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Abstract

Consistent query answering is an inconsistency tolerant approach to obtaining semantically correct an-
swers from a database that may be inconsistent with respect to its integrity constraints. In this work
we formalize the notion of consistent query answer for spatial databases and spatial semantic integrity
constraints. In order to do this, we first characterize conflicting spatial data, and next, we define admissi-
ble instances that restore consistency while staying closeto the original instance. In this way we obtain
a repair semantics, which is used as an instrumental conceptto define and possibly derive consistent
query answers. We then concentrate on a class of spatial denial constraints and spatial queries for which
there exists an efficient strategy to compute consistent query answers. This study applies inconsistency
tolerance in spatial databases, rising research issues that shift the goal from the consistency of a spatial
database to the consistency of query answering.

1 Introduction

Consistency in database systems is defined as the satisfaction by a database instance of a set of integrity con-
straints (ICs) that restricts the admissible database states. Although consistency is a desirable and usually
enforced property of databases, it is not uncommon to find inconsistent spatial databases due to data inte-
gration, unforced integrity constraints, legacy data, or time lag updates. In the presence of inconsistencies,
there are alternative courses of action: (a) ignore inconsistencies, (b) restore consistency via updates on the
database, or (c) accept inconsistencies, without changingthe database, but compute the “consistent or cor-
rect” answers to queries. For many reasons, the first two alternatives may not be appropriate [6], specially
in the case of virtual data integration [5], where centralized and global changes to the data sources are not
allowed. The latter alternative has been investigated in the relational case [4, 10]. In this paper we explore
this approach in the spatial domain, i.e., for spatial databases and with respect to spatial semantic integrity
constraints (SICs).

Extracting consistent data from inconsistent databases could be qualified as an “inconsistency tolerant”
approach to querying databases. A piece of data will be part of a consistent answer if it is not logically
related to the inconsistencies in the database with respectto its set of ICs. We introduce this idea using an
informal and simple example.

∗Faculty Fellow of the IBM Center for Advanced Studies. Also affiliated to Universidad de Concepción, Chile.
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Example 1 Consider a database instance with a relationLandP, denoting land parcels, with a thematic
attribute (idl), and a spatial attribute,geometry, of data typepolygon. An IC stating that geometries of
two different land parcels must be disjoint or just touch, i.e., they cannot internally intersect, is expected to
be satisfied. However, the instance in Figure 1 does not satisfy this IC and therefore it is inconsistent: the
land parcels with idlsidl2 andidl3 overlap. Notice that these geometries are partially in conflict and what
is not in conflict can be considered as consistent data.

LandP
idl geometry
idl1 g1
idl2 g2
idl3 g3

Figure 1: An inconsistent spatial database

Suppose that a query requests all land parcels whose geometries intersect with a query window, which
represents the spatial region shown in Figure 1 as a rectangle with dashed borders. Although the database
instance is inconsistent, we can still obtain useful and meaningful answers. In this case, only the intersection
of g2 andg3 is in conflict, but the rest of both geometries can be considered consistent and should be part
of any “database repair” if we decide to restore consistencyby means of minimal geometric changes. Thus,
since the non-conflicting parts of geometriesg2 andg3 intersect the query window, we would expect an
answer including land parcels with identitiesidl1 , idl2 andidl3 . ✷

If we just concentrate on (in)consistency issues in databases (leaving aside consistent query answering for
a moment), we can see that, in contrast to (in)consistency handling in relational databases, that has been
largely investigated, not much research of this kind has been done for spatial databases. In particular, there
is not much work around the formalization of semantic spatial ICs, satisfaction of ICs, and checking and
maintenance of ICs in the spatial domain. However, some papers address the specification of some kinds of
integrity constraints [8, 20], and checking topological consistency at multiple representations and for data
integration [13, 14, 31].

More recently, [12] proposes qualitative reasoning with description logic to describe consistency be-
tween geographic data sets. In [22] a set of abstract relations between entity classes is defined; and they
could be used to discover redundancies and conflicts in sets of SICs. A proposal for fixing (changing)
spatial database instances under different types of spatial inconsistencies is given in [29]. According to it,
changes are applied over geometries in isolation; that is, they are not analyzed in combination with multiple
SICs. In [27] some issues around query answering under violations of functional dependencies involving
geometric attributes were raised. However, the problem of dealing with an inconsistent spatial database,
while still obtaining meaningful answers, has not been systematically studied so far.

Consistent query answering (CQA) from inconsistent databases as a strategy of inconsistent tolerance
has an extensive literature (cf. [4, 6, 10] for surveys). It was introduced and studied in the context of
relational database in [2]. They defined consistent answersto queries as those that are invariant under all the
minimal forms of restoring consistency of the original database. Thus, the notion ofrepair of an instance
with respect to a set of ICs becomes a fundamental concept fordefining consistent query answers. Arepair
semantics defines the admissible and consistent alternative instances to an inconsistent database at hand.
More precisely, arepair of an inconsistent relational instanceD is a consistent instanceD ′ obtained from
D by deleting or inserting whole tuples. The set of tuples by which D andD ′ differ is minimal under set

2



inclusion [2]. Other types of repair semantics have been studied in the relational case. For example, in
[16, 32] repairs are obtained by allowing updates of attribute values in tuples.

In comparison to the relational case, spatial databases offer new alternatives and challenges when defin-
ing a repair semantics. This is due, in particular, to the useof complex attributes to represent geometries,
their combination with thematic attributes, and the natureof spatial (topological) relations.

In this work we define a repair semantics for spatial databases with respect to a subset of spatial semantic
integrity constraints (a.k.a. topo-semantic integrity constraints) [29], which impose semantic restrictions on
topological predicates and combinations thereof. In particular, we treat spatial semantic integrity constraints
that can be expressed by denials constraints. For example, they can specify that “two land parcels cannot
internally intersect”. This class of constraints are neither standardized nor integrated into current spatial
database management systems (DBMSs); they rather depend onthe application, and must be defined and
handled by the database developers. They are very importantbecause they capture the semantics of the
intended models. Spatial semantic integrity constraints will be simply calledspatial integrity constraints
(SICs). Other spatial integrity constraints [11] aredomain (topological or geometric) constraints, and they
refer to the geometry, topology, and spatial relations of the spatial data types. One of them could specify that
“polygons must be closed”. Many of these geometric constraints are now commonly integrated into spatial
DBMSs [23].

A definition of a repair semantics for spatial DBs and CQA for spatial range queries was first proposed
in [28], where we discussed the idea of shrinking geometriesto solve conflicting tuples and applied to
CQA for range queries. In this paper we complement and extendour previous work with the following
main contributions: (1) We formalize the repair semantics of a spatial database instance under violations
of SICs. This is done through virtual changes of geometries that participate in violations of SICs. Unlike
[28], we identify the admissible local transformations andwe use them to provide an inductive definition
of database repair. (2) Based on this formalization, a consistent answer to a spatial query is defined as an
answer obtained from all the admissible repairs. Extendingthe results in [28], we now define CQA not only
for range but also for spatial join queries. (3) Although therepair semantics and consistent query answers
can be defined for a fairly broad class of SICs and queries, as it becomes clear soon, naive algorithms for
computing consistent answers on the basis of the computation of all repairs are of exponential time. For
this reason, CQA for a relevant subset of SICs and range and join queries is done via acore computation.
This amounts to querying directly the intersection of all repairs of an inconsistent database instance, but
without actually computing the repairs. We show cases wherethis core can be specified as a view of the
original, inconsistent database. (4) We present an experimental evaluation with real and synthetic data sets
that compares the cost of CQA with the cost of evaluating queries directly over the inconsistent database
(i.e., ignoring inconsistencies).

The rest of the paper is organized as follows. In Section 2 we describe the spatial data model upon
which we define the repair semantics and consistent query answers. A formal definition of repair for spatial
inconsistent databases under SICs is introduced in Section3. In Section 4 we define consistent answers
to conjunctive queries. We analyze in particular the cases of range and join queries with respect to their
computational properties. This leads us, in Section 5, to propose polynomial time algorithms (in data com-
plexity) for consistent query answering with respect to a relevant class of SICs and queries. An experimental
evaluation of the cost of CQA is provided in Section 6. Final conclusions and future research directions are
given in Section 7.
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2 Preliminaries

Current models of spatial database are typically seen as extensions of the relational data model (known as
extended-relational or object-relational models) with the definition of abstract data types to specify spatial
attributes. We now introduce a general spatio-relational database model that includes spatio-relational pred-
icates (they could also be purely relational) and spatial ICs. It uses some of the definitions introduced in
[25]. The model is independent of the geometric data model (e.g. Spaghetti [30], topological [18, 30], raster
[19], or polynomial model [24]) underlying the representation of spatial data types.

A spatio-relational database schema is of the formΣ = (U ,A,R, T ,O,B), where: (a)U is the possibly
infinite database domain of atomic thematic values. (b)A is a set of thematic, non-spatial, attributes. (c)
R is a finite set of spatio-relational predicates whose attributes belong toA or are spatial attributes. Spatial
attributes take admissible values inP(Rm), the power set ofRm, for anm that depends on the dimension
of the spatial attribute. (d)T is a fixed set of binary spatial predicates, with a built-in interpretation. (e)
O is a fixed set of geometric operators that take spatial arguments, also with a built-in interpretation. (f)B
is a fixed set of built-in relational predicates, like comparison predicates, e.g.<,>,=, 6=, which apply to
thematic attribute values.

Each database predicateR ∈ R has a typeτ(R) = [n,m], with n,m ∈ N, indicating the numbern of
thematic attributes, and the spatial dimensionm of the single spatial attribute (it takes values inP(Rm)).1 In
Example 1,τ(LandP) = [1, 2], since it has one thematic attribute (idl ) and one spatial attribute (geometry )
defined by a 2D polygon. In this work we assume that each relationR has a key of the form (1) formed by
thematic attributes only:

∀x̄1x̄2x̄3s1s2 (R(x̄1, x̄2; s1) ∧R(x̄1, x̄3; s2) → (x̄2 = x̄3 ∧ s1 = s2)), (1)

where thēxi are sequences of distinct variables representing thematicattributes ofR, and thesi are variables
for geometric attributes. Heres1 = s2 means geometric equality; that is, the identity of two geometries.

A database instanceD of a spatio-relational schemaΣ is a finite collection of ground atoms (orspatial
database tuples) of the formR(c1, ..., cn; s), whereR ∈ R, 〈c1, ..., cn〉 ∈ Un contains the thematic attribute
values, ands ∈ Ad ⊆ P(Rm), whereAd is the class of admissible geometries (cf. below). The extension
in a particular instance of a spatio-relational predicate is a subset ofUn × Ad . For simplicity, and to fix
ideas, we will consider the case wherem = 2.

Among the different abstraction mechanisms for modelling single spatial objects, we concentrate on
regions for modelling real objects that have an extent. Theyare useful in a broad class of applications in
Geographic Information Systems (GISs). More specifically,our model will be compatible with the specifi-
cation of spatial operators (i.e., spatial relations or geometric operations) as found in current spatial DBMSs
[23]. Following current implementations of DBMSs, regionscould be defined as finite sets of polygons that,
in their turn, are defined through their vertices. This wouldmake regions finitely representable. However, in
this work geometries will be treated at a more abstract level, which is independent of the spatial model used
for geometric representation. In consequence, an admissible geometry of the Euclidean plane is either the
empty geometry,g⊘, which corresponds to the empty subset of the plane, or is a closed and bounded region
with a positive area. It holdsg⊘ ∩ g = g ∩ g⊘ = g⊘, for every regiong. From now on, empty geometries
and regions ofR2 are calledadmissible geometries and they form the classAd .

Geometric attributes are complex data types, and their manipulation may have an important effect on
the computational cost of certain algorithms and algorithmic problems. As usual, we are interested indata

1For simplicity, we use one spatial attribute, but it is not difficult to consider a greater number of spatial attributes.
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complexity, i.e., in terms of the size of the database. Thesize of a spatio-relational database can be defined
as a function of the number of tuples and the representation size of geometries in those tuples.

