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Abstract

Continuous processing of top-k queries over data streams is a promising technique for alleviating the information overload problem

as it distinguishes relevant from irrelevant data stream objects with respect to a given scoring function over time. Thus it enables

filtering of irrelevant data objects and delivery of top-k objects relevant to user interests in real-time. We propose a solution for

distributed continuous top-k processing based on the publish/subscribe communication paradigm—top-k publish/subscribe over

sliding windows (top-k/w publish/subscribe). It identifies k best-ranked objects with respect to a given scoring function over a

sliding window of size w, and extends the publish/subscribe communication paradigm by continuous top-k processing algorithms

coming from the field of data stream processing.

In this paper, we introduce, analyze and evaluate the essential building blocks of distributed top-k/w publish/subscribe systems:

First, we present a formal top-k/w publish/subscribe model and compare it to the prevailing Boolean publish/subscribe model.

Next, we outline the top-k/w processing tasks performed by publish/subscribe nodes and investigate the properties of supported

scoring functions. Furthermore, we explore potential routing strategies for distributed top-k/w publish/subscribe systems. Finally,

we experimentally evaluate model properties and provide a comparative study investigating traffic requirements of potential routing

strategies.

Keywords: event-based systems, data stream, sliding-window queries.

1. Introduction

The problem of information overload is apparent in our daily

lives: When checking RSS feeds from major media sources,

browsing through blog posts and status updates on social sites,

or following tweets to find breaking news, it is difficult to dis-

tinguish information relevant to personal interest in real-time.

Moreover, emerging data stream applications spanning over

largely-distributed data sources, such as the Sensor Web [1]

or large-scale opportunistic sensing [2], continuously generate

huge data volumes and require continuous processing and data

filtering followed by timely delivery of relevant information,

e.g. alerts, to enable human intervention.

We addresses continuous processing of top-k queries over

distributed data streams which filters out irrelevant data stream

objects, and delivers only top-k objects relevant to current inter-

ests in real-time. Thus it offers the means to alleviate the infor-

mation overload problem facing numerous data stream process-

ing applications where recent objects are more important than

older ones. Our solution—top-k publish/subscribe over sliding

windows (top-k/w publish/subscribe)—identifies k best-ranked

objects with respect to a given scoring function over a sliding

Email addresses: kresimir.pripuzic@fer.hr (Krešimir Pripužić),

ivana.podnar@fer.hr (Ivana Podnar Žarko), karl.aberer@epfl.ch

(Karl Aberer)

window of size w, and is based on the publish/subscribe com-

munication paradigm augmented by algorithms coming from

the field of data stream processing.

Top-k/w publish/subscribe can be applied in a number of

real-world applications: 1) Consider an application which ag-

gregates product advertisements from a number of auction sites.

A user may specify properties of an ”ideal” product he/she is in-

terested in, while the application informs the user in real-time

about newly appearing advertisements that are most similar to

his/her ”ideal” product. Furthermore, the user can specify the

number of advertisements he/she is willing to receive per day.

2) A personal information filtering engine continuously checks

for updates from various RSS feeds and blogs, and delivers k
most relevant updates to users during a course of a day and at

the time when those updates are published. 3) Another possible

application area is real-time environmental monitoring. With

top-k/w publish/subscribe environmental scientists can identify

and monitor up to k sites with the largest pollution readings

over the course of a single day, or identify a predefined number

of sensors closest to a particular location measuring the largest

pollution levels over time (e.g. top-10 readings per hour). All

these example applications require continuous processing of

top-k queries over largely-distributed data sources generating

data objects possibly with high publication rates.

In this paper we present top-k/w publish/subscribe, a novel

publish/subscribe model for continuous top-k processing over
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Figure 1: Matching in Boolean publish/subscribe systems

distributed data streams which introduces a stateful matching

model compared to the stateless Boolean model which is wide-

spread in literature. Publish/subscribe systems process continu-

ous queries, i.e. subscriptions, over distributed sources produc-

ing data objects, i.e. publications, with the goal of timely notifi-

cation delivery across distributed data destinations [3]. They are

tuned to filter large amounts of published information in real-

time and deliver matching publications to interested subscribers

due to efficient matching and routing algorithms, but at the ex-

pense of supporting rather simple stateless queries. Data stream
processing systems enable efficient processing of continuous

queries, but in contrast to the former systems, they are tightly

coupled, platform dependent, difficult to deploy and maintain,

and less scalable to the number of users [4]. Our model reuses

the best properties of both systems to identify a limited number

of most relevant publications over time and enable effective fil-

tering of distributed data streams while providing the means to

control the frequency of delivered publications.

1.1. Motivation
In current publish/subscribe systems, subscription is a state-

less Boolean function [5]: A decision whether to deliver a pub-

lication to a subscriber is made based on the result of the match-

ing process comparing a publication to subscriber’s subscrip-

tion, as shown in Figure 1. The matching process depends ex-

clusively on publication and subscription content, and does not

take into account any additional information present in the sys-

tem. This approach has the following drawbacks:

• a subscriber may be either overloaded with publications or

receive too few publications over time,

• it is impossible to compare different matching publications

with respect to a subscription as ranking functions are not

defined, and

• partial matching between subscriptions and publications is

not supported.

As publication content is generally unknown in advance, it is

impossible to predict the number of future publications match-

ing a subscription. If a subscription is too general, a subscriber

may receive too many publications over time. On the contrary,

in case of an overspecified subscription, the subscriber may re-

ceive too few publications or none in the worst case. Thus, a

subscriber has to specify an ”perfect” subscription to receive an

optimal number of matching publications. It is a sort of guess-

ing, where even a slight change in subscription may result in a

drastically different number of matching publications. In gen-

eral, a user perceives the entire system through both the quantity
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Figure 2: Matching in top-k/w publish/subscribe systems

and quality of received publications. Therefore, a large quantity

of received publications will be considered as a sort of spam,

while a system that delivers too few publications might be rec-

ognized as non-working. The number of received publications

is crucial for the acceptance of an actual system by users even

more if, for example, subscribers pay for each delivered publi-

cation matching subscriber information interest.

We argue that the unpredictable number of delivered publi-

cations to subscribers over time is one of the reasons for the

slow adoption of large-scale publish/subscribe solutions. Ei-

ther too many or too few publications may cause user dissat-

isfaction with a provided service, for example, in applications

such as personal information filtering, network monitoring, or

advertisement dissemination. Moreover, in networks with lim-

ited resources such as MANETs or sensor networks, it is highly

desirable to minimize and control network traffic.

1.2. Top-k/w Matching Model in Brief
The top-k/w publish/subscribe model enables a subscriber to

control the number of publications it receives per subscription

within a predefined time period. Each subscription defines 1) a

time-independent scoring function and 2) the parameters k ∈ N

and w ∈ R
+. Unlike the Boolean publish/subscribe model, it is

time-dependent because at each point in time t, the parameter k
limits the number of matching publications restricting it to top-

k publications that are published between points in time t − w
and t. This interval is called the time-based window of size w
and it is constantly sliding in time. Please note that the size of

subscription window may also be defined as the number of most

recent publications (count-based window) [6]. With no loss of

generality in this paper we assume time-based windows.

The quantity of received publications in the top-k/w pub-

lish/subscribe model is independent of the publishing fre-

quency, and depends on parameters k and w. This in practice

means that the matching process comparing a newly published

publication to a subscription depends both on publication score

and scores of previous publications calculated using the same

scoring function. In other words, each publication is competing

with other publications from the sliding window for a position

among the top-k publications as depicted in Figure 2. Obvi-

ously, the quality of received publications depends on calcu-

lated scores, and is statistically proportional to the number of

published publications.

Efficient processing of top-k/w subscriptions is challenging

because, even though a publication is not a top-k publication at

the time when it is published, it might become one in future,

2
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Figure 3: Processing publications for a top-k/w subscription.

and therefore a set of candidate publications within the sliding

window has to be stored1 in memory. This is shown by the

following example: For a top-k/w subscription with parameters

k = 2 and w = 5s, Figure 3 shows the processing of arriving

publications. We depict discrete points in time t = 6, 7, 8swhen

publications marked with gray boxes, i.e. 6, 7, and 8, arrive in

the system. Note that all publications are denoted by boxes and

their time of appearance, while we rank them from left to right.

For example at t = 6, the publication published at t = 4 has

the best rank, while the publication published at t = 2 has the

worst rank. When the window slides to t = 6, the publication

published at t = 1 denoted by a checked box is dropped from

the window, while a new one marked with a gray box appears in

the window. From the presented sequence of events, we can see

the publication published at t = 5 becomes a top-2 publication

at t = 8 although it was not among top-2 publications when it

was published. Thus publication 5 should be stored in memory

at the time it appeared in the window as a candidate publication.

The example shows that a publication within the window

of a top-k/w subscription becomes a top-k/w publication when

there are less than k higher ranked publications within the win-

dow. This can happen either when a new publication enters the

system when there are less than k higher ranked publications

within the subscription window, or at a later point in time when

one of top-k publications is dropped from the subscription win-

dow, and a candidate publication has the highest rank among

all other candidate publications. Therefore, the set of candi-

date publications needs to be maintained in main memory for

top-k/w processing.

1.3. Contribution
Continuous top-k queries have already been identified as one

of the most important types of continuous queries [7], and the

data stream community already offers efficient algorithms for

continuous top-k processing which maintain the minimal set of

candidate publication on a single processing node [8, 9]. How-

ever, existing solutions require centralized processing which

generates huge network traffic due to transport of data streams

to the processing site, and therefore distributed processing and

filtering of produced data close to data sources is required for

scalable continuous top-k processing.

1Note that publications are seen only when entering the system unless they

are explicitly stored in memory.

The goal of this paper is to present a distributed solution

for top-k/w processing which reuses existing algorithms for

continuous top-k/w processing at the nodes forming a dis-

tributed overlay network, and extends the principles of pub-

lish/subscribe for overlay organization and routing algorithms.

