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Abstract

Performing business process analysis in healthcare organizations is particularly difficult due to the highly-

dynamic, complex, ad-hoc, and multi-disciplinary nature of healthcare processes. Process mining is a promising

approach to obtain a better understanding about those processes by analyzing event data recorded in healthcare

information systems. However, not all process mining techniques perform well in capturing the complex and

ad-hoc nature of clinical workflows. In this work we introduce a methodology for the application of process

mining techniques that leads to the identification of regular behavior, process variants, and exceptional medical

cases. The approach is demonstrated in a case study conducted at a hospital emergency service. For this pur-

pose, we implemented the methodology in a tool that integrates the main stages of process analysis. The tool is

specific to the case study, but the same methodology can be used in other healthcare environments.
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1. Introduction

Business process improvement is a topic of increasing concern and a critical success factor for healthcare

organizations worldwide. The purpose is to increase organizational performance by process or information

system redesign, covering the fundamental needs for today’s healthcare organizations [1, 2, 3, 4]. These orga-

nizations are constantly pushed to improve the quality of care services in an unfavorable economical scenario

and under financial pressure by governments [4, 1]. Improving process efficiency is therefore of utmost im-

portance. On the other hand, it has been reported that faulty healthcare processes are one of the main causes

leading practitioners to make technical mistakes [5]. These can severely compromise patient safety and even

cost lives [6]. Moreover, recent trends such as patient-centric services and integrated care pathways have been

introduced to improve the quality of care services, which are also requiring healthcare organizations to redesign

and adapt their processes [3, 1]. They break functional boundaries and offer an explicit process-oriented view of

healthcare where the efficient collaboration and coordination of physicians becomes a critical issue [2, 3, 1]. In

this scenario, healthcare information systems should be designed to directly support clinical and administrative
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processes, integrating and coordinating the work of physicians [4, 3, 1]. Unfortunately, in general these systems

need to be rethought since they lack maturity and interoperability with other systems, and offer a weak support

to healthcare processes [5, 7, 8]. In some specific cases, the proportion of these problems can be worrisome [7].

Business Process Analysis (BPA) [9] becomes extremely important to enable the successful improvement

of business processes [10, 11]. BPA aims to provide organizations with knowledge to understand how their

processes are currently being performed. This knowledge can then be used to detect gaps between guidelines

and actual practices, so that organizations can improve processes and systems in alignment with their strategical

objectives [9]. The motivation for this work is to provide healthcare organizations with means to perform

BPA, in particular with the aid of process mining. We limit our scope to the operational business processes of

healthcare organizations, commonly known as healthcare processes.

1.1. Healthcare Processes

Healthcare processes can be classified as medical treatment processes or generic organizational processes

[3]. Medical treatment processes, also known as clinical processes, are directly linked to the patient and

are executed according to a diagnostic-therapeutic cycle, comprising observation, reasoning and action. The

diagnostic-therapeutic cycle heavily depends on medical knowledge to deal with case-specific decisions that are

made by interpreting patient-specific information. On the other hand, organizational or administrative processes

are generic process patterns that support medical treatment processes in general. They are not tailored for a

specific condition but aim to coordinate medical treatment among different people and organizational units.

Patient scheduling and exam requests are two examples of organizational processes.

None of these processes are trivial. They are executed under an environment that is continually changing

and that is commonly accepted to be one of the most complex when compared to other environments [1]. The

healthcare environment and its underlying processes have peculiar characteristics with respect to their degree

of dynamism, complexity and multi-disciplinary nature. In general, healthcare processes are recognized to have

the following characteristics:

• Healthcare processes are highly dynamic [12, 4, 1, 8]. Process changes occur due to a variety of reasons

including the introduction of new administrative procedures, technological developments, or the discov-

ery of new drugs. Moreover, medical knowledge has a strong academic background that is continuously

evolving, meaning that new treatment and diagnostic procedures are constantly being discovered that

may invalidate current treatment pathways or require adaptations. Also new diseases are constantly being

discovered that may require healthcare organizations to implement new processes.

• Healthcare processes are highly complex [13, 14, 4, 3, 1]. Complexity arises from many factors such

as a complex medical decision process, large amounts of data to be exchanged, and the unpredictability

of patients and treatments. The medical decision process is made by interpreting patient-specific data
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according to medical knowledge. This decision process is the basis of clinical processes and it is difficult

to capture, as medical knowledge includes several kinds of medical guidelines, as well as the individual

experience of physicians. Also, the amount of data that supports medical decisions is large and of various

types; consider for example the different types of reports or the different types of exams that are possible

and are exchanged between physicians. Moreover, the patient’s body may react differently to drugs

and complications may arise during treatment, meaning that new medical decisions need to be made

accordingly. Medical decisions and treatment outcomes may therefore be unpredictable, also meaning

that as clinical processes are instantiated their behavior may also be unpredictable.

• Healthcare processes are increasingly multi-disciplinary [8, 12]. Healthcare organizations are charac-

terized by an increasing level of specialized departments and medical disciplines, and care services are

increasingly delivered across organizations within healthcare networks. Healthcare processes, therefore,

are increasingly executed according to a wide range of distributed activities, performed by the collabora-

tive effort of professionals with different skills, knowledge and organizational culture.

• Healthcare processes are ad-hoc [12, 14, 13]. Healthcare highly depends on distributed human collab-

oration, and participants have the expertise and autonomy to decide their own working procedures. As

physicians have the power to act according their knowledge and experience, and need to deviate from

defined guidelines to deal with specific patient situations, the result is that there are processes with high

degree of variability, non-repetitive character, and whose order of execution is non-deterministic to a large

extent.

1.2. Problem Definition

Traditional BPA assumes that people must be capable of explaining what is happening within the organiza-

tion and describing it in terms of processes, such that each description is valid, unambiguous, and is a useful

abstraction of reality [9]. These descriptions can be represented in terms of process models [15, 16]. Tradition-

ally, process models result from the collaborative effort between key stakeholders and process analysts, as on

one side we have the inside knowledge of how the organization works, and on the other side the expertise to

represent that knowledge in formal languages associated with process modeling [1]. This traditional approach

has two main problems.

The first is that traditional BPA is time-consuming [17, 18], as it implies lengthy discussions with workers,

extensive document analysis, careful observation of participants, etc. The second problem is that, typically,

there are discrepancies between the actual business processes and the way they are perceived or described by

people [17]. Several reasons for this can be pointed out, including the inherent difficulty in understanding

complex and non-deterministic phenomena [19, 20]. The more complex and ad-hoc the processes are, the more

difficult it will be for people to describe them. Also, when processes involve distributed activities, it is difficult
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for workers to have a shared and common perspective of the global process [21], especially if the process

is continually changing. In summary, we find that BPA is extremely important for healthcare organizations;

however, traditional approaches are time-consuming, and they may not provide an accurate picture of business

processes, which are highly dynamic, highly complex, multi-disciplinary and ad-hoc.