We concentrate on binary (i.e., two-ary) spatial predicates that represent topological relations between
regions. They have a fixed semantics, and become the elements ofT . There are eight basic binary rela-
tions over regions ofR2: Overlaps (OV ), Equals (EQ), CoveredBy (CB), Inside (IS ), Covers (CV ),
Includes (IC ), Touches (TO), andDisjoint (DJ ) [15, 26].2 The semantics of the topological relations
follows the point-set topology defined in [15], which is not defined for empty geometries. We will apply
this semantics to our non-empty admissible geometries. Forthe case of the empty set, a separate definition
will be given below. According to [15], an atomT (x, y) becomes true if four conditions are simultaneously
true. Those conditions are expressed in terms of emptyness (∅) and non-emptyness (¬∅) of the intersection
of their boundaries (δ) and interiors (◦). The definitions can be found in Table 1. For example, for non-
empty regionsx, y, TO(x, y) is true iff all of δ(x) ∩ δ(y) 6= ∅, ◦(x) ∩ ◦(y) = ∅, δ(x) ∩ ◦(y) = ∅, and
◦(x) ∩ δ(y) = ∅ simultaneously hold.

Relation δ(x) ∩ δ(y) ◦(x) ∩ ◦(y) δ(x) ∩ ◦(y) ◦(x) ∩ δ(y)
DJ(x,y) ∅ ∅ ∅ ∅
TO(x,y) ¬∅ ∅ ∅ ∅
EQ(x,y) ¬∅ ¬∅ ∅ ∅
IS(x,y) ∅ ¬∅ ¬∅ ∅
CB(x,y) ¬∅ ¬∅ ¬∅ ∅
IC(x,y) ∅ ¬∅ ∅ ¬∅
CV(x,y) ¬∅ ¬∅ ∅ ¬∅
OV(x,y) ¬∅ ¬∅ ¬∅ ¬∅

Table 1: Definition of topological relations between regions based on point-set topology

In this work we exclude the topological relationDisjoint from T . This decision is discussed in Section 3,
where we introduce the repair semantics. In addition to the basic topological relations, we consider three
derived relations that exist in current SQL languages and can be logically defined in terms of the other
basic predicates:Intersects (IT ), Within (WI ), andContains (CO). We also introduce a forth relation,
IIntersects (II), that holds when the interiors of two geometries intersect.It can be logically defined as
the disjunction ofOverlaps , Within andContains (cf. Figure 2). For all the topological relations inT ,
their converse (inverse) relation is within the set. Some ofthem are symmetric, likeEquals, Touches , and
Overlaps . For the non-symmetric relations, the converse relation ofCoveredBy is Covers , of Inside is
Includes , and ofWithin isContains .

As mentioned before, the formal definitions of the topological relations [15, 26] do not consider the
empty geometry as an argument. Indeed, at the best of our knowledge, no clear semantics for topological
predicates with empty geometries exists. However, in our case we extent the definitions in order to deal
with this case. This will allow us to use a classical bi-valued logic, where atoms are always true or false,
but never undefined. According to our extended definition, for anyT ∈ T , T (g1, g2) is false ifg1 = g⊘ or
g2 = g⊘. In particular,IS (g, g⊘) is false, for every admissible regiong. In order to make comparisons with
the empty region, we will introduce and use a special predicate IsEmpty(·) on admissible geometries, such

2The names of relations chosen here are in agreement with the names used in current SQL languages [23], but differ slightly
from the names found in the research literature. The relations found in current SQL languages are represented in Figure 2with
thick borders.
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Figure 2: Subsumption lattice of topological relations between regions: OV (Overlaps), CB (CoveredBy),
IS (Inside), EQ (Equals), CV (Covers), IC (Includes), TO (Touches), DJ (Disjoint), IT (Intersects), II (IIn-
tersects), WI (Within), and CO (Contains).

thatIsEmpty(s) is true iff s = g⊘.
Notice that the semantics of the topological predicates, even for non-empty regions, may differ from the

intuitive set-theoretic semantics one could assign to them. For example, for an admissible and non-empty
geometryg, OV (g, g) is false (due to the conditions in the last two columns in Table 1). In consequence,
the constraint∀x∀s 6=g⊘¬(R(x; s) ∧OV (s, s)) is satisfied.

Given a database instance, additional spatial informationis usually computed from the explicit geometric
data by means of the spatial operators inO associated withΣ. Some relevant operators are:Area, Union
(binary), Intersection , Difference, Buffer , andUnion Aggregation (GeomUnion).3 (Cf. [23] for the
complete set of spatial predicates defined within the Open GIS Consortium.) There are several spatial
operators used in this work; however, we will identify a particular subsetOa of spatial operators inO, i.e.,
Oa ⊆ O, which will be defined for all admissible geometries and usedto shrink geometries with the purpose
of restoring consistency, as we describe in Section 3.

Definition 1 The setOa of admissible operations contains the following geometric operations on admissi-
ble geometriesg andg′:

(1) Difference(g, g′) is the topological closure of the set-difference.
(2)Buffer(g, d) is the geometry obtained by buffering a distanced aroundg, whered is a distance unit.

Buffer(g, d) returns a closed region̄g containing geometryg, such that every point in the boundary ofḡ is
at a distanced from some point of the boundary ofg. In particular,Buffer(g⊘, d) = g⊘. ✷

Notice that these operators, when applied to admissible geometries, produce admissible geometries.

Remark 1 The value ofd in Definition 1 is instance dependent. It should be precomputed from the spatial
input data. For this work, we considerd to be a fixed value associated with the minimum distance between
geometries in the cartographic scale of the database instance. ✷

3OperatorGeomUnion returns the geometry that represents the point set union of all geometries in a given set, an operator
also known as a spatial aggregation operator. Although thisfunction is part of SQL for several spatial databases (Postgres/PostGIS,
Oracle), it is not explicitly defined in the OGC specification[23].
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LandP
idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3

Building
idb geometry
idb1 g4
idb2 g5

Figure 3: A spatial database instance

A schemaΣ determines a many-sorted, first-order (FO) languageL(Σ) of predicate logic. It can be used
to syntactically characterize and express SICs. For simplicity, we concentrate ondenial SICs,4 which are
sentences of the form:

∀ 6=g∅ s̄∀x̄ ¬(
m
∧

i=1

Ri(x̄i; si) ∧ ϕ ∧
n
∧

j=1

Tj(vj , wj)). (2)

Here,s̄ = s1 · · · sm, x̄ = x̄1 · · · x̄m are finite sequences of geometric and thematic variables, respectively,
and0 < m,n ∈ N. Thus, each̄xi is a finite tuple of thematic variables and will be treated as aset of
attributes, such that̄xi ⊆ x̄j means that the variables in̄xi area also variables in̄xj. Also, ∀x̄ stands for
∀x1 · · · ∀xm; and∀ 6=g∅ s̄ stands for∀s1 · · · ∀sm, with the universal quantifiers ranging over all the non-empty
admissible geometries (i.e. regions). Here,vj , wj ∈ s̄, R1, . . . , Rm ∈ R, ϕ is a formula containing built-in
atoms over thematic attributes, andTj ∈ T . A constraint of the form (2) prohibits certain combinations of
database atoms. Since topological predicates for empty geometries are always false, the restricted quantifi-
cation over non-empty geometries in the constraints could be eliminated. However, we do not want to make
the satisfaction of the constraints rely on our particular definition of the topological predicates for the empty
region. In this way, our framework becomes more general, robust and modular, in the sense that it would
be possible to redefine the topological predicates for the empty region without affecting our approach and
results.

Example 2 Figure 3 shows an instance for the schemaR = {LandP(idl , name , owner ; geometry),
Building(idb; geometry)}. Dark rectangles represent buildings and white rectanglesrepresents land parcels.
In LandP , the thematic attributes areidl ,name andowner , whereasgeometry is the spatial attribute of
dimension2. Similarly forBuilding , which has onlyidl as a thematic attribute.

The following sentences are denial SICs: (The symbol∀̄ stands for the universal closure of the formula
that follows it.)

∀¬(LandP (idl1, n1, o1; s1) ∧ LandP (idl2, n2, o2; s2) ∧ idl1 6= idl2 ∧ IIntersects(s1, s2)). (3)

∀¬(Building(idb; s1) ∧ LandP(idl, n, o; s2) ∧Overlaps(s1, s2)). (4)

The SIC (3) says that geometries of land parcels with different ids cannot internally intersect (i.e., they
can only be disjoint or touch). The SIC (4) establishes that building blocks cannot (partially) overlap land
parcels. ✷

4Denial constraints are easier to handle in the relational case as consistency with respect to them is achieved by tuple deletions
only [6].
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A database instanceD for schemaΣ can be seen as an interpretation structure for the languageL(Σ). For
a setΨ of SICs inL(Σ), D |= Ψ denotes that each of the constraints inΨ is true in (or satisfied by)D . In
this case, we say thatD is consistent with respect toΨ. Correspondingly,D is inconsistent with respect to
Ψ, denotedD 6|= Ψ, when there is aψ ∈ Ψ that isviolated by D , i.e., not satisfied byD . The instance in
Example 2 is consistent with respect to its SICs.

In what follows, we will assume that the setΨ of SICs under consideration is logically consistent; i.e.,
that there exists a non-empty database instanceD (not necessarily the one at hand), such thatD |= Ψ. For
example, any set of SICs containing a constraint of the form∀ 6=g∅s∀x̄ ¬(R(x̄; s)∧Equals(s, s)) is logically
inconsistent. The analysis of whether a set of SICs is logically consistent or not is out of the scope of this
work.

3 A Repair Semantics

Different alternatives for update-based consistency restoration of spatial databases are discussed in [28]. One
of the key criteria to decide about the update to apply is minimality of geometric changes. Another important
criteria may be the semantics of spatial objects, which makes changes over the geometry of one type of object
more appropriate than others. For this work, the repair semantics is a rule applied automatically. It assumes
that no previous knowledge about the quality and relevance of geometries exists and, therefore, it assumes
that geometries are all equally important.

On the basis on the minimality condition on geometric changes and the monotonicity property of some
topological predicates [28], we propose to solve inconsistencies with respect to SICs of the form (2) through
shrinking of geometries. Notice that this repair semanticswill be used as an instrumental concept to formal-
ize consistent query answers (no actual modification over the database occurs). As such, it defines what part
of the geometry is not in conflict with respect to a set of integrity constraints and can, therefore, be part of a
consistent answer.

Shrinking geometries eliminates conflicting parts of geometries without adding new uncertain geome-
tries by enlargement. In this way, we are considering a proper subset of the possible changes to fix spatial
databases proposed in [29]. We disregard translating objects, because they will carry potentially new con-
flicts; and also creating new objects (object splitting), because we would have to deal with null or unknown
thematic attributes.

The SICs of the form (2) exclude the topological predicateDisjoint. The reason is that falsifying an
atomDJ (g1, g2) by shrinking geometries is not possible, unless we make one of them empty. However,
doing so would heavily depend upon our definition of this topological predicate for empty regions. Since
we opted for not making our approach and results depend on this particular definition, we prefer to exclude
the Disjoint predicate from our considerations. The study of other repair semantics that sensibly includes
the topological predicateDisjoint will be left for future work.

Technically, a databaseD violates a constraint∀x̄1x̄2∀ 6=g⊘s1s2 ¬(R1(x̄1; s1) ∧ R2(x̄2; s2) ∧ ϕ ∧
T (s1, s2)), with T ∈ T ,5 when there are data valuesā1, ā2, g1, g2, with g1, g2 6= g⊘, for the variables
in the constraint such that(R1(x̄1; s1) ∧R2(x̄2; s2) ∧ ϕ ∧ T (s1, s2)) becomes true in the database under
those values. This is denoted withD |= (R1(x̄1; s1) ∧ R2(x̄2; s2) ∧ ϕ ∧ T (s1, s2)) [ā1, ā2, g1, g2]. When
this is the case, it is possible to restore consistency ofD by shrinkingg1 or g2 such thatT (g1, g2) becomes
false.

