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Abstract

One aspect of the vision of dataspaces has been articulated as providing various benefits of classical data integration
with reduced up-front costs. In this paper, we present techniques that aim to support schema mapping specification
through interaction with end users in a pay-as-you-go fashion. In particular, we show how schema mappings, that are
obtained automatically using existing matching and mapping generation techniques, can be annotated with metrics
estimating their fitness to user requirements using feedback on query results obtained from end users.

Using the annotations computed on the basis of user feedback, and given user requirements in terms of precision
and recall, we present a method for selecting the set of mappings that produce results meeting the stated requirements.
In doing so, we cast mapping selection as an optimization problem. Feedback may reveal that the quality of schema
mappings is poor. We show how mapping annotations can be used to support the derivation of better quality mappings
from existing mappings through refinement. An evolutionary algorithm is used to efficiently and effectively explore
the large space of mappings that can be obtained through refinement.

User feedback can also be used to annotate the results of the queries that the user poses against an integration
schema. We show how estimates for precision and recall can be computed for such queries. We also investigate the
problem of propagating feedback about the results of (integration) queries down to the mappings used to populate the
base relations in the integration schema.
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1. Introduction

The problem of data integration has been investigated
for the past two decades with the aim of providing end
users with integrated access to data sets that reside in
multiple sources and are stored using heterogeneous rep-
resentations [35]. The recent increase in the amount of
structured data available on the Internet, due in signifi-
cant measure to the Deep Web [36, 29, 37], has created new
opportunities for using data integration technologies. Yet,
in spite of the significant effort devoted to data integration,
there seems to have been a limited impact in practice. By
and large, data integration solutions are manually-coded
and tightly bound to specific applications. The limited
adoption of data integration technology is partly due to
its cost-ineffectiveness [27]. In particular, the specification
of schema mappings (by means of which, data structured
under the source schemas is transformed into a form that
is compatible with the integration schema against which
user queries are issued) has proved to be both time and
resource consuming, and has been recognized as a critical
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bottleneck to the large scale deployment of data integra-
tion systems [27, 38, 42].

To overcome the above issue, there have been attempts
to derive schema mappings from information obtained us-
ing schema matching techniques [46, 16, 40, 15]. In their
simplest form, matchings are binary relationships, each of
which connects an element of a schema, e.g., a relational
table in a source schema, to an element that is (predicted
to be) semantically equivalent in another schema, e.g., a
relational table in the integration schema. Schema match-
ing techniques can be used as a basis for the generation
of complex mappings that specify, for example, how the
instances of one element of an integration schema can be
computed by using the instances of two or more elements
in source schemas [44, 56].

The mappings that are output by the above methods
are based on heuristics. Therefore, many of them may
not meet end user needs. Consider, for example, the
case of Clio [44]. To specify complex mappings that in-
volve two or more relations in the source schemas, these
relations are combined using, for example, a join pred-
icate that capitalizes on referential integrity constraints
between the relations in question. While intuitive and
useful, this approach does not guarantee that the map-
ping obtained meets the requirements of end users. The
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fact that the mapping that meets user requirements may
not be generated is not due to faulty behaviour of the al-
gorithm implemented by the Clio tool, but because the
information provided by the matches used as inputs does
not allow the correct mapping to be identified. This raises
the question as to how the generated schema mappings
can be verified.

A handful of researchers have investigated the prob-
lem of schema mapping verification [9, 13]. For example,
the Spicy system provides functionalities for checking a
set of mappings to choose the ones that represent bet-
ter transformations from a source schema into a target
schema [9]. To do this, instance-level data obtained us-
ing the mappings under verification are compared with
instance-level data of the target schema, which are as-
sumed to be available. The Spider system is another ex-
ample of a tool for mapping verification [13, 4]. Specifi-
cally, the tool assists users in debugging schema mapping
specifications by computing routes that describe the rela-
tionship between source and target data.