1.3. The Role of Process Mining

Process mining offers an interesting approach to solve or mitigate the above problems [22]. As organizations

depend on information systems to support their work, these systems can record a wide range of valuable data,

such as which tasks were performed, who performed the task, and when. For example, as patients enter an

emergency department a system records the triage, the nurse who performed it, the time it occurred, and for

which patient, i.e. the work case. These event data can be organized in such a way that they contain a history of

what happened during process execution, and this history can be analyzed using process mining techniques.

The extraction of process knowledge from systems, which can be made automatically to a large extent, can

reduce the time required for process analysis. The main benefit, however, is that the models acquired from

process mining are based on real executions of the processes; therefore, one gains insight about what is actually

happening, and ultimately the knowledge provided by process mining can be used for effective improvement of

those processes and of their supporting systems.

In healthcare environments, it may be possible to extract event data from several kinds of specialized systems

[14], such as those based on Electronic Patient Records (EPR). As another example, radiology information

systems (RIS) can record the workflow of patient examinations, from the exam request to the exam report.

Also, emergency information systems can record the careflow of patients, and billing information systems

usually combine data from other hospital systems about the activities performed on a patient.

1.4. Research Goals

The main goal of our work is to devise a methodology based on process mining in order to support BPA

in healthcare. The methodology includes process mining techniques that are especially useful in healthcare

environments, given the characteristics of healthcare processes. To validate the approach, we conducted a case

study in the Hospital of São Sebastião, located in the north of Portugal. To support the case study, we developed

a tool that implemented the proposed methodology. The tool gathered data from the hospital information system

and provided a set of process mining techniques for the analysis of selected healthcare processes.

The structure of the paper is as follows: Section 2 provides an overview of process mining techniques

and discusses the use of these techniques in healthcare; Section 3 describes the proposed methodology for the

analysis of healthcare processes; Section 4 presents the case study at the Hospital of São Sebastião; and section

5 concludes the paper.
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2. Related Work

In the context of Business Process Management (BPM) [10, 16] there is a life-cycle associated with business

processes that comprises the following phases: (1) design; (2) configuration; (3) enactment; and (4) diagnosis

of business processes. The role of process mining is to support the design and diagnosis of processes while

also changing the traditional life-cycle approach. Instead of starting by designing a process model, it could be

that there are systems that record event data such as tasks that have been executed, their order of execution, and

the process instance they belong to. These event data can be used to extract knowledge about the process and

therefore they are especially useful for the purpose of process analysis.

Event data can be analyzed according to different perspectives [22]: (1) the control-flow perspective; (2)

the organizational perspective; (3) the data perspective; and (4) the performance perspective. The control-

flow perspective is concerned with the process behavior, namely the activities in the process and their order

of execution. The organizational perspective focuses on the relationships between the users who performed

the activities, such as whether they belong to the same or to different groups or organizational units. The

performance perspective aims at detecting bottlenecks or calculating performance indicators, such as throughput

times and sojourn times. The data perspective is related to the data objects that serve as input and output for the

activities in a case.

A wide range of techniques are available to support the different perspectives of process mining, and these

techniques are discussed at length in the literature. Control-flow techniques include the α-algorithm [23], the

Heuristic Miner [24], the Fuzzy Miner [25], and the Genetic Miner [26]. The organizational perspective includes

the Social Network Miner [27] and the Organizational Model Miner [28]. For the performance perspective,

there is the Performance Analysis with Petri Net plug-in [29] and the Dotted Chart Analysis plug-in [30]. For

conformance checking one may use tools such as the Conformance Checker [31] and the LTL Checker [32].

All of these techniques are available in the ProM framework [33], an open-source Java application with an

extensible plug-in architecture1. Here we will focus on a specific kind of techniques, specifically clustering

techniques, which play a key role in the proposed methodology.

2.1. Clustering Techniques

Clustering techniques can be used as a preprocessing step, and their purpose is to handle event logs that

contain large amounts of data and high variability in the recorded behavior [34]. Rather than running control-

flow mining techniques directly on large event logs, which would generate very confusing models, by using

clustering techniques it is possible to divide traces into clusters, such that similar types of behavior are grouped

in the same cluster. One can then discover simpler process models for each cluster.

1ProM can be obtained at http://prom.sourceforge.net
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Several clustering techniques can be used for this purpose, such as the Disjunctive Workflow Schema (DWS)

plug-in [35] which can be seen as an extension of the Heuristic Miner plug-in. It uses the Heuristic Miner

to construct the initial process model; however, this model is iteratively refined and clustered with a k-means

algorithm. The final result is a tree with the models created, where the parent nodes generalize their child nodes.

At each level of the tree, a set of discriminant rules characterize each cluster. These discriminant rules identify

structural patterns that are found in the process models.

The Trace Clustering plug-in [36] offers a set of distance-based clustering techniques based on the features

of each trace, such as how frequently the tasks occur in the trace, or how many events were created by the origi-

nators in that trace. Different clustering methods, such as k-means and Self-Organizing Maps, can then be used

to group closely-related traces in the same cluster. This technique does not provide a model for visualization;

i.e. to visualize the clusters one needs to use some other mining technique.

The Sequence Clustering plug-in [37] was motivated by previous work outside the ProM framework [38, 39,

40]. Sequence clustering takes the sequences of tasks that describe each trace and groups similar sequences into

the same cluster. This technique differs from Trace Clustering in several ways. Instead of extracting features

from traces, sequence clustering focuses on the sequential behavior of traces. Also, each cluster is based on a

probabilistic model, namely a first-order Markov chain. The probabilistic nature of Markov chains makes this

technique quite robust to noise, and it provides a means to visualize each cluster. In [37], sequence clustering

was shown to generate simpler models than trace clustering techniques.

2.2. Process Mining in Healthcare Enviroments

The application of process mining for BPA in healthcare is a relatively unexplored field, although it has

already been attempted by some authors. For example, [13] applied process mining to discover how stroke

patients are treated in different hospitals. First there was a need for intensive preprocessing of clinical events

to build the event logs. Then the ProM framework was used along with the Heuristic Miner to gain insights

about the control-flow perspective of the process. Different practices that are used to treat similar patients were

discovered, together with unexpected behavior as well. The discovered process model was converted to a Petri

net. The performance of the process was then analyzed by projecting performance indicators onto the Petri net.

It was concluded that process mining can be successfully applied to understand the different clinical pathways

adopted by different hospitals and different groups of patients.