5For simplicity and without lost of generality, in the examples we consider denial constraints with at most two spatio-relational
predicates and one topological predicate. However, a denial constraint of the form (2) may have more spatio-relationalpredicates
and topological predicates.
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We can compare geometries, usually an original geometry andits shrunk version, by means of a distance
function that refers to their areas. We assume thatarea ∈ O is an operator that computes the area of a
geometry.

Definition 2 For regionsg1, g2, δ(g1, g2) = area(Difference(g1, g2) ∪Difference(g2, g1)). ✷

Since we will compare a regiong1 with a regiong2 obtained by shrinkingg1, it will hold δ(g1, g2) ≥ 0. In-
deed, when comparingg2 ⊆ g1

6, the distance function can be simplified byδ(g1, g2) = area(Difference(g1, g2)).
We will assume that it is possible to compare geometries through the distance function by correlating their
tuples, one by one. This requires a correspondence between instances.

Definition 3 Let D ,D ′ be database instances of schemaΣ. D ′ is (D , fD ′)-indexed if fD ′ is a bijective
function fromD to D ′, such that, for allc1, . . . , cn, s: fD ′(R(c1, . . . , cn; s)) = R(c1, . . . , cn; s

′), for some
regions′. ✷

In a (D , fD ′)-indexed instanceD ′ we can compare tuples one by one with their counterparts in instanceD .
In particular, we can see how the geometric attribute valuesdiffer. In some cases there is an obvious function
fD ′ , for example, when there is a key from a subset ofA to the spatial attributeS, or when relations have a
surrogate key for identification of tuples. In these cases wesimply use the notion ofD -indexed. When the
context is clear, we also usef instead offD ′ .

Example 3 (example 2 cont.) Consider the relational schemaLandP(idl , name, owner ; geometry). For
the instanceD given in Example 2, the following instanceD ′ is (D , f )-indexed

LandP
idl name owner geometry
idl1 n1 o1 g7
idl2 n2 o2 g8
idl3 n3 o3 g9

Here,f(LandP(idl1, n1, a1; g1)) = LandP(idl1, n1, a1; g7), etc. ✷

When restoring consistency, it may be necessary to considerdifferent combinations of tuples and SICs.
Eventually, we should obtain a new instance, hopefully consistent, that we have to compare to the original
instance in terms of their distance.

Definition 4 LetD ,D ′ be spatial database instances over the same schemaΣ, with D ′ (D , f)-indexed. The
distance ∆(D ,D ′) betweenD andD ′ is the numerical value∆(D , D ′) = Σt̄∈Dδ(ΠS(t̄), ΠS(f(t̄))),
whereΠS(t̄) is the projection of tuplēt on its spatial attributeS. ✷

Now it is possible to define a “repair semantics”, which is independent of the geometric operators used to
shrink geometries.

Definition 5 Let D be a spatial database instance over schemaΣ, Ψ a set of SICs, such thatD 6|= Ψ. (a)
An s-repair of D with respect toΨ is a database instanceD ′ overΣ, such that: (i)D ′ |= Ψ. (ii) D ′ is
(D , f)-indexed. (iii) For every tupleR(c1, . . . , cn; g) ∈ D , if f(R(c1, . . . , cn; g)) = R(c1, . . . , cn; g

′), then
g′ ⊆ g. (b) A minimal s-repair D ′ of D is a repair ofD such that, for every repairD ′′ of D , it holds
∆(D ,D ′′) ≥ ∆(D ,D ′). ✷

6
⊆ stands for geometric inclusion
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Proposition 1 If D is consistent with respect toΨ, thenD is also its only minimal s-repair.

Proof: ForD ′ = D , it holds: (i)D ′ |= Ψ, (ii) D ′ is (D , f)-indexed, (iii) for every tupleR(c1, . . . , cn; g) ∈
D , if f(R(c1, . . . , cn; g)) = R(c1, . . . , cn; g

′), theng′ = g. In this case,∆(D ,D ′) = 0. Any other con-
sistent instanceD ′′ obtained by shrinking any ofD ’s geometries and still obtaining admissible geometries
gives∆(D ,D ′′) > 0. ✷

This is an “ideal and natural” repair semantics that defines acollection of semantic repairs. The defini-
tion is purely set-theoretic and topological in essence. Itis worth exploring the properties of this semantics
and its impact on properties of consistent query answers (asinvariant under minimal s-repairs) and on log-
ical reasoning about them. However, for a given database instance we may have a continuum and infinite
number of s-repairs since between two points we have an infinite number of points, which we want to avoid
for representational and computational reasons.

In this work we will consider an alternative repair semantics that is more operational in nature (cf.
Definition 8), leaving the previous one for reference. Thisoperational definition of repair makes it possible
to deal with repairs in current spatial DBMSs and in terms of standard geometric operators (cf. Lemma 1).
Under this definition, there will always be a finite number of repairs for a given instance. Consistency will
be restored by applying a finite sequence of admissible transformation operations to conflicting geometries.

It is easy to see that each true relationship (atom) of the form T (g1, g2), with T ∈ T , can be falsified
by applying an admissible transformation inOa to g1 or g2. Actually, they can be falsified in acanonical
way. These canonical falsification operations for the different topological atoms are presented in Table 2.
They have the advantages of: (a) being defined in terms of the admissible operators, (b) capturing the repair
process in terms of the elimination of conflicting parts of geometries, and (c) changing one of the geometries
participating in a conflict.

More specifically, in Table 2 we indicate, for each relationT ∈ T , alternative operations that falsify
a true atom of the formT (g1, g2). Each of them makes changes on one of the geometries, leavingthe
other geometry unchanged. The list ofcanonical transformations in this table prescribes particular ways of
applying the admissible operators of Definition 1. Later on,they will also become theadmissible or legal
ways of transforming geometries with the purpose of restoring consistency.

For example, Table 2 shows that forOverlaps(OV ), there are in principle four ways to make false an
atomOverlaps(g1, g2) that is true. These are the alternatives 1. to 4. in that entry, where alternatives 1. and
2. change geometryg1; and alternatives 3. and 4. change geometryg2. Only one of these alternatives that
satisfies its condition is expected to be chosen to falsify the atom. A minimal way to change a geometry
depends on the relative size between overlapping and non-overlapping areas: (i) when the overlapping area
betweeng1 andg2 is smaller than or equal to their non-overlapping areas, a minimal change over geometry
g1 isDifference(g1, g2), and overg2 isDifference(g2, g1) (cases 1. and 3. forOV in Table 2). (ii) When the
non-overlapping areas ofg1 or g2 are smaller than the overlapping area, a minimal change overgeometryg1
is Difference(g1, Difference(g1, g2)), and over geometryg2 is Difference(g2, Difference(g2, g1)) (cases
2. and 4. forOV in Table 2).

For the case whenEquals(g1, g2) is true, the transformations in Table 2 make either geometry, g1 or g2
empty to falsify the atom. However, there are other alternatives that by shrinking geometries would achieve
the same result, but also producing smaller changes in termsof the affected area. A natural candidate update
consists in applying the transformationg′1 = Difference(g1,Buffer(Boundary(g2), d)) (similarly and alter-
natively forg2). In this case, we just take away fromg1 the part of the internal area of widthd surrounding
the boundary ofg1, to make it different fromg2. We did not follow this alternative for practical reasons:
having two geometries that are topologically equal could, in many cases, be the result of duplicate data, and

10



Pred.T A true atomT (g1, g2) becomes a false atomT (g′1, g
′
2) with

OV 1. If area(g1 ∩ g2) ≤ area(g1 r g2):
g′1 = Difference(g1, g2), g′2 = g2.

2. If area(g1 ∩ g2) > area(g1 r g2):
g′1 = Difference(g1,Difference(g1, g2)), g′2 = g2.

3. If area(g1 ∩ g2) ≤ area(g2 r g1):
g′2 = Difference(g2, g1), g′1 = g1.

4. If area(g1 ∩ g2) > area(g2 r g1):
g′2 = Difference(g2,Difference(g2, g1)), g′1 = g1.

IS ,CB 1. If area(g1 ∩ g2) ≤ area(g2 r g1):
g′2 = Difference(g2, g1), g′1 = g1.

2. If area(g1 ∩ g2) > area(g2 r g1):
g′2 = Difference(g2,Difference(g2, g1)), g′1 = g1.

3. g′1 = Difference(g1, g2), g′2 = g2.

IC ,CV 1. If area(g1 ∩ g2) ≤ area(g1 r g2):
g′1 = Difference(g1, g2), g′2 = g2.

2. If area(g1 ∩ g2) > area(g1 r g2):
g′1 = Difference(g1,Difference(g1, g2)), g′2 = g2.

3. g′2 = Difference(g2, g1), g′1 = g1.

I I,WI,CO 1. g′1 = Difference(g1, g2), g′2 = g2.
2. g′2 = Difference(g2, g1), g′1 = g1.

TO, IT 1. g′1 = Difference(g1, buffer(g2, d)), g′2 = g2.
2. g′2 = Difference(g2, buffer(g1, d)), g′1 = g1.
(See Remark 1 for definition ofd)

EQ 1. g′1 = g⊘, g′2 = g2.
2. g′2 = g⊘, g′1 = g1.

Table 2: Admissible transformations

one of them should be eliminated. Moreover, this alternative, in comparison with the officially adopted in
this work, may create new conflicts with respect to other SICs. Avoiding them whenever possible will be
used later, when designing a polynomial algorithm for CQA based on the core of an inconsistent database
instance (see Section 5).

Table 2 shows thatTouches andIntersects are predicates for which the eliminated area is not completely
delimited by the real boundary of objects. Actually, we needto separate the touching boundaries. We do so
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by buffering a distanced around one of the geometries and taking the overlapping partfrom the other one.7

The following result is obtained directly from Table 2.

Lemma 1 For each topological predicateT ∈ T and true ground atomT (g1, g2), there are geometries
g′1, g

′
2 obtained by means of the corresponding admissible transformation in Table 2, such thatT (g′1, g

′
2)

becomes false. ✷

The following definition defines, for each geometric predicateT , a binary geometric operatortrT such that,
if T (g1, g2) is true, thentrT (g1, g2) returns a geometryg′1 such thatT (g′1, g2) becomes false. The definition
is based on the transformations that affect geometryg1 in Table 2.

Definition 6 Let T ∈ T be a topological predicate. We define an admissible transformation operatortrT :
Ad × Ad → Ad as follows:

(a) If T (g1, g2) is false, thentrT (g1, g2) := g1.

(b) If T (g1, g2) is true, then:

trT (g1, g2) :=

{

Difference(g1, g2) if area(g1 ∩ g2) ≤ area(g1 r g2)
Difference(g1,Difference(g1, g2)), otherwise

for T ∈ {OV, IC,CV };

trT (g1, g2) := Difference(g1, g2), for T ∈ {IS,CB, II,WI,CO};

trT (g1, g2) := Difference(g1,Buffer(g2, d)) for T ∈ {TO, IT};

trT (g1, g2) := g⊘ for T ∈ {EQ}. ✷

It can be easily verified that the admissible operationstrT , applied to admissible geometries, produce ad-
missible geometries. They can be seen as macros defined in terms of the basic operations in Definition 1,
and inspired by Table 2. The idea is that the operatortrT takes(g1, g2), for which T (g1, g2) is true, and
makes the latter false by transformingg1 into g′1, i.e.,T (g′1, g2) becomes false.