Our initial idea to design a stateful matching model for pub-

lish/subscribe systems which ranks publications with respect

to a subscription is presented in [10], where we also intro-

duce an algorithm for probabilistic computation of top-k/w

queries. This idea was developed in parallel with the follow-

ing two papers [11, 12] that also introduce ranking functions

into publish/subscribe systems, but do not use sliding windows

to limit the temporal scope of subscription processing. Com-

pared to [10], this paper introduces an extended top-k/w model

for distributed publish/subscribe systems, discusses the scoring

functions supported by the model, and identifies the routing al-

gorithms that are adequate for top-k/w publish/subscribe. This

paper provides a general view on top-k/w publish/subscribe,

while a specific solution for processing continuous k-NN (near-

est neighbor) queries in a distributed setting is presented in [13].

In particular, the main paper contributions may be summa-

rized as follows:

• The paper presents a formal model of top-k/w pub-

lish/subscribe system and compare it to the prevailing

model of Boolean publish/subscribe system. We show that

the top-k/w publish/subscribe model can be reduced to the

Boolean model. The initial version of the top-k/w pub-

lish/subscribe model is introduced in [10].

• We identify and analyze typical scoring functions sup-

ported by our model.

• We provide an extensive analysis of the existing routing

strategies found in publish/subscribe systems, and adapt

them to the top-k/w publish/subscribe model. The analysis

is used to identify prospective routing strategies for the

novel publish/subscribe model.

• An experimental evaluation is used to investigate perfor-

mance properties of the top-k/w publish/subscribe model

for different data sets (one real and two generated data

sets). Furthermore, an analytical evaluation of the routing

strategies under a hypothetical network scenario is given

to quantify the messaging overhead of the introduced top-

k/w publish/subscribe model.

The paper is organized as follows. Section 2 presents the

Boolean and top-k/w publish/subscribe models and discusses

model-specific parameters. In Section 3 we show a number of

subscription examples to compare Boolean and top-k/w sub-

scriptions. Section 4 analyzes routing algorithms found in dis-

tributed publish/subscribe systems and adapts them according

to the requirements of top-k/w processing. In Section 5 we an-

alyze results of an experimental evaluation using synthetic and

real data sets which investigates properties of the top-k/w model

and present a quantitative evaluation of the routing strategies.

A survey of related work in the field is given in Section 6, and

Section 7 concludes the paper.
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2. Specification of Boolean and Top-k/w Systems

In a typical publish/subscribe system publishers publish con-

tent (i.e. data objects) which they want to distribute among sub-

scribers in messages called publications. Subscribers subscribe

to the content in which they are interested by issuing messages

called subscriptions. A publish/subscribe service, which can be

either centralized or distributed, is responsible for delivering

publications in real-time, i.e. immediately after their publica-

tion, to those subscribers whose subscriptions match selected

publications. A publication matches a subscription when it sat-

isfies all constraints defined by the subscription.

Every publish/subscribe system is distributed in its nature be-

cause it consists of a number of clients (i.e. publishers and sub-

scribers) and a publish/subscribe service, which is the mediator

that decouples publishers from subscribers. In literature, cen-
tralized publish/subscribe systems denote systems with a single

processing node which performs the matching process, while

distributed publish/subscribe systems are implemented over a

number of network nodes. The processing nodes form an over-

lay network and distribute the matching load such that each

node is responsible for a subset of clients and their subscrip-

tions/publications, and additionally, processing nodes collabo-

rate to forward publications from different parts of the network

to all interested subscribers.

In this section we give formal specifications of two different

publish/subscribe systems using set theory. The Boolean pub-
lish/subscribe system is based on the Boolean matching model,
which is a generalization of the three most common match-

ing models found in literature: topic-based, content-based and

type-based models [3]. The matching process uses a given

Boolean matching function defined by each subscription. On

the contrary, the top-k/w publish/subscribe system relies on

a novel matching model, named the top-k/w matching model
which is stateful and time-dependent, because at each point in

time t, the parameter k limits the number of matching publica-

tions restricting it to the top-k publications published within a

subscription window. Each publication is ranked according to a

time-independent scoring function, and we assume time-based
windows in our model. Please note that the specification of the

Boolean publish/subscribe system is given for completeness of

the paper and is not our original contribution.

2.1. Boolean Publish/Subscribe System

Let B = (N,P, S) be a triple, where N is a finite set of

nodes, P is a finite set of publications, and S is a finite set of

Boolean subscriptions in a Booolean publish/subscribe system.

B gives the structural view of a Boolean system and determines

the boundaries of its state space. A node n ∈ N may publish

publications from P, activate or cancel subscriptions from S,

and perform matching between active subscriptions and pub-

lications. Thus, a node may assume one or multiple roles: it

may act as a publisher, subscriber, and/or processing node. We

refer to a node that activates a subscription as subscriber, and

analogously, to a node that publishes a publication as publisher.

Definition 2.1 (Publication). Let np ∈ N be a node, let tAp be
a point in time, and let cp denote some published content. We
define a triple p = {cp, np, tAp } ∈ P as a publication with content
cp that is published by node np at a point in time tAp .

The time of appearance tAp denotes a point in time when pub-

lication p appears in the system. We assume publication content

is certain, and its content and time of appearance do not change

after entering the system. We further assume publications are

assigned unique tAp when entering the system such that all pub-

lications can be ordered by their time of appearance. This is

indeed true for a centralized system with a single node assign-

ing unique timestamps to incoming publications, while this as-

sumption does not hold in a distributed setting. However, the

assumption can be further relaxed in a distributed setting such

that each node assigns unique timestamps to its incoming publi-

cations, and thus the model does not require time synchroniza-

tion between the nodes in the entire system.

Definition 2.2 (Boolean Subscription). Let ns ∈ N be a node
in the system, let tAs and tCs be two points in time such that
tAs < tCs , and let ms : P �→ {�,⊥} be a time-independent
Boolean matching function over P. We define a quadruple
s = {ms, ns, tAs , tCs } ∈ S as a Boolean subscription.

A Boolean subscription is defined by a Boolean matching

function ms associated with two additional parameters: time of
activation tAs denoting a point in time when subscription s is

activated in the system, and its time of cancellation tCs . We

say that the subscription is active within the period (tAs , tCs ].

Analogously to publications, we assume that tAs and tCs are im-

plicit timestamps assigned by the processing nodes. Of course,

the transmission of subscriptions and publications to process-

ing nodes introduces certain latency compared to the time of

creation at the source nodes. However, we can provide cor-

rectness guaranties regarding the matching process by tolerat-

ing bounded subscription/publication propagation times, as it is

commonly done in distributed implementations. Additionally,

it is important to stress that a matching function ms(p) is time-

independent and depends exclusively on the publication con-

tent, i.e. ms(p) = f (cp). Since both the matching function and

object content are static, a Boolean subscription is a stateless
publication filter.

Definition 2.3 (Matching Publications). Let s ∈ S be a Boolean
subscription, and let t be a point in time when s is active. We
define the set of matching publications Ps(t) ⊆ P for s at t as
follows:

Ps(t)
def
= {p : (p ∈ P) ∧ (tCs ≥ t > tAp > tAs ) ∧ (ms(p) = �)}. (1)

The matching function ms assigns � to all s’s matching pub-

lications, while the set of matching publications at a point in

time t comprises only those matching publications that have

appeared between the activation of s and t. Thus subscriptions

reference only future publications, i.e. publications appearing

after subscription activation, and cannot reference publications

published before subscription activation.

Next, we define the Boolean publish/subscribe system.
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Definition 2.4 (Boolean Publish/Subscribe System). Let N be
a finite set of nodes, let P be a finite set of publications, and
let S be a finite set of Boolean subscriptions. We define a triple
B = (N,P, S) as a Boolean publish/subscribe system iff for each
Boolean subscription s ∈ S, the system delivers all matching
publications to the subscriber issuing s, and each of these pub-
lications is delivered exactly once and immediately after being
published, while the system does not deliver non-matching pub-
lications to the subscriber of s.

This definition specifies two important properties for real-

time system specification [14, 15]: liveness and safety. The

liveness property asserts that ”all matching publications will

eventually be delivered to their subscribers”, while the safety
property asserts that ”non-matching publication will never be

delivered”.

2.2. Top-k/w Publish/Subscribe System
A top-k/w publish/subscribe system (top-k/w system) is de-

fined similarly to the Boolean system as a triple B = (N,P, S),

where N is a finite set of nodes, P is a finite set of publications,

and S is a finite set of top-k/w subscriptions. Similarly to the

Boolean system, a node n ∈ Nmay publish publications from P,

and activate or cancel subscriptions from S. A publication from

the top-k/w system is identical to the one from the Boolean sys-

tem, see Definition 2.1. However, top-k/w subscriptions are

quite different from Boolean subscriptions.

Definition 2.5 (Top-k/w Subscription). Let ns ∈ N be a node in
the system, let tAs and tCs be two points in time such that tAs < tCs .
For a given time-independent scoring function us : P �→ R, ks ∈
N, and ws ∈ R

+, we define a sextuple s = {us, ns, tAs , tCs , ks,ws}
as a top-k/w subscription.

A top-k/w subscription is defined by a scoring function us as-

sociated with two additional parameters, the query window size

ws (time-based window), and parameter ks denoting the num-

ber of top publications from the window that have to be deliv-

ered to subscriber ns. Furthermore, as top-k/w subscriptions are

continuous, they have a predefined time of activation and can-

cellation, which are implicit timestamps assigned by a nodes. A

point in time tAs represents the time of subscription activation,

while tCs is the time of subscription cancellation. Analogous to

the Boolean subscription, we say that the top-k/w subscription

is active within the period (tAs , tCs ].

Scoring functions are application specific and their explicit

definition depends completely on the application scenario in

which the top-k/w system is used, as discussed further in Sec-

tion 3. Similarly to Boolean matching functions, we assume

that scoring functions are time-independent and depend exclu-

sively on publication content, i.e. us(p) = f (cp). Please note

that our model supports generic scoring functions because we

do not impose any specific constraints on scoring function def-

inition, such as monotonicity, which is frequently assumed by

many top-k processing techniques [16]. Our assumption is that

publications can be ranked consistently because a tie-breaking

criterion can give preference to a more recent object. Scoring

functions may assign ranks to publications either in descending

or ascending order of their scores. Without loss of generality, in

this paper we assume the applied scoring function is such that

lower scores are preferable to higher scores, and therefore as-

sign ranks to publications scores in ascending order. Notice that

although data objects are static and their scores do not change

over time, their ranks may change over time as new publications

appear in the system, while previously appeared publications

are dropped from a subscription window.