In further work, [14, 13] conducted a case study in the AMC hospital in Amsterdam. Process mining was

used to analyze the careflow of gynecological oncology patients. An intensive preprocessing of data was also

needed to build the event log. The control-flow, the organizational, and the performance perspectives of the

process were analyzed. To discover the control-flow perspective, the Heuristic Miner was used first, which

resulted in a spaghetti model that was not useful for analysis. The authors explain this difficulty based on the

complex and unstructured nature of healthcare processes. Trace Clustering and the Fuzzy Miner were then
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used to separate the regular behavior from the infrequent one, and more understandable process models were

discovered for each cluster. To study the organizational perspective, the Social Network Analysis plug-in was

used to understand the transfer of work between hospital departments. To analyze the performance perspective,

the Dotted Chart and the Basic Performance Analysis plug-ins were used, both giving useful performance

indicators about the careflow. The discovered models were confirmed by the staff of the AMC hospital, and also

compared with an a priori flowchart of the process, with good results. It should be noted that this flowchart was

created with a lot of effort from the AMC staff. The authors concluded that process mining is an excellent tool

for the analysis of complex hospital processes.

Another study [18] focused on the problems of traditional BPA in the Erlangen University Clinic, in Ger-

many. In order to support the analysis of the radiology workflows at the clinic, the authors developed a data

warehouse for process mining. During the study several control-flow mining techniques were evaluated, and

the authors found that none of the techniques alone was able to meet all the major challenges of healthcare

processes, such as noise, incompleteness, multiple occurrence of activities, and the richness of process variants.

Approaches such as the α-algorithm and the Multi-Phase algorithm are severely affected by the incomplete-

ness and noise present in clinical logs, so they were not able to produce valid process models. The Heuristic

Miner, the DWS Algorithm, and the Genetic Miner produced the best results in the presence of noisy data. The

detection of process variants was only possible with the DWS Algorithm, since it was the only one that used

clustering techniques. The α-algorithm was the only one to (at least partially) handle activities that occurred

multiple times in the process without being part of a loop. Despite the limitations, the authors concluded that

process mining has a great potential to facilitate the understanding of medical processes and their variants.

The author of [12] evaluated the capabilities of the Heuristic Miner and also the DWS Algorithm to analyze

the careflows of an Intensive Care Unit of the Catharina Hospital, in Eindhoven. The Heuristic Miner produced

inaccurate and confusing models, and it was unable to distinguish process variants. The clustering approach

of the DWS Algorithm was able to discover some behavioral patterns; however, the discriminants rules were

hard to understand. None of them was considered to be useful to gain insight about exceptional medical cases

(that can be translated into infrequent behavior) or about variants of careflows. To handle this problem, the

author introduced the Association Rule Miner (ARM) plug-in, which aims at discovering association rules and

frequent itemsets in the event log. The technique has proved to be useful to obtain behavioral patterns in the

event log and to group similar patients. To improve the capabilities of the algorithm in discovering exceptional

medical cases, and also to obtain simpler process models, the ARM includes a clustering technique that divides

the log into clusters with similar association rules and frequent itemsets.

2.3. Discussion

Related work by several authors suggests that process mining can be successfully applied to the analysis

of healthcare processes [14, 18, 13, 13, 12]. However, most of the techniques are not useful to handle the
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complex and ad-hoc nature of these processes [18, 13, 13]. The main challenges to be addressed are: (1) the

incompleteness and noise of clinical event logs [14, 18, 13, 12]; (2) the richness in process variants, that need to

be clearly distinguished [14, 18, 12]; and (3) the exceptional medical cases (in the form of infrequent behavior),

which must be captured and not disregarded [14, 18, 13]. With respect to noise and the incompleteness of

event logs, it is commonly accepted that approaches such as the α-algorithm and the Multi-Phase miner do

not provide useful results. The Heuristic Miner is a good approach to handle noise [13] but the richness of

process variants results in confusing models, making it impossible to distinguish exceptional medical cases

[14, 18, 12]. Clustering techniques are highly recommended for these situations. The DWS Algorithm can

provide some results [18], but they are not the most useful [12]; both Trace Clustering and the ARM techniques

seem to perform better than the DWS Algorithm [14, 12]. The Fuzzy Miner has also been successfully used

[14]. The usefulness of Sequence Clustering has not been demonstrated in real-life healthcare settings, but it

seems to be an interesting approach, since it has already been successfully applied in other complex and ad-hoc

environments [38, 40, 41, 39, 37] and it may perform better than the Trace Clustering [37]. Also, the result of

Sequence Clustering is a mixture of Markov chains, which provides visual models for the different behavioral

patterns of the process. In ARM, the behavioral patterns are in the form of association rules, and they are

presented in the form of statements rather than models; these statements can be harder to analyze. Therefore,

several reasons justify the need to study the application of Sequence Clustering in the analysis of healthcare

processes.

The organizational and performance perspectives of the process are less explored in healthcare applica-

tions. With respect to the organizational perspective, the Social Network Miner has been successfully applied

in [13, 14]. The fact is that it becomes very important to understand and quantify the working relationships

between physicians; this is very difficult, if not impossible, to achieve with traditional BPA. The usefulness

of the Organizational Miner is still to be shown in real-life healthcare processes. With respect to the perfor-

mance perspective, both the Basic Performance Analysis and the Dotted Chart seem to be useful to measure the

performance of healthcare processes [13, 14].

Also, previous authors do not describe nor formalize a methodology for BPA in healthcare based on process

mining. Rather, they tend to focus on a specific technique or a specific perspective of the process. We argue that

it is important to develop such methodology, and to provide the community with an approach for the holistic

analysis of healthcare processes.

3. Proposed Methodology

The methodology we propose for BPA in healthcare is an extension to the work of [42]. In [42] the authors

describe a general methodology for the application of process mining techniques. This methodology (Figure

1, tasks in white) comprises (1) the preparation of an event log; (2) log inspection; (3) control-flow analysis;
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(4) performance analysis; (5) organizational analysis; (6) transfer of results. Log preparation builds the event

log by preprocessing event data gathered from information systems. Log inspection provides a first impression

about the event log; it includes the analysis of statistical information such as the number of cases, the total

number of events, the distribution of number of cases per number of events, the number of different sequences,

the number of originators, etc. Then follows the analysis of the control-flow, performance, and organizational

perspectives of the process, using the techniques described above in Section 2. The final step in the methodology

is the transfer of results, where the knowledge acquired during the previous analysis steps is presented to the

organization for validation.

Figure 1: The proposed methodology for BPA in healthcare is an extension of [42].

For the purpose of our work, we are most interested in techniques that can handle the characteristics of

healthcare processes, as described in Section 1. Given those characteristics, we find that it becomes extremely

important to study infrequent behavior and process variants. To do so, we extend the work of [42] with a new

step after log inspection. In fact, this new step is a sub-methodology that includes a set of techniques to cluster

the log and pre-analyze the process. The goal is not only to produce simpler models for the next steps, but

also to systematize the analysis of process variants and infrequent behavior, as described ahead. The scope is

limited to a set of techniques based on sequence clustering, which we use for two main reasons: (1) because we

have seen that it is a good approach for the analysis of complex and ad-hoc processes; and (2) because we are

interested in demonstrating the usefulness of this technique for the analysis of real-life healthcare processes.