Definition 6 can also be used to formalize the transformations on geometryg2 indicated in Table 2. First,
notice that for the converse predicateT c of predicateT it holds:T c(g1, g2) true iff T (g2, g1). Secondly, the
converse of a transformation operator can be defined by(trT )c := tr (T

c). In consequence, we can apply
trT

c

to (g2, g1), obtaining the desired transformation of geometryg2. In this way, all the cases in Table 2
are covered. For example, if we want to make false a true atomInside(g1, g2), we can applytrIS(g1, g2),
but alsotrIC(g2, g1).

Example 4 Table 3 illustrates the application of the admissible transformations to restore consistency of
predicatesT ∈ {Overlaps,Touches}. The dashed boundary is the result of applyingBuffer(g, d). ✷

We now define the notion ofaccessible instance that results from an original instance, after applying admis-
sible transformation operations to geometries. The application of sequences of operators solves violations
of SICs. Accordingly, the accessible instances are defined by induction.

7The buffer operator does not introduce new points in the geometric representation of objects, but it translates the boundary a
distanced outwards.
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T (g1, g2) Original TrT (g1, g2) TrT (g2, g1)

OV

TO

Table 3: Examples of admissible transformations

Definition 7 LetD be a database instance.D ′ is anaccessible instance from D (with respect to a finite set
of SICsΨ), if D ′ is obtained after applying, a finite number of times, the following inductive rules (any of
them, when applicable):
(1). D ′ = D .
(2). There is an accessible instanceD0 from D , such that, for someψ ∈ Ψ with a topological predicateT ,
D0 6|= ψ8 through tuplesR1(ā1; g1) andR2(ā2; g2) in D0, for whichT (g1, g2) is true; and

(a)D ′ = D0 r {R1(ā1, g1)} ∪ {R1(ā1, tr
T(g1, g2))}, or

(b) D ′ = D0 r {R2(ā2, g2)} ∪ {R2(ā2, tr
T c

(g2, g1))}. ✷

Example 5 Consider the database instance in Figure 4(a) that is inconsistent with respect to SIC (3). An
accessible instance from this inconsistent database is in Figure 4(b), where onlyg1 has changed. This can
be expressed in the following way:LandP (idl1, n1, o1; g′1) = LandP (idl1, n1, o1; tr

II(tr II(g1, g2), g3)).
✷

Given a databaseD , possibly inconsistent, we are interested in those accessible instancesD ′ that are consis-
tent, i.e.,D ′ |= Ψ. Even more, having the repairs in mind, we have to make sure that admissible instances
from D can still be indexed withD .

Proposition 2 Let D ′ be an accessible instance fromD . Then,D ′ is f -indexed toD via an index function
f , that can be defined by induction onD ′.

Proof: To simplify the presentation, we will assume thatD has an index (or surrogate key)i0, that is a
one-to-one mapping fromD to an initial segment[1, N ] of N. LetD ′ be an accessible instance fromD . We
defineiD ′(R(ā; g)) ∈ N for tuples inD ′ by induction onD ′:
(1). If D ′ = D andR(ā; g) ∈ D , iD ′(R(ā; g)) = i0(R(ā; g)).
(2). If there is an accessible instanceD0 fromD andD0 6|= ψ ∈ Ψ through the atomsR1(ā1; g1),R2(ā2; g2),
andT (g1, g2) with T andT c the converse relation ofT :

8ψ may have more than one topological predicate.

13



LandP
idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3

(a)

LandP
idl name owner geometry
idl1 n1 o1 g′

1

idl2 n2 o2 g2
idl3 n3 o3 g3

(b)

Figure 4: An accessible instance: (a) original instance, and (b) accessible transformation (geometry with
thick boundary changed)

(a) D ′ = D0 r {R1(ā1, g1)} ∪ {R1(ā1, tr
T (g1, g2))}, andiD ′(R1(ā1; tr

T (g1, g2))) = iD0
(R1(ā1, g1))

andiD ′(R2(ā2; g2)) = iD0
(R2(ā2, g2)), or

(b) D ′ = D0 r {R2(ā2, g2)} ∪ {R2(ā2, tr
T c

(g2, g1))}, andiD ′(R1(ā1; g1)) = iD0
(R1(ā1, g1)) and

iD ′(R2(ā2; tr
T c

(g2, g1))) = iD0
(R2(ā2, g2)). ✷

Any two accessible instancesD ′ andD ′′ can be indexed viaD in a natural way, and thus, they can be com-
pared tuple by tuple. In the following, we will assume, when comparing any two accessible instances in this
way, that there is such an underlying index functionf . Now we give the definition of operational repair.

Definition 8 Let D be an instance over schemaΣ andΨ a finite set of SICs. (a) Ano-repair of D with
respect toΨ is an instanceD ′ that is accessible fromD , such thatD ′ |= Ψ. (b) A minimal o-repair D ′ of D
is an o-repair ofD such that, for every o-repairD ′′ of D , ∆(D ,D ′′) ≥ ∆(D ,D ′). (c) Rep(D ,Ψ) denotes
the set of minimal o-repairs ofD with respect toΨ. ✷

The distances∆(D ,D ′′) and∆(D ,D ′) in this definition are relative to the corresponding index functions,
whose existence is guaranteed by Proposition 2. Unless otherwise stated, this is the repair semantics we
refer to in the remainder of the paper, in particular, in the definition of consistent query answer in Section
4. In consequence, in the following a repair is an o-repair, and the same applies to minimal repairs. Even
more, whenever we refer to repairs, we should understand that minimal repairs are intended.

Example 6 Consider database schema in Example 2. The instanceD in Figure 5 is inconsistent with respect
to the SICs (3) and (4), because the land parcels with geometriesg2 andg3 overlap, and so do the land parcels
with geometriesg2 andg4. Likewise, buildings with geometryg5 andg6 partially overlap land parcels with
geometriesg1 andg2, respectively.
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LandP
idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3
idl4 n4 o4 g4

Building
idb geometry
idb1 g5
idb2 g6

Figure 5: Inconsistent database instance

(a) (b)

Figure 6: Minimal repairs

Figure 6 shows the two minimal repairs ofD . In them, the regions with thicker boundaries are the re-
gions that have their geometries changed. For the minimal repair in Figure 6(a), the inconsistency involving
geometriesg2 andg3 is repaired by applyingDifference(g2 , g3 ) to g2, i.e., removing fromg2 the whole
overlapping geometry, and keeping the geometry ofg3 as originally. Notice that due to the interaction be-
tween integrity constraints, if we applyDifference(g3 , g2 ) to g3, i.e., we remove the whole overlapping
area fromg3, we still have an inconsistency, because the building with geometryg6 will continue partially
overlapping geometriesg2 andg3. Thus, this change will require an additional transformation to ensure that
g6 is completely covered or inside ofg3.

In the same minimal repair (Figure 6(a)), the inconsistencybetweeng2 andg4 is repaired by shrinking
g2, eliminating its area that overlapsg4. This is obtained by applyingDifference(g2 , g4 ) to g2. Finally,
the inconsistency betweeng1 andg5 is repaired by removing fromg5 its part that does not overlap with
geometryg1. In principle, we could have repaired this inconsistency byeliminating the overlapping region
betweeng1 andg5, but this is not a minimal change.

In the second minimal repair (Figure 6(b)), geometriesg2 andg5 undergo the same changes than those
in the first minimal repair (Figure 6(a)), but the inconsistency betweeng2 andg4 is restored by eliminating
geometryg4, i.e., applyingDifference (g4, g2) = g⊘. ✷

Notice that, by applying admissible transformation operators to restore consistency, the whole part of a
geometry that is in conflict with respect to another geometryis removed. In consequence, given that there
are finitely many geometries in the database instance and finitely many SICs, a finite number of applications
of admissible transformations are sufficient to restore consistency. This contrasts with the s-repair semantics,
which can yield even a continuum of possible consistency-restoration transformations. Keeping the number
of repairs finite may be crucial for certain mechanisms for computing consistent query answers, as those
as we will show in the next sections. Actually, we will use existing geometric operators as implemented in
spatial DBMSs in order to capture and compute the consistency-restoring geometric transformations. This
will be eventually used to obtain consistent query answers for an interesting class of spatial queries and SICs
in Section 5.2.
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LandP
idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2

Building
idb geometry
idb1 g3
idb2 g4

Figure 7: An inconsistent database instance

(a) (b)

Figure 8: Minimal repairs: (a) minimal s-repair and (b) minimal o-repairs (thick boundaries show geometries
that have changed)

Despite the advantages of using o-repairs, the following example shows that an o-repair may not be
minimal under the s-repair semantics.

Example 7 The instanceD in Figure 7 is inconsistent with respect to the SICs (3) and (4), because the land
parcels with geometriesg1 andg2 internally intersect and buildings with geometryg3 andg4 overlap land
parcels with geometriesg1 andg2, respectively.

Figures 8(a) and (b) show the minimal s-repair (Definition 5)and o-repairs ofD (Definition 8), respec-
tively. In them, the regions with thicker boundaries are theregions that had their geometries changed. Here,
by applying s-repair semantics we obtain one minimal repair(Figure 8(a)) that takes the partial conflicting
parts from both land parcelsg1 andg2 in conflict, and leave unchanged the geometries of buildingsg3 and
g4. Instead, for the o-repair semantics, each repair takes thewhole conflicting parts from one of the land
parcelsg1 or g2 in order to satisfy SIC (3), and to satisfy SIC (4), each repair eliminates the conflict between
the new version ofg1 and buildingg3 or between the new version ofg2 and buildingg4. This makes up to
four possible o-repairs (Figure 8(b)), which are not minimal with respect to the single s-repair. ✷

S-repairs may take away only parts of a geometry that participate in a conflict. On the other side, they do not
force a conflicting geometry to become empty in cases where o-repairs would do so. For instance, consider
a true atomEquals(g1, g2) that has to be falsified. A s-repair can be obtained by shrinking one of the two
geometries just a little, without making it empty. However,by using admissible transformations, we can
only falsify this atom by making one of the geometries empty.In this case, a minimal o-repair is not a
minimal s-repair.

Proposition 3 Let D be a database instance, andΨ a set of SICs. Then the following properties for o-
repairs hold: (a) IfD is consistent with respect toΨ, thenD is its only minimal o-repair. (b) IfD ′ is an
(D , f)-indexed o-repair ofD andf(R(ā; g)) = R(ā; g′), theng′ ⊆ g. (c) The set of o-repair forD is finite
and non-empty.

Proof: (a) By the inductive definition of o-repair, an admissible transformation operator is applied to a
geometryg wheng is in conflict with other geometryg′ in D . Since a consistent database instance does not
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Figure 9: Example of a region’s boundary after geometric transformation

contain conflicting tuples, none of the transformations operators is applicable and the consistent database
instance is its only o-repair.
(b) The application of each admissible transformationtrT (g1, g2), with T ∈ T , has five possible outcomes:
g1, g⊘, Difference(g1, g2), Difference(g1,Difference(g1, g2)), orDifference(g1,Buffer(g2, d)). Then, by
definition of operatorDifference (cf. Definition 1),trT (g1, g2) ⊆ g1.
(c)D has a finite numberN of tuples; andΨ, a finite number of integrity constraints. In consequence, there is
a finite number of conflicts, i.e., sets of tuples that simultaneously participate in the violation of one element
ψ of Ψ via their geometries. Each of these conflicts are solved by shrinking some of those geometries.
Each application of an operatorO, chosen for a finite set of them, according to the inductive definition of
o-repair solves an existing conflict by falsifying at least one of theT -atoms in a ground instance ofψ. In
principle, the application of such an operatorO may produce new conflicts; however, it strictly decreases
the total geometrical area of the database instance. More precisely, ifA(D′) := ΣR(t̄;g)∈D′area(g), then
A(D′) > A(O(D′)), whereO(D′) is the instance resulting from the conflict resolving operatorO toD′. In
particular,A0 is the areaA(D) of the original instanceD.

Now we reason by induction on the structure of o-repairs. Theapplication of a one-conflict solving
operatorO to an instanceDn−1 produces an instanceDn with A(Dn) < A(Dn−1). Moreover,A(Dn−1)−
A(Dn) > ǫ > 0, whereǫ represents a lower bound of the area reduction at each inductive step.

