
Contents lists available at SciVerse ScienceDirect
Information Systems

Information Systems ] (]]]]) ]]]–]]]
0306-43

doi:10.1

n Corr

fax: þ3

E-m

soi@dis

casati@

liyanmr

Pleas
doi:1
journal homepage: www.elsevier.com/locate/infosys
Distributed orchestration of user interfaces
Florian Daniel a,n, Stefano Soi a, Stefano Tranquillini a, Fabio Casati a, Chang Heng b, Li Yan b

a Department of Information Engineering and Computer Science, University of Trento Via Sommarive 5, 38123 Povo (TN), Italy
b Huawei Technologies Shenzhen, PR China
a r t i c l e i n f o

Keywords:

UI orchestration

Distributed UIs

UI orchestration patterns

BPEL4UI

Mashups

UI components

MarcoFlow
79/$ - see front matter & 2011 Elsevier B.V. A

016/j.is.2011.08.001

esponding author. Tel.: þ39 0461 283780;

9 0461 282093.

ail addresses: daniel@disi.unitn.it (F. Daniel),

i.unitn.it (S. Soi), tranquillini@disi.unitn.it (S.

disi.unitn.it (F. Casati), changheng@huawei.co

@huawei.com (L. Yan).

e cite this article as: F. Daniel, et
0.1016/j.is.2011.08.001
a b s t r a c t

Workflow management systems focus on the coordination of people and work items,

service composition approaches on the coordination of service invocations, and,

recently, web mashups have started focusing on the integration and coordination of

pieces of user interfaces (UIs), e.g., a Google map, inside simple web pages. While these

three approaches have evolved in a rather isolated fashion – although they can be seen

as evolution of the componentization and coordination idea from people to services to

UIs – in this paper we describe a component-based development paradigm that

conciliates the core strengths of these three approaches inside a single model and

language. We call this new paradigm distributed UI orchestration, so as to reflect the

mashup-like and process-based nature of our target applications. In order to aid

developers in implementing UI orchestrations, we equip the described model and

language with suitable design, deployment, and runtime instruments, covering the

whole life cycle of distributed UI orchestrations.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Workflow management systems support office automa-
tion processes, including the automatic generation of
form-based user interfaces (UIs) for executing human
tasks in a process. Service orchestrations and related
languages focus instead on integration at the application
level. As such, this technology excels in the reuse of
components and services but does not facilitate the
development of UI front-ends for supporting human tasks
and complex user interaction needs, which is one of the
most time consuming tasks in software development [1].

Only recently, web mashups [2] have turned lessons
learned from data and application integration into light-
weight, simple composition approaches featuring a sig-
nificant innovation: integration at the UI level. Besides
ll rights reserved.

Tranquillini),

m (C. Heng),

al., Distributed orch
web services or data feeds, mashups reuse pieces of UI
(e.g., content extracted from web pages or JavaScript UI
widgets) and integrate them into a new web page.
Mashups, therefore, manifest the need for reuse in UI
development and suitable UI component technologies.
Interestingly, however, unlike what happened for ser-
vices, this need has not yet resulted in accepted compo-
nent-based development models and practices.

This paper tackles the development of applications that
require service composition/process automation logic but
that also include human tasks, where humans interact with
the system via possibly complex and sophisticated UIs that
are tailored to help perform the specific job they want to
carry out. In other words, this work targets the development
of mashup-like applications that require process support,
including applications that require distributed mashups
coordinated in real time, and provides design and tool
support for professional developers, yielding an original
composition paradigm based on web-based UI components
and web services.

This class of applications manifests a common need
that today is typically fulfilled by developing UIs in ad hoc
ways and using and manually configuring a process
estration of user interfaces, Informat. Systems (2011),

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2011.08.001
mailto:daniel@disi.unitn.it
mailto:soi@disi.unitn.it
mailto:tranquillini@disi.unitn.it
mailto:casati@disi.unitn.it
mailto:changheng@huawei.com
mailto:liyanmr@huawei.com
dx.doi.org/10.1016/j.is.2011.08.001
dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]2
engine in the back-end for process automation. As an
example, consider the scenario in Fig. 1: the figure shows a
home assistance application for the Province of Trento
whose development we want to aid in one of our projects.
A patient can ask for the visit of a home assistant (e.g., a
paramedic) by calling (via phone) an operator of the
assistance service. Upon request, the operator inputs the
respective details and inspects the patient’s data and
personal health history in order to provide the assistant
with the necessary instructions (steps 1–5). There is
always one assistant on duty. The home assistant views
the description, visits the patient, and files a report about
the provided service (steps 6 and 7). The report is
processed by the back-end system and archived (steps 8
and 9). If no further exams are needed, the process ends
(steps 10 and 11). If exams are instead needed, the
operator books the exam in the local hospital asking
confirmation to the patient via phone (steps 12 and 13).
Upon confirmation of the exam booking, the system also
archives the booking, which terminates the responsibility
of the home assistance service (steps 14 and 15).

The application in the scenario includes, besides the
process logic, two mashup-like, web-based control con-
soles for the operator and the assistant that are them-
selves part of the orchestration, need to interact with the
process, and are affected by its progress. In addition, the
UIs are themselves component-based and created by
reusing and combining existing UI components that are
instantiated in the users’ web browsers (both web pages
in Fig. 1 are composed of four components). The two
Fig. 1. A home assistance application integrating both web service

Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
applications, once instantiated, allow the operator and
assistant to manage an individual request for assistance;
each new request requires starting a new instance of the
application.

In summary, the scenario requires the coordination of
the individual actors in the process and the development
of the necessary distributed user interface and service
orchestration logic. Doing so requires addressing a set of
challenges (each leading to a specific contribution):
1.
s an

est
Understanding how to componentize UIs and compose

them into web applications.

2.
 Defining a logic that is able to orchestrate both UIs and

web services.

3.
 Providing a language and tool for implementing dis-

tributed UI compositions and

4.
 Developing a runtime environment that is able to

execute distributed UI and service compositions.

This article is an extended version of our paper [3]
presented at the BPM 2010 conference, in which we
approached these challenges in their core aspects. Here,
we advance that work in several ways: we provide a
complete description of the nature of UI components and
of the development and configuration of layout templates,
turning the paper into a self-contained piece of work. We
conceptualize the types of orchestrations that can be
developed with the described development paradigm
and discuss their impact on the runtime platform; this
represents a major new contribution. We describe our
d UI components into a process-like orchestration logic.

ration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 3
BPEL4UI editor and the web-based management console,
and, finally, we summarize the lessons that we learned
during the development and use of the described system.

In Section 2 we introduce the state of the art of the
related composition approaches and technologies. In Section
3, we derive requirements from the above scenario and
outline the approach we follow in this paper, including the
architecture of our MarcoFlow platform that will serve as a
guide throughout the rest of the paper. In Section 4, we then
introduce the concept of HTML/JavaScript UI component
and show how defining a new type of binding allows us to
leverage the standard WSDL [4] language to abstractly
describe them. We then build on existing composition
languages (in particular WS-BPEL [5]) to introduce the
notions of UI components, pages, and actors into service
compositions (Section 5) and explain how such extension
can be used to model UI orchestrations (Section 6). In
Section 7 we discuss the different types of UI orchestrations
that can be implemented. In Section 8, we show how we
extended the Eclipse BPEL editor to support design, and we
describe how to run UI orchestrations. Finally, in Section 9
we report on the lessons we learned with MarcoFlow and
conclude the paper in Section 10.

2. State of the art in orchestrating services, people
and UIs

Workflow or business process management systems are
the traditional solution to coordinate people; web ser-
vices have been integrated over the last decade, while
support for UI development is still rather weak. For
instance, the Oracle BPEL Proccess Manager (http://
www.oracle.com/technetwork/middleware/bpel) uses
Workflow Services to handle the work-lists of each user
and to allow them to perform their tasks. The tool
provides two solutions for creating user interfaces: auto-
matic generation, where the tool generates the forms, and
custom generation, which enables the modeler to select
the template and the parameters to display. Both solu-
tions produce a JSP-based form. Bonita Studio (http://
www.bonitasoft.com) has an extension of the tool to
create forms. The software allows the developer to use
existing form templates; alternatively, forms can be
created using a WYSIWYG interface. Forms can be custo-
mized by hand and exported as portlets. Similarly, also
the tool based on the popular workflow language YAWL
[6] and its extension (YAWL4Film [7]) do not go beyond
custom or automatically generated web forms (based on
the Java Server Faces technology). WebRatio BPM [8]
allows the developer to generate WebML [9] web applica-
tion templates starting from BPMN process models. The
templates can then be refined by the developer to equip
each page (for task execution) with the necessary data
and application functionality, which enables the tool to
automatically generate the necessary application code.