A detailed view of the Sequence Clustering Analysis step is presented in Figure 2. It comprises: (1) running

the sequence clustering algorithm; (2) building a diagram for cluster analysis; (3) understanding the regular

behavior of the process; (4) understanding the process variants and infrequent behavior; (4) performing hier-

archical sequence clustering if needed; and (6) selecting the most interesting clusters for further analysis. The

next subsections describe each of these steps in more detail.

3.1. Running the Sequence Clustering Algorithm

The first step is to run the sequence clustering algorithm as described in [43, 37] in order to discover the

behavioral patterns contained in the event log. The resulting clusters will provide insight into the regular be-
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Figure 2: The Sequence Clustering Analysis subprocess.

havior, the infrequent behavior, and the process variants. To explain the concepts behind sequence clustering

and how it works, at this stage we will consider a simple event log with n process instances and three types

of sequences: AAAABC, AAAABBBBC, and CCCCBA. Figure 3, depicts one possible outcome of applying

sequence clustering to such event log. There are three clusters, each cluster contains a set of sequences and is

represented by a first-order Markov chain extracted from the behavior of those sequences.

init C end
1 1 1

0.75

0.25
A B

init A end
1 1 1

0.75

0.25
C B

init C end
1 1

0.75

0.25
A B

0.75

0.25

... ...

3
AAAABBBBC

1

CCCCBA

AAAABBBBC
4

2

Case Events

5

AAAABC

AAAABC

Cluster 1 

Cluster 2 

Cluster 3 

Cases assigned: 1; 4;... 

Cases assigned: 2; 3;... 

Cases assigned: 5;...

Figure 3: Example of the output of Sequence Clustering.

A Markov chain is defined by a finite set of N allowed states S = {S 1, . . . , S N} and the Markov property,

which means that the state at time t, denoted by s(t), depends only on the previous state s(t − 1) and not on

past states such as s(t − 2), s(t − 3), etc. This property is expressed by means of transition probabilities. In our

context, the state-space S is given by the different tasks recorded in the log, augmented with two auxiliary states

– the init and the end state – which are used to calculate the probability of a given task being the first or the last

in the process. In the above example, S = {init, A, B,C, end}. Given some present task, we know what tasks can
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be executed next, and their probability. For cluster 1, from task A there is a probability of 75% to execute the

same task A, and a probability of 25% to execute task B.

Formally, a Markov chain is represented as a N ×N transition matrix where each element Mi j = P(s(t+1) =

S j | s(t) = S i) is the probability of the next state being S j given that the present state is S i. In addition, the

following conditions hold: ∀1≤i, j≤N : 0 ≤ Mi j ≤ 1, and ∀1≤i≤N−1 :
∑N

j=1 Mi j = 1. For example, the transition

matrix for the Markov chain of cluster 1 is given by:



init A B C end

init 0 1 0 0 0

A 0 0.75 0.25 0 0

B 0 0 0 1 0

C 0 0 0 0 1

end 0 0 0 0 0


The purpose of sequence clustering is both to discover the transition matrices and to assign each sequence

in the event log to one of the available clusters. Given that clusters are represented by Markov chains, each

sequence should be assigned to the cluster that can produce it with higher probability. For a sequence x =

{x1, x2, . . . , xL} of length L, the probability that this sequence is produced by the Markov chain associated with

cluster ck can be computed as:

P(x | ck) = P(x1 | init; ck) ·
 L∏

i=2

P(xi | xi−1; ck)

 · P(end | xL; ck) (1)

where P(xi | xi−1; ck) is the transition probability of state xi−1 to state xi in the transition matrix of cluster ck. The

quantities P(x1 | init; ck) and P(end | xL; ck) refer to the transition probabilities from the start state and to the

end state, respectively. For the sequences AAAABC in the above example, the Markov chain of cluster 1 can

produce this type of sequence with a probability of P(A | init; c1) · P(A | A; c1) · P(A | A; c1) · P(A | A; c1) · P(B |
A; c1) · P(C | B; c1) · P(end | C; c1) = 1 × 0.75 × 0.75 × 0.75 × 0.25 × 1 × 1 ≈ 0.1, cluster 2 with a probability of

approximately 0.03, and cluster 3 with a probability of zero (since p(a | init; c3) = 0). Therefore, every trace in

the form AAAABC is assigned to cluster 1.

Since the Markov chains are unknown at the beginning, the sequence clustering algorithm uses an iterative

Expectation-Maximization procedure. The algorithm takes as input parameter the number K of clusters, and

assumes an initial set of clusters C = {c1, c2, . . . , cK}. Each cluster ck is a Markov chain on its own, and it is

represented by a transition matrix. The algorithm can be described as follows:

1. Initialize randomly the transition matrix of each cluster;

2. Expectation step – assign each sequence in the event log to the cluster that is able to produce it with

highest probability (using Equation 1);
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3. Maximization step – recompute the transition matrices for all clusters by considering the set of sequences

assigned to each cluster in the previous step;

4. Repeat steps 2 and 3 iteratively until the transition matrices do not change; at this point the assignment of

sequences to clusters also does not change anymore.

As a result of step 2 it may happen that some clusters do not get any sequences assigned to them. In this case,

the final number of clusters will be less than the initially specified K. On the other hand, it is not possible to

end up with more than K clusters. For these reasons, and as a rule of thumb, K is usually chosen to be slightly

higher than the initially expected or desired number of clusters. In practice, several runs may be required to find

an appropriate number of clusters. An alternative approach is to choose a small value for K and then subdivide

the clusters hierarchically, as illustrated in Figure 2.

3.2. Building a Diagram for Cluster Analysis

With the behavioral patterns identified with sequence clustering, the next step is to understand which clusters

represent regular behavior, which ones contain infrequent behavior, where are the process variants, and how

much do clusters differ from each other. For this purpose we need a structured approach to analyze the resulting

clusters. An essential tool is the cluster diagram, which depicts the support of each cluster, i.e. how many

sequences are contained in each cluster, and the similarity between clusters, i.e. how much the Markov chains

differ from each other. Figure 4 presents the cluster diagram for our running example. The nodes represent

the three clusters and are labeled with the corresponding support. The edges represent the similarity between

clusters, and are weighted according to their value. Support is higher if the node value is higher, and darker

nodes mean higher support; similarity is higher if the edge value is lower, and thicker edges represent higher

similarity.

0.28

0.78
0.76

Cluster 1 : supp = 0.6

Cluster 2 : supp = 0.3

Cluster 3 : supp = 0.1

Figure 4: Cluster diagram for a simple example

Formally, we define the support of cluster ck as:

support(ck) =
#sequences(ck)∑
l #sequences(cl)

(2)
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where #sequences(ck) is the number of sequences contained in ck, and
∑

l #sequences(cl) is the total number of

sequences assigned to all clusters, i.e. the total number of sequences in the event log.