Using the above tools, the verification of schema map-
pings takes place before the data integration system is set-
up, which may incur a considerable up-front cost [23, 27].
In this paper, we explore a different approach in which
alternative schema mappings co-exist, and are validated
against user requirements in a pay-as-you-go fashion. In-
stead of verifying schema mappings before they are used,
we assume that the data integration system is setup using
as input schema mappings that are derived using map-
ping generation techniques. These mappings are then
incrementally annotated with estimates of precision and
recall [53] derived on the basis of feedback from end users.
Our approach to mapping annotation is consistent with
the dataspaces aim of providing the benefits of classical
data integration while reducing up-front costs [27]. We
do not expect users to be able to (directly) confirm the
accuracy of a given mapping nor do we require them to
give feedback based on the mapping specification [13].
Instead, the feedback expected from users provides in-
formation about the usefulness of the results obtained by
evaluating queries posed using the generated mappings.
Specifically, given a query that is issued by the user against
the integration schema, a.k.a. global schema, it is refor-
mulated in terms of the sources using the candidate map-
pings that express the elements of the integration schema
in terms of the sources. Note that the reformulation phase
may yield multiple queries, since the integration elements
are likely to be associated with more than one candidate
mapping. Reformulated queries are then evaluated by
querying the sources. The user can then provide feed-
back by commenting on the tuples returned as a result of
evaluating reformulated queries. Specifically, a feedback
instance provided by the user specifies if a given tuple is
expected or unexpected1.

1As we shall see later in Section 2, a feedback instance can also be

Given the feedback instances provided by the user, we
then annotate the mappings. Specifically, we estimate the
precision and recall of the mappings, given the results
they return, based on the feedback supplied by the user.
For example, consider a mapping m that is a candidate for
populating a relation r in the integration schema. Based
on user feedback that picks tuples that belong to r and
tuples that do not, we estimate the precision and recall of
the results retrieved using m. They are no more than es-
timates because we do not assume the user has complete
knowledge of the correct extent to be returned and, there-
fore, do not ask the user to judge every tuple returned.
In this paper, we report on an evaluation of the quality of
the resulting mapping annotations for different quantities
of user feedback. The feedback specified by users may be
inconsistent with their expectations. For example, a user
may mistakenly tag an expected tuple as a false positive.
We investigate the impact inconsistent feedback may have
on the quality of the computed mapping annotations.

Individual elements of the integration schema will fre-
quently be associated with many candidate mappings. We
consider a setting in which the candidate mappings are
generated based on a large number of matches obtained
using multiple matching mechanisms. Therefore, evalu-
ating a user query using all candidate mappings incurs a
risk of dramatically increasing the query processing time,
and of obtaining a large collection of results, the majority
of which are unlikely to meet user needs. We present a
method that, given user feedback and user requirements
in terms of precision and recall, selects the set of mappings
that are likely to meet the stated requirements. Specifi-
cally, this method casts the problem of mapping selection
as a constrained optimization problem, i.e., that of identi-
fying the subset of the candidate mappings that maximize
the recall (resp. precision) given a minimum threshold for
the precision (resp. recall).

Mapping annotations may reveal that the quality of
schema mappings is poor, i.e., that they have low precision
and recall. We address this issue by refining schema map-
pings with a view to constructing better-quality mappings.
The space of mappings that can be obtained through re-
finement is potentially very large. To address this issue,
we present an evolutionary algorithm for exploring this
space. Our approach to mapping refinement combines
and mutates the candidate mappings to construct new
mappings with better precision and recall.

As well as annotating, selecting and refining schema
mappings, feedback can be used for annotating queries
that a user poses against the integration schema. We show
how estimates for precision and recall can be computed
for such queries. Finally, we investigate the problem of
propagating feedback about the results of an (integration)
query down to the mappings used to populate the base

used to specify that a given attribute value, or combination of attribute
values, is expected or unexpected. That said, in this article, we mainly
consider tuple-based feedback instances that comment on given tuples.
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relations involved in the query.
In summary, the contributions of this paper are:

1. An approach for incrementally annotating schema
mappings based on user feedback (Section 3). This is
to our knowledge the first study that investigates the
use of feedback supplied by end users to annotate
schema mappings with estimates of their precision
and recall. We empirically assess the quality of the
annotation computed for mapping annotation based
on user feedback.

2. An analysis of the impact that inconsistent feedback
may have on the quality of the annotations com-
puted for schema mappings (Section 3.2). To do so,
we empirically examine the error in mapping anno-
tations due to inconsistent feedback.

