.

BLAS efficiently evaluates XPath expressions, which are
a building block of XQuery. We are extending BLAS to
support XQuery by addressing the additional technical
challenges of evaluating FLWOR expressions (For, Let,
Where, Order By and Return clauses).
References

[1] XMARK the XML-benchmark project hhttp://monetdb.cwi.nl/xml/
index.htmli.

[2] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for
ancestor queries, in: Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2001, pp. 547–556.

[3] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivastava, Y.
Wu, Structural joins: a primitive for efficient XML query pattern
matching, in: Proceedings of International Conference on Data
Engineering (ICDE), 2002, pp. 141–154.

[4] S. Alstrup, T. Rauhe, Improved labeling scheme for ancestor queries,
in: Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002, pp. 947–953.

[5] D. Barbosa, J. Freire, A.O. Mendelzon, Designing information-
preserving mapping schemes for XML, in: Proceedings of Interna-
tional Conference on Very Large Data Bases (VLDB), 2005, pp.
109–120.

[6] C. Barton, P. Charles, D. Goyal, M. Raghavachari, V. Josifovski, M.
Fontoura, Streaming XPath processing with forward and backward
axes, in: Proceedings of International Conference on Data Engineer-
ing (ICDE), 2003, pp. 455–466.

[7] K. Beyer, R.J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G.
Lohman, B. Lyle, F. Özcan, H. Pirahesh, N. Seemann, T. Truong, B.V.
Linden, B. Vickery, C. Zhang, System RX: one part relational, one
part XML, in: Proceedings of ACM SIGMOD International Conference
on Management of Data, 2005, pp. 347–358.

[8] P. Bohannon, J. Freire, P. Roy, J. Simeon, From XML schema to
relations: a cost-based approach to XML storage, in: Proceedings of
International Conference on Data Engineering (ICDE), 2002, pp.
64–80.

[9] P. Boncz, T. Grust, M.V. Keulen, S. Manegold, J. Rittinger, J. Teubner,
MonetDB/XQuery: a fast XQuery processor powered by a relational
engine, in: Proceedings of ACM SIGMOD International Conference
on Management of Data, 2006, pp. 479–490.

[10] J. Bosak, Shakespeare hhttp://www.ibiblio.org/xml/examples/shake-
speare/i.

http://monetdb.cwi.nl/xml/index.html
http://monetdb.cwi.nl/xml/index.html
http://www.ibiblio.org/xml/examples/shakespeare/
http://www.ibiblio.org/xml/examples/shakespeare/


ARTICLE IN PRESS

Y. Chen et al. / Information Systems 35 (2010) 170–185 185
[11] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: optimal XML
pattern matching, in: Proceedings of ACM SIGMOD International
Conference on Management of Data, 2002, pp. 310–321.

[12] T. Chen, J. Lu, T.W. Ling, On boosting holism in XML twig pattern
matching using structural indexing techniques, in: Proceedings of
ACM SIGMOD International Conference on Management of Data,
2005, pp. 455–466.

[13] Y. Chen, S. Davidson, C. Hara, Y. Zheng, RRXS: redundancy reducing
XML storage in relations, in: Proceedings of International Con-
ference on Very Large Data Bases (VLDB), 2003, pp. 189–200.

[14] Y. Chen, S. Davidson, Y. Zheng, BLAS: an efficient XPath processing
system, in: Proceedings of ACM SIGMOD International Conference
on Management of Data, 2004, pp. 47–58.

[15] Y. Chen, S.B. Davidson, Y. Zheng, Constraint preserving XML storage
in relations, in: Proceedings of International Workshop on the Web
and Databases (WebDB), 2002, pp. 7–12.

[16] Y. Chen, G.A. Mihaila, R. Bordawekar, S. Padmanabhan, L-tree: a
dynamic labeling structure for ordered XML data, in: Lecture Notes
in Computer Science, EDBT Workshop: Database Technologies for
Handling XML-Information on the Web (DataX), vol. 3268, 2004,
pp. 209–218.

[17] S. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zaniolo, Efficient
structural joins on indexed XML documents, in: Proceedings of
International Conference on Very Large Data Bases (VLDB), 2002,
pp. 263–274.

[18] J. Clark, S. DeRose, XML path language (XPath) hhttp://www.w3.org/
TR/xpathi.

[19] The TEI Consortium, Text Encoding Initiative—The XML Version of
the TEI Guidelines hhttp://www.tei-c.org/Consortiumi.

[20] D. DeHaan, D. Toman, M. Consens, M.T. Ozsu, A comprehensive
XQuery to SQL translation using dynamic interval encoding, in:
Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, 2003, pp. 623–634.

[21] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data
with STORED, in: Proceedings of ACM SIGMOD International
Conference on Management of Data, 1999, pp. 431–442.

[22] P.F. Dietz, Maintaining order in a linked list, in: Proceedings of ACM
Symposium on Theory of Computing (STOC), 1982, pp. 62–69.

[23] W. Fan, J.X. Yu, H. Lu, J. Lu, R. Rastogi, Query translation from XPATH
to SQL in the presence of recursive DTDs, in: Proceedings of
International Conference on Very Large Data Bases (VLDB), 2005,
pp. 337–348.