One way to look at cluster similarity is to consider the “distance” between their Markov chains, i.e. the

distance between two probability distributions. We use a metric proposed in [44] that also takes into account

the distribution of the state-space of each cluster model. Let S i be a state in the state-space of cluster ck, and let

xr of length |xr | be a sequence that is assigned to cluster ck. Then the marginal probability of S i in ck is given

by:

P(S i)ck =

∑
r #S i(xr)∑

r |xr |
(3)

where the summation on r is over all sequences that belong to ck, and #S i(xr) counts the occurrences of S i in

each sequence xr.

The distance between two clusters ck and cl is defined as [44]:

D(ck ∥ cl) =
1
2

∑
i

∑
j

|P(S i)ck · M(ck)
i j − P(S i)cl · M(cl)

i j | (4)

where M(ck)
i j is an element in the transition matrix of cluster ck. By computing the distance between all pairs of

clusters in the cluster diagram, one can derive a K × K distance matrix Dkl = D(ck ∥ cl), where ∀1≤k,l≤K : 0 ≤
Dkl ≤ 1.

Given the cluster support and the distance matrix, we build a diagram for cluster analysis. This diagram is an

undirected weighted graph were the set of nodes is given by the set of K clusters, and each node is labeled with

the corresponding cluster support. The edges are given by the entries in the distance matrix, and are weighted

with the corresponding value, as in Figure 4.

Assuming that the event log contains 100 process instances with 60 sequences of type AAAABC, 30 of type

AAAABBBBC, and 10 of type CCCCBA, and that these traces are assigned to cluster 1, cluster 2, and cluster

3 respectively, we have: support(c1) = 0.6; support(c2) = 0.3; support(c3) = 0.1.

To compute the cluster distances, we first calculate the state-space distribution of each cluster. In cluster 1,

which contains only one type of sequence (AAAABC), we have #A(xr) = 4, #B(xr) = 1 and #C(xr) = 1 for all

sequences xr. Therefore, P(A)c1 = 4×60
6×60 =

2
3 , and similarly P(B)c1 = p(C)c1 = 1

6 . Following the same procedure

for other clusters, and calculating the distance matrix Dkl according to Equation (4), we have:



c1 c2 c3

c1 0 0.28 0.76

c2 0.28 0 0.78

c3 0.76 0.78 0


With the support for each cluster and the distance between clusters, we draw the cluster diagram of Figure

4. This kind of diagram will play a key role in the next steps of the methodology.
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3.3. Understanding Regular Behavior

The next step in the analysis is to understand the regular behavior of the process. This is given by the cluster

with highest support. Therefore, one looks at the cluster diagram and inspects the Markov chain associated with

that cluster. For example, in Figure 4 we see that cluster 1 is the one with highest support. By inspecting the

Markov chain assigned to this cluster, we can describe the regular behavior of the process as follows: task A is

always the first to be executed. When task A is executed, there is a probability of 0.75 that task A is executed

again, and a 0.25 probability to execute task B. When B is executed it is certain that task C is the next to be

executed. After the execution of task C the process ends.

In practical applications, there may be more than one cluster containing typical behavior, i.e. there could

be several typical behaviors. The decision of identifying clusters as typical behavior depends to some extent on

the application context and it may require domain-specific knowledge as well. In any case, the typical behavior

will be contained in the clusters with highest support.

3.4. Understanding Process Variants and Infrequent Behavior

Process variants are alternative paths in the process that deviate from the regular behavior, or from some

original model [45, 46, 47]. Once the clusters with highest support have been identified, which represent

regular behavior, it is possible to consider the remaining cluster models as variants of the process. In the

running example, clusters 2 and 3 are the variants of the process.

To gain a better understanding about the variants we propose that the analyst follows a stepwise approach by

comparing each cluster with its closest neighbors in the cluster diagram. The closer two clusters are, the more

similar are their Markov chains, and therefore it will be easier to identify the differences between those two

variants. For example, cluster 1 and cluster 2 in Figure 4 are the most similar. By comparing the Markov chains

of both clusters (Figure 3) we see that they have only a small difference (in cluster 2 task B has a self-loop). On

the other hand, the Markov chains from cluster 1 and cluster 3 are very different. If more clusters were present,

it would be easier to understand the differences (and therefore how the process varies) by comparing cluster 1

with cluster 2, and cluster 3 with some other similar cluster.

This approach is particularly useful for large cluster diagrams and it is equivalent to finding a Minimum

Spanning Tree (MST) [48] in the diagram. The MST of a connected, undirected, and weighted graph is a

subgraph which: (1) is a tree, i.e. any two nodes are connected by one single path; (2) connects all nodes; and

(3) has the lowest total cost, i.e. weight, between connections. Well-know algorithms to find MSTs are Prim’s

algorithm [49] and Kruskal’s algorithm [50]. In Figure 5 we see an example of a undirected weighted graph

with its corresponding MST highlighted. This graph is another useful diagram for cluster analysis. By looking

at the MST we clearly distinguish the most similar cluster models, i.e. the Markov chains that have smaller

differences. At the same time, one can efficiently visit every cluster, i.e. one can iteratively compare every
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Markov chain knowing that for each iteration the differences between them are minimized, and therefore easier

to understand.

5
8

10

16

30

2 3

18

12

14

264

Figure 5: Example of a Minimum Spanning Tree.

Infrequent behaviors can be seen as special cases of process variants and are given by the clusters with lowest

support. Eventually, these clusters will give the analyst insight about very specific clinical cases, medical errors,

deviations from clinical guidelines, or systems flaws. These are the types of behavior that can be potentially

classified as noise. However, it may be the case that a certain patient condition or clinical situation does require

a deviation from the normal guidelines and that infrequent behavior is duly justified, so these variants should be

inspected carefully. It is up to the analyst to decide whether these clusters should be subject to further analysis

or whether they should be simply dismissed as noise. The use of the MST facilitates this analysis, by focusing

first on the main behavior, and only then on more and more specific variants with less support.

In our running example, cluster 3 is considered as infrequent behavior, since it has a support of 0.1 which

is relatively low. In this case, and attending to its distance to cluster 1, we can expect a very different behavior

from the regular one. With further inspection, one finds that the Markov chain associated to cluster 3 models

the opposite behavior of the regular one. In practice, this could represent for example some clinical exception.

3.5. Hierarchical Sequence Clustering Analysis

It may happen that some cluster models might still be hard to understand, and therefore not suitable for

analysis [37]. To mitigate this problem one can apply hierarchical sequence clustering, i.e. re-applying sequence

clustering to the less understandable clusters. The idea is that by hierarchical refinement we decrease the

diversity of the sequences within a cluster, which eventually leads to the discovery of behavioral patterns. To

do so, one must consider only the cases from the event log that have been assigned to the cluster under study,

and then re-apply sequence clustering to that subset of cases.