All these solutions provide good means to render input
and output parameters of tasks as HTML forms, which
can either be based on pre-defined form templates or
custom forms implemented by the developer. None of the
approaches, however, supports the reuse of third-party
UIs (e.g., a Google map) as first-class application
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
components and, hence, they are not able to orchestrate
them. The synchronization of the two pages in our
reference scenario, requiring direct UI-to-UI communica-
tions, is thus out of the reach of these tools.

In service orchestration approaches, such as BPEL [5],
there is no support for UI design. Many variations of BPEL
have been developed, e.g., aiming at the invocation of
REST services [10] or at exposing BPEL processes as REST
services [11]. IBM’s Sharable Code platform [12] follows a
slightly different strategy in the composition of REST and
SOAP services and also allows the integration of user
interfaces for the Web; UIs are however not provided as
components but as ad hoc Ruby on Rails HTML templates
filled at runtime with dynamically generated content.

BPEL4People [13] is an extension of BPEL that intro-
duces the concept of people task as first-class citizen into
the orchestration of web services. The extension is tightly
coupled with the WS-HumanTask [14] specification,
which focuses on the definition of human tasks, including
their properties, behavior and operations used to manip-
ulate them. BPEL4People supports people activities in the
form of inline tasks (defined in BPEL4People) or standa-
lone human tasks accessible as web services. In order to
control the life cycle of service-enabled human tasks in an
interoperable manner, WS-HumanTask also comes with a
suitable coordination protocol for human tasks, which is
supported by BPEL4People. The two specifications focus
on the coordination logic only and do not support the
design of the UIs for task execution.

The systematic development of web interfaces and appli-

cations has typically been addressed by the web engineering
community by means of model-driven web design
approaches. Among the most notable and advanced
model-driven web engineering tools we find, for instance,
WebRatio [15] and VisualWade [16]. The former is based on
a web-specific visual modeling language (WebML), the
latter on an object-oriented modeling notation (OO-H).
Similar, but less advanced, modeling tools are also available
for web modeling languages/methods like Hera [17],
OOHDM [18], and UWE [19]. These tools provide expert
web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web appli-
cations based on a hyperlink-based navigation paradigm.
WebML has also been extended toward web services [20]
and process-based web applications [21]; reuse is however
limited to web services and UIs are generated out of
dynamically filled HTML templates.

A first approach to component-based UI development is
represented by portals and portlets [22], which explicitly
distinguish between UI components (the portlets) and
composite applications (the portals). Portlets are full-
fledged, pluggable Web application components that
generate document markup fragments (e.g., in (X)HTML)
that can however only be reached through the URL of the
portal page. A portal server typically allows users to
customize composite pages (e.g., to rearrange or show/
hide portlets) and provides single sign-on and role-based
personalization, but there is no possibility to specify
process flows or web service interactions; also the WSRP
[23] specification only provides support for accessing
remote portlets as web services.
estration of user interfaces, Informat. Systems (2011),

http://www.oracle.com/technetwork/middleware/bpel
http://www.oracle.com/technetwork/middleware/bpel
http://www.bonitasoft.com
http://www.bonitasoft.com
dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]4
Finally, the web mashup [2] community has produced a
set of so-called mashup tools, which aim at assisting
mashup development by means of easy-to-use graphical
user interfaces targeted also at non-professional program-
mers. For instance, Yahoo! Pipes (http://pipes.yahoo.com)
focuses on data integration via RSS or Atom feeds via a
data-flow composition language; UI integration is not
supported. Microsoft Popfly (http://www.popfly.ms; dis-
continued since August 2009) provided a graphical user
interface for the composition of both data access applica-
tions and UI components; service orchestration was not
supported. JackBe Presto (http://www.jackbe.com) adopts
a Pipes-like approach for data mashups and allows a
portal-like aggregation of UI widgets (so-called mashlets)
visualizing the output of such mashups; there is no
synchronization of UI widgets or process logic. IBM
QEDWiki (http://services.alphaworks.ibm.com/qedwiki)
provides a wiki-based (collaborative) mechanism to glue
together JavaScript or PHP-based widgets; service com-
position is not supported. Intel Mash Maker (http://mash
maker.intel.com) features a browser plug-in that inter-
prets annotations inside web pages supporting the perso-
nalization of web pages with UI widgets; service
composition is outside the scope of Mash Maker.

In the mashArt [24] project, we worked on a so-called
universal integration approach for UI components and data
and application logic services. MashArt comes with a simple
editor and a lightweight runtime environment running in
the client browser and targets skilled web users. MashArt
aims at simplicity: orchestration of distributed (i.e., multi-
browser) applications and complex features like transac-
tions or exception handling are outside its scope. The
CRUISe project [25] has similarities with mashArt, especially
regarding the componentization of UIs. Yet, is does not
support the seamless integration of UI components with
service orchestration, i.e., there is no support for complex
process logic. CRUISe rather focuses on adaptivity and
context-awareness. Finally, the ServFace project [26] aims
to support even unskilled web users in composing web
services that come with an annotated WSDL description.
Annotations are used to automatically generate form-like
interfaces for the services, which can be placed onto one or
more web pages and used to graphically specify data flows
among the form fields. The result is a simple, user-driven
web service orchestration. None of these projects, however,
supports the coordination of multiple different actors inside
a same process.

As this analysis shows, existing development approaches
for web-based applications lack an integrated support for
service orchestration, component-based UI development,
and coordination of users, three ingredients that instead
are necessary to fully implement applications like the one
described in our example scenario.

3. Distributed user interface orchestration: definitions,
requirements, and architecture

If we analyze the home assistance scenario, we see
that the envisioned application (as a whole) is highly
distributed over the Web: the UIs for the actors partici-
pating in the application are composed of UI components,
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
which can be components developed in-house (like the
Patient Profile component) or sourced from the Web
(like the Map component); service orchestrations are
based on web services. The UI exposes the state of the
application and allows users to interact with the applica-
tion and to enact service calls. The two applications for
the operator and the assistant are instantiated in different
web browsers, contributing to the distribution of the
overall UI and raising the need for synchronization.

The key idea to approach the coordination of (i) UI
components inside web pages, (ii) web services providing
data or application logic, and (iii) individual pages, as well
as the people interacting with them, is to split the
coordination problem into two layers: intra-page UI syn-

chronization and distributed UI synchronization and web

service orchestration. We call an application that is able to
manage these two layers in an integrated fashion a
distributed UI orchestration [3].
3.1. Requirements and approach

Supporting the development of distributed UI orches-
trations is a complex and challenging task. Especially the
aim of providing a development approach that is able to
cover all development aspects in an integrated fashion
poses requirements to the whole life cycle of UI orches-
trations, in particular, in terms of design, deployment, and
execution support.

Indeed, supporting the design of distributed UI orches-
trations requires:
�

est
Defining a new type of component, the UI component,
which is able to modularize pieces of UI and to abstract
their external interfaces. For the description of UI
components, we slightly extend WSDL [4], obtaining
what we call WSDL4UI, a language that is able to deal
with the novel technological aspects that characterize
UI components by reusing the standard syntax
of WSDL.

�
 Bringing together the needs of UI synchronization and

service orchestration in one single language. UIs are
typically event-based (e.g., user clicks or key strokes),
while service invocations are coordinated via control
flows. In this paper, we show how to extend the
standard BPEL [5] language in order to support UIs.
We call this extended language BPEL4UI.

�
 Implementing a suitable, graphical design environment

that allows developers to visually compose services
and UI components and to define the grouping of UI
components into pages. BPEL comes with graphical
editors and ready, off-the-shelf runtime engines that
we can reuse. For instance, we extend the Eclipse BPEL
editor with UI-specific modeling constructs in order to
design UI orchestrations and generate BPEL4UI in
output.