We claim that, due to our repair semantics, this lower boundǫ depends on the initial instanceD, and
not onn. In order to prove this, let us first remark that an admissibleregion is fully determined by its
boundaries. Now we prove that the regions in any accessible instance depend on the regions in the original
database instance, or, more precisely, by the boundaries delimiting those regions. We prove it by induction
on the number of inductive steps of the definition of accessible instances.

First, we prove that it works for the first repair transformation on the original database instance. Let
g′1 = TrT (g1, g2) be the first transformation applied on regiong1 to create the accessible instanceD1 from
the original database instanceD . For T ∈ T \ {TO , IT}, and following the definitions of admissible
transformations in Table 2, the geometryg′1 is eitherg⊘ or a region whose boundary is formed by parts
of the boundaries that limit regionsg1 andg2 (see example of overlapping regions in Figure 9). ForT ∈
{TO , IT}, g′1 is formed by parts of the boundary of regiong1 and the boundary created by bufferingd
aroundg2. So, in this case, the boundary ofg′1 depends exclusively on the boundaries ofg1 andg2, and of
the constantd.

Let assume that the geometries in an accessible instanceDn obtained aftern inductive steps areg⊘ or
regions whose boundaries depend on the original instance. In then + 1 inductive step, another transforma-
tion g′i = TrT

′

(gi, gj) is applied. Following the definition of admissible transformations,g′i becomes the
geometryg⊘ or a region whose boundary is formed by part of the boundary ofgi and part of the boundary
of gj , as in the first inductive step. Thus,g′i also depends on the original database instance. This establishes
our claim.
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Now, by the Archimedean property of real numbers, there is a numberM such thatA0−Mǫ < 0. Thus,
after a finite number of iterations (i.e. applications of conflict-solving operators), we reach a consistent
instance or an instance with area0, i.e. all of whose geometries are empty, which would be consistent too.

Notice that the numberM provides an upper bound on the number of times we can apply operators to
produce a repair. At each point we have a finite number of choices. So, the overall number of o-repairs that
can be produced is finite. ✷

The following example shows that, even when applying admissible transformations, there may be expo-
nentially many minimal repairs in the size of the database, aphenomenon already observed with relational
repairs with respect to functional dependencies [6].

Example 8 Consider the schema in Example 2, and the SIC (3). The database instance containsn spatial
tuples, as shown in Figure 10. There aren−1 overlappings andn overlapping geometries.

Figure 10: Exponential number of repairs

In order to solve each of those overlaps, we have the options of shrinking either one of the two regions
involved. We have2n−1 possible minimal repairs. ✷

The following remark is important when estimating the data complexity of repairs, because, in this case, data
complexity does not only depend on the number of tuples, but also on the size of geometric representations.

Remark 2 Transformation operators that make geometries empty reduce the size of geometric representa-
tions. Any other admissible transformation operatortrT (g1, g2) shrinksg1, and usesg1 andg2 to define
the new boundary ofg1. Thus, we are using, in a simple manner, the original geometric representation (e.g.
points in the boundaries of the original geometries) to define a new geometry. It is clearly the case that there
is a polynomial upper bound on the size of the representationof a new geometry in an o-repair in terms of
the size of the original database, including representations of geometric regions. ✷

4 Consistent Query Answers

We can use the concept of minimal repairs as an auxiliary concept to define, and possibly compute, consistent
answers to a relevant class of queries inL(Σ).

A general conjunctive query is of the form:

Q(v̄) : ∃ȳ(R1(x̄1; s1) ∧ · · · ∧Rn(x̄n; sn) ∧ ϕ), (5)

wherev̄ = (
⋃

i(x̄i ∪{si}))r ȳ are the free variables, andϕ is a conjunction of built-in atoms over thematic
attributes or over spatial attributes that involve topological predicates inT and geometric operators inO.
We also add asafety condition, requiring that variables inϕ also appear in some of theRi. For example, the
following is a conjunctive query:

Q(x, y; s) : ∃s1s2(R(x; s1) ∧R(y; s2) ∧ Intersects(s1, s2) ∧ x 6= y ∧ s = Difference(s1, s2)).
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We will consider the simpler but common and relevant class ofconjunctive queries that areoperator free,
i.e., conjunctive queries of the form (5) whereϕ does not contain geometric operators. We will also study
in more detail two particular classes of conjunctive queries:

(a) Spatial range queries are of the form

Q(ū; s) : ∃z̄(R(x̄; s) ∧ T (s,w)), (6)

with w a spatial constant, and̄z ⊆ x̄. This is a “query window”, and its free variables are those in
ū = (x̄r z̄) or in {s}.

(b) Spatial join queries are of the form

Q(ū; s1, s2) : ∃z̄(R1(x̄1; s1) ∧R2(x̄2; s2) ∧ T (s1, s2)), (7)

with T ∈ T , andz̄ ⊆ x̄1 ∪ x̄2. The free variables are those inū = ((x̄1 ∪ x̄2)r z̄) or in {s1, s2}.

We callbasic conjunctive queries to queries of the form (6) or (7) withT ∈ {IIntersects, Intersects}.

Remark 3 Notice that for these two classes of queries we project on allthe geometric attributes. We will
also assume that the free variables correspond to a set of attributes ofR with its key of the form (1). More
precisely, for range queries, the attributes associated with ū contain the key ofR. For join queries,̄u ∩ x̄1
andū∩x̄2 contain the key for relationsR1,R2, respectively. This is a common situation in spatial databases,
where a geometry is retrieved together with its key values. ✷

Given a queryQ(x̄; s̄), with free thematic variables̄x and free geometric variables̄s, a sequence of the-
matic/spatial constants〈c̄; ḡ〉 is an answer to the query in instanceD if and only if D |= Q(c̄; ḡ), that is the
queryQ becomes true inD as a formula when its free variablesx̄, s̄ are replaced by the constants inc̄, ḡ,
respectively. We denote withQ(D) the set of answers toQ in instanceD .

Example 9 Figure 11 shows an instance for the schemaR = {LandP(idl ; geometry), Building(idb;
geometry)}. Here, idl , idb are keys for their relations. Dark rectangles represent buildings, and white
rectangles represent land parcels. The queriesQ1 andQ2 below are a range and a join query, respectively.
For the former, the spatial constant is the spatial window shown in Figure 11, namely the (closed) polygon
obtained by joining the four points in order indicated in thequery.

Q1(idb; g) : Building(idb; g) ∧

Intersects(g, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

Q2(idl, idl
′; g, g′) : LandP(idb; g) ∧ LandP (idb′; g′) ∧ Touches(g, g′).

The answer toQ1 is 〈idb2; g5〉. The answers toQ2 are:{〈idl1, idl2; g1, g2〉, 〈idl2, idl3; g2, g3〉, 〈idl1, idl3;
g1, g3〉, 〈idl2, idl1; g2, g1〉, 〈idl3, idl2; g3, g2〉, 〈idl3, idl1; g3, g1〉}. ✷

Now we define the notion of consistent answer to a conjunctivequery.

Definition 9 Consider an instanceD , a setΨ of SICs, and a conjunctive queryQ(x̄; s̄). A tuple of the-
matic/geometric constants〈c1, . . . , cm; g1, . . . , gl〉 is a consistent answer to Q with respect toΨ if: (a)
For everyD ′ ∈ Rep(D ,Ψ), there existg′1, . . . , g

′
l such thatD ′ |= Q(c1, . . . , cm; g′1, . . . , g

′
l). (b) gi is the

intersection over all regionsg′i that satisfy (a) and are correlated to the same tuple inD .9 Con(Q,D ,Ψ)
denotes the set of consistent answers toQ in instanceD with respect toΨ. ✷

9Via the correlation functionf , cf. Definition 3.
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LandP
idl geometry
idl1 g1
idl2 g2
idl3 g3

Building
idb geometry
idb1 g4
idb2 g5

Figure 11: Example of a range query

idl geometry
idl1 g1
idl2 g′2
idl3 g3

Figure 12: Consistent answers

SinceQ is operator free, the regionsg′i appear in relations of the repairs, and thenf−1 can be applied.
However, due to the intersection of geometries, the geometries in a consistent answer may not belong to the
original instance or to any of its repairs.

In contrast to the definition of consistent answer to a relational query [2], where a consistent answer is
an answer in every repair, here we have an aggregation of query answers via the geometric intersection and
grouped-by thematic tuples. This definition is similar in spirit to consistent answers to aggregate relational
queries with group-by [3, 9, 17].

This definition of consistent answer allows us to obtain moresignificative answers than in the relational
case, because when shrinking geometries, we cannot expect to have, for a fixed tuple of thematic attribute
values, the same geometry in every repair. If we did not use the intersection of geometries, we might lose or
not have consistent answers due to the lack of geometries in common among repairs.

Example 10 (example 6 cont.) Consider the spatial range query
Q(idl ; geometry ) : ∃name owner (LandP(idl ,name, owner ; geometry) ∧

Intersects(geometry , ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])),
which is expressed in the SQL language as:

SELECT idl , geometry

FROM LandP

WHERE Intersects(geometry , ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

Now, consider the two minimal repairs in Figure 6. In them, objectsidl1 andidl3 do not change geometries,
whereas objectidl2 does, fromg2 to g′2, g

′′
2 , resp. (cf. Figure 6(a), (b), resp.).

From the first repair we get the following (usual) answers to the query:〈idl1; g1〉, 〈idl2; g′2〉, 〈idl3; g3〉.
From the second repair, we obtain〈idl1; g1〉, 〈idl 2; g′′2 〉, 〈idl3; g3〉. The consistent answers are the tuples
shown in Figure 12, where the answers obtained in the repairsare grouped by anidl in common, and the
associated geometries are intersected. In this figure, the geometry with thicker lines corresponds to the
intersection of geometries obtained from different repairs.

From a practical point of view, the consistent query answer could include additional information about
the degree in which geometries differ from their corresponding original geometries. For example, for the
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LandP∗

idl1 n1 o1 g∗1
idl2 n2 o2 g∗2
idl3 n3 o3 g∗3
idl4 n4 o4 g⊘

Building∗

idb1 g∗5
idb2 g∗6

Figure 13: The core of an instance

answer〈idl2; g′2〉, an additional information could be the relative difference between areasg2 andg′2, which
is calculated byδ(g2, g′2)/area(g2). ✷

5 Core-Based CQA

The definition of consistent query answer relies on the auxiliary notion of minimal repair. However, since we
may have a large number of repairs, computing consistent answers by computing, materializing, and finally
querying all the repairs must be avoided whenever there are more efficient mechanisms at hand. Along these
lines, in this section we present a methodology for computing consistent query answers to a subclass of
conjunctive queries with respect to certain kind of SICs. Itworks in polynomial time (in data complexity),
and does not require the explicit computation of the database repairs.

We start by defining thecore , which is a single database instance associated with the class of repairs.
We will use the core to consistently answer a subclass of conjunctive queries. Intuitively, the core is the
“geometric intersection” of the repairs, which is obtainedby intersecting the geometries in the different
repair instances that correlate to the same thematic tuple.

Definition 10 For an instanceD and a setΨ of SICs, thecore of D is the instanceD⋆ given by D∗ :=
{R(ā; g⋆) | R ∈ R, there isR(ā; g) ∈ D andg⋆ =

⋂

{g′ | R(ā; g′) ∈ D ′ for some D ′ ∈ Rep(D ,Ψ)
and R(ā; g′) = fD ′(R(ā; g))}}. Here,fD ′ is the correlation function forD ′.10

✷

Sometimes we will refer toD⋆ by
⋂g

Rep(D ,Ψ). However, it cannot be understood as the set-theoretic
intersection of the repairs ofD . Rather it is a form of geometric intersection of geometriesbelonging to
different repairs and grouped by common thematic attributes. It is important to remark that the keys of
relations remain in the repairs, and therefore they appear in the core of a dimension instance.