3.6. Selecting Clusters for Further Analysis

The final step in the proposed methodology is to select the clusters for further analysis. With the previous

steps, one has already addressed the following problems: (1) the incompleteness and noise of clinical event logs;

15



(2) how to distinguish process variants; and (3) how to distinguish infrequent behavior (exceptional clinical

cases, medical errors, etc). In essence, these are the major challenges that healthcare environments pose to

process mining. For each cluster of interest, one can then proceed with the remaining analysis on the different

perspectives of the process. Of course, at this point we already have insight about the control-flow of the process,

with Markov chains capturing some of the behavior. However, sequence clustering cannot discover some special

workflow constructs, such as parallelisms or synchronizations in the process. The idea is therefore that one can

explore the strengths of other control-flow mining techniques. Since each cluster contains traces that are similar

in their sequential behavior, this should help other techniques produce more understandable models as well.

4. Case Study: Hospital of São Sebastião

The Hospital of São Sebastião (HSS) is a public hospital with approximately 300 beds, located in Santa

Maria da Feira, Portugal. As with other hospitals, the main strategic goals of HSS include: to deliver patient-

centric services; to improve the efficiency and quality of the most important processes; and to reduce the cost

of care services. Also, HSS makes use of an information system to support most of its activity. The system is

known as Medtrix and has been developed in-house2. It provides an integrated view of all clinical information

of patients across different departments. Medtrix is widely used in the hospital and it is regarded as a critical

enabler for collaborative work among physicians.

The analysis of clinical and administrative careflows is of great concern for HSS, especially when focused on

detecting deviations from the main clinical guidelines, or flaws in the processes that Medtrix provides support to.

Unfortunately, BPA has not been a common practice in HSS. Key stakeholders find BPA time-consuming and

expensive, and they currently lack resources. A significant part of process improvement initiatives are delegated

to the Department of Information Systems, since Medtrix is a leverage point to improve HSS processes. The

department is run by eleven people from which only four are assigned to implement and maintain the Medtrix

system, and also responsible for process analysis. The space of maneuver for process analysis is very tight. The

main concern of executives and physicians is to see quick results from Medtrix, and do not conceive nor fully

understand the idea of spending time and resources on a thorough BPA initiative. Moreover, the department

runs under strong financial constraints and cannot afford external process analysts. The analysis of processes in

HSS mainly results from discussions between representatives of specialized departments and the Medtrix team

which, on their turn, are pressured to focus on system maintenance and development, rather than on analyzing

processes. The process knowledge resulting from these discussions is usually not documented, and formal

languages are not used. In conclusion, knowledge about the processes in HSS is tacit and unstructured, and

2Microsoft has released international product and service brochures featuring the Hospital of São Sebastião as a successful case study

of an EPR system developed using Microsoft .NET Framework and related technologies.
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given the characteristics of healthcare processes, the hospital needs more sophisticated tools and a methodology

to perform process analysis.

The potential knowledge that process mining can offer is of utmost importance for HSS, and the Medtrix sys-

tem can provide valuable data for this purpose. The HSS staff embraced this possibility with great enthusiasm.

After discussing with key stakeholders, it was decided to limit our scope to the careflows of emergency patients,

and activities comprising the triage, treatments, diagnosis, medical exams, and forwarding of patients. The

main reasons for this decision were: (1) the perceived quality of HSS services is mainly based on the patients’

opinion about the emergency service, and therefore to understand their careflow is a priority; (2) the behavior of

emergency careflows, and the required interactions between physicians, are one of the most complex to actually

understand; (3) the main concern of emergency services is performance and every analysis in this direction is

welcome; (4) since Medtrix began by supporting the emergency processes, and by integrating the emergency

and radiology information systems, these careflows are quite mature and represent a good opportunity to gather

useful data to build an event log.

4.1. Data Gathering

In a discussion with the Medtrix team coordinator it was decided that the best approach would be to explore

the data recorded in the system database. However, this was not as easy as it seemed. The Medtrix database

currently contains more than 400 tables that are not documented. The solution was to move the relevant part of

this database to a new one that reflects the domain of the case study, as depicted in Figure 6. The new database

contains the events of the emergency careflows from January to July, 2009.

num_episode
Episode

num_episode
designation
originator
timestamp

Treatment
num_episode
designation
originator
timestamp

Triage
num_episode
designation
originator
timestamp

Laboratory Exam

num_episode
designation
originator
timestamp

Diagnosticnum_episode
num_requisition
designation
originator
timestamp

Radiology Exam

num_episode
designation
originator
timestamp

Forwarding

num_requisition
state
designation
originator
timestamp

Exam Evolution

Figure 6: Database for the case study.

The Emergency Episode table contains the emergency patients, i.e. the case identifiers, and the remaining

tables represent possible activities performed on each patient. The Exam Evolution table is slightly different,

since the activities in this table are given by the set of the possible states of the exam, such as exam scheduled,
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exam canceled, exam to be reported, etc. In each table we have information about the originator and the

timestamp of events, which allows us explore the organizational and performance perspective of careflows. The

designation field makes it possible to explore the behavior of careflows at different levels of abstraction and

gives more flexibility to the analysis.

For example, if we want to understand the process at a high level, it is possible to build an event log

where each event contains simply the name of the corresponding table where the event was recorded. One

would then have activities such as “Triage”, “Diagnostic”, “Treatment”, “Laboratory Exam”, etc. On the other

hand, to study the clinical activities in more detail, one can build a different event log where each event also

has the designation field, so that the activity names become more specific, such as “Diagnostic Thrombosis”,

“Laboratory Exam X-Ray”, etc. Besides enabling the generation of different event logs from the same data, this

also makes it easier to analyze the careflow of patients with specific health conditions.

4.2. The Medtrix Process Mining Studio

To support the analysis of the emergency careflows in HSS according to the proposed methodology, we de-

veloped a process mining tool called Medtrix Process Mining Studio (MPMS). Also, to allow the use of ProM,

we have developed a component to export the event logs in MXML (Mining XML) format. The reason for

developing a new tool, rather than simply using ProM, was that we needed to make the steps of the method-

ology available in an application that could be readily used by the staff of HSS and that could be customized

to this specific environment. The MPMS tool provides capabilities to inspect the log, perform sequence clus-

tering analysis, inspect the cluster models and the cluster diagram, calculate the Minimum Spanning Tree, and

facilitate the study of process variants by displaying the differences between cluster models. It also has some

capabilities for creating, displaying and analyzing social networks extracted from event data. However, it should

be noted that the purpose of MPMS was not to replicate the functionalities of ProM, so the user can still resort

to ProM for more advanced control-flow, performance and organizational analysis.