Supporting the deployment of UI orchestrations requires:
�
 Splitting the BPEL4UI specification into the two orches-

tration layers for intra-page UI synchronization and
ration of user interfaces, Informat. Systems (2011),

http://pipes.yahoo.com
http://www.popfly.ms
http://www.jackbe.com
http://services.alphaworks.ibm.com/qedwiki
http://mashmaker.intel.com
http://mashmaker.intel.com
dx.doi.org/10.1016/j.is.2011.08.001


P
d

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 5
distributed UI synchronization and web service
orchestration. For the former we use a lightweight UI
composition logic, which allows specifying how UI
components are coordinated in the client browser.
For the latter we rely on standard BPEL.

�
 Providing a set of auxiliary web services that are able to

mediate communications between the client-side UI
composition logic and the BPEL logic. We achieve this
layer by automatically generating and deploying a set
of web services that manage the UI-to-BPEL and BPEL-
to-UI interactions.

Supporting the execution of UI orchestrations requires:
�
 Providing a client-side runtime framework for UI syn-
chronization that is able to instantiate UI components
inside web pages and to propagate events from one
component to other components. Events of a UI com-
ponent may be propagated to components running in
the same web page or in other pages of the application
as well as to web services.

�
 Providing a communication middleware layer that is able

to run the generated auxiliary web services for UI-to-
BPEL and BPEL-to-UI communications. We implement
this layer by reusing standard web server technology
able to instantiate SOAP and RESTful web services.

�

1 Details about the format and logic of these UI compositions can be

found in [24].
Setting up a BPEL engine, in charge of orchestrating
web services and distributed UI-to-UI communica-
tions, and implementing a management console for
both developers and participants in UI orchestrations,
enabling them to deploy UI orchestrations, to instanti-
ate them, and to participate in them as required.

These requirements and the respective hints to our
solution show that the main methodological goals in
achieving our UI orchestration approach are (i) relying
as much as possible on existing standards (to start from a
commonly accepted and known basis), (ii) providing the
developer with only few and simple new concepts (to
facilitate fast learning), and (iii) implementing a runtime
architecture that associates each concern with the right
level of abstraction and software tool (to maximize reuse),
e.g., UI synchronization is handled in the browser, while
service orchestration is delegated to the BPEL engine.

3.2. Architecture

A possible system architecture that meets the above
requirements is shown in Fig. 2. It is the architecture of our
MarcoFlow platform, which has been developed jointly by
Huawei Technologies and the University of Trento. For
presentation purposes, we discuss a slightly simplified
version and partition its software components into design
time, deployment time, and runtime components.

The design part comprises a BPEL4UI editor, which
comes with a UI partner link configurator, enabling the
setup of UI components inside a UI orchestration, and a
layout configurator, assisting the developer in placing UI
components into pages. Starting from a set of web service
WSDLs, UI component WSDL4UIs, and HTML templates
lease cite this article as: F. Daniel, et al., Distributed orch
oi:10.1016/j.is.2011.08.001
the application developer graphically models the UI
orchestration, and the editor generates a corresponding
BPEL4UI specification in output, which contains in a single
file the whole logic of the UI orchestration.

The deployment of a UI orchestration requires translating
the BPEL4UI specification into executable formats. In fact, as
we will see, BPEL4UI is not immediately executable neither
by a standard BPEL engine nor by the UI rendering engine
(the so-called UI engine in the right hand side of the figure).
This task is achieved by the BPEL4UI compiler, which,
starting from the BPEL4UI specification, the set of used
HTML templates and UI component WSDL4UIs, and the
system configuration of the runtime part of the architecture,
generates three kinds of outputs:
1.
est
A set of communication channels (to be deployed in the
so-called UI engine server), which mediate commu-
nications between the UI engine client (the client
browser) and the BPEL engine. These channels are
crucial in that they resolve the technology conflict
inherently present in BPEL4UI specifications: a BPEL
engine is not able to talk to JavaScript UI components
running inside a client browser, and UI components
are not able to interact with the SOAP interface of a
BPEL engine. For each UI component in a page, the
compiler therefore generates (i) an event proxy that is
able to forward events from the client browser to the
BPEL engine and (ii) an event buffer that is able to
accept events from the BPEL engine and store them on
behalf of the UI engine client. The compiler also
generates suitable WSDL files for proxies and buffers.
2.
 A standard BPEL specification containing the distributed
UI synchronization and web service orchestration logic
(see Section 6.1). Unlike the BPEL4UI specification, the
generated BPEL specification does no longer contain
any UI-specific constructs and can therefore be exe-
cuted by any standards-compliant BPEL engine. This
means that all references to UI components in input to
the compilation process are rewritten into references
to the respective communication channels of the UI
components in the UI engine server, also setting the
correct, new SOAP endpoints.
3.
 A set of UI compositions1 (one for each page of the
application) consisting of the layout of the page, the
list of UI components of the page, the assignment of UI
components to place holders, the specification of the
intra-page UI synchronization logic (see Section 6.1),
and a reference to the client-side runtime framework.
Interactions with web services or UI components
running in other pages are translated into interactions
with local system components (the notification hand-
lers and event forwarders), which manage the neces-
sary interaction with the communication channels via
suitable RESTful web service calls.
Finally, the BPEL4UI compiler also manages the
deployment of the generated artifacts in the respective
ration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


Fig. 2. From design time to runtime: overall system architecture of MarcoFlow.

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]6
runtime environments. Specifically, the generated com-
munication channels and the UI compositions are
deployed in the UI engine server and the standard BPEL
specification is deployed in the BPEL engine.

The execution of a UI orchestration requires the setting
up and coordination of three independent runtime envir-
onments: first, the interaction with the users is managed
in the client browser by an event-based JavaScript run-
time framework that is able to parse the UI composition
stored in the UI engine server, to instantiate UI compo-
nents in their respective place holders, to configure the
notification handlers and event forwarders, and to set up
the necessary logic ruling the interaction of the compo-
nents running inside the client browser. While event
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
forwarders are called each time an event is to be sent
from the client to the BPEL engine, the notification
handlers are active components that periodically poll
the event buffers of their UI components on the UI engine
server in order to fetch possible events coming from the
BPEL engine.

Second, the UI engine server must run the web services
implementing the communication channels. In practice
we generate standard Java servlets and SOAP web ser-
vices, which can easily be deployed in a common web
server, such as Apache Tomcat. The use of web server
technology is mandatory in that we need to be able to
accept notifications from the BPEL engine and the UI
engine client, which requires the ability of constantly
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 7
listening. The event buffer is implemented via a simple
relational database (in PostgreSQL, http://www.postgresql.
org) that manages multiple UI components and distin-
guishes between instances of UI orchestrations by means
of a session key that is shared among all UI components
participating in a same UI orchestration instance.

Third, running the BPEL process requires a BPEL
engine. Our choice to rely on standard BPEL allows us to
reuse a common engine without the need for any UI-
specific extensions. In our case, we use Apache ODE
(http://ode.apache.org), which is characterized by a sim-
ple deployment procedure for BPEL processes.

We discuss each of the ingredients in the following.
Fig. 3. Graphical rendering and internal logic of a UI component.
4. The building blocks: web services and UI components

Orchestrating remote application logic and pieces of UI
requires, first of all, understanding the exact nature of the
components to be integrated, i.e., web services and UI
components.

For the integration of application logic, we rely on stan-
dard web service technologies, such as WSDL-SOAP web

services, i.e., remote web services whose external interface is
described in WSDL, which supports interoperability via four
message-based types of operations: request-response, noti-
fication, one-way, and solicit-response. Most of today’s web
services of this kind are stateless, meaning that the order of
invocation of their operations does not influence the success
of the interaction, while there are also stateful services
whose interaction requires following a so-called business
protocol that describes the interaction patterns supported
by the service.

For the integration of UI, we rely instead on JavaScript/

HTML UI components, which are simple, stand-alone web
applications that can be instantiated and run inside any
common web browser [24]. Fig. 3 illustrates an example
of UI component (the Patient Profile UI component of
our reference scenario), along with an excerpt of its
JavaScript code. The figure shows that, unlike web ser-
vices, UI components are characterized by:
�

P
d

A user interface: UI components can be instantiated
inside a web browser and can be accessed and navi-
gated by a user via standard HTML. The UI allows the
user to interactively inspect and alter the content of
the component, just like in regular web applications.
UI components are therefore stateful, and the compo-
nent’s navigation features replace the business proto-
col needed for services.

�
 Events: Interacting with the UI generates system

events (e.g., mouse clicks) in the browser used to
manage the update of contents. Some events may be
exposed as component events, in order to communi-
cate state changes. For instance, a click on the ‘‘map’’
link in Fig. 3 launches a sendPatientCoord event.