Example 11 Figure 13 shows thecore of the database instance in Figure 5 considering the repairsin Fig-
ure 6. Here,g∗2 results from the geometric intersection of geometriesg′2 andg′′2 of the minimal repairs in
Figure 6. Similarly,g∗5 is g′5, because the latter is shared by both minimal repairs in Figure 6. Geometryg4
becomesg⊘ in the core. All other geometries in the core are unchanged with respect to geometries in the
original database instance. ✷

Notice the resemblance between the definitions of consistent answer and the core. Actually, it is easy to see
thatD⋆ =

⋃

R∈R Con(QR,D ,Ψ), where the queryQR(x̄; s) : R(x̄; s) asks for the tuples in relationR.
Thecore is defined as the geometric intersection of all database repairs. However, as we will show, for

a subset of SICs we can actually determine thecore without computing these repairs. This is possible for

10Here,
⋂

is a set-theoretic intersection of geometries.
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SICs of the form:

∀x̄1x̄2s1s2¬(R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄′1 6= x̄′2 ∧ T (s1 , s2 )), (8)

whereT ∈ {IIntersects, Intersects,Equals}, x̄′1 ⊆ x̄1, x̄′2 ⊆ x̄2, and both̄x′1 andx̄′2 are the key ofR. In
these SICs there are two occurrences of the same database predicate in the same SIC. The following example
illustrates this class of SICs.

Example 12 For the schemaR = {County(idc, name; geometry), Lake(idl ; geometry)}, with idc the
key ofCounty andidl the key ofLake, the following SICs are of the form (8):

∀¬(County(idc1, n1; s1) ∧ County(idc2, n2; s2) ∧ idc1 6= idc2 ∧ IIntersects(s1, s2)). (9)

∀¬(Lake(idl1; s1) ∧ Lake(idl2; s2) ∧ idl1 6= idl2 ∧ Intersects(s1, s2)). (10)

✷

Remark 4 This subset of SICs has the following properties, which willbe useful when trying to compute
the repairs and the core:

(i) Two SICs of the form (8) over the same database predicate are redundant due to the semantic in-
terrelation of the topological predicatesIIntersects, Intersects, andEquals: only the constraint that
contains the weakest topological predicate has to be considered. For example,Intersects is weaker
thanIIntersects, andIIntersects is weaker thanEquals.

(ii) Conflicts between tuples with respect to SICs of the form(8) are determined by the intersection of
their geometries. The conflict between two tuplesR(ā1; g1) andR(ā2; g2) is solved by applying a
single admissible transformation operatortrT (g1, g2) (or trT

c

(g2, g1)) that modifiesg1 (or g2), and
makesT (g1, g2) (andT c(g2, g1)) false.

(iii) Solving conflicts with respect to a SIC of the form (8) isindependent from solving a conflict with
respect to another SIC of form (8) over a different database predicate.

(iv) Solving a conflict between two tuples with respect to a SIC of the form (8) does not introduce new
conflicts. This is due to the definition of admissible transformations and the monotonicity property of
predicatesIIntersects andIntersects, which prevent a shrunk geometry (or even an empty geometry)
from participating in a new conflict with an existing geometry in the database (cf. Example 13).

(v) For any two geometriesg1 and g2 in conflict with respect to a SIC of the form (8), there always
exist two repairs, one with the shrunk version ofg1, and another with the shrunk version ofg2. This
guarantees that there exists a minimal repair that containsa minimum version of a geometry whose its
geometric intersections with original geometries in conflict have been eliminated (cf. Lemma 2). As
a consequence, the core can be computed by taking from a geometry all its intersections with other
geometries in conflict, disregarding the order in which these intersections are eliminated.

This property is not guaranteed for other kinds of SICs. For instance, consider Example 6 with the
instance in Figure 5 and its corresponding repairs in Figure6. Althoughg6 was originally in conflict
with respect tog2, there is no minimal repair where geometryg6 is shrunk. ✷

We illustrate some of these properties with the following example.
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County
idl name geometry
idc1 n1 g1
idc2 n2 g2
idc3 n3 g3
idc4 n4 g4
idc4 n5 g5

Lake
idl geometry
idl1 g6
idl2 g7

Figure 14: An inconsistent database with SICs of the form (8)

Example 13 (example 12 cont.) Consider the inconsistent instance in Figure 14. In it, counties with geome-
triesg1, g2 andg3 are inconsistent with respect to SIC (9), because they internally intersect. Also, county
g3 internally intersects with geometryg4. Lakes with geometriesg6 andg7 violate SIC (10), because they
intersect (actually they touch).

Conflicts with respect to SICs (9) and (10) can be solved in an independent way, since they do not share
predicates (cf. Remark 4(iii)). To obtain a repair, consider first SIC (9) and the conflict betweeng2 and
g3, which is solved by applyingtrII (g2, g3) or trII (g3, g2). Any of these alternative transformations do not
produce geometries that could be in conflict with other geometries unless they were originally in conflict (cf.
Remark 4(iv)). For instance, if we applytrII (g3, g2) we obtain a new geometryg′3 that will be in conflict
with geometriesg1 andg4. These conflicts are not new, sinceg3 was originally in conflict with these two
geometries. Even more, by shrinkingg2 or g3, none of the modified geometries could be in conflict with
g5. In addition, although by makingg′3 = trII (g3, g2) we also solve the conflict betweeng1 andg3, this is
only accomplished due to the fact the conflicting part ofg3 andg1 has been already eliminated fromg′3 (cf.
Remark 4(v)).

Figure 15 shows the sixteen possible minimal repairs that are obtained by considering the eight possible
ways in which conflicts with respect to SIC (9) are solved, in combination with the two possible ways in
which conflicts with respect to SIC (10) are solved. In this figure thick boundaries represent geometries that
have changed. Notice that in this figure we only showg′21 and notg′22 , since the later corresponds to the
empty geometry which is then omitted in the corresponding repairs. The core for this database instance is
shown in Figure 16. ✷

It is possible to use a tree to represent all the versions thata geometryg may take in the repairs. The root of
that tree is the original geometryg, the leaves are all the possible versions of theg in the minimal repairs.
The internal nodes represent partial transformations applied tog as different conflicts in whichg participates
are solved. For illustration, Figure 17 shows the tree that represents the possible different versions ofg3 in
the minimal repairs for the inconsistent instance in Figure14. Notice that a leaf in this tree represents a
version ofg3 in a repair, which is not necessarily a minimum geometry. Forinstance, in Figure 17 the
minimum version ofg3 is g′31 . For all other non-minimum versions ofg3 in the leaves, conflicting areas are
taken from other geometries. For example, geometryg′36 results by keepingg3 as originally and shrinking
geometriesg1, g2 andg4.

The following lemma establishes that when a geometryg is involved in conflicts of SICs of the form (8),
there exists a version ofg in the repairs that is minimum with respect to set-theoretic(geometric) inclusion.
This result is useful to show that the minimum version ofg is the one that will be in the core.

We need to introduce the setGR,Ψ(ā, g) that contains, for a given tupleR(ā; g) in a database instance
D , all the possible versions of geometryg in the minimal repairs ofD .

Definition 11 Let D a database instance, a setΨ of SICs of the form (8) and a fixed tupleR(ā; g) ∈ D .
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Figure 15: The sixteen possible repairs of Example 13

County∗

idl name geometry
idc1 n1 g′

11

idc2 n2 g⊘
idc3 n3 g′31
idc4 n4 g′

41

idc4 n5 g′51

Lake∗

idl geometry
idl1 g′

61

idl2 g′
71

Figure 16: The core of Example 13

Figure 17: A tree-based representation of derived geometries fromg3 in some of the possible minimal
repairs (thick boundaries represent geometries that have changed)

Then,GR,Ψ(ā, g) = {g′|R(ā; g′) ∈ D ′,D ′ ∈ Rep(D ,Ψ)}, f−1(R(ā; g′)) = R(ā; g). ✷

Lemma 2 The set of geometriesGR,Ψ(ā, g) has a minimum elementgmin under set-theoretic inclusion.

Proof: By properties of SICs of the form (8), for each conflict in whichR(ā; g) ∈ D participates, we can
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or cannot shrinkg. This leads to a combination of possible transformations over geometryg that can be
represented in a binary tree as shown in Figure 17. So, we havea non-empty set of geometriesGR,Ψ(ā, g).

In this tree, we always have a path from the root to a leaf in which the geometry is always shrunk; that is,
all conflicting areas are eliminated fromg. The leaf geometry in this path (repair) is the minimum geometry
gmin. ✷

Corollary 1 Consider a database instanceD , a setΨ of SICs of the form (8), and a fixed tupleR(ā; g) ∈ D .
Forgmin, the minimum geometry inGR,Ψ(ā, g), it holdsR(ā; gmin) ∈ D⋆.

Proof: Direct from Lemma 2 and the definition of the core as a geometric intersection. ✷

5.1 Properties of the Core

In this section we establish that for the set of SICs of the form (8), and basic conjunctive queries, it is
possible to compute consistent answers on the basis of the core of an inconsistent instance, avoiding the
computation of queries in every minimal repair. This is established in Theorems 1 and 2, respectively.

Theorem 1 For an instanceD , a setΨ of SICs of the form (8), and a basic spatial range queryQ(ū; s), it
holds〈ā; g〉 ∈ Con(Q,D ,Ψ) if and only if 〈ā; g〉 ∈ Q(D∗).

Proof: The projection of range queries always includes the key of the relation in the result. Thus, if〈ā, g〉 ∈
Con(Q,D ,Ψ), then for everyD ′ ∈ Rep(D ,Ψ), there existsR(b̄; g′), such that̄a ⊆ b̄, f−1(R(b̄; g′)) =
R(b̄; g) andR(b̄; g) ∈ D , whereT (g′, w) is true for the spatial constantw of the range query andg =

⋂

g′

with the intersection ranging over allg′.
By Lemma 2, there exists tupleR(b̄; gmin) ∈ D ′ ∈ Rep(D ,Ψ) with gmin ∈ GR,Ψ(b̄; g). If 〈ā; g〉 ∈

Con(Q,D ,Ψ), with ā ⊆ b̄, g =
⋂

g′ = gmin. Also, it must happen that〈ā; gmin〉 ∈ Q(D ′). Then by
Corollary 1,〈ā; gmin〉 ∈ Q(D⋆), and therefore〈ā; g〉 ∈ Q(D⋆).

In the other direction, if〈ā, g∗〉 ∈ Q(D∗) (with D∗ =
⋂g

Rep(D ,Ψ)), then there exists a tuple
R(b̄; g∗) ∈ D∗, with ā ⊆ b̄ and g∗ 6= g⊘. By the monotonicity ofT ∈ {Intersects, IIntersects}, if
T (g∗, w) is true, then for all geometriesg′ in R(b̄; g′) ∈ Rep(D ,Ψ), with gmin ⊆ g′, g′ 6= g⊘, T (g′, w) is
also true. Then, by Lemma 2 and Corollary 1,g∗ =

⋂

g′ = gmin and〈ā, g∗〉 ∈ Con(Q,D ,Ψ). ✷

A similar result can be obtained for basic join queries, i.e., queries that consider two database predicates
(not necessarily different). Notice that for a SICϕ of the form (8) with a database predicateR and a basic
join query of the form (7) withR = R1 = R2, the consistent answers do not contain information from
tuples that were originally in conflict. This is because by solving conflicts with respect toϕ, all possible
intersections between tuples inR will be eliminated (a basic join query asks for geometries that intersect).

The following example illustrates how to compute consistent answers to basic join queries. This example
will also illustrate the proof of Theorem 2.

Example 14 (example 13 cont.) Consider the following basic join query posed to the instanceD in Exam-
ple 13. It is asking for the identifiers and geometries of counties and lakes that internally intersect.