A publication is within the subscription window at a point in

time t, if the publication appears in the system after subscription

activation, and less than wS time units have passed since its

appearance. This is formally stated by the following definition.

Definition 2.6 (Publications in a Subscription Window). We de-
fine the set of publications in the subscription window of an
active subscription s at t as follows:

Ws(t)
def
= {p : (p ∈ P) ∧ (tCs ≥ tAp + wS ≥ t > tAp > tAs )}. (2)

Only publications within a subscription window are of inter-

est to a subscription, and thus the model supports ad-hoc sub-
scriptions referencing future publications. Next, we define top-

k publications from the subscription window at a point in time

t.

Definition 2.7 (Top-k/w Publications). We define the set of top-
k publications in the subscription window of an active subscrip-
tion s at t as follows:

Ts(t)
def
= {p : |Bs(t, p)| < k}, (3)

where Bs(t, p)
def
= {p′ : (p′ ∈ Ws(t)) ∧ (us(p′) < us(p))}.

In other words, a publication p is a top-k publication for a

subscription s at t if p is within the current window of s, and

there are less than k higher ranked publications than p in this

window. Note that the set of top-k/w publications is continu-

ously being updated and changes over time, and that p is deliv-

ered to the subscriber issuing s when p becomes an element of

Ts for the first time. Since a set of top-k/w publications depends

on other publications in the subscription window, top-k/w sub-

scriptions are stateful publications filters.

Finally, we define the top-k/w publish/subscribe system.

Definition 2.8 (Top-k/w Publish/Subscribe System). Let N be
a finite set of nodes, let P be a finite set of publications, and
let S be a finite set of top-k/w subscriptions. We define a triple
B = (N,P, S) as a top-k/w publish/subscribe system iff for each
top-k/w subscription s ∈ S, the system delivers all top-k/w pub-
lications to the subscriber of s, and each of these publications
is delivered exactly once and immediately after it becomes an
element of Ts for the first time, while the system does not deliver
non-top-k/w publications to the subscriber of s.

Again, this definition follows the usual practice in real-time

system specification since it defines the liveness property as-

serting that ”top-k/w publications will eventually be delivered

to their subscribers”, while the safety property asserts that ”non-

top-k/w publications will never be delivered”.
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2.3. Top-k/w Subscription Parameters

Hereafter we discuss how a top-k/w system behaves under

specific conditions when its parameters ks and ws assume ex-

treme values. We investigate system performance when ks →
∞, ws → 0, ws → ∞, and when the number of publications

within the window of size ws is smaller than k. Finally, we con-

trast these extreme cases to typical values of these parameters.

Parameter ks →∞. In this setup, each published publication p
matches s since an infinite number of publications can be in-

serted into Ts according to Definition 2.7. As a consequence,

every published publication is delivered to subscriber ns as

stated in Definition 2.8. We refer to this extreme setup as the

top-∞ case.

Parameterws → 0. This setup is similar to the previous one as

each p is a single publication within the window of s at tAp + ε,
where ε is an infinitely small amount of time, and thus it be-

comes an element of Ts according to Definition 2.7. As a con-

sequence, every published publication is delivered to subscriber

ns as stated in Definition 2.8. Therefore, this extreme scenario

is also the top-∞ case.

Parameter ws →∞. In this scenario, the window of s is not

sliding, but expands in time. Thus only the publications among

ks best ranked publications published from the activation of s
are delivered to node ns. As time passes it is progressively

harder and harder for a newly published publications to become

a top-k/w publication. We refer to this extreme scenario as the

top-k case.

Low intensity of publishing. Let us model the publishing pro-

cess as a homogeneous Poisson process with parameters λ ≤

ks/ws and τ = ws, where λ is the expected number of generated

publications within a time period τ. Thus the number of newly

published publications within the window of size ws is smaller

than ks and subsequently, according to Definition 2.7, all pub-

lished publications are delivered to subscriber ns. Therefore,

this extreme scenario is also the top-∞ case.

Typical setup. In a typical scenario, subscription parameters

have non-extreme values, while the intensity of publishing is re-

lated to subscription parameters as follows: λ > ks/ws. There-

fore, such top-k/w subscription acts as a filter for published

publications since the number of publications within a sliding

window is larger than kw.

Figure 4 depicts possible parameter values for top-k/w sub-

scriptions, and relates them to the identified special setup cases.

It shows that a typical parameter setup is located between the

top-k case which delivers top-k publications since subscription

activation, and top-∞ case which delivers all incoming publica-

tions irrespective of subscription’s scoring function.

2.4. Comparison of the Boolean and Top-k/w System

In this subsection we show that a top-k/w system is a general-

ization of a Boolean system, i.e. that every Boolean system is a

Figure 4: Special cases of top-k/w subscription parameters.

special case of the corresponding top-k/w system. We can eas-

ily achieve that a top-k/w system behaves as a Boolean system

by selecting specific values of top-k/w subscription parameters

and scoring function, and thus every top-k/w system implemen-

tation also supports Boolean subscriptions without further mod-

ifications.

Theorem 2.1. The Boolean system is a special case of the top-
k/w system where for every s ∈ S with parameters ks = 1 and
ws → ∞, its scoring function us is defined as follows

us(p)
def
=

⎧⎪⎪⎨
⎪⎪⎩

0 iff ms(p) = � or
1 otherwise,

(4)

where ms is the matching function of s in the Boolean system.

Proof. To prove this theorem we have to show that such a top-

k/w system delivers the same set of publications to each sub-

scriber as the corresponding Boolean system. From Defini-

tios 2.3 and 2.7 we see that every publication which matches

a subscription in the Boolean system will also match the cor-

responding subscription in the top-k/w system, because when a

publication is published if it matchesms its score is set to 0, and

thus it becomes a top-1 publication at tAp + ε while all other pub-

lications published since subscription activation are given the

score of 1. Therefore, the matching process is time-independent

as in the corresponding Boolean system. As the safety proper-

ties of both systems forbid delivery of non-matching publica-

tions, we have proven the theorem.

3. Types of Subscriptions in Boolean and Top-k/w Systems

We have defined matching functions of Boolean subscrip-

tions and scoring functions of top-k/w subscriptions quite gen-

erally as functions which depend exclusively on publication

content. However, for a practical implementation of a pub-

lish/subscribe system, efficient implementation of a matching

process depends greatly on publication and subscription defi-

nition and scoring function. We are particularly interested in

distance, aggregation, and relevance functions as scoring func-

tions commonly used in application domains that we envision

for the top-k/w model. Thus it is important to analyze differ-

ent types of Boolean and top-k/w subscriptions to understand

the processing tasks of publish/subscribe nodes as the matching

process is one of their most prominent tasks.

A typical publication is defined either as a point from an

attribute-space or vector in vector-space with static content.
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(a) Max. weighted attribute dis-

tance

(b) Maximal distance

(c) Minimal weighted sum (d) Minimal relevance

Figure 5: Boolean subscriptions with different matching functions.

These are standard assumptions in state-of-the-art content-

based publish/subscribe systems. The size of publications is

directly influenced by the dimensionality of an attribute or

vector space. In practice, attribute spaces usually have low-

dimensionality, while vector spaces are usually highly dimen-

sional since their dimensionality is determined by the vocabu-

lary size of unstructured textual collection.

3.1. Boolean Subscriptions

In this paper we focus on content-based Boolean subscrip-

tions as the prevailing type of Boolean subscriptions [3, 17].

A Boolean subscription is defined as a subspace of attribute or

vector-space, and we refer to it as the subscription subspace
of interest. We assume subscription subspace of interest is de-

fined by a matching function ms which is composed of a scor-

ing function us (either an aggregation, distance, or relevance

function) and static threshold th. The threshold separates sub-

scription subspace of interest from the remaining attribute or

vector-space. A publication with a score that is lower than the

threshold is defined as a matching publication for the subscrip-

tion, i.e. ms = � for all publications within subscription sub-

space of interest, while ms = ⊥ otherwise. In other words, the

threshold defines the worst publication score that is still consid-

ered as matching. Such definition of matching functions is in

accordance with the definition of top-k/w scoring functions, and

thus allows us to compare the performance of Boolean and top-

k/w publish/subscribe systems using the same datasets, which

is important for their experimental comparison in Section 5.

The example shown in Figure 5 depicts different Boolean

subscriptions with the following matching functions: 1) max-

imal weighted attribute distance, 2) maximal distance, 3) mini-

mal weighted sum and 4) minimal relevance. For each of these

matching functions we depict a threshold that separates a sub-

scription subspace of interest from the rest of the space. In Fig-

ure 5(a) we see that the subspace of interest is a hyper-rectangle

in the attribute space and that its boundaries represent subscrip-

tion threshold. It is important to mention that a subspace of

interest of a content-based subscription is typically modeled as

a logical expression—-conjunction of predicates—-where each

predicate defines a simple constraint on an attribute, and may

be represented geometrically as a hyper-rectangle [18]. Simi-

larly, in Figure 5(b) the subspace of interest is represented as a

hyper-sphere in the attribute space, where hyper-sphere radius

represents the subscription threshold. Subscription threshold in

Figure 5(c) is a hyper-plane which divides the subspace of in-

terest from the rest of the attribute space. Please note that in this

case we prefer larger scores. Finally, the subspace of interest in

Figure 5(d) is represented as a cone with a convex base in the

vector space. In this case, subscription threshold is calculated

as the cosine of the the cone opening angle.

As an example, we show how Boolean matching functions

are defined in a two-dimensional attribute and vector spaces.