[24] D. Florescu, D. Kossmann, Storing and querying XML data using an
RDBMS, IEEE Data Engineering Bulletin 22 (3) (1999) 27–34.

[25] Georgetown Protein Information Resource, Protein Sequence Data-
base hhttp://www.cs.washington.edu/research/xmldatasets/i.

[26] H. Georgiadis, V. Vassalos, Improving the efficiency of XPath
execution on relational systems, in: Proceedings of International
Conference on Extending Database Technology (EDBT), 2006, pp.
570–587.

[27] H. Georgiadis, V. Vassalos, XPath on steroids: exploiting relational
engines for XPath performance, in: Proceedings of ACM SIGMOD
International Conference on Management of Data, 2007,
pp. 317–328.

[28] G. Gou, R. Chirkova, Efficiently querying large XML data reposi-
tories: a survey, IEEE Transactions on Knowledge and Data
Engineering 19 (10) (2007) 1381–1403.
[29] T. Grust, M.V. Keulen, J. Teubner, Accelerating XPath evaluation in
any RDBMS, ACM Transactions on Database Systems (TODS) 29 (1)
(2004) 91–131.

[30] H. Jiang, H. Lu, W. Wang, B.C. Ooi, XR-tree: indexing XML data for
efficient structural joins, in: Proceedings of International Con-
ference on Data Engineering (ICDE), 2003, pp. 253–263.

[31] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, in:
Proceedings of ACM Symposium on Theory of Computing (STOC),
1988, pp. 334–343.

[32] R. Kaushik, P. Shenoy, P. Bohannon, E. Gudes, Exploiting local
similarity for efficient indexing of paths in graph structured data,
in: Proceedings of International Conference on Data Engineering
(ICDE), 2002, pp. 129–140.

[33] R. Krishnamurthy, V.T. Chakaravarthy, R. Kaushik, J.F. Naughton,
Recursive XML Schemas, Recursive XML queries, relational storage:
XML-to-SQL query translation, in: Proceedings of International
Conference on Data Engineering (ICDE), 2004, pp. 42–53.

[34] Q. Li, B. Moon, Indexing and querying XML data for regular path
expressions, in: Proceedings of International Conference on Very
Large Data Bases (VLDB), 2001, pp. 361–370.

[35] Z.H. Liu, M. Krishnaprasad, V. Arora, Native XQuery processing in
Oracle XMLDB, in: Proceedings of ACM SIGMOD International
Conference on Management of Data, 2005, pp. 828–833.

[36] J. Lu, T.W. Ling, C.Y. Chan, T. Chen, From region encoding to
extended Dewey: on efficient processing of XML twig pattern
matching, in: Proceedings of International Conference on Very
Large Data Bases (VLDB), 2005, pp. 193–204.

[37] J. Min, M. Park, C. Chung, XPRESS: a queriable compression for XML
data, in: Proceedings of ACM SIGMOD International Conference on
Management of Data, 2003, pp. 122–133.

[38] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury,
ORDPATHs: insert-friendly XML node labels, in: Proceedings of
ACM SIGMOD International Conference on Management of Data,
2004, pp. 903–908.

[39] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, V. Zolotov,
Indexing XML data stored in a relational database, in: Proceedings
of International Conference on Very Large Data Bases (VLDB), 2004,
pp. 1134–1145.

[40] C. Qun, A. Lim, K.W. Ong, D(k)-index: an adaptive structural
summary for graph-structured data, in: Proceedings of ACM
SIGMOD International Conference on Management of Data, 2003,
pp. 134–144.

[41] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, J.F.
Naughton, Relational databases for querying XML documents:
limitations and opportunities, in: Proceedings of International
Conference on Very Large Data Bases (VLDB), 1999, pp. 302–314.

[42] A. Silberstein, H. He, K. Yi, J. Yang, BOXes: efficient maintenance of
order-based labeling for dynamic XML data, in: Proceedings of
International Conference on Data Engineering (ICDE), 2005, pp.
285–296.

[43] W. Wang, H. Jiang, H. Lu, J.X. Yu, PBiTree coding and efficient
processing of containment joins, in: Proceedings of International
Conference on Data Engineering (ICDE), 2003, pp. 391–404.

[44] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M. Lohman, On
supporting containment queries in relational database manage-
ment systems, in: Proceedings of ACM SIGMOD International
Conference on Management of Data, 2001, pp. 425–436.

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.tei-c.org/Consortium
http://www.cs.washington.edu/research/xmldatasets/

	A bi-labeling based XPath processing system
	Introduction
	Background and system architecture
	The labeling schemes
	D-labeling
	P-labeling

	Query translation
	Split algorithm
	Push-up algorithm
	Processing general XPath queries

	Approximate P-labeling
	Approximate P-labels for XML nodes
	Query translation for approximate P-labeling

	Experimental evaluation
	Experimental setup
	Query processing time
	Scalability
	Approximate P-labeling

	Related work
	Conclusions
	References