�
 Operations: Operations enact state changes from the

outside. Typically, we can map the event of one
component to the operation of another component in
order to synchronize the components’ state (so that
they show related information).
lease cite this article as: F. Daniel, et al., Distributed orch
oi:10.1016/j.is.2011.08.001
�

est
Properties: The graphical setup of a component may
require the setting of constructor parameters, e.g., to
align background colors or set other style properties.
In order to make UI components accessible to BPEL,
each component must be equipped with a descriptor that
describes its events, operations, and properties in terms of
WSDL operations. As already anticipated in the previous
section, doing so requires extending the standard WSDL
description logic, i.e., its meta-model, from web services
to UI components. The result of this extension is called
WSDL4UI. Fig. 4 illustrates its meta-model, from which we
can see that the extension toward UI components occurs
via two different techniques:
1.
 First, we introduce a set of conventions of how the
abstract WSDL constructs can be used to describe UI
components. The properties of the UI component are
encapsulated by means of a dedicated constructor

operation that can be used to set properties at instan-
tiation time of the component. Next, all operations
specified in the description are either UIOperations,
UIEvents, or a constructor. UIOperations have only
inputs; UIEvents have only outputs; the constructor is
an operation. Finally, the port address of the described
service corresponds to the URL at which the actual UI
component can be downloaded for instantiation (in
form of a JavaScript file).
2.
 Second, we introduce a new JavaScript binding that
allows us to associate to each abstractly defined opera-
tion a JavaScript function of the UI component. Doing so
enables the client-side runtime environment (the UI
engine client) to parse the WSDL4UI description of a
ration of user interfaces, Informat. Systems (2011),

http://www.postgresql.org
http://www.postgresql.org
http://ode.apache.org
dx.doi.org/10.1016/j.is.2011.08.001


Fig. 4. Simplified WSDL4UI meta-model (inspired by [27] and extended

– via the gray boxes – toward UI components).

P
d

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]8
component, to invoke its constructor, and to correctly
access events and operations in JavaScript.
Only WSDL files that conform to these rules are consid-
ered correct WSDL4UI descriptors of UI components. Fig. 5,
for instance, shows the descriptor of the Patient Profile UI
component. Its interface is characterized by three WSDL
operations: ShowPatientProfile, SendPatientCoord,
and constructor (lines 9–17), corresponding, respectively,
to a UIOperation, to a UIEvent and to the component’s
constructor, as stated in the JavaScript binding (lines 20-
31). In the binding, there are also specified, through the
related jsFunction attributes (e.g., line 23), the actual
JavaScript functions implementing the operations, which
are contained in the file located at the URL defined in the
service’s port address (line 35).

For the BPEL engine, in order to interact with a compo-
nent, the BPEL4UI compiler introduced in Section 3.2 gen-
erates a respective event buffer and event proxy for the UI
engine server and equips them with two standard WSDL
descriptors. These descriptors contain the abstract service
description as defined in the WSDL4UI file (the event buffer
contains all operations of the UI components, the event proxy
all events), yet their port addresses point to the newly
generated services and their JavaScript binding is turned into
a SOAP binding.
5. The UI orchestration meta-model

Starting from web services and UI components, devel-
oping a UI orchestration requires modeling two funda-
mental aspects: (i) the interaction logic that rules the
passing of data among UI components and web services
and (ii) the graphical layout of the final application.
Supporting these tasks in service orchestration languages
lease cite this article as: F. Daniel, et al., Distributed orch
oi:10.1016/j.is.2011.08.001
(like BPEL) requires extending the expressive power of the
languages with UI-specific constructs.

Fig. 6 shows the simplified meta-model of BPEL4UI,
addressing these two concerns. Specifically, the figure details
all the new modeling constructs necessary to specify UI
orchestrations (gray-shaded) and omits details of the stan-
dard BPEL language, which are reused as is by BPEL4UI (a
detailed meta-model for BPEL can be found, for instance, in
[28]). The code snippet in Fig. 7 exemplifies the syntax that
we use, in order to express the novel concepts in BPEL4UI.

In terms of standard BPEL [5], a UI orchestration is a
process that is composed of a set of associated activities (e.g.,
sequence, flow, if, assign, validate, or similar), variables (to
store intermediate processing results), message exchanges,
correlation sets (to correlate messages in conversations), and
fault handlers. The services or UI components integrated by a
process are declared by means of so-called partner links,
while partner link types define the roles played by each of
the services or UI components in the conversation and the
port types specifying the operations and messages sup-
ported by each service or component. There can be multiple
partner links for each partner link type.

Modeling UI-specific aspects requires instead introdu-
cing a set of new constructs that are not yet supported by
BPEL. The constructs, illustrated in Fig. 6, are:
�

es
UI type: The introduction of UI components into service
compositions asks for a new kind of partner link type.
Although syntactically there is no difference between web
services and UI components (the JavaScript binding intro-
duced into WSDL4UI comes into play only at runtime), it is
important to distinguish between services and UI compo-
nents as (i) their semantics and, hence, their usage in the
model will be different from that of standard web services,
and (ii) the UI orchestration editor must be aware of
whether an object manipulated by the developers is a web
service or a UI component, in order to support the setting
of UI-specific properties.

As exemplified in Fig. 7, we specify the new partner
link type like a standard web service type (lines 7–10).
In order to reflect the events and operations of the UI
component, we distinguish the two roles. Lines 1–5
define the necessary name spaces and import the
WSDL4UI descriptor of the UI component.
�
 Page: The distributed UI of the overall application
consists of one or more web pages, which can host
instances of UI components. Pages have a name, a
description, a reference to the pages’ layout template,
the name of the UI engine they will run on, and an
indication of whether they are a start page of the
application or not (as we will see in Section 7, inside
a process model, not all pages allow the correct
instantiation of the process).

The code lines 13–20 in Fig. 7 show the definition of
a page called ‘‘operator’’, along with its layout
template and the name of the UI engine on which
the page will be deployed; the page is a start page
for the process.
�
 Place holder: Each page comes with a set of place holders,
which are empty areas inside the layout template that can
tration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


Fig. 5. Example of WSDL/UI description of a UI component.

Fig. 6. Simplified BPEL4UI meta-model in UML. White classes corre-

spond to standard BPEL constructs [28]; gray classes correspond to

constructs for UI and user management.

P
d

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 9
be used for the graphical rendering of UI components.
Place holders are identified by a unique name, which can
be used to associate UI components.

Place holders are associated with page definitions
and specified as sub-elements, as shown in lines
16–19 in Fig. 7.
�
 UI component: UI types can be instantiated as UI
components. For instance, there may be one UI type
lease cite this article as: F. Daniel, et al., Distributed orches
oi:10.1016/j.is.2011.08.001
but two different instances of the type running in two
different web pages. Declaring a UI component in a
BPEL4UI model leads to the creation of an instance of
the UI component in one of the pages of the applica-
tion. Each component has a unique name.

We specify UI component partner links by extend-
ing the standard partner link definition of BPEL with
three new attributes, i.e., isUiComponent, pageName,
and placeHolderName. Lines 25–32 in Fig. 7 show
how to declare the Patient Profile component of
our example scenario.
�
 Property: As we have seen in the previous section, UI
components may have a constructor that allows one to
set configuration properties. Therefore, each UI compo-
nent may have a set of associated properties than can
be parsed at instantiation time of the component. We
use simple name-value pairs to store constructor
parameters.

Properties extend the definition of UI component
link types by adding property sub-elements to the
partner link definition, one for each constructor
parameter, as shown in lines 30–31 in Fig. 7.
�
 Actor: In order to coordinate the people in a process,
pages of the application can be associated with indivi-
dual actors, i.e., humans, which are then allowed to
access the page and to interact with the UI orchestra-
tion via the UI components rendered in the page.
As for now, we simply associate static actors to pages
(using their names); yet, actors can easily be assigned
tration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


Fig. 7. Excerpt of the BPEL4UI home assistance process (new constructs in bold).

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]10
also dynamically at deployment time or at runtime by
associating roles instead of actors and using a suitable
user management system.

Actors are simply added to page definitions by
means of the actorName attribute, as highlighted
in line 14 in Fig. 7.

The addition of these new concepts to BPEL turns the
service orchestration language into a language that, in
addition to service invocation logic, is also able to specify
the organization of an application’s UI and its distribution
over multiple servers and actors. Our goal in doing so was
to keep the number of new concepts as small as possible,
while providing a fully operational specification language
for UI orchestrations.