The maximal weighted attribute distance is defined as ms =
us ≤ th = max(c1 ·|xs−xp|, c2 ·|ys−yp|) ≤ th, where ordered pairs

(xs, ys) and (xp, yp) are points representing the subscription and

publication, respectively, while c1, c2 and th are constants. A

typical usage scenario for such subscription is subscribing to

ads about apartments for rent by specifying the maximal al-

lowed deviation from characteristics of an ”ideal” apartment,

which is modeled by (xs, ys). Similarly, the maximal distance

is defined as ms = us ≤ th =
√

(xs − xp)2 + (ys − yp)2 ≤ th. By

issuing such subscriptions we could, for example, subscribe to

apartment ads by specifying the cumulative deviation from an

”ideal” apartment. In the case of the minimal weighted sum,

subscription threshold is a separation line k1 · x + k2 · y = th,
where x is a value of attribute1 and y is a value of attribute2.

In this case, the subscription matching function is defined as

ms = us ≥ th = (k1 ·xp+k2 ·yp) ≥ th. This type of subscription is

used for evaluating published objects according to their useful-

ness for the subscriber. Finally, in the case of two-dimensional

vector space, the subscription matching function (i.e. minimal

relevance) is defined using the cosine between subscription and

publication vectors: ms = us ≤ th = (−→vs · −→vp)/(||−→vs|| · ||−→vp||) ≤ th,
where vs and vp are subscription and publication vectors. Sub-

scriptions to news articles using keywords are a typical usage

scenario for this type of subscriptions.

To conclude, the matching task of publish/subscribe nodes

is such that algorithms are needed to organize subscriptions in

such structures to efficiently identify a subset of subscriptions

whose subspace of interest covers an incoming publication.

3.2. Top-k/w Subscriptions
A publication p within the window of a top-k/w subscription

matches a subscription when there are less than k higher ranked

publications within the window. This can happen either:

1. at the moment of p’s publishing when there are less than
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k higher ranked publications within the subscription win-

dow, or

2. at a later point in time when one of top-k publications is

dropped from the subscription window and p has the high-

est rank among all other publications from the window that

are not within top-k publications.

The implementation of the first scenario is quite straightfor-

ward: Each published publication is compared against the list of

current top-k publications of a subscription, and, in case its rank

is higher than the rank of the last top-k publication in the list, it

is delivered to the subscriber. This requires continuous mainte-

nance of top-k publications in memory, because, although these

publications have already been delivered, they are continuously

compared to newly-published publications.

The second scenario requires a more elaborate solution as it

has already been recognized in [10, 9, 6, 7]: We need to in-

stantly fill in the slot of a dropped top-k publication with a pub-

lication that currently has the best rank among non top-k pub-

lications within the query window. Therefore, we need to store

additional candidate publications in memory that have the po-

tential to become top-k publications in future, which makes the

efficient processing of such subscriptions challenging. Conse-

quently, existing top-k/w processing algorithms define candi-

date publications quite differently:

• The algorithm, presented in [9], uses a set of top-k among

b most recent publications to filter out objects that can-

not become top-k objects in future. This algorithm re-

lies on the dominance property which states that only

non-dominated publications are eligible candidate publi-

cations. A non-dominated publication from a subscription

window is a publication for which there are less than k
other publications in a subscription window with a better

rank and later time of appearance. Conversely, a domi-

nated publication is a publication for which there are al-

ready k or more publications in the window that are more

recent and with a lower score than the dominated publica-

tion, and thus such publication cannot become a top-k/w

publication in future. This algorithm defines a subscription

threshold as the score of a k-th ranked publication among b
most recently published publications, which are stored in a

FIFO buffer and shared among all subscriptions stored at a

processing node. We name this algorithm the Strict candi-
date pruning Algorithm with Strict Filter (SASF) because

it continuously maintains a set of strictly non-dominated

candidate publications in memory, together with an addi-

tional set of b most recent publications, which is used for

filtering of dominated publications.

• Top-k/w processing algorithms (SMA, TMA, SNN and

CPM on sliding-windows) presented by Mouratidis at. al

in [6, 8] consider all publications within a subscription

window as candidates. In the case of the second scenario,

these algorithms call the CPM (Conceptual Partitioning

Method), an efficient algorithm for continuous nearest

neighbour (NN) monitoring, to fill the slot of a dropped

top-k publication. Between two consecutive CPM calls,

such a top-k/w subscription is only interested in top-k pub-

lications, and therefore, its threshold is defined as the score

of the k-th ranked publication after the most recent CPM

call. SMA and SNN call the CPM algorithm less often

than TMA and CPM over sliding-windows since the for-

mer algorithms additionally store a set of non-dominated

candidates in memory, and first try to fill the slot of a

dropped top-k publication with the best of them, or call

the CPM when this set is empty.

• Finally, a top-k/w subscription that is based on our proba-

bilistic algorithm (PA) presented in [10, 19], is interested

only in publications for which the probability to become

top-k/w publications in future is larger than a predefined

probabilityσ. As a probabilistic algorithm, it ignores pub-

lications with probability smaller than σ and introduces

a controllable probability of error (both false positive and

false negative top-k/w publications). Therefore, at a point

in time, the threshold of a PA-based top-k/w subscription

is defined as the score of the publication with the worst

score whose probability to become top-k/w publication is

larger than σ.

For our subsequent discussion it is important to understand

that the current threshold value of a top-k/w subscription is di-

rectly related to the set of top-k and candidate publications, re-

gardless of the used top-k/w processing algorithm. Addition-

ally, to calculate the threshold, we need to know all elements

of both sets. Moreover, since the sets change very frequently,

this also reflects on subscription thresholds. Therefore, while

Boolean subscriptions define static subspaces of interest, top-

k/w subscriptions are interested in dynamically changing sub-

spaces of the attribute space.

Analogous to Boolean subscriptions in Figure 5, Figure 6

shows subspaces of interest for four different top-k/w subscrip-

tions defined with the following scoring functions: 1) weighted

attribute distance, 2) distance, 3) weighted sum and 4) rele-

vance. For each of these scoring functions we can see a dy-

namic threshold that separates a subscription subspace of inter-

est from the rest of the available attribute or vector-space. As

shown in the figure, if this threshold changes, the correspond-

ing subscription subspace of interest also changes, i.e. it either

expands or contracts.

To conclude, a top-k/w publish/subscribe node needs to

maintain a set of top-k and candidate objects in memory per

subscription, and apply one of the aforementioned algorithms

for maintaining those sets and calculating the threshold. The

threshold is compared with the score of a new publication

which enables the processing node to quickly identify weather

the publication is a candidate or not. Note also that each change

of the top-k or candidate sets results in threshold change.

3.3. Subscription Indexing
Subscription indexing reduces the number of publications

that a Boolean or top-k/w subscription needs to process by iden-

tifying and neglecting those publications which are certainly

not of interest for a subscription. Hereafter we sketch indexing

techniques for distance and aggregation scoring functions.
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Figure 6: Top-k/w subscriptions with different scoring functions.

Distance and aggregation (i.e. weighted sum) functions are

applied to structured publications represented as points in a

multidimensional attribute space. In existing approaches [8, 6,

9], a regular grid is used to index subscriptions in such space.

A regular grid divides an attribute space in cells of equal size,

while a subscription threshold defines the subscription subspace

of interest as shown in Figure 7. Usually, each cell contains a

list of subscriptions whose subspace of interest completely or

at least partially covers the cell. This makes the processing

of incoming publications more efficient since only interested

subscriptions are informed about a publication appearing in the

cell. Please note that the subspace of interest is covered by the

cells of interest from the regular grid that encompass a larger

portion of the attribute space than the subspace of interest it-

self. When the subscription subspace of interest changes (i.e.

expands or contracts) this can reflect as a change in the cor-

responding cells of interest. Since this situation happens less

often than a regular threshold change, subscription cells of in-

terest change less often than its threshold which is important

for a distributed setup where processing node need to exchange

threshold updates or changes of subscription cells of interest.

To our knowledge, the indexing of top-k/w queries in vector-

space is still an open research problem [20, 21] and is not dis-

cussed further in this paper.

4. Routing in Distributed Publish/Subscribe Systems

The core mechanism behind a distributed publish/subscribe

service is routing of publications and subscriptions between

the nodes in an overlay network. The main issue with routing

algorithms is their scalability, which requires careful balanc-
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Figure 7: Indexing of subscriptions for various scoring functions.

ing of the number of propagated messages in an overlay net-

work, and the amount of stored routing information at overlay

nodes. The routing information is maintained by all process-

ing nodes: routing tables map node identifiers (usually identi-

fiers of their neighboring nodes) to proxy subscriptions received

from these nodes. Proxy subscriptions are representatives of

original subscriptions activated by subscriber nodes, and in this

section we contrast Boolean and top-k/w proxy subscriptions to

stress statefulness of top-k/w proxy subscriptions. This prop-

erty largely affects the routing strategies for distributed top-

k/w publish/subscribe systems, as we show when analyzing po-

tential routing strategies for such systems. Our original con-

tribution is the adaptation of existing routing strategies com-

monly found in distributed Boolean publish/subscribe systems

to support stateful subscriptions, such as parametrized subscrip-

tions [22] and our original top-k/w subscriptions. For details on

routing strategies found in Boolean publish/subscribe systems

we refer an interested reader to [23].

4.1. Proxy Subscriptions

Suppose that a client activates a new subscription and sends

it to the processing node through which it is connected to a

publish/subscribe system. Obviously, this node is aware of the

client’s subscription and stores it in memory for further process-

ing. However, other nodes should have a copy of the original

subscription to decide whether a publication published at an-

other part of the network is of interest for the subscription. We

refer to such subscription copies as proxy subscriptions since

they represent original subscriptions at some other nodes dif-

ferent from the originating node at which the subscription has

firstly been activated. In this subsection we compare Boolean
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and top-k/w subscriptions and their proxy subscriptions.

4.1.1. Boolean Proxy Subscriptions
Every Boolean subscription is defined by a matching func-

tion, subscriber generating the subscription, and activity period.