3. A method for schema mapping selection (Section 4).
Given a set of feedback instances supplied by the
user, we present a method for selecting mappings
whose results meet user requirements in terms of
precision and recall. We also report the results of
experiments that examine the effectiveness of the
method used for mapping selection.

4. A method for refining schema mappings (Section 5).
The refinement method is implemented by an evo-
lutionary algorithm for mapping refinement. Using
a set of mutation and cross-over operators, we show
how user feedback can inform the construction of
better quality mappings from an initial set of can-
didate ones. We also show, empirically, that better
quality mappings can be constructed out of an ini-
tial set of candidate mappings using this refinement
algorithm.

5. A study of the problem of integration query an-
notation (Section 6). We show how the feedback
acquired for annotating schema mappings can be
used to compute precision and recall estimates for
queries posed over the integration schema, and we
empirically examine the quality of these estimates.
We also study the problem of propagating feedback
about the results of (integration) queries down to
the mappings used to populate the base relations in
the integration schema.

Additionally, we present in Section 2 a model for cap-
turing user feedback. We analyze and compare existing
works to ours in Section 7 and conclude the paper in Sec-
tion 8.

This paper is an extended version of a previous confer-
ence paper [7]. The material in Section 3.2, which investi-
gates the annotation of schema mappings in the presence
of inconsistent feedback is new, as is the material in Section
6, which investigates the problem of annotating integra-
tion queries and that of propagating user feedback. We
also provide substantially increased coverage of related
work in Section 7.

2. Candidate Mappings and User Feedback

We begin by introducing the notion of candidate map-
pings and by presenting the model for defining user feed-
back.

A data integration system is essentially composed of
four elements, namely the schemas of the sources, the data
sets to be integrated, an integration schema over which
users pose queries, and schema mappings that specify
how data structured under the schemas of the sources can
be transformed and combined into data structured accord-
ing to the integration schema [21]. For the purposes of this
paper, we consider global-as-view mappings [11], which re-
late one element in the integration schema to a query over
the source schemas. We also adopt the relational model
for expressing integration and source schemas. We, there-
fore, define a schema mapping m by the pair m = 〈ri, qs〉,
where ri is a relation in the integration schema, and qs

is a relational query over the source schemas. We use
m.integration to refer to ri, and m.source to refer to qs.

To respond to the need for rapid data integration, exist-
ing schema matching techniques can be used to produce
the input for algorithms capable of automatically generat-
ing the mappings between the integration schema and the
source schemas (e.g., [46, 15, 44, 40]). Multiple matching
mechanisms can be used, each of which could give rise
to multiple mapping candidates for populating the ele-
ments of the integration schema. To answer a user query
uq, issued against the integration schema, each relation ri

involved in uq needs to be reformulated in terms of the
source relations using a mapping candidate. This raises
the question as to which mappings among the candidate
mappings of ri to use for answering a user query.

Candidate mappings may be labeled by scores that are
derived from the confidence of the matches used as input
for the generation of mappings (e.g., [18]). This suggests
that the candidate mappings with the highest scores can
be used for reformulating users’ queries. However, since
the confidences of matches, and therefore the scores of
mappings, are computed based on heuristics, there is no
guarantee that the mapping with the highest score reflects
the true needs of end users [9, 24]. Moreover, in a data
integration setting, (a sample of) the content of the inte-
gration schema is rarely available, and therefore instance-
based matchers may not be an option to match the source
schemas to the integration schema. Thus, the likelihood
that the scores associated with the mappings are inaccu-
rate can be higher than in situations in which the contents
of the schemas to be matched are available, e.g., in data
exchange [21].

In this paper, we use a different source of information
for assessing candidate mappings, namely user feedback.
In doing so, the user is not provided with a set of (pos-
sibly complex) mapping expressions; rather, s/he is given
a set of answers to a query issued against the integration
schema that was answered using one or more candidate
mappings. To further illustrate the kinds of feedback that
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can be supplied, assume that the user issued a query to re-
trieve the tuples of the relation ri in the integration schema,
that was evaluated using one or more mappings that are
candidates for populating ri, and that the query results
were displayed to the user. The user then examines and
comments on the results displayed using the following
kinds of feedback:

1. That a given tuple was expected in the answer.
2. That a certain tuple was not expected in the answer2.
3. That an expected tuple was not retrieved.