6. Modeling distributed UI orchestrations

The code example in Fig. 7 shows that the UI-specific
modeling constructs have a very limited impact on the
syntax of BPEL and are mostly concerned with the
abstract specification of the layout and the declaration
of UI partner links. The actual composition logic, instead,
relies exclusively on standard BPEL constructs. Yet, since
UI components are different from web services (e.g., it is
important to know in which page they are running),
modeling UI orchestrations requires a profound
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
understanding of the necessary modeling constructs and
their semantics. In particular, it is important to under-
stand the effect that individual modeling patterns have on
the execution of the final application, i.e., the semantics of
the patterns, and which other modeling tasks (data
transformations, message correlations, and layout design)
are necessary to fully specify a working UI orchestration.
6.1. Core UI orchestration design patterns

The first step toward this understanding is mastering
the core design patterns that characterize UI orchestra-
tions. As hinted at in Section 3 and illustrated in Fig. 8, we
distinguish three main design patterns:
�

est
Intra-page UI synchronization: The small model block
(a BPEL sequence construct) in the right part of Fig. 8
shows the internals of step 7 in Fig. 1. When the
assistant clicks on the ‘‘map’’ link, the patient’s address
is shown on the Google map. In BPEL terms, we receive
a message from the Patient Profile UI component
(the event) and forward it to the operation of the Map

component, both running inside the web page of the
assistant. The pattern, hence, implements a so-called
intra-page UI synchronization, i.e., a synchronization of
UI components that run inside a same page. From a
ration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


Fig. 8. Part of the BPEL4UI model of the home assistance process as

modeled in the extended Eclipse BPEL editor (the dashed and dotted

lines/arrows have been overlaid as a means to explain the model).

P
d

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 11
runtime point of view, this kind of UI synchronization
can be performed entirely on the client side without
requiring support from the BPEL engine.

�
 Distributed UI synchronization: The bigger model block

(again a BPEL sequence construct) in the left part of the
figure, instead, contains a distributed UI synchronization

that cannot be executed on the client side only, as the
two UI components involved in the communication
(Visit Report and Exams Booking) run in different
web pages. The event generated upon submission of a
new report is processed by the BPEL engine, which
then decides whether an additional exam needs to be
booked by the operator or not. As such, the BPEL
engine manages two independent concerns, i.e., the
forwarding of the event from one UI component to
another and the evaluation of the condition, of which
only the former is necessary to implement a distrib-
uted UI synchronization pattern. The execution of a
distributed UI synchronization pattern always requires
the cooperation of both the BPEL engine and the client-
side runtime environment.

�
 Service orchestration: The distributed UI synchroniza-

tion also involves the orchestration of the Report DB

and Exam DB web services, as well as some BPEL flow
control constructs. In fact, the modeled logic checks
whether the report expresses the need for further
exams or not. In either case, the further processing of
the report involves the invocation of either one or both
the web services, in order to correctly terminate the
handling of a visit request. The pure invocation of web
services represents a service invocation pattern, whose
execution can be entirely managed by the BPEL engine
without requiring support from the client-side run-
time environment.

The BPEL4UI excerpt in Fig. 8 shows that, when
modeling a UI orchestration, it is important to keep in
mind who communicates with whom and which UI
component will be rendered where. Depending on these
two considerations, the modeled composition logic will
lease cite this article as: F. Daniel, et al., Distributed orch
oi:10.1016/j.is.2011.08.001
either be executed on the client side, in the BPEL engine,
or in both layers. For instance, it suffices to associate the
Map component with a different page, in order to turn the
intra-page UI synchronization in the right hand side of
Fig. 8 into a distributed UI synchronization and, hence, to
require support from the BPEL engine.

6.2. Data transformations

When composing services or UI components, it is not
enough to model the communication flow only. An
important and time-consuming aspect is that of trans-
forming the data passed from one component to another.
With BPEL4UI we support all data transformation options
provided by BPEL by means of its Assign construct. This
allows us to leverage on technologies, such as XPath,
XQuery, XSLT, or Java, for the implementation of also very
complex data transformations.

Yet, it is important to keep in mind that the type of
data transformation may affect the logic of the UI orches-
tration: for instance, if the SetPosition activity in the
top-right corner of Fig. 8 does not transform data at all or
only performs simple parameter mappings (with the BPEL
Copy construct), we fully support the execution of the
intra-page UI synchronization in the client browser. If
instead a more complex transformation is needed, we rely
on the BPEL engine to perform it.

The reason for this choice is that UI synchronization
typically requires the exchange of only simple data (e.g.,
parameter-value pairs), which do not require complex
transformation capabilities like the ones we need when
interacting with web services. Supporting only simple
parameter–parameter mappings on the client side allows
us to keep the client-side runtime framework as light-
weight as possible, without however giving up any of
BPEL’s data transformation capabilities.

6.3. Message correlation

Independently of the format of data, UI orchestrations
may require a careful design of the messages used in the
orchestration and of how these must be correlated, in
order to enable the runtime environment to dispatch each
message to its correct UI orchestration instance. In fact,
just like in conventional workflow or service orchestra-
tion engines, there may be multiple instances of UI
orchestrations running concurrently in a same BPEL/UI
engine. Message correlation is required in all those cases
where the orchestration involves multiple entry points into
the orchestration logic (e.g., callbacks from external web
services or a condition that requires input from two
different events).

If we look at our modeling example in Fig. 8, we see that
the intra-page UI synchronization in the top-right corner
does not involve multiple entry points. It is therefore not
necessary to implement any correlation logic in BPEL4UI, in
order to propagate the SendPatientCoord event from the
Patient Profile UI component to the ShowPoint opera-
tion of the Map UI component. Since both UI components
involved in this synchronization run inside the same web
page and, therefore, there is no ambiguity regarding which
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]12
instance of the Map UI component is the target of the
SendPatientCoord event. In Section 7, we will see that
this is not always the case.

The distributed UI synchronization, instead, involves two
UI events from two different actors and, hence, different
pages: ReportCompleted and BookingConfirmed. In this
case, it is necessary to configure a so-called correlation set (in
BPEL terminology) that allows the BPEL engine to under-
stand when two instances of those events belong to a same
process instance. In the example in Fig. 8, we use UIOrch-

estrationID (provided by the UI engine) and VisitID

(part of the report) as correlation set.
6.4. Graphical layout

Finally, the complete definition of a UI orchestration also
requires the design of suitable HTML templates and the
assignment of UI components to their place holders inside
the pages. As our goal is the development of an enabling
middleware layer for UI orchestrations, for the layout tem-
plates we rely on standard web design instruments and
technologies (e.g., Adobe Dreamweaver). The only require-
ment the templates must satisfy is that they provide place
holders in the form of HTML DIV elements that can be
indexed via standard HTML identifiers following a predefined
naming convention: odiv id¼"marcoflow-y"4
o=div4 .

Fig. 9, for instance, depicts the empty HTML template
of the assistant’s web page, whose filled version we have
already seen in Fig. 1. The template is a simple HTML page
with a page title and the four uniquely identified place-
holders to be filled with UI components at runtime.
Differently from dynamic HTML and most of the
approaches discussed in Section 2, in which the template
typically also contains the formatting logic for the data to
be rendered inside the place holders, in our case the
template only identifies the location of the UI compo-
nents; the rendering of content is then managed auton-
omously by the UI components.
Fig. 9. The HTML template of the assistant’s web page highlighting the

empty place holders for UI components.

Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
Once all HTML templates for all pages in the UI
orchestration are defined, the definition of the pages
and the association of UI partner links with place holders
therein proceeds as exemplified in Section 6.

7. Types of UI orchestrations

So far we have seen how BPEL4UI supports the devel-
opment of distributed UI orchestrations. Yet, developing
correct UI orchestrations is still a non-trivial task, in that
the distribution of UI synchronizations and service
orchestrations over two different runtime engines (the
UI engine and the BPEL engine) complicates the instantia-
tion logic of distributed UI orchestrations, an aspect that
developers should understand thoroughly. As illustrated
in Fig. 10, we identify four main types of UI orchestrations
that can be implemented by means of the core patterns
described in Section 6.1, i.e., pure UI synchronizations, pure

service orchestrations, UI-driven UI orchestrations, and pro-

cess-driven UI orchestrations. The developer needs to
master these configurations if he does not want to
encounter unexpected behaviors or errors at runtime.
We discuss each of these configurations next.