Q(idc, idl; g1, g2) : ∃n(County(idc, n; g1) ∧ Lake(idl; g2) ∧ IIntersects(g1, g2)).
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The consistent answer to this query is〈idc3, idl2; g
′
31
, g′71〉. Without using the core, this answer is obtained

by intersecting all answers obtained from every possible minimal repair. The geometries in the repairs of
D with respect toΨ (SICs (9) and (10)) can be partitioned into the following sets: GCounty,Ψ(idc1, n1; g1) =
{g′11 , g

′
12},GCounty,Ψ(idc2, n2; g2) = {g⊘, g

′
21 , g

′
22}, GCounty,Ψ(idc3, n3; g3) = {g′31 , g

′
32 , g

′
33 , g

′
34 , g

′
35 , g

′
36},

GCounty,Ψ(idc4, n4; g4) = {g′41 , g
′
42}, GCounty,Ψ(idc5, n5; g5) = {g′51}, GLake,Ψ(idl6; g6) = {g′61 , g

′
62},

GLake,Ψ(idl7; g7) = {g′71 , g
′
72}. The minimum geometries in these seven sets areg′11 , g⊘ (corresponding to

the update of geometryg′2), g′31 , g′41 , g′51 , g′61 , andg′71 , respectively.
Also, for the database predicatesCounty andLake, there are two sets containing the possible extensions

of them in the repairs:{County(D ′)|D ′ ∈ Rep(D ,Ψ)}, containing the eight versions of counties (first
eight versions of counties in Figure 15); and{Lake(D ′)|D ′ ∈ Rep(D ,Ψ)}, with the two instances of lakes
(one with geometriesg′62 andg′71 , and the other with geometriesg′61 andg′72 in Figure 15). Note that the pos-
sible minimal repairs contain combinations of geometries in setsGCounty,Ψ (idc, n; g) andGLake,Ψ(idl; g).
In particular, there exists a repair that combines the minimum geometriesg′31 andg′61 , and another repair
that combinesg′31 andg′71 .

If the topological predicate in the basic join query is satisfied by the combination of two minimum
geometries, then other versions of these geometries in other repairs (which geometrically include the min-
imum geometries) will also satisfy it. In this example,g′31 and g′71 intersect and, by the monotonicity
property of predicateIIntersects, all other versions ofg3 andg7 in other repairs also intersect. As result,
〈idc3, idl2; g

′
31 , g

′
71〉 is an answer to the query. Finally, by Corollary 1,g′31 andg′71 are in the core of the

database instance and, therefore,〈idc3, idl2; g
′
31 , g

′
71〉 is also an answer to the query over the core. ✷

Theorem 2 For an instanceD , a setΨ of SICs of the form (8), and a basic spatial join queryQ(x̄1, x̄2; s1, s2),
it holds〈ā1, ā2, g1, g2〉 ∈ Con(Q,D ,Ψ) if and only if 〈ā1, ā2, g1, g2〉 ∈ Q(D∗).

Proof: The projection of join queries also includes keys. Thus, if〈ā1, ā2; g1, g2〉 ∈ Con(Q,D ,Ψ), then
we have tuplesR1(b̄1; g

′
1) ∈ D ′, R2(b̄2; g

′
2) ∈ D ′, for everyD ′ ∈ Rep(D ,Ψ) with ā1 ⊆ b̄1, ā2 ⊆ b̄2, and

T (g′1, g
′
2) true forT in Q. Thus,g1 is the intersection of all thoseg′1, andg2 is the intersection of all those

g′2.
First, note that ifR1 = R2, only tuples that were not originally in conflict may be in theanswer. These

tuples will be trivially in the core, because no geometric transformations over their geometries are applied.
Thus, their geometries will be in the answer, if and only if, they satisfy the topological predicate in the query.

By the property (iii) of SICs of the form (8) (cf. Remark 4), solving conflicts on two different database
predicatesR1 andR2 are independent. Let us assume that{R1(D

′)|D ′Rep(D ,Ψ)} and{R2(D
′)|D ′Rep(D ,

Ψ)} are the different extensions of predicatesR1 andR2 in all possible minimal repairs. Then,Rep(D ,Ψ)
contains database instances that result from the combination of these two sets. Consequently, and using
Lemma 2, for two given̄b1 andb̄2, there exists a repairD ′ ∈ Rep(D ,Ψ) such thatR1(b̄1; g

′
1min

) ∈ D ′ and
R2(b̄2; g

′
2min

) ∈ D ′, whereg′1min
is minimum inGR1,Ψ(b̄1, g1) andg′2min

is minimum inGR2,Ψ(b̄2, g2).
We now prove that if〈ā1, ā2; g1, g2〉 ∈ Con(Q,D ,Ψ), then〈ā1, ā2; g1, g2〉 ∈ Q(D∗). By definition of

consistent answer, if〈ā1, ā2; g1, g2〉 ∈ Con(Q,D ,Ψ), then〈ā1, ā2, g′1min
, g′2min

〉 ∈ Q(D ′). By Corollary 1,
〈ā1, ā2; g1, g2〉 ∈ Q(D∗), with g1 = g′1min

andg2 = g′2min
.

In the other direction, if〈ā1, ā2, g∗1 , g
∗
2〉 ∈ Q(D∗), then〈ā1, ā2, g∗1 , g

∗
2〉 ∈ Con(Q,D ,Ψ). By Corol-

lary 1, g∗1 = g′1min
andg∗2 = g′2min

, andR1(b̄1; g
′
1min

) ∈ D∗ andR2(b̄2; g
′
2min

) ∈ D∗. Then, by mono-
tonicity property of predicateT ∈ {Intersects, IIntersects} in Q, if T (g′1, g

′
2) is true, it is also true for

all R1(b̄1; g
′′
1 ) ∈ D ′′ and inR2(b̄2; g

′′
2 ) ∈ D ′′, with D ′′ ∈ Rep(D ,Ψ) andg′1min

⊆ g′′1 andg′2min
⊆ g′′2 .

Therefore,〈ā1, ā2, g∗1 , g
∗
2〉 ∈ Con(Q,D ,Ψ). ✷
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(a) (b)

(c) (d)

Figure 18: Core vs. consistent answers

The previous theorems tell us that we can obtain consistent answer to basic conjunctive queries by direct
and usual query evaluation on the single instanceD⋆, the core of D . This does not hold for non-basic
conjunctive queries as the following example shows.

Example 15 Consider a database instance with a database predicateR whose geometric attribute values
are shown in Figure 18(a). This database instance is inconsistent with respect to a SIC that specifies that
geometries cannot overlap. Let us now consider a range queryof the form∃ȳ(R(x̄; g) ∧ Touches(g, s)),
wheres is a user defined spatial window, andȳ ⊆ x̄. Figure 18(b) shows the query over the intersection of
all repairs (thecore), obtaining geometriesg∗1 andg∗2 , from where onlyg∗1 touchess. Figures 18(c) and (d)
show the query over each repair, separately. The answer fromthe repair in (c) isg′1, and repair (d) does not
return an answer because none of the geometries in this repair touchess. Their intersection, therefore, is
empty and differs from the answer obtained from thecore. This difference is due to the fact that the query
window s touches geometryg′1 in only one of the repairs. ✷

5.2 Computing the Core

We now give a characterization of the core of a database instance for a set of SICs of the form (8), which is
not explicitly based on the computation of minimal repairs.This equivalent and alternative characterization
of the core allows us to compute the core without having to compute all the minimal repairs.

To simplify the notation, we introduce a logical formula that captures a conflict around a tuple of relation
R ∈ D and a SIC of the form (8) with topological predicateT :

∀x̄1x̄2s1s2(ConflD ,R,T (x̄1, s1, x̄2, s2) ≡ (R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄1 6= x̄2 ∧ T (s1, s2))). (11)

Definition 12 LetD be a database instance andΨ a set of SICs of the form (8). For thecore D⋆ of D with
respect toΨ, it holdsD⋆ = D⋆

IIntersects ∩D⋆
Intersects ∩D⋆

Equal , where:

(a) D⋆
IIntersects = {R(ā;Difference(g, t)) |R(ā; g) ∈ D , t =

⋃

{g′ | for everyR(b̄, g′) ∈ D such thatD |=
ConflD ,R,IIntersects(ā, g, b̄, g

′)}}, where
⋃

is thegeomUnion operator that calculates the geometric
union (spatial aggregation) of geometries.
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(b) D⋆
Intersects = {R(ā;Difference(g, t)) | R(ā; g) ∈ D , t =

⋃

{Buffer(g′, d) | for every R(b̄, g′) ∈
D such thatD |= ConflD ,R,Intersects(ā, g, b̄, g

′)}}.

(c) D⋆
Equal = {R(ā; g) |R(ā, g) ∈ D , it does not exists(R(b̄, g) ∈ D ,D |= ConflD ,R,Equal (ā, g, b̄, g))}.

✷

Notice thatt is the union of all the geometries that are in conflict with a given geometryg. It is obtained by
using the spatial aggregation operatorgeomUnion.

Now, we give the specification of the cores:D⋆
Intersects , D

⋆
IIntersects ,

11 andD⋆
Equal as views in a spatial

SQL language.12 In the following specification, we assume a database instanceD with a relational predicate
R(id ; geometry ) and primary keyid. The following specification shows that our methodologies could
be implemented on top of current spatial database management systems. In particular, the definition of
D⋆

Intersects uses a fixed valued that represents the minimum distance between geometries inthe cartographic
scale of the database instance. The intersection of these views makesD⋆.

Table 4 shows three views that enables to compute the core of the database with a database predicate
R(idl ; geometry).

Example 16 (example 10 cont.) The example considers only the relationLandP with primary keyidl and
the SIC (3) of Example 2. We want to consistently answer the query of Example 11, i.e.,∃name owner (LandP
(idl, name, owner; geometry) ∧ I Intersects(geometry, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

To answer this query, we generate a view of thecore applying the definition in Table 4. That is, we
eliminate from each geometry the union of conflicting regions with respect to each land parcel. In this case,
the conflicting geometries forg2 areg3 andg4; for geometryg3 is g2; and for geometryg4 is g2. This is the
definition of the core in SQL:

CREATE VIEW Core

AS (SELECT l1.idl AS idl, l1.name ASname, l1.owner AS owner,

difference(l1.geometry, geomunion(l2.geometry)) AS geometry

FROM LandP AS l1, LandP AS l2

WHERE l1.idl <> l2.idl AND Intersects(l1.geometry, l2.geometry) AND

NOTTouches(l1.geometry, l2.geometry)

GROUP BY l1.idl, l1.name, l1.owner, l1.geometry

UNION

SELECT l1.idl AS idl, l1.name AS name, l1.owner AS owner, l1.geometry AS geometry

FROM LandP AS l1

WHERE NOT EXISTS(SELECTl2.idl, l2.geometry

FROMLandP AS l2

WHEREl1.idl <> l2.idl AND Intersects(l1.geometry, l2.geometry) AND

NOTTouches(l1.geometry, l2.geometry)))

We now can pose the query to the core to compute the consistentanswer to the original query:

11In current SQL LanguageI Intersects(g1, g2) = Intersects(g1, g2) AND NOTTouches(g1, g2) = Overlaps(g1, g2)
ORW ithin(g1, g2) ORC ontains(g1, g2) ORTouches(g1, g2).