Since such subscriptions are stateless and do not change over

time, all proxy Boolean subscriptions are identical copies (i.e.

replicas) of the original subscription. Therefore, once such a

replica is stored on a node, it remains consistent with its original

subscription until subscription cancellation when such replica

has to be removed from the node. In the rest of this paper we

will not make any difference between a Boolean subscription

and its proxy subscriptions since they are identical.

4.1.2. Top-k/w Proxy Subscriptions
A completely different situation occurs in the case of top-

k/w subscriptions. Such subscriptions are stateful, and thus

their proxy subscriptions need to be in a consistent state with

their original subscriptions. From the discussion in the pre-

vious section we know the state of a top-k/w subscription is

determined by the dynamic set of its top-k and candidate pub-

lications. Therefore, a naive approach would continuously ship

all top-k and candidate publications to all proxy subscriptions

such that they are consistent with the original subscription, and

thus enable the node to determine the current threshold value.

However, such solution is very impractical because it stores a

lot of redundant data in the network and generates huge net-

work traffic. Let us analyze what is the minimal quantity of

information needed to decide whether a publications is of in-

terest to a top-k/w subscription or not. Obviously, we need to

know the scoring function to calculate publication scores. Then

we also need to know the current value of a subscription thresh-

old to identify the current subspace of interest. In other words,

to decide whether a publication is of interest to a top-k/w sub-

scription, a processing node needs to know the subscription’s

scoring function and receive continuous threshold updates. It

does not need to know the values of subscription parameters ks
and ws, nor the elements of its top-k and candidate publication

set if top-k/w subscriptions are indexable with their thresholds.

Since scoring functions are static (i.e. time-independent), we

only need to synchronize thresholds to make top-k/w proxy sub-

scriptions consistent with their originals. For this reason, we

can say that a top-k/w subscription proxy is equal to a param-

eterized subscription which introduces a threshold as its only

parameter [22]. Due to the similarity between parameterized

and top-k/w subscriptions, the following discussion investigat-

ing the suitability of different routing strategies for top-k/w sub-

scriptions also applies to parameterized subscriptions.

It is important to notice that the process of publication match-

ing against a top-k/w proxy subscription is computationally

less intensive than the process of publication matching against

the original top-k/w subscription because the former process

requires only score calculation and score comparison to sub-

scription threshold. Additionally, it requires less memory since

top-k/w proxy subscriptions do not maintain top-k and can-

didate publications at proxy subscription nodes: Publications

with scores below the threshold are sent to nodes that process
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Figure 8: Components of the Boolean, top-k/w subscription and their proxy

subscriptions.

original subscriptions and maintain subscription top-k and can-

didate publications.

Figure 8 shows different components of Boolean, top-k/w,

and the corresponding proxy subscriptions. A Boolean proxy

subscription is identical to its original since both of them

require two pieces of information: a static Boolean match-

ing function and subscriber identifier. A top-k/w subscrip-

tion is composed of six pieces of information: a static scoring

function, subscriber identifier, parameters ks and ws, dynamic

threshold, and dynamic set of stored publications. A top-k/w

proxy subscription requires only the following components: a

scoring function, subscriber identifier and dynamic threshold.

4.2. Routing Strategies
According to [23], the commonly used routing strategies in

distributed publish/subscribe systems can be grouped into the

following categories: flooding, selective routing and gossiping.

Furthermore, each of the three categories includes two com-

monly used strategies, which results in six strategies in total.

Flooding can be implemented as either subscription or pub-

lication flooding. This type of routing causes large message

overhead since the overlay network is frequently flooded with

messages containing either subscriptions or publications.

Selective routing is further classified as covering-based2and

rendezvous routing. This type of routing tries to reduce mes-

sage overhead in an overlay network as much as possible. Se-

lective routing is based on the following two observations: 1)

subscribers are usually interested in a small portion of pub-

lished publications and 2) subscriber interests usually overlap.

When this is not true, selective routing leads to flooding of an

overlay network with either subscriptions or publications.

Gossiping algorithms used in unstructured peer-to-peer over-

lay networks can further be categorized as basic gossiping,

which is purely probabilistic, and informed gossiping, which is

partially probabilistic and partially deterministic. These strate-

gies are best suited to systems with a high churn rate, i.e., with a

2The publish/subscribe architectural model from [23] considers filtering-

based instead of covering-based routing. However, covering-based routing is an

advanced version of filtering-based routing, and is more often used in practice.
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Figure 9: Sequence of events in a distributed top-k/w system with publication

flooding.

highly-dynamic peer-to-peer network topology, to improve the

reliability of publication delivery.

The task of adapting existing strategies to specific require-

ments of top-k/w systems is non-trivial, since Boolean subscrip-

tions and their proxy subscriptions are stateless, while top-k/w

subscriptions and their proxies are stateful. Please note that

in all routing strategies there is a single node which processes

the original top-k/w subscription and maintains the set of top-

k and candidate publications, while all other nodes may only

be responsible for top-k/w proxy subscriptions with a varying

threshold. Also note that in the following examples we assume

each node takes all three possible roles (publisher, subscriber,

processor).

4.2.1. Publication Flooding
In a distributed Boolean system with publication flooding,

subscriptions are stored at subscriber nodes and are therefore

not propagated further into the overlay network. When a publi-

cation is published, the overlay network is completely flooded

with it. Upon receiving a newly published content, each node

first forwards this publication to its neighbors, i.e. further into

the overlay network, and after that begins the process of match-

ing between this publication and its own Boolean subscriptions

to check if this publication matches any of them. Obviously,

this strategy is best suited to situations when the majority of

nodes is interested in most of the published publications. How-

ever, if the number of publishers or publishing rate is high, the

overlay network is overloaded with published publications.

In a distributed top-k/w system which employs this routing

strategy we do not need to store top-k/w proxy subscriptions in

the network since the matching is performed at the subscriber

node which also maintains subscription’s top-k and candidate

publications. For example, in Figure 9 we show a sequence of

events in a distributed top-k/w system with publications flood-

ing which consists of 6 nodes. When node E subscribes to s, s
is not further propagated into the network. When node A pub-

lishes p, the entire network is flooded with p. Furthermore,

information about s’s threshold change (method change(ths)) is

retained locally. Since this routing strategy does not introduce

any additional communication overhead when compared to dis-

tributed Boolean systems, we conclude that it is suitable for

implementing distributed top-k/w systems, although it suffers

from the same drawbacks as publication flooding in Boolean

Figure 10: Sequence of events in a distributed top-k/w system with subscription

flooding.

systems.

4.2.2. Subscription Flooding
In a distributed Boolean system with subscription flooding,

the overlay network is flooded with every new subscription acti-

vation or cancellation. In this routing strategy, publishers match

publications they publish against all active Boolean subscrip-

tions in the system. Besides that, they are responsible for direct

forwarding (i.e. using a network layer protocol) of matching

publications to subscribers. This strategy is best suited to en-

vironments that share the processing load (due the matching)

in situations where the majority of nodes are also publishers.

However, if the frequency of subscription updates is large, the

overlay network is overloaded with subscription updates.

When this routing strategy is used in distributed top-k/w sys-

tems, each publisher node stores proxy subscriptions of all ac-

tive top-k/w subscriptions. Furthermore, each subscriber must

process the stream of received publications for its own top-k/w

subscriptions to set the correct values of their thresholds. When

a subscription threshold changes, all nodes in the overlay net-

work have to be informed about this change to update the corre-

sponding top-k/w proxy subscriptions. For example, Figure 10

shows a sequence of events in a distributed top-k/w system with

subscription flooding which consists of 6 nodes. When node

E subscribes to s, or when the threshold of E’s subscription

changes, the whole network is flooded with this information.

Therefore, we conclude that this routing strategy can be used for

distributed top-k/w systems, but is not adequate for stateful sub-

scriptions since the synchronization of subscription thresholds

introduces a large communication overhead when compared to

distributed Boolean systems. Please note that A’s publication

p is a top-k/w publication for s since its score is better than or

equal to subscription threshold, and therefore p is forwarded di-

rectly from A to E since E is the subscription originator which

maintains s’s top-k and candidate publications.

4.2.3. Covering-based Routing
Covering-based routing in distributed Boolean systems is an

extension of subscription flooding which tries to reduce the

number of propagated proxy subscriptions by relying on the

coverage property between subscriptions. A Boolean subscrip-

tion is covered by another Boolean subscription if every pub-

lication which matches the covered subscription also matches
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Figure 11: Sequence of events in a distributed top-k/w system with covering-

based routing.

the covering subscription, while th opposite does not hold. In

case the interests of subscribers do not overlap, this strategy

is reduced to subscription flooding and the overlay network is

overloaded with subscription updates.

With covering-based routing, a subscription is propagated

further through an overlay network only if it is not covered

by a previously propagated and still active subscription. Oth-

erwise, a processing node stores it in the list of covered sub-

scriptions, and stops its further propagation. Additionally, pro-

cessing nodes maintain routing tables mapping identifiers of

their neighbors to all uncovered proxy subscriptions received

from them. A new publication is matched to proxy subscrip-

tions at all nodes on the reverse path from the publisher to the

subscriber. In other words, the publisher forwards this publica-

tion to those neighbors from which it has previously received

matching proxy subscriptions, and each of the neighbors re-

peats the process and forwards the publication to its neighbors

with matching subscriptions. The process stops when there are

no matching subscriptions stored at a node.

When a new subscription is activated in a distributed top-

k/w system with covering-based routing, the overlay network is

flooded with the corresponding proxy subscription. However, if

a proxy subscription is covered by one or more of the previously

propagated proxy subscriptions, its propagation is stopped. A

top-k/w proxy subscription is covered by another top-k/w proxy

subscription if, at a point in time, the subspace of interest of the

covering subscription contains the subspace of interest of the

covered subscription.

For example, Figure 11 shows a sequence of events in a

distributed top-k/w system with covering-based routing which

consists of 6 nodes. When node E defines a new subscrip-

tion, the network is flooded by the s1’s proxy subscription (sP
1
).