7.1. Pure UI synchronizations

From a UI point of view, the basic type of UI orches-
tration is represented by applications that involve UI

components only and, hence, exclusively focus on the
synchronization of UIs via events. Typical examples of
this type of UI orchestration are UI-based mashups,
portlets/portals, applications that integrate widgets/gad-
gets, or similar component-based UI applications.

Fig. 10(a) illustrates a simple example: there are two
concurrent pages, possibly associated with two different
users and with a total of three UI components, one in
Page 1 and two in Page 2. By interacting with the UI
component A, the user can generate an event that syn-
chronizes component B in the other page; likewise,
another user can interact with B and synchronize both A

and C, while C allows the user to synchronize again B. The
three UI components are instantiated in their web pages
and run until the users close their web browsers or
navigate to another web page. As such, UI components
are stateful: their UI constantly reflects the interaction
state of the users with the component (e.g., in terms of
selections or navigation actions performed). During their
lifetime, each UI component may generate multiple
events as output and accept multiple events as input.
That is, while in one instance of the UI orchestration in
Fig. 10(a) each UI component is instantiated only once,
there may be multiple instances of synchronization
events (the dashed arrows).

Supporting the execution of this type of UI orchestration
requires the presence of both a client-side runtime environ-
ment and a server-side environment. Specifically, the intra-
page UI synchronization of B and C can be handled in the
client, since both UI components run inside the same web
page, i.e., web browser. The synchronization of A and B,
instead, requires help from the server side, in that they
implement a distributed UI synchronization. Therefore, the
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


Fig. 10. The four types of (UI) orchestration supported by BPEL4UI and the MarcoFlow system. (a) Pure UI synchronization of multiple UI components.

(b) Pure service orchestration of multiple web service invocations. (c) UI-driven UI orchestration with UI components triggering the execution of service

orchestration instances. (d) Process-driven UI orchestration with the process instance enabling/disabling the access to pages.

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 13
event proxy on the server side (cf. Fig. 2) is needed, in order
to forward communications among the two web pages.

Sending an event through the event proxy raises the
need for correlation, in that there may be multiple
instances of a same UI orchestration running concurrently
and, therefore, it is necessary to identify which event
belongs to which instance. The solution we adopt is to add
to each generated UI event a so-called UIOrchestrationID,
which uniquely identifies the UI orchestration instance.
The identifier is generated by the UI engine at application
startup and shared with all the users participating in the
orchestration. This feature is automated in our runtime
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
framework and does not require any specific modeling at
design time.

7.2. Pure service orchestrations

From a web service point of view, the basic type of UI
orchestration is the one that completely comes without UI,
i.e., a common web service orchestration. Although this
configuration represents a ‘‘degenerated’’ UI orchestration
(given that there is no UI), it is fully supported by BPEL4UI
and deserves an explanation in that it represents the
building block for the next UI orchestration types. Typical
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]14
examples are order processing logics or payment
processes.

Fig. 10(b) provides an example: there are six web
service invocations (specifically, synchronous request-
response invocations) and one incoming event arranged
in a typical service orchestration. For presentation pur-
pose, we adopt a data flow logic to model the orchestra-
tion, as for the discussion in this section it is not
important to explicitly distinguish between control and
data flow. The important aspect of the model is that, upon
instantiation of the service orchestration, each element in
the model is instantiated exactly once—including the data
flow connectors (differently from what happened with
the UI synchronization events in Fig. 10(a)). The data flow
connectors rule both which service invocation can be
performed and how data are passed from one invocation
to another.

Executing such a service orchestration requires support
from an orchestration engine/server, such as a BPEL
engine, which is able to instantiate on orchestration
model, to invoke the services as prescribed by the model,
to transform data formats between service invocations, to
accept incoming notifications or events, and to keep the
state of the progress in the orchestration instance. The
actual services run remotely and are outside the scope of
the orchestration environment.

The important aspect of the model in Fig. 10(b) is the
incoming event (graphically represented by the letter in
the circle), as the event raises the need for correlation in
the service orchestration. In fact, without the incoming
event, the model would consist only of synchronous
service invocations, which could be processed easily step
by step by the orchestration engine. The engine would
simply invoke a service, wait for its response, pass the
response to the next service, and so on till the whole
orchestration logics ends. In the presence of the incoming
event, instead, the engine must be able to correlate each
incoming event it receives with the correct target orches-
tration instance of the event. Doing so requires sharing at
least a simple key or identifier (the correlation set) among
the running orchestration instance and the incoming
event. For instance, the name of the person who starts
the orchestration instance could be used as correlation
identifier, as such could be known to both the engine and
the external service sending the event—provided that
there is always only one instance per person running in
the engine.
7.3. UI-driven UI orchestrations

A ‘‘full’’ UI orchestration, however, is characterized by
the joint use of both UI synchronizations and service
orchestrations inside a same application. Depending on
which of these two ingredients dominates the behavior of
the application, we can have either UI-driven orchestra-
tions (where service orchestrations are enacted by the UI)
or process-driven orchestrations (where the UIs are
enacted by the service orchestration). Here we focus on
the former type, in the next section we discuss the latter.
For instance, a web mashup that integrates RSS data from
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
a Yahoo! Pipe may invoke the pipe processing logic
multiple times while running.

Fig. 10(c) abstracts this type of UI orchestration: there
are two pages with respective UI components and two
service orchestration flows. While the intra-page UI syn-
chronization of B and C does not involve any web service,
the distributed UI synchronizations of A and B are based
on intermediate service invocations in both directions.
Just like we can have multiple UI synchronization events
(the dashed arrows) for each instance of UI component,
we now also have for each synchronization of A and B a
new instance of the intermediate service orchestration
logic (graphically represented by the dashed box around
the service orchestrations).

In order to execute such a UI-driven UI orchestration,
we need to join also the power of the runtime environ-
ments of the two previous configurations. Specifically, UI
synchronizations involving service invocations can no
longer be performed with a simple event proxy on the
server side only (like in pure UI orchestrations); instead,
the synchronization requires a tight integration of the
client-side runtime environment for UIs with the server-
side service orchestration engine. Specifically, a UI syn-
chronization event from one page must be able to
instantiate and provide input to a service orchestration
logic on the server side, which, in turn, must be able to
deliver its output in form of a UI synchronization event
sent to another page. That is, we need to have a full two-
way communication channel between the two runtime
environments, a feature that is implemented by the UI
components’ event proxies and event buffers in the UI
engine server.

In terms of correlation, all UI synchronization events
carry the UIOrchestrationID, as already introduced for
pure UI orchestrations, while the service orchestration
parts may require additional correlation information
inside BPEL4UI, depending on their individual topology.
For instance, the service orchestration enacted by propa-
gating an event from B to A only involves synchronous
service invocations and does therefore not require any
additional correlation information. The other service
orchestration in Fig. 10(c), instead, also involves the
reception of an external event, which requires the setup
of an additional correlation identifier, as already
described for Fig. 10(b).

7.4. Process-driven UI orchestrations

Finally, we have a process-driven UI orchestration each
time we have an application that brings together UI
synchronizations and service orchestrations in which the
service orchestration dominates over the UI synchroniza-
tion. For instance, workflow management or, more in
general, business process management applications that
integrate both web services and UI components and that
orchestrate tasks (work items) to be performed by either
users or automated resources, such as our reference sce-
nario, can be considered of this type of UI orchestration.

Fig. 10(d) schematically illustrates the situation: the
application starts with a pure service orchestration that
enacts a set of services and, only after the successful
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 15
processing of services a, b, c, and d, allows the users to
access their respective web pages. Inside the pages, there
are UI components that allow the users to interact with
the pages and to perform and conclude their tasks, which
causes the UI orchestration to leave again and disable the
pages and to proceed with the processing of the remain-
ing part of the service orchestration. That is, in process-
driven UI orchestrations pages are invoked like services,
but they are targeted at users and, therefore, expose a UI
the users can interact with. The overall UI orchestration
keeps waiting until the user successfully completes his/
her task, which is communicated via an outgoing UI
synchronization event.

In terms of required execution support, process-driven
UI orchestrations are similar to UI-driven UI orchestra-
tions, with the difference that the main service orchestra-
tion is instantiated only ones, not multiple times.