12Optimizations to the SQL statements are possible by using materialized views and avoiding double computation of join opera-
tions.
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D⋆

Intersects

CREATE VIEW Core Intersects

AS (SELECT r1 .id AS id , difference(r1 .geometry ,
Buffer(geomunion(r2 .geometry), d)) AS geometry

FROM R AS r1, R AS r2
WHERE r1 .id <> r2 .id AND

Intersects(r1 .geometry , r2 .geometry)
GROUP BY r1 .id , r1 .geometry

UNION
SELECT r1 .id AS id , r1 .geometry AS geometry

FROM R AS r1
WHERE NOT EXISTS (SELECTr2 .id , r2 .geometry

FROMR AS r2
WHEREr1 .id <> r2 .id AND
Intersects(r1 .geometry, r2.geometry)))

D⋆

IIntersects

CREATE VIEW Core IIntersects

AS (SELECT r1 .id AS id , difference(r1 .geometry ,
geomunion(r2 .geometry)) AS geometry

FROM R AS r1, R AS r2
WHERE r1 .id <> r2 .id AND

Intersects(r1 .geometry , r2 .geometry) AND
NOT Touches(r1 .geometry , r2 .geometry)

GROUP BY r1 .id , r1 .geometry

UNION
SELECT r1 .id AS id , r1 .geometry AS geometry

FROM R AS r1
WHERE NOT EXISTS (SELECTr2 .id , r2 .geometry

FROMR AS r2
WHEREr1 .id <> r2 .id AND
Intersects(r1 .geometry , r2 .geometry) AND
NOT Touches(r1 .geometry , r2 .geometry)))

D⋆

Equal

CREATE VIEW Core Equal

AS (SELECT r1 .id AS id , r1 .geometry AS geometry

FROM R AS r1
WHERE NOT EXISTS (SELECTr2 .id , r2 .geometry

FROMR AS r2
WHEREr1 .id <> r2 .id AND
Equals(r1 .geometry , r2 .geometry)))

Table 4: SQL statements to compute views forD⋆
Intersects , D

⋆
IIntersects , andD⋆

Equal

SELECT idl ,name, owner , geometry (12)

FROM Core

WHERE Intersects(geometry , ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1]))

The answer is shown in Figure 12. This query is a classic selection from theCore view. ✷

This core-based method allows us to compute consistent answers in polynomial (quadratic) time (in data
complexity) in cases where there can be exponentially many repairs. In Example 8, where we have2n−1

minimal repairs, we can apply the queryQ over thecore, and we only have to compute the difference of
a geometry with respect to the union of all other geometries in conflict. This corresponds to a polynomial
time algorithm of order polynomial with respect to the size of the database instance.
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6 Experimental Evaluation

In this section we analyze the results of the experimental evaluation we have done of the core-based CQA
using synthetic and real data sets. The experiment includesa scalability analysis that compares the cost of
CQA with increasing numbers of conflicting tuples and increasing sizes of database instances. We com-
pare these results with respect to the direct evaluation of basic conjunctive queries over the inconsistent
database (i.e., ignoring inconsistencies). The latter reflects the additional cost of computing consistent an-
swers against computing queries that ignore inconsistencies.

6.1 Experimental Setup

We create synthetic databases to control the size of the database instance and the number of conflicting
tuples. We use a database schema consisting of a single predicateR(id; geometry), whereid is the numeric
key andgeometry is a spatial attribute of type polygon. We create three sets of synthetic database instances
by considering SICs of the form (8) with different topological predicates:

Set SIC

Equals ∀ ¬(R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄1 6= x̄2 ∧ Equals(s1 , s2 ))

Intersects ∀ ¬(R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄1 6= x̄2 ∧ Intersects(s1 , s2 ))

IIntersects ∀ ¬(R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄1 6= x̄2 ∧ IIntersects(s1 , s2 ))

For each set we create five consistent instances including 5,000, 10,000, 20,000, 30,000, and 40,000 tuples
of homogeneously distributed spatial objects whose geometries are rectangles (i.e., 5 points per geometric
representation of rectangles). Then, we create inconsistent instances with respect to the corresponding SICs
in each set with 5%, 10%, 20%, 30%, and 40% of tuples in conflict. For database instances with a SIC and
topologicalEquals, we create inconsistencies by duplicating geometries in a percentage of geometries. For
database instances with a SIC and topologicalIIntersects , we create inconsistencies by making geometries
overlap. Finally, for database instances with a SIC and topological Intersects , we create inconsistencies by
making a percentage of geometries to touch.

Due to the spatial distribution of rectangles in the sets, the cores for database instances with SICs using
topological predicates in{Intersects, IIntersects} have the same numbers of points in their geometric
representations than their original instances. For the setof database instances with SICs using topological
predicateEquals, the numbers of points in the geometric representations of their cores are less than in the
original databases, because we eliminate geometries as we restore consistency. Thus, we are not introducing
additional storage costs in our experiments.

To have a better understanding of the computational cost of CQA, we also evaluate the cost of CQA over
real and free available data of administrative boundaries of Chile [1]. Chilean administrative boundaries have
complex shapes with many islands, specially, in the South ofChile (e.g., a region can have 891 islands). For
the real database, we have two predicatesCounties andProvinces . Notice that, at the conceptual label,
Provinces are aggregations ofCounties . In this experiment, however, we have used the source data asit
is, creating separated tables forCounties andProvinces with independent spatial attributes. For this real
database, we consider SIC of the form:∀ ¬(R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄1 6= x̄2 ∧ IIntersects(s1 , s2 )),
with R beingCounties or Provinces .

Table 5 summaries the data sets for the experimental evaluation. The percentage of inconsistency is cal-
culated as the number of tuple in any conflict over the total number of tuples. The geometric representation
size is calculated as the number of points in the boundaries of a region.
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Source Name Tuples Inconsistency (%) Geometric representation size

Synthetic Equals 5,000-40,000 5-40 25,000-200,000
IIntersects 5,000-40,000 5-40 25,000-200,000
Intersects 5,000-40,000 5-40 25,000-200,000

Real Provinces 52 59 35,436
Counties 307 12.7 72,009

Table 5: Data sets of the experimental evaluation

We measure the computational cost in terms of seconds neededto compute the SQL statement on a Quad
Core Xeon X3220 of 2.4 GHz, 1066 MHz, and 4 GB in RAM. We use as spatial DBMS PostgreSQL 8.3.5
with PostGIS 1.3.5.

6.2 Experimental Results

Figure 19 shows the cost of the core computation for the different synthetic database instances. To make
this experimental evaluation easier and faster, we used materialized views so that we computed only once
the core and applied queries on this core’s view. However, weadded the computational cost of the core to
each individual query result to have a better understandingof the cost of applying CQA.

The time cost of computing the core for inconsistent databases with respect to a SIC with a topological
predicateEquals decreases as the number of tuples in conflicts increases, since the core eliminates geome-
tries in conflict and, therefore, these empty geometries arethen ignored in geometric computations. The cost
of computing the core is largely due to the spatial join givenby the topological predicate of a SIC, which
could decrease using more efficient algorithms and spatial indexing structures.

Figure 19: Time cost of the core computation for different SICs, different levels of inconsistency, and
different sizes of databases instances

For the synthetic database instance, Figures 20 and 21 show the cost rate between computing a CQA
with respect to simple range or join queries (with the spatial predicateIntersects) that ignore inconsistencies.

31



Range queries use a random query window created by a rectangle whose side is equivalent to 1% of the total
length in each dimension. Notice that the time cost of computing a range query for a database instance
with 10,000 was approximately 15 ms, which, in average, was 900 times less than computing a join query.
These reference values exhibit linear and quadratic growthfor range and join queries, respectively, as we
consider increasing sizes of database instances. The computational cost of CQA to join queries include the
computation of the core; however, this cost could be amortized if we use a materialized view of the core
for computing more than one join query. In the time cost of CQAfor range queries, we have optimized
the computation by applying the core-computation over a subset of tuples previously selected by the query
range. This optimization is not possible for join queries, since no spatial window can constrain the possible
geometries in the answer.

Figure 20: Relative cost of CQA to range queries

The results indicate that CQA to a range query can cost 100 times the cost of a simple query. This is
primarily due to the join computation of the core. Indeed, when comparing the CQA to a join query, we
only duplicate the relative cost, and in the best case, keep the same cost. However, join queries have a
significant larger computational cost. Notice that the computation cost for a CQA to range query is around
60s in the worst case (40,000 tuples). With exception of cases when the core contains empty geometries, the
percentage of inconsistencies does not affect drasticallythe results.

We also evaluate the scalability of the CQA cost to range queries in function of the size of the query
window (i.e., spatial window). In Figure 22 we show the relative CQA cost to range queries on a synthetic
database instance with 10,000 tuples and range queries whose random spatial windows varied from 1% to
5% of the size in each dimension. The results indicate that the relative cost increases logarithmical as we
increase the size of the query window. Also, only for database instances with a SIC and topological predicate
Equals , the relative cost suffers some variation across differentpercentages of inconsistencies, primarily,
due to the elimination of geometries in the database.

Finally, we applied the core-based computation of CQA to thereal database instances in Table 5. Table 6
summaries the results obtained with these data, which were in agreement with the results obtained with the
synthetic database instances. In this table,∆Points represents the relative difference in the size of the geo-
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Figure 21: Relative cost of CQA to join queries

Figure 22: Relative cost of CQA to range queries and different sizes of the query window (using a database
instance with 10,000 tuples )

metric representation between the core and the original database. Notice that computing the core increased
the geometric representation ofProvinces up to 5.0%, which is bounded by the shape of geometries in
conflict (i.e., the size of the original geometric representation). In the case ofCounties, however, the size
of the geometric representation of the core decreases down to −0.03%. Since the geometry of provinces
should be the geometric aggregation of counties, we could expect to have a relationship between∆Points

for Provinces andCounties . However, the source data set uses independent geometries for Provinces and
Counties and no comparison can be made.
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Range Join
Data ∆ Points Core Simple CQA Simple CQA

Provinces +5.0% 17.7 0.04 0.25 29.8 63.4
Counties -0.03%0 18.1 0.1 2.1 40.6 55.7

Table 6: CQA cost with real data (costs of core and queries in seconds)

7 Conclusions

We have formalized a repair semantics and consistency queryanswers for spatial databases with respect
to SICs. The repair semantics is used as an auxiliary conceptfor handling inconsistency tolerance and
computing consistent answers to spatial queries. It is based on updates that shrink geometries of objects,
even at the point of deleting geometries for some exceptional cases, as for predicateDisjoint. Geometries
are virtually updated applying admissible geometric operators, which are available in most spatial DBMSs.

By restricting ourselves to the application of the admissible transformations, we have a finite number of
possibilities for making a pair of geometries consistent with respect to a SIC. However, there may still be
exponentially many repairs for a given instance and set of SICs. With the purpose of avoiding to compute
and query all repairs, we have identified cases of SICs and conjunctive (range and join) queries where the
consistent answers can be obtained by posing a standard query to a single view of the original instance. This
view is equivalent to the intersection of all possible minimal repairs, what we called thecore of a database
instance, which for a subset of SICs can be computed in polynomial time without determining each repair.

An experimental evaluation of the core-based computation of CQA reveals that answering range queries
has a cost that varies drastically in function of the topological predicates in SICs and the number of tuples
in the database instance, reaching up to 100 times the cost ofa simple range query. This is mainly due to
the spatial join involved in computing the core. For join queries, instead, the cost of CQA is the double
of a simple join query. These results do not use optimizations with spatial indexing, which has been left
for future work. Even more, they assume that we have to compute the core for each query, which could be
optimized by using materialized views.

This work leaves many problems open. Most prominently, computability and complexity issues have
to be explored. For example, some interesting decision problems are deciding if non trivial repairs (i.e.,
not obtained by cancellation of geometries) exist for an instance and a set of SICs, or deciding whether or
not a particular instance is a repair of an inconsistent database instance. The complexity of deciding if a
spatio-relational tuple is a consistent answer is also open. As in the relational case, we expect to find hard
cases for all these problems. For them, it would be interesting to obtain lower complexity approximation
algorithms.

We have considered only regions to represent spatial objects. A natural extension of this work would
be to define a repair semantics for other spatial abstractions, such as polylines, points, networks, and so
on. We would also like to explore not only denial SICs, but also other classes of semantic ICs, and other
types of repair semantics that include solving conflicts with respect to a topological predicateDisjoint.
This includes also the possibility of considering combinations of spatial with relational constraints, e.g.
functional dependencies and referential ICs.
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