Later, when node D subscribes, but s2’s proxy subscription (sP
2
)

is sent only to node E since sP
2

is covered by sP
1

. When a sub-

scription is canceled or its threshold changes, all nodes which

store its proxy subscription should delete them or update their

thresholds, respectively, and additionally check the covering re-

lations between all proxy subscriptions they store. However, the

latter process is non-trivial and may produce large processing

overhead at nodes in an overlay network. In other words, not

only does this routing strategy flood the overlay network with

frequent threshold changes, but it additionally requires recom-

putation of subscription covering after each threshold change.

For this reason, we conclude that this routing strategy can be

applied in distributed top-k/w systems, but is not well suited

since the synchronization of subscription thresholds introduces

a large processing and communication overhead when com-

pared to distributed Boolean systems. Please note that merg-

ing3of top-k/w subscription proxies can be used with this rout-

ing strategy to reduce the routing information stored at nodes,

but this would introduce an additional processing overhead in a

distributed top-k/w system.

4.2.4. Rendezvous Routing
In every distributed publish/subscribe system with ren-

dezvous routing, the following two methods exists: 1) a method

which maps each subscription to an overlay node and 2) a

method which maps each publication to an overlay node. Such

a mapping is usually achieved by dividing the attribute space to

finite number of subspaces, and then by assigning each sub-

space to a different overlay node. In this way publications

matching a subscription are mapped (i.e. assigned) to the same

overlay node as subscription. Both mapping methods are typi-

cally implemented on top of a structured peer-to-peer network

which is then responsible for routing of publications and sub-

scriptions to nodes to which they are mapped. A node to which

a publication or subscription is mapped to is called the ren-
dezvous node for that publication or subscription. When a new

subscription is activated, the subscriber node forwards the sub-

scription augmented by its identifier through the overlay to the

subscription’s rendezvous node. Similarly, when a publication

is published, the publisher forwards the publication through

the overlay to the publication’s rendezvous node. When a ren-

dezvous node receives an incoming publication, it matches the

publication to previously received subscriptions. In this way,

each rendezvous node takes responsibility for storing of sub-

scriptions that are mapped to it and matching of them with in-

coming publications that are also mapped to it. In addition,

it is also responsible to deliver matching publications to their

subscribers directly (i.e. using a network layer protocol). This

strategy is best suited to situations when we want to balance the

processing and memory load among overlay nodes. Addition-

ally, when this routing strategy is used, no redundant matching

needs be performed in the system, which is a big advantage

when compared to covering-based routing.

When this routing strategy is used in distributed top-k/w sys-

tems, we do not need to store proxy subscriptions in the network

since subscriptions are stored only at their rendezvous nodes

that also maintain subscription’s top-k and candidate publica-

tions. For example, Figure 12 shows a sequence of events in a

distributed top-k/w system with rendezvous routing which con-

sists of 6 nodes. We see that E’s subscription is routed to node

B which is the rendezvous node for this subscription. Later on,

when node B receives A’s publication p which is mapped to

it, it performs top-k/w matching of p and delivers it directly

to E because p is a top-k/w publication for E’s subscription

3At a point in time, two or more top-k/w proxy subscriptions can be merged
together in a broader subscription which then covers all of the original subscrip-

tions.
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Figure 12: Sequence of events in a distributed top-k/w system with rendezvous

routing.

Figure 13: Sequence of events in a distributed top-k/w system with basic gos-

siping.

s. Similarly, as for publication flooding, a threshold change

of E’s subscription is retained locally at the rendezvous node

B. We conclude that this routing strategy is well suited for dis-

tributed top-k/w systems because it does not introduce4any ad-

ditional communication overhead when compared to distributed

Boolean systems.

4.2.5. Basic Gossiping
Basic gossiping, as a routing strategy in distributed Boolean

publish/subscribe systems, is similar to publication flooding

since subscriptions are stored at subscriber nodes and are not

propagated further into the overlay network. When a publica-

tion is published, it is randomly spread through an overlay net-

work as a gossip. More precisely, in each round of publication

spreading, one or a few nodes that have received this publica-

tion previously, spread it further to some other neighbors cho-

sen at random. Upon receiving a newly published publication,

a node matches the publication against its own subscriptions,

and after that randomly choses one or a few of its neighbors

and forwards the publication to them. Publication spreading

through an overlay network stops after a predefined number of

rounds. This routing algorithm is probabilistic and thus does

not guarantee publication delivery to all interested subscribers.

When this routing strategy is used in distributed top-k/w sys-

tems, similarly to subscription flooding, we do not need to store

4However, depending on the applied scoring function and actual implemen-

tation of this routing strategy, if rendezvous nodes have to contact other nodes

in the overlay network due to the processing of publications, additional com-

munication overhead can be generated, but this has to be investigated on a case

by case basis.

Figure 14: Sequence of events in a distributed top-k/w system with informed

gossiping.

proxy subscriptions in the network since the matching is per-

formed at the subscriber side. For example, Figure 13 shows a

sequence of events in a distributed top-k/w system with basic

gossiping which consists of 6 nodes. We see that E’s subscrip-

tion is retained locally. When node A publishes p which is a

top-k/w publication for s, node E does not receive p because

it has not spread to E. Similarly to publication flooding and

rendezvous routing, a threshold change of E’s subscription is

retained locally. We conclude that this routing strategy is well

suited for distributed top-k/w systems because it does not intro-

duce any additional communication overhead when compared

to distributed Boolean systems, but it also cannot provide any

guaranties regarding publication delivery.

4.2.6. Informed Gossiping
Informed gossiping, as a routing strategy in distributed

Boolean systems, is similar to basic gossiping since both strate-

gies are probabilistic. For both routing strategies, nodes store

their own subscriptions, but in case of informed gossiping each

node additionally stores subscriptions of its close neighbors.

In addition to matching of an incoming publication to its own

subscriptions, each node also processes the subscriptions of its

neighbors. This is the deterministic part of publication spread-

ing which is followed by the probabilistic part when the node

forwards the publication to a randomly chosen set of its neigh-

bors. Similar to basic gossiping, the spreading of a publication

through the overlay network stops after a selected number of

probabilistic rounds. Therefore, while basic gossiping is purely

probabilistic, informed gossiping is partially probabilistic and

partially deterministic, and the probability of successful deliv-

ery of a publication to subscribers is increased when compared

to basic gossiping.

When this strategy is used in distributed top-k/w systems,

each node processes the stream of incoming publications for

its own top-k/w subscriptions and proxy subscriptions of its

close neighbors. For example, Figure 14 shows the sequence

of events in a distributed top-k/w system with informed gossip-

ing which consists of 6 nodes. We can see that node D, which

is a neighbor of node E, stores its subscription. Proxy subscrip-

tions stored at neighboring nodes have to be synchronized with

their originals. For example, node E has to inform D about ev-

ery threshold change of its subscription. We conclude that this

routing strategy is well suited for distributed top-k/w systems

since the information about a threshold change is forwarded
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only locally. However, when compared to a distributed Boolean

system, additional (low and controllable) message overhead ex-

ists due to the local synchronization of subscription thresholds

between neighboring nodes.

To conclude, the following strategies are well suited for dis-

tributed top-k/w systems since they introduce marginal commu-

nication overhead when compared to distributed Boolean sys-

tems: publication flooding, rendezvous routing, basic gossip-

ing, and informed gossiping. However, please note that publica-

tion flooding can overload the network with publications in case

of high publication rates. Basic gossiping is probabilistic and

cannot provide delivery guaranties, while informed gossiping

has higher delivery probability at the expense of an increased

message overhead. This analysis brings us to the conclusion

that the most suitable routing strategy for distributed top-k/w

publish/subscribe systems is rendezvous routing.

However, please note that defining the pair of methods that

map publications and subscriptions to rendezvous nodes is a

non-trivial task. Especially since a subscription mapping func-

tion has to intersect with a publication mapping function such

that publications which match a subscription are mapped to the

same rendezvous node as subscription. This implies clustering

of the attribute space, which is not always possible in practice.

An example of mapping n-dimensional attribute space onto a

CAN overlay network is given in [13].

5. Experimental Evaluation

We start this section by presenting an experimental study

based on a prototype implementation, comparing Boolean and

top-k/w subscriptions to examine model properties. In particu-

lar, we investigate the number of delivered publications per sub-

scription, and to check experimentally how the models adapt

to different publication distributions and publication intensity.

Additionally, to experimentally examine the frequency of top-

k/w subscriptions updates which influences the number of gen-

erated messages in distributed top-k/w systems, we compare

the performance of two top-k/w subscription processing algo-

rithms, PA and SASF, previously mentioned in Section 3.2. We

find the algorithms from [6, 8] costly for a distributed environ-

ment since they perform periodical CPM calls for nearest neigh-

bor discovery which could generate too much network traffic.

In the second part this section, we use an analytical evalua-

tion to compare the number of exchanged messages for different

routing strategies in distributed Boolean and top-k/w systems.

As previously explained in Section 4, the impact on the per-

formance of a publish/subscribe system due to the introduction

of top-k/w subscriptions is twofold: 1) additional processing

and memory may be required to handle subscriptions and 2) the

communication cost between nodes is increased. In this evalua-

tion, we focus on the latter aspect, without entering into details

about the efficiency of matching and indexing algorithms that

run at the processing nodes.

5.1. Evaluation of Boolean and Top-k/w Matching Models
We have selected sliding-window k-nearest neighbors (k-

NN) subscriptions as a use case for our evaluation since these

Table 1: Default values of parameters used in the model evaluation.

Parameter Symbol Value

Number of publications P 106

Number of subscriptions S 400

Intensity of object appearance (objects/min) λ 1000

Window size (time-based) in minutes w 40

No. of top-k objects k 9

Data dimensionality d 4

PA: probability of error σ 10−3

SASF: size of recent buffer b 2000

subscriptions are regarded as one of the most prominent top-k/w

problems. Both subscriptions and publications in our experi-

ments are represented as points in a d-dimensional Euclidean

space. The score of a publication p with respect to a sub-

scription s is calculated as: us(p) = distance(pointp, points) =
[
∑d
i=1(vi − υi)2]

1
2 , where pointp = {v1, v2, . . . , vd} and points =

{υ1, υ2, . . . , υd} are points representing the publication p and

subscription s, respectively. Obviously, this scoring function

prefers lower scores to higher scores.