Correlation requirements are similar, too. As shown in
Fig. 10(d), if there is an incoming event that needs to be
injected into a running instance of the UI orchestration,
correlation is needed; otherwise, the whole UI orchestra-
tion can also be processed without correlation. UI syn-
chronization events are again managed via the
orchestration’s unique identifier associated by the UI
engine.

7.5. Complex UI orchestrations

The four types of UI orchestrations above represent
those classes of UI orchestrations that characterize the
most important application scenarios we encountered
throughout the development of the MarcoFlow system.
Yet, UI orchestrations may easily also get more complex.
For instance, it is possible to use a process-driven UI
orchestration (including again UIs and actors) in place of
any of the simple service orchestrations in Fig. 10(c), or it
is possible to expand the simple pages in Fig. 10(d) into
complete UI-driven UI orchestrations (including new
service orchestrations), or we could establish UI synchro-
nizations among the two pages in Fig. 10(d), and similar.
While these kinds of UI orchestrations are theoretically
possible and supported by BPEL4UI and MarcoFlow,
luckily it is hard to find practical examples that indeed
require such a level of complexity.

8. Implementing and running UI orchestrations

In order to ease the development, deployment, and
execution of UI orchestrations, MarcoFlow comes with
two tools that aid the different actors involved: a graphical

BPEL4UI editor for developers and a web-based manage-

ment console for both developers and users.
The graphical BPEL4UI editor for developers has been

implemented as an extension of the Eclipse BPEL editor
(http://www.eclipse.org/bpel/) and comes with (i) a panel
for the specification of the pages in which UI components
can be rendered and (ii) a property panel that allows the
developer to configure the web pages, to set the proper-
ties of UI partner links, and to associate them to place
holders in the layout.
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
The screenshot in Fig. 11 shows the editor at work. The
layout structure of the editor is the same of the standard
Eclipse editor, except for some differences in the right and
bottom side. On the right side, now it is also possible to
define the pages of the UI orchestration (as elements of
the Pages group). Selecting a page in the list shows the
respective details in the Properties panel in the lower part
of the figure and allows the developer to assign the actor,
i.e., the user that will be allowed to access the page, and
the HTML template for the page. Still on the right side,
where usually there are only partner links for web
services, now it is also possible to define UI partner links
for UI components. Selecting a partner link from the list
again shows its details in the Properties panel. Ticking the
UI component checkbox turns the partner link into a UI
partner link and allows the developer to define in which
page and place holder inside the page the UI component
will be rendered. The actual composition logic is specified
in the modeling canvas in the central part of the editor.

The web-based management console helps (i) develo-
pers deploy ready UI orchestrations and (ii) users in
instantiating and participating in running UI orchestra-
tions. Deploying a new UI orchestration requires the
developer to pack all the project files (web service WSDLs,
UI component WSDL4UIs, BPEL4UI specification, HTML
templates, and the system configuration) into a single
archive file and to upload it to the management console.
Doing so allows the developer to deploy the application
by means of a simple mouse click, which invokes the
BPEL4UI compiler and generates the standard BPEL file,
the event buffers and event proxies, their respective
WSDL files, and the UI compositions and then deploys
all generated artifacts in the respective runtime
environments.

Fig. 12, instead, shows the interface of the manage-
ment console for regular users, where they can see which
UI orchestrations have been deployed they have also
access to. Specifically, a user can either start a new
instance of UI orchestration (via the upper list in the
figure) or participate in an already running instance of UI
orchestration (via the lower list in the figure), which – in
the case of the operator and assistant in our example
scenario – leads him/her, for example, to one of the pages
in Fig. 1. The operator is allowed to instantiate the
orchestration, and the assistant is enabled to participate.

The MarcoFlow system shown in Fig. 2 is fully imple-
mented and running (a demo of the tool is available at
http://mashart.org/marcoflow/demo.htm). In our test set-
ting, we run the UI engine server and the BPEL engine on
the same machine, yet these components could also easily
be distributed over different physical machines, a feature
that is already supported by our code generator.

Developing the MarcoFlow platform in a way that is
fully functioning required taking some decisions on the
technologies to be used. As shown in this paper, we opted
for BPEL as service orchestration engine, since BPEL
natively supports communication with SOAP/WSDL web
services, a requirement that stems from our scenario. We
opted for JavaScript UI components, as this represents the
current trend in mashups and web-based UI development.
Yet, the contributions of this paper are independent of
estration of user interfaces, Informat. Systems (2011),

http://www.eclipse.org/bpel/
http://mashart.org/marcoflow/demo.htm
dx.doi.org/10.1016/j.is.2011.08.001


Fig. 11. The extended Eclipse BPEL editor for developing UI orchestrations at work.

Fig. 12. The management console for developers and users allowing them to deploy, instantiate, and participate in UI orchestrations.

F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]16
these choices and more conceptual than technological
(cf. Section 7). In fact, we can easily imagine substituting
the BPEL editor with a BPMN editor, of course adding the
necessary UI-specific extensions to it. Given the standar-
dized mapping from BPMN 2.0 to BPEL, this would not
affect the runtime part of the architecture. If we sub-
stitute the BPEL engine with another workflow or busi-
ness process engine (provided that such already supports
interaction with web services), this would require a
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
change in the runtime architecture and the generated
process model. But it would be straightforward and not
change the philosophy of the overall platform. Similarly, if
we want to manage UI integration at the server-side
(e.g., via server-side scripting languages like Perl or PHP,
ASP.Net or JSP), this could be achieved, but for the cost of
lower performance. User interaction occurs at the client
side and, hence, UI events are generated inside the client
browser. Using server-side technologies means going
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]] 17
through the server each time we have a simple intra-page
UI synchronization, which degrades the overall user
experience. It could however be possible to use different
client-side UI componentization technologies, such as
W3C widgets (again based on JavaScript), for which we
are already studying suitable mashup models [29].

9. Lessons learned

We conclude the paper with a few considerations on
lessons learned while developing and applying MarcoFlow.

One observation is that developers seem to prefer a
web-based environment rather than an Eclipse-based one.
We had chosen Eclipse because it already comes with an
open-source editor for BPEL, and we felt it was rather
powerful and reasonably easy to extend as opposed to
developing a new editor. In the end, working with the
editor took a lot of time, so that we did not get the
benefits of a web-based editor nor the time savings we
hoped for.

A second issue relates to the number of conversions of
messages from SOAP to REST and vice versa. In the current
approach, even when two REST services are communicat-
ing we always need to SOAP-ify them. While we aim to
minimize this kind of conversions as much as possible (by
keeping intra-page UI synchronizations on the client), this
limits the scalability if a single UI engine is used.

A limitation of the current implementation is that our
notification handlers inside the client browser continu-
ously poll the server-side event buffers for updates, which
further produces communication overhead and possibly
delays the forwarding of events. With the growing sup-
port for HTML 5 web sockets, we will approach this
limitation by pushing events from the server to the client.

Another limitation is the hard-coded assignment of
users to pages. In our future work we will address this by
investigating how resource managers known from work-
flow management systems can be adapted to our needs.
Instead of assigning concrete users, we will therefore
assign users roles to pages, which can then be instantiated
either at deployment time or runtime.

An interesting finding we did not realize in the begin-
ning is that, since UI orchestrations intermix stateless

elements (web service invocations) with stateful elements
(UI components) the need for correlation in UI orchestra-
tions is higher than in pure web service orchestrations.
Design-time and runtime constructs here may be needed
to simplify specifications and make the engine more
scalable.

However the main considerations that will drive our
research are in terms of usability and applicability. While
working with BPEL was a strong requirement initially,
many companies are increasingly considering mashup
languages for nonmission-critical applications, targeting
relatively simple ways to integrate and present web-
accessible data. This would fit well with the MarcoFlow
approach, which can be extended to deal with mashup
languages.

Finally, working with MarcoFlow and experimenting
its usage helped us strengthen our belief that BPEL, its
variations, and actually even mashup languages are not
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
suitable for end users, no matter how good development
tools are. Our conclusion here is that if we want to bring
development power to the end users or at least to
knowledge workers we need to define domain-specific
models and tools rather than general purpose ones. This is
the road we begun to undertake in our efforts within the
Omelette EU FP7 project. Yet, we also recognize that UI
orchestrations are intrinsically complex, an observation
that already inspired a critical survey paper on ‘‘process
mashups’’ [30], in which we conclude that the kind of
development scenarios supported by MarcoFlow hardly
suits the capabilities of less-skilled developers or
end users.