The kinds of feedback we have just described are tuple-
based in the sense that they comment on the correctness
of the membership relation between tuples and the result
set returned by a set of mappings. A finer grained form
of feedback can also be supported. In particular, the user
can indicate that a given attribute of ri cannot have a given
value. As in information retrieval [47], we assume that
users provide feedback on a voluntary basis: they are not
required to comment on every single result they are given,
rather, they supply feedback on the results of their choice.

To cater for the types of feedback introduced above,
we define a feedback instance u f provided by the user for
a tuple:

u f = 〈AttV, r, exists, provenance〉

where r is a relation in the integration schema, AttV is a
set of attribute-value pairs 〈atti, vi〉, 1 ≤ i ≤ n, such that
att1, . . . , attn are attributes of r, and v1, . . . , vn are their re-
spective values. exists is a boolean specifying whether the
attribute value pairs in AttV conform to the user’s expec-
tations. To specify whether exists is true or not, we assume
the existence of a function extent(r), that returns the set of
tuples that belong to r in the user’s conceptualization of
the world. Note that extent(r) is not available, rather we ob-
tain incomplete information about the tuples that belong
to extent(r) through user feedback. exists is true iff there is
a tuple in extent(r) in which the attributes att1, . . . , attn take
the values v1, . . . , vn, respectively. That is:

|t ∈ extent(r) s.t. ∀ i ∈ {1, . . . ,n}, t[atti] = vi| ≥ 1

where |s| denotes the magnitude of the set s, and t[att] de-
notes the value of the attribute att in the tuple t. provenance
specifies the origin of the attribute value pairs on which
feedback was given. These could have been provided
by the user, or obtained from the sources using one or
multiple mappings. Therefore:

provenance ∈ {‘userSpeci f ied’,Map}

provenance = ‘userSpecified’ means that the attribute value
pairs AttV are provided by the user. AttV may also be

2This form of feedback is called negative relevance feedback in the
information retrieval literature [47].

Figure 1: Example of query results.

retrieved from the sources in which case provenance = Map,
where Map is the set of mappings that can be used to
retrieve AttV from the sources.

As an example, consider a life scientist who is inter-
ested in studying the proteome of the Fruit Fly. Given that
data describing this proteome is stored across multiple
bioinformatics sources (e.g., Uniprot3, IPI4 and Ensembl5),
the scientist needs to access and combine data that belong
to these sources. In doing so, the scientist prefers to use a
given (integration) schema: this schema can be manually
designed or automatically derived from a set of queries
that are of interest to the scientist. Rather than attempt-
ing to manually specify the schema mappings between
the source schemas and the integration schema, the scien-
tist opts for a low upfront-cost option whereby candidate
schema mappings are automatically derived. Once the
mappings have been derived, the scientist issues a query
to find the available proteins of the Fruit Fly. This query is
evaluated using the mapping candidates for populating
the Protein relation. Assume that the evaluation results
are displayed as shown in Figure 1. The mappings column
specifies the candidate mappings that were used for re-
trieving a given tuple. Note that, in general, this column
would not be visible to the user; it is displayed in Figure 1
for ease of exposition only.

The user examines the results displayed and supplies
feedback specifying whether they meet the requirements.
For example, the feedback instance u f1 given below spec-
ifies that the tuple t1, which was retrieved using the map-
pings m1 and m4 is a true positive, i.e., meets the user’s
expectations.

u f1 = 〈AttV1,Protein, true, {m1,m4}〉

AttV1 = {〈accession, ‘P17110’〉, 〈name, ‘Chorion protein’〉,
〈gene, ‘cp36’〉, 〈length, ‘320’〉}

The user can also provide feedback specifying false pos-
itives, i.e., results that do not meet the requirements. For
example, the feedback instance u f2 below specifies that
the accession of a protein cannot have the value X51342;

3http://www.uniprot.org
4http://www.ebi.ac.uk/IPI
5http://www.ensembl.org
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indeed, this is a DNA accession, not a protein one. Sim-
ilarly, the feedback instance u f3 below specifies that the
protein named HP70 does not belong to the CTXD gene.

u f2 = 〈{〈accession, ‘X51342’},Protein, f alse, {m1,m2}〉

u f3 = 〈{〈name, ‘HP70’〉, 〈gene, ‘CTXD’