The experimental evaluation is performed using two syn-

thetic and one real data set. In particular, we generated uni-

form and clustered Gaussian data within the interval [0, 1]. The

clustered Gaussian data had two randomly chosen cluster cen-

ters and variance equal to 0.1 for each dimension. It has sim-

ilar properties to the distribution of our real data set which

is an excerpt of the LUCE deployment data, environmental

data collected from a large-scale wireless sensor network de-

ployed within the project SensorScope5. The LUCE deploy-

ment data is preprocessed to extract 4-dimensional data objects

(solar panel current, global current, primary buffer voltage and

secondary buffer voltage) and normalized to the values within

the interval [0, 1].

The default scenario used in this experimental evaluation is

the following: First we generated the set of subscriptions, ei-

ther by taking a random sample from the LUCE deployment

data, or by generating subscriptions using one of the listed dis-

tributions. Second we generated the publications, either by ran-

domly choosing publications from the LUCE deployment data,

or by generating publications using the same distribution as for

the previously generated queries. Finally, after P publications,

we analyzed the obtained results. The default simulation pa-

rameters used in experiments are specified in Table 1.

In the following we first examine the observed average

threshold values and average top-k scores. After that we ob-

serve the average number of delivered publications for Boolean

and top-k/w subscriptions, and examine the number of top-k/w

subscription changes for different top-k/w implementations.

5.1.1. Top-k Scores of Top-k/w Subscriptions
In the first experiment we analyze the average top-k score

(i.e. score of the k-th ranked referenced publication) of top-k/w

5http://sensorscope.epfl.ch/
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(a) Uniform dataset
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(b) Clustered dataset
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(c) Real dataset

Figure 15: Average top-k score of a top-k/w subscription for different datasets.

subscriptions for different datasets. The purpose of this experi-

ment is to identify the values of Boolean subscription thresholds

which we will later use for the comparison of Boolean and top-

k/w subscriptions. If the threshold of a Boolean subscription is

equal to the average top-k score of a top-k/w subscription, these

two subscriptions will have a similar number of matching pub-

lications. Figure 15 shows our results expressed as the average

score of the k-th ranked publication. Please note that the scales

on the y-axes are different for different datasets. We can see

that the average top-k scores are different for different datasets,

which is expected since such scores have to be lower for more

clustered datasets, and that these scores increase with increas-

ing parameter k and decreasing parameter w. The shapes of

the average top-k scores are similar for different datasets which

implies that top-k/w subscriptions adapt well to a given dataset.

5.1.2. Number of Matching Publications
In the second experiment we analyze the average number of

matching publications per subscription for Boolean and top-k/w

subscriptions while varying the publication intensity λ. In this

experiment we are using only the uniform dataset and the de-

fault values of all parameters specified in Table 1. The obtained

simulation results are shown in Figure 16. We can see that sim-

ilarly to the previous experiment, and due to the adaptability of

the top-k/w model to different publication intensities, the aver-

age number of matching publications per top-k/w subscription

does not depend on the parameter λ, while for Boolean sub-

scriptions, on the contrary, this number heavily depends on the

parameter λ since it increases linearly with λ.
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Figure 16: Number of matching publications per Boolean and top-k/w subscrip-

tion.

The setup of the third experiment is similar to the second

experiment since we analyze the average number of matching

(i.e. delivered) publications per subscription for Boolean and

top-k/w subscriptions while varying subscription parameters k
and w. Please note that due to the adaptability of top-k/w sub-

scriptions to different publication datasets, the average number

of matching publications per top-k/w subscriptions does not de-

pend on the dataset. This evaluation, shown in Figure 17(a), ex-

perimentally proves that the top-k/w model performs effective

filtering regardless of the dataset. As expected, when increas-

ing w, the number of matching publications decreases, while

it increases when increasing k. On the contrary, the number

of matching publications for Boolean subscriptions heavily de-

pends on the dataset (and selected threshold value). As we can
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(a) Top-k/w subscription: all datasets
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Figure 17: Average number of matching publications per Boolean and top-k/w subscription.
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(a) PA: number of sub. threshold updates
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(b) SASF: number of sub. threshold updates
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(c) PA: number of sub. cell updates
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(d) SASF: number of sub. cell updates

Figure 18: Number of subscription threshold and cell updates for different types of top-k/w subscriptions.

16



see in Figure 17(b), a small change in the Boolean subscription

threshold results in a large variation of the number of match-

ing publications for different datasets. This shows that Boolean

subscriptions do not provide any means for controlling the num-

ber of delivered publications per subscription. Please note that

the Boolean threshold value of th = 0.09 is analogous to the av-

erage top-k score of top-k/w subscription with parameters k = 9

and w = 40 for the uniform dataset as shown in Figure 15(a),

and these subscriptions thus have similar numbers of matching

publications for these values of parameters.

5.1.3. Number of Threshold Updates for Top-k/w Subscriptions
In the fourth experiment, we investigate the average num-

ber of threshold updates caused by top-k/w subscriptions and

the effect of indexing using regular grid. We analyze two ap-

proaches for informing other nodes about subscription updates.

The first approach generates threshold change messages upon

each threshold change, while the second divides the Euclidean

space to cells of equal size (regular grid), and informs other

nodes only when subscription’s cells of interest expand or con-

tract. The number of subscription threshold and cell changes

are shown in Figure 18. We can see that the number of up-

dates is much lower in the case of the latter approach, especially

for the PA-based implementation, while the former should be

avoided due high frequency of threshold updates. PA-based

implementation generates less cell updates then SASF and is

preferable in distributed setup if an application can tolerate the

error introduced by PA. This number varies from 103 to 104 cell

updates (for PA) which is reasonable when processing S = 400

subscriptions and P = 106 processed publications.

5.2. Evaluation of Routing Strategies in Distributed Boolean
and Top-k/w Systems

The default hypothetical scenario used in this analytical eval-

uation is similar to the default scenario used in the experimental

evaluation of the models. In this scenario we first activate the

set of subscriptions, then publish the set of publications, and

in the end estimate the total number of exchanged messages in

the case of Boolean and top-k/w subscriptions. The messages

which are exchanged in the system during the scenario are re-

lated to either activation of subscriptions, publishing of pub-

lications, delivery of matching (i.e. top-k/w publications) or

updating of top-k/w proxy subscriptions (i.e. their thresholds).

The default parameters used in this evaluation are specified in

Table 2. The values of these parameters are either obtained by

the evaluation of the models or are equal to the values which

were considered in the evaluation. As we can see, the num-

ber of top-k/w subscription updatesU is equal to 10000, which

corresponds to the number of cell updates for PA-based sub-

scriptions with parameters k = 9 and w = 40. Similarly, the

number of matching publications P is equal to 385 · S since

this number is obtained by the previous simulation for Boolean

subscriptions with threshold th = 0.09 and top-k/w subscrip-

tions with parameters k = 9 and w = 40. Table 3 shows the

estimated number of exchanged messages for different types of

subscriptions and routing strategies. Hereafter we explain and

analyze these estimated numbers of exchanged messages.

Table 2: Default values of parameters used in the evaluation of routing strate-

gies.

Parameter Symbol Value

Number of publications P 106

Number of subscriptions S 400

Number of nodes N 256

Number of top-k/w subscription updates U 10000

Number of matching publications M 385 · S
covering probability cp 0.5

spreading probability sp 0.1

node degree nd 3

Publication Flooding. As we can see in Table 3, the number of

exchanged messages in distributed Boolean and top-k/w system

with publication flooding is the same. In this routing strategy,

the matching is performed by subscriber nodes, and thus each

published publication has to be delivered to all other nodes in

the system, which results in (N − 1) · P messages. Therefore,

there is no increase in the total number of exchanged messages

in the top-k/w system when compared to the Boolean system.

Subscription Flooding. In the case of subscription flooding,

every activated subscription has to be delivered to every other

node in the system. Furthermore, matching is preformed by the

publisher node such that matching publications can be directly

delivered, by a network layer protocol, to their subscribers. The

total number of exchanged messages in the Boolean system is

equal to S · (N − 1)+M. In the top-k/w system, the information

about each threshold update has to also be delivered to all other

nodes which results in S · (N − 1) + M +U · (N − 1) messages,

i.e. the percent increase is huge (996%).

Covering-based Routing. To estimate the number of ex-

changed messages in the case of covering-based routing we as-

sumed that the probability that a Boolean subscription (or top-

k/w subscription proxy) is covered by a previously activated

subscription (i.e. proxy) is equal to cp = 0.5. Additionally, we

assumed that the system is a tree with the average node degree

equal to nd = 3. For the Boolean system, as shown in Table 3,

we estimate (1− cp) · S · (N − 1)+M · lognd(N) messages since

the system has to be flooded with each non-covered subscrip-

tion, and since each matching subscription has to be delivered

to its subscriber descending down the (ternary) tree. The ad-

ditional number of (1 − cp) · U · (N − 1) appears in the case

of top-k/w system due the fact that every subscription thresh-

old update also has to be propagated to its proxy subscriptions

stored at other nodes in the system. Therefore, we get a high

percent increase of 154% in the case of top-k/w subscriptions.

Rendezvous Routing. In the case of Boolean system with ren-

dezvous routing we get S · lognd(N)+P · lognd(N)+M messages

since every activated subscription and published publication is

delivered to the rendezvous node, while each matching publica-

tion is delivered to its subscriber. In the case of the top-k/w sys-

tem, an additional network cost can be present in the case when

neighboring nodes are informed about subscription threshold
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Table 3: Number of exchanged messages for different routing strategies and types of subscriptions.