MPMS was developed in C#, and has five main components, each one supporting a different step of the

methodology (see Figure 7): (1) log preparation; (2) log inspector; (3) sequence clustering analysis; (4) perfor-

mance analysis; and (5) social network analysis. Additionally, we have the ProM exporter to translate the event

log to MXML.

The Log Preparation component is responsible for building the event logs, which is done via SQL queries

over the database. Since there are more data than is required for analysis, we also implemented filters and other

preprocessing options. These will let the user choose some specific careflow for a patient, and the level of detail

in tasks names. The aim is to provide flexibility in the analysis.

The Log Inspector provides statistical information about the event log, namely the distribution of events, the

distribution of cases per number of events, and several other features about the sequences of events.

18



Case 
Study  

Database

Log 
Preparation

Event 
Log

MS 
Analysis 
Services

ProM 
Exporter

Sequence 
Clustering 
Analysis

Log 
Inspector

Performance 
Analysis

SNA 
Analysis

MXML

Interface

Figure 7: Architecture of the Medtrix Process Mining Studio.

The Sequence Clustering component is responsible for the whole sub-methodology we have described ear-

lier in Section 3. At this point we use the Microsoft Sequence Clustering algorithm available in SQL Server

2008 Analysis Services. The algorithm is invoked programmatically via a Data Mining API to extract the in-

formation about the Markov chains for each cluster, the distribution of the state-space of each cluster, and the

support of each cluster as well. The cases in each cluster can be obtained by means of a Prediction DMX query3.

Hierarchical Sequence Clustering can then be performed by filtering the event log and keeping only the cases

that belong to a selected cluster. The distance metric from Equation (4) was implemented in order to build the

cluster diagram for analysis. To find the Minimum Spanning Tree, Kruskal’s algorithm was implemented as

well. Also, we implemented a technique to depict the differences between two Markov chains, which is useful

to visualize and understand the variants of the process.

The performance analysis component is limited to computing the maximum, minimum, and average time

between tasks, as well as the throughput of the process. The results are displayed in charts.

Finally, the Social Network Analysis component is able to discover the social network according to two

metrics: “handover of work” and “working together”. These are the same as implemented in the Social Network

Miner of ProM [27].

4.3. Log Preparation and Inspection for the Analysis of the Radiology Workflow

We started by analyzing the radiology workflow of emergency patients. This kind of workflow is an or-

ganizational healthcare process that is related to the careflows of the emergency department in general. Here

3The DMX (Data Mining Extensions) language is used to create and work with mining models in SQL Server Analysis Services.
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we present the results of sequence clustering analysis, control-flow analysis, and performance analysis. The

organizational analysis allowed us to study a very specific problem currently experienced in HSS. The internal

regulations of HSS state that when a patient is assigned to a physician, this physician is responsible for the

diagnosis, treatment, exam requests, and forwarding of the patient, and must not handover his work to another

physician during the process. HSS is aware that there are physicians who deviate from this guideline; however,

the organization currently does not have the means to detect and measure such deviations. We addressed this

issue in this case study. The analysis of the careflows for specific patient conditions is very extensive and in this

paper we are able to present only a general analysis of the radiology workflow.

To build the event log, MPMS was used to filter the database, so that it was possible to get the information

contained in the Radiology Exam and the Exam Evolution tables. The resulting event log contained 27930

process instances4, a total number of 179354 events, and 12 different tasks (the exam request and the eleven

possible states of the exam). From the 27930 event sequences, we have 2296 different kinds of sequence. One

of these kinds of sequence had a relative frequency of approximately 0.5, and the remaining a relative frequency

below 0.06; 1820 occur only once. Since we are dealing with an organizational process, it would be expected

to find a dominant pattern in the run-time behavior. It was not surprising, however, to find that the nature of this

healthcare process creates a large degree of diversity in the event log. Figure 8 provides an idea of the global

behavior of the radiology workflow; we used the heuristic miner in ProM and then converted the result to a Petri

Net. The presence of so many silent transitions (i.e. different choices) after each step suggests that there are

actually several variants of this process.

4.4. Sequence Clustering Analysis

The next step was to run the sequence clustering algorithm in order to separate regular behavior, process

variants, and infrequent behavior. We started by making use of a feature in Microsoft Sequence Clustering

that automatically suggests a number of clusters, and it resulted in an initial set of 22 clusters. However, this

relatively high number of clusters actually made the analysis rather difficult. After some experimentation, we

found that separating the data into 8 clusters provided more intuitive results, which were easier to analyze. In

general, a too high number of clusters makes it difficult to identify typical behavior, since even small variations

may cause similar variants to be scattered across several clusters with relatively low support. On the other hand,

using a very low number of clusters will aggregate different behaviors in each cluster, producing cluster models

that are too complex to interpret and analyze.

With 8 clusters, MPMS built the cluster diagram depicted in Figure 9. By looking at the diagram one clearly

identifies that cluster 2 is the dominant cluster with a support of approximately 0.5 which refers to the dominant

4The Medtrix system assumes that an exam request can comprise more than one exam; therefore, a process instance may include one or

more exams with the respective states interleaved in the sequence.
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Figure 8: Petri Net of the global radiology workflow, converted from the heuristic miner in ProM.

sequence found during log inspection. The remaining clusters contain variants. Cluster 1, 4, 6 and 8 have a

rather low support and were labeled as infrequent behavior. We can also identify the most similar clusters. For

example, we can expect that the process behavior modeled by cluster 7 is relatively similar to the one modeled

by cluster 1, 2, and 5.

To understand the regular behavior of the emergency radiology workflow we inspected the Markov chain

associated with cluster 2, the dominant cluster. The process model is depicted in Figure 10 and is explained as

follows: (1) the exam is requested; (2) the exam is scheduled; (3) the exam is performed; and (4) the exam is

validated without report.

To understand the process variants and infrequent behavior we started by analyzing the Minimum Spanning

Tree of the cluster diagram. The MST is shown in Figure 11. We found that comparing cluster 2 with cluster

7, cluster 7 with cluster 5, cluster 5 with clusters 1, 3, 8 and 6, and cluster 3 with cluster 4, was a good

approximation to understand the variants of the process. Following the connections to the closest clusters in the

MST provided an incremental understanding of the process and its variants.

By comparing cluster 2 with cluster 7 (Figure 12) we detected the following main differences: (1) when an

exam is requested there is a probability of 0.073 that it will be canceled, and after cancellation the process ends;

(2) when an exam is requested there is a probability of 0.08 that the process ends; these are the cases when

employees are not using Medtrix as supposed, since the evolution of exams should always be registered; (3)
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Figure 9: Cluster diagram for the case study, where edges with a distance higher than 0.413 are hidden for better readability.