In summary, we are confident that the technological
limitations of MarcoFlow (no web-based editor, message
conversations, polling, user assignments) can easily be
addressed in our future work. The conceptual limitations,
that is, the intrinsic complexity of UI orchestrations,
however, we cannot eliminate.

10. Conclusion

The spectrum of applications whose design intrinsi-
cally depends on a structured flow of activities, tasks or
capabilities is large, but current workflow or business
process management software is not able to cater for all
of them. Especially lightweight, component-based appli-
cations or Web 2.0 based, mashup-like applications typi-
cally do not justify the investment in complex process
support systems, either because their user basis is too
small or because there is a need only for few, simple
applications. Yet, these applications too demand for
abstractions and tools that are able to speed up their
development, especially in the context of the Web with its
fast development cycles.

We introduced an approach to what we call distributed

UI orchestration, a component-based development techni-
que that introduces a new first-class concept into the
workflow management and service composition world,
i.e., UIs, and that fits the needs of many of today’s web
applications. We proposed a model for UI components
and showed how dealing with them requires extending
the expressive power of a standard service composition
language, such as BPEL. We equipped the language with a
modeling environment and a code generator able to
produce artifacts that can be executed straightaway by
our runtime environment, which separates intra-page UI
synchronization from distributed UI synchronization and
service orchestration. The result is an approach to dis-
tributed UI orchestration that is comprehensive and free.

A strong point of the described approach is that it
recognizes the need for abstraction and more expressive
models and languages at design time, while – thanks to its
strong separation of concerns and powerful code generator –
it does not require any new language or system at runtime.

While the intrinsic complexity of UI orchestrations
prevents the adoption of MarcoFlow by less skilled devel-
opers or end users (which was never the goal of the project),
MarcoFlow does provide skilled developers with more
expressive power compared to their current instruments:
the experienced BPEL developer is able to integrate UIs and
estration of user interfaces, Informat. Systems (2011),

dx.doi.org/10.1016/j.is.2011.08.001


F. Daniel et al. / Information Systems ] (]]]]) ]]]–]]]18
people into his service compositions; the mashup developer

is able to design mashups that also involve long-running
service orchestrations and user collaborations.

References

[1] B.A. Myers, M.B. Rosson, User interface programming survey,
SIGCHI Bulletin 23 (1991) 27–30.

[2] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding mashup
development, IEEE Internet Computing 12 (2008) 44–52.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, L. Yan, From
People to Services to UI: Distributed Orchestration of User Inter-
faces, in: BPM’10, 2010, pp. 310–326.

[4] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
Services Description Language (WSDL) 1.1, W3C Note, W3C,
/http://www.w3.org/TR/wsdlS, 2001.

[5] OASIS, Web Services Business Process Execution Language Version
2.0, Technical Report, /http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.htmlS, 2007.

[6] A. Hofstede, W. van der Aalst, M. Adams, N. Russell, Modern
Business Process Automation: YAWL and Its Support Environment,
Springer, 2009.

[7] O. Chun, M. La Rosa, A. ter Hofstede, M. Dumas, K. Shortland,
Toward web-scale workflows for film production, IEEE Internet
Computing 12 (2008) 53–61.

[8] M. Brambilla, S. Butti, P. Fraternali, Webratio bpm: a tool for
designing and deploying business processes on the web, in: ICWE,
Springer, 2010, pp. 415–429.

[9] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera,
Designing Data-Intensive Web Applications, Morgan Kauffmann,
2002.

[10] C. Pautasso, BPEL for REST, in: BPM’08, pp. 278–293.
[11] T.v. Lessen, F. Leymann, R. Mietzner, J. Nitzsche, D. Schleicher, A

management framework for WS-BPEL, in: ECOWS’08, IEEE, 2008,
pp. 187–196.

[12] E.M. Maximilien, A. Ranabahu, K. Gomadam, An online platform for
web APIs and service mashups, IEEE Internet Computing 12 (2008)
32–43.

[13] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, WS-BPEL Extension
for People (BPEL4People) Version 1.0, Technical Report, 2007.

[14] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, Web Services
Human Task (WS-HumanTask) Version 1.0, Technical Report, 2007.
Please cite this article as: F. Daniel, et al., Distributed orch
doi:10.1016/j.is.2011.08.001
[15] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, P. Fraternali,
Web Applications Design and Development with WebML and
WebRatio 5.0, in: Objects, Components, Models and Patterns, vol.
11, LNBIP, Springer, 2008, pp. 392–411.

[16] J. Gómez, A. Bia, A. Parraga, Tool support for model-driven devel-
opment of web applications, in: WISE’05, vol. 3806, Lecture Notes
in Computer Sciences, Springer, 2005, pp. 721–730.

[17] R. Vdovjak, F. Frasincar, G.-J. Houben, P. Barna, Engineering seman-
tic web information systems in hera, Journal of Web Engineering 2
(2003) 3–26.

[18] D. Schwabe, G. Rossi, S.D.J. Barbosa, Systematic hypermedia appli-
cation design with OOHDM, in: HYPERTEXT’96, ACM Press, 1996,
pp. 116–128.

[19] N. Koch, A. Kraus, R. Hennicker, The Authoring Process of the
UML-based Web Engineering Approach, in: IWWOST’01, 2001.

[20] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali, Model-
driven design and deployment of service-enabled web applications,
ACM Transactions on Internet Technology 5 (2005) 439–479.

[21] M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu, Process modeling
in Web applications, ACM Transactions on Software Engineering
and Methodology 15 (2006) 360–409.

[22] Sun Microsystems, JSR-000168 Portlet Specification, Technical Report,
/http://jcp.org/aboutJava/communityprocess/final/jsr168/S, 2003.

[23] OASIS, Web Services for Remote Portlets, Technical Report, /www.
oasis-open.org/committees/wsrpS, 2003.

[24] F. Daniel, F. Casati, B. Benatallah, M.-C. Shan, Hosted universal
composition: models, languages and infrastructure in mashArt, in:
ER’09, Springer, 2009, pp. 428–443.

[25] S. Pietschmann, M. Voigt, A. Rümpel, K. Meißner, CRUISe: composi-
tion of rich user interface services, in: ICWE’09, Springer, 2009,
pp. 473–476.

[26] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch,
A. Schill, Overview of an end-user enabled model-driven develop-
ment approach for interactive applications based on annotated
services, in: WEWST’09, ACM, 2009, pp. 19–28.

[27] A. D’Ambrogio, A model-driven WSDL extension for describing the
qos of web services, in: ICWS’06, 2006, pp. 789–796.

[28] WSPER.org, WS-BPEL 2.0 Metamodel, Technical Report, /http://
www.ebpml.org/wsper/wsper/ws-bpel20.htmlS, 2007.

[29] S. Wilson, F. Daniel, U. Jugel, S. Soi, Orchestrated User Interface
Mashups Using W3C Widgets, in: ComposableWeb’11 (ICWE 2011
Workshop Proceedings), Springer, 2011.

[30] F. Daniel, A. Koschmider, T. Nestler, M. Roy, A. Namoun, Toward
process mashups: key ingredients and open research challenges
in: Mashups’10, ACM, 2010.
estration of user interfaces, Informat. Systems (2011),

http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/
www.oasis-open.org/committees/wsrp
www.oasis-open.org/committees/wsrp
www.oasis-open.org/committees/wsrp
www.oasis-open.org/committees/wsrp
www.oasis-open.org/committees/wsrp
http://www.ebpml.org/wsper/wsper/ws-bpel20.html
http://www.ebpml.org/wsper/wsper/ws-bpel20.html
dx.doi.org/10.1016/j.is.2011.08.001

	Distributed orchestration of user interfaces
	Introduction
	State of the art in orchestrating services, people and UIs
	Distributed user interface orchestration: definitions, requirements, and architecture
	Requirements and approach
	Architecture

	The building blocks: web services and UI components
	The UI orchestration meta-model
	Modeling distributed UI orchestrations
	Core UI orchestration design patterns
	Data transformations
	Message correlation
	Graphical layout

	Types of UI orchestrations
	Pure UI synchronizations
	Pure service orchestrations
	UI-driven UI orchestrations
	Process-driven UI orchestrations
	Complex UI orchestrations

	Implementing and running UI orchestrations
	Lessons learned
	Conclusion
	References