Routing Subscription Number of exchanged messages per type Total number of Percent

strategy type Subscribing Publishing Delivering Updating exchanged messages increase

Publication Boolean (N − 1) · P 255 · 106

0%
flooding Top-k/w (N − 1) · P 255 · 106

Subscription Boolean S · (N − 1) M 0.26 · 106

996%
flooding Top-k/w S · (N − 1) M U · (N − 1) 2.81 · 106

Covering-based Boolean (1 − cp) · S · (N − 1) M · lognd(N) 0.83 · 106

154%
routing Top-k/w (1 − cp) · S · (N − 1) M · lognd(N) (1 − cp) · U · (N − 1) 2.10 · 106

Rendezvous Boolean S · lognd(N) P · lognd(N) M 5.20 · 106

0.58%
routing Top-k/w S · lognd(N) P · lognd(N) M nd · U 5.23 · 106

Basic Boolean sp · N · P 25.60 · 106

0%
gossiping Top-k/w sp · N · P 25.60 · 106

Informed Boolean nd · S sp · N · P 25.60 · 106

0.12%
gossiping Top-k/w nd · S sp · N · P nd · U 25.63 · 106

changes. In this analysis we assume that only direct neighbors

are informed about threshold changes. Therefore, we get nd ·U
messages related to subscription updating, which results in a

low percent increase of 0.58%.

Basic Gossiping. To estimate the number of exchanged mes-

sages in the case of gossiping strategies we assumed that the

probability of publication spreading is equal to sp = 0.1.

Therefore, for both types of subscriptions we get the same total

number of exchanged messages sp · N · P.

Informed Gossiping. In case of informed gossiping, we addi-

tionally assume that each direct neighbor of a subscriber node

is informed about a subscription which then, when compared

to basic gossiping, results in additional nd · S messages in the

case of Boolean subscriptions and nd · S + nd · U in the case

of top-k/w subscriptions. This gives a low percent increase of

0.12% for top-k/w subscriptions.

To conclude, the evaluation confirms the results of our previ-

ous analysis in Section 4 and identifies four routing techniques

which do not cause significant messaging overhead compared

to Boolean implementation: publication flooding, rendezvous

routing, basic gossiping, and informed gossiping. However, if

we look at the number of exchanged messages, one can see that

both subscription flooding and covering-based routing generate

a small number of messages compared to publication flooding

and gossiping. This is due to our scenario setup which generates

a large number of publications, while subscriptions are rather

static. Therefore, one should not discard subscription flood-

ing, and especially covering-based routing as non-viable rout-

ing techniques for distributed top-k/w publish/subscribe sys-

tems since the number of generated messages may be compa-

rable, or even lower than the number of exchanged messages in

systems with rendezvous routing.

6. Related Work

The idea to rank publications in publish/subscribe systems

according to a subscription has been developed and published in

parallel in our paper [10] and the following two papers [11, 12].

However, the other authors did not recognize the importance of

sliding-window in publish/subscribe setting. In [12] the authors

present an approach in which a static time of expiration is as-

sociated with each subscription in the system, and afterwards,

the same group of authors introduced two interesting concepts

in publish/subscribe systems: publication freshness [24], and

subscription novelty [25]. Publication freshness is modeled by

linear decrease of publication scores in time, while subscription

novelty is described by increasing scores of incoming publica-

tions for subscriptions that have rarely been satisfied in the past.

Additionally, the same group of authors presented PerfSIENA

[26], an implementation of their ranking mechanism in SIENA

[27] based on user preference. In the latter paper, the authors fi-

nally consider the top-k/w matching model, but do not focus on

its distributed implementation, which is the main contribution

of this paper. Similarly, the top-k/w matching model is exam-

ined in [28], but the authors focus mainly on issues related to

quality of service.

6.1. Data Stream Processing Systems

The processing of continuous sliding-window top-k queries

(top-k/w processing) over data streams has attracted consid-

erable attention in recent years due to its potential applica-

tion in many different areas such as environmental monitor-

ing using wireless sensor networks, information filtering, com-

puter and telephone network monitoring, financial and stock

trade monitoring, etc. Existing solution on top-k/w processing

([29, 8, 9, 6, 30, 10, 31, 7, 20, 19, 21]) assume centralized pro-

cessing at a single network node and thus differ significantly

from the distributed top-k/w processing approach we present

in this paper. They can be classified in two categories: deter-

ministic approaches ([8, 9, 6, 30, 20, 19, 21]) which produce

correct results to defined queries, and probabilistic approaches

([29, 7, 19]) which generate errors and thus produce approxi-

mate results, but are in general more efficient and require less

memory than the deterministic approaches. Furthermore, as a

top-k/w query continuously identifies k best-ranked data objects
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in the query window with respect to an arbitrary scoring func-

tion, we can additionally classify existing algorithms according

to the type of supported scoring functions. Examples are dis-

tance [29, 9, 6], aggregation [8, 30, 31] and relevance [20, 21]

scoring functions.

6.2. Distributed Publish/Subscribe Systems

Related work on distributed publish/subscribed systems

mainly deals with efficient routing strategies, or introduces

novel subscription languages and matching function. Publica-

tion flooding is easily implemented as a routing strategy and

is thus used in the first publish/subscribe prototypes, e.g. [32].

However, this strategy is rarely used since it does not scale in

terms of communication overhead. It mainly serves as a refer-

ent routing strategy in experimental evaluations, e.g. [33] and

JEDI [34], but is sometimes also used in implementations, e.g.

Gryphoon [35].

Subscription flooding, as the opposite routing strategy to

publication flooding, is preferable in scenarios with high pub-

lication rates when subscriptions rarely change. However, it

generates high communication overhead when subscriptions

change at a high rate [36, 37]. Since subscribers can be reached

in a single hop while non-matching publications can be filtered

at the publisher side, some recent distributed publish/subscribe

systems apply this strategy, e.g. RUBDES [38] and MEDYM

[39].

Selective routing strategies (i.e. covering-based and ren-

dezvous routing) are the most popular routing strategies in dis-

tributed publish/subscribe systems. Since they are deterministic

and do not flood the overlay network with messages, they are

much more interesting for the research community than gos-

siping and flooding strategies. Covering-based routing is first

introduced in SIENA[40], and has been applied in many dis-

tributed publish/subscribe systems such as JEDI [34], REBECA

[37] and PADRES [41]. This routing strategy has attracted a

lot of attention of the research community which has resulted

in many different improvements of this routing strategy, e.g.

[18, 42, 43].

Rendezvous routing is proposed in Scribe [44] and is used

in many other distributed publish/subscribe systems such as

Bayeux [45], Hermes [46] and Meghdoot [47].

Gossiping routing strategies (i.e. basic and informed gos-

siping) are also very popular within the publish/subscribe re-

search community since they lead to high reliability, robust-

ness and self stabilization [23]. Examples of distributed pub-

lish/subscribe systems which employ these routing strategies

are Costa at al. [48], SpiderCast [49] and Tera [50]. Costa at

al. [48] present a content-based publish/subscribe system with

three different approaches to the basic gossiping, while other

works employ informed gossiping as a routing strategy.

All of the previously mentioned works are relevant to our

work, however, we present a novel publish/subscribe matching

model and adapt existing routing strategies to it. The top-k/w

publish/subscribe model was initially introduced in [10], how-

ever, it does not consider distribution-related issues nor pro-

vides experimental evaluation of its performance, but mainly

focuses on centralized processing with an original probabilistic

algorithm.

We have designed the first distributed solution for k-NN slid-

ing window computation [13] which is based on the general

model and ideas presented in this paper. However, the specific

solutions are adjusted to processing k-NN queries in Euclidean

spaces over the CAN peer-to-peer network. Furthermore, our

distributed k-NN top-k/w solution uses regular grid as an index-

ing structure, rendezvous routing, and specific protocols for up-

dating query indexing thresholds between the processing nodes.

In the area of distributed publish/subscribe systems, the most

relevant work to ours is [22] which introduces a new type of

stateful subscription called the parametrized subscription. We

can regard a top-k/w subscription proxy as parametrized sub-

scriptions with subscription threshold as the only parameter.

The authors discuss filtering-based routing, which is a simpler

version of covering-based routing, both in a centralized and dis-

tributed architecture. Every parameter change is published as

a publication on the corresponding parameter topic. The au-

thors conclude that such changes have to be propagated to all

network nodes, as we have also concluded for covering-based

routing. Please note that the results of our analysis for vari-

ous routing strategies can easily be applied to publish/subscribe

systems supporting such parametrized subscriptions.

7. Conclusion

In traditional publish/subscribe systems, subscription is a

stateless Boolean function for which a decision whether to de-

liver a publication to a subscriber is made based only on the

publication and subscription content, and does not take into ac-

count any additional information present in the system. In this

paper we show that this approach results in an unpredictable

number of matching publications which may cause user dissat-

isfaction with a provided service by delivery of either too many

or too few publications.

This paper presents the top-k/w matching model, a novel

publish/subscribe matching model which enables a subscriber

to control the number of publications it receives per subscrip-

tion within a predefined time period. In this model, each sub-

scription defines a time-independent scoring function and pa-

rameters k and window-sizew such that, at a point in time t, pa-

rameter k restricts the number of delivered publications to the k
best scored publications that are published between t −w and t.
Additionally, we give a formal proof that the Boolean matching

model is a special case of the top-k/w matching model. Further-

more, the paper gives examples of distance, aggregation and

relevance scoring functions which are supported by the top-k/w

publish/subscribe model.

On the foundations of centralized top-k/w processing algo-

rithms, we analyze possible top-k/w model implementations in

distributed environments. For each of the commonly used rout-

ing strategies in distributed environments we explain how it can

be adapted to support the top-k/w matching model. Among

them, we also identify the ones which are particularly well

suited for large-scale top-k/w publish/subscribe systems.
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Using the case study with k-NN subscriptions and both real

and synthetic data sets, we experimentally evaluate and com-

pare the top-k/w and Boolean matching models and estimate

the number of exchanged messages for different routing strate-

gies in distributed Boolean and top-k/w systems. Based on the

results of our evaluation, we conclude two things. First, the

top-k/w matching model is indeed capable to control the num-

ber of matching publications per subscription, which, together

with built-in support for flexible subscriptions, represents a sig-

nificant enhancement of publish/subscribe systems. Second,

the top-k/w matching model can be efficiently implemented in

distributed environments using the identified routing strategies.

An example implementation for continuous sliding-window k-

NN processing over a CAN overlay network is available in [13].
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