Figure 10: Regular behavior of the radiology workflow in HSS.

when the exam is performed there is a probability of 0.085 that it will be validated with a report and the process

ends; (4) there is a probability of 0.187 that after being performed the exam will be reported by the Institute

of Telemedicine (ITM) and the process only ends after the ITM reports on the exam. This last case tells us

that HSS outsources the reporting of some exams, since the ITM is an external entity that delivers radiology

services. Other infrequent tasks are present in cluster 7 (in Figure 12 these are hidden due the threshold),

namely the cancellation of exam scheduling, the reposition of an exam after it has been canceled, and the report

of an exam before being validated. To gain better insight into this behavior it was decided to apply hierarchical

sequence clustering to cluster 7, as described ahead.

By comparing cluster 7 with cluster 5 we found differences only in some infrequent transitions. We also
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Figure 11: Minimum spanning tree for the cluster diagram.

found that these transitions respect the behavior of interleaved exams, such as: (1) when an exam is requested

some other exam can be requested next; (2) when an exam is performed some other can be scheduled next; (3)

after an exam is validated with report, some other can be validated without report; (4) when an exam is reported

by ITM, some other can be scheduled next, or validated without report.

Comparing cluster 5 with cluster 1 we detected only a significant difference in one transition: after an

exam is validated without report, there is a probability of approximately 0.55 that some other exam is canceled.

Comparing cluster 5 with cluster 3 we found that an exam validated with report may not have actually been

reported before. This is not supposed to happen and may indicate a flaw in the procedure.

Comparing cluster 5 with cluster 6 we find an infrequent yet very interesting behavioral pattern (Figure 13).

Instead of first requesting the exam, there are situations where physicians schedule the exam, perform the exam,

and only afterward request the exam. This is not supposed to happen, and with further inspection we saw that

this kind of pattern occurred 131 times in the event log.

When performing hierarchical sequence clustering on cluster 7, we discovered additional clusters that pro-

vided a better insight into the process. Cluster 7.1 clearly distinguishes the examinations reported by ITM, as

Figure 14 shows. In cluster 7.2 (Figure 15) we see that after an exam is performed, someone can cancel its

scheduling; then the exam already performed is canceled as well, and finally the exam is rescheduled. Cluster

7.3 (Figure 16) shows us the examinations validated with report. After the exam is performed, it is set to be

reported; and after that it is validated. However, the task to set the exam to be reported is sometimes skipped.

Through this analysis we were able to understand the process and its variants, and to discover infrequent

behavior as well, which uncovered some flaws and some specific examination cases (such as the exams reported

by ITM). The next step was to select the clusters for further analysis. From the most relevant clusters, we

were able to discover simpler process models with the mining techniques of ProM, namely in the form of Petri
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Figure 12: Differences between cluster 2 and cluster 7. Thresholds are used to improve readability by hiding tasks and transitions with very

low probability.

Figure 13: Markov chain of cluster 6, example of infrequent behavior representing flaws in the procedure
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Figure 14: Process model of cluster 7.1

Figure 15: Process model of cluster 7.2

Figure 16: Process model of cluster 7.3
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Net models. These were useful to detect bottlenecks in the process. Here we present the analysis of cluster 2

(responsible for the regular behavior) and of cluster 7.1 (responsible for the examinations reported by ITM).

Figures 17 and 18 show the control-flow of clusters 2 and 7.1, respectively.

Figure 17: Petri Net modeling the regular behavior of the radiology workflow (cluster 2)

Figure 18: Petri Net modeling the specific cases of the examinations reported in ITM (cluster 7.1)

4.5. Performance Analysis of the Radiology Workflow

For the analysis in the performance perspective, we projected the waiting times on the Petri Nets, using the

ProM plug-in “Performance Analysis with Petri Nets”. Figure 19 shows the results obtained for cluster 2 with

bottlenecks represented by red and yellow places. We can say that patients in emergency radiology have an

average flow time of 68 minutes from the exam request until the validation of the exam without report. It takes

an average of 38 minutes from the exam request until the exam is scheduled, and an average of 25 minutes from

the exam being performed until the validation of the exam without report.

Figure 19: Performance analysis with Petri Net for the regular behavior (cluster 2) and detection of bottlenecks.

With respect to the cases of cluster 7.1 we found that the throughput time of these patients has an average of

three hours (two more than other patients). It takes an average of approximately one hour from the exam being
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performed until the exam is sent to ITM, and approximately another hour for the exam to be reported.

4.6. Analysis of the Organizational Perspective of Emergency Careflows

To conclude, we describe the analysis conducted in the organizational perspective to identify the physicians

who deviate from the internal guideline that states that when a patient is assigned to a physician, this physician

is responsible for the diagnosis, treatment, exam requests, and forwarding of the patient, and must not handover

the patient to another physician during this process. The fact is that the hospital does not have the means to

detect and measure whether such deviations actually happen.

To address this problem we used MPMS to build another event log by selecting the information contained

in the diagnosis, treatment, exam request, and forwarding tables (representing the tasks at a high level). If there

is handover of work between the originators of these tasks then there will be physicians who deviate from the

guideline. Therefore, we used the social network analysis component of MPMS to built a social network of

the event log based on the handover of work metric. The result is depicted in Figure 20 and the relations are

measured with absolute values. In the center, in red, are the physicians who transfered work to other colleagues.

Of course, this does not mean that those physicians did not have good reason to transfer work to other colleagues.

Here, we just want to highlight the fact that this was the first time that such practice, as well as other issues in

the radiology workflow, as described above, have been reliably identified based on actual data.

Figure 20: Social network of the emergency careflows based on handover of work.

5. Conclusion

In this work we have presented a methodology based on process mining for the analysis of healthcare

processes. In general, these processes are highly dynamic, complex, multi-disciplinary, and ad-hoc in nature.

Healthcare information systems that record clinical activities as they take place can be a valuable source of data

for analyzing these processes and studying them according to several perspectives.
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In these environments, the techniques that become most useful are those that can cope with large amounts

of noise and that can sort different behaviors so that the analyst can study them separately. We have therefore

devised a methodology where sequence clustering plays a key role in identifying regular behavior, process

variants, and infrequent behavior as well. This is done by means of a cluster diagram and a minimum spanning

tree, which provide a systematic way to analyze the results.

The proposed methodology was applied in the emergency service of a hospital that has its own electronic

patient record system, developed in-house. Event data collected from this system was analyzed with a special-

purpose tool as well as with plug-ins available in the ProM framework. Using the radiology workflow as an

example, we showed how the proposed methodology can provide insight into the flow of healthcare processes,

their performance, and their adherence to institutional guidelines.

In future work, we plan to further develop some steps of the methodology, such as generating more informa-

tion from log inspection, making use of heuristics to provide an indication for number of clusters, and extending

the sequence clustering analysis in order to include a quality measurement for the results. As for the case study,

the approach and functionality built into the MPMS tool is now being used as a basis to define new features

for the hospital’s EPR system. This will probably lead to the need to capture additional event data in order to

facilitate analysis according to the proposed methodology.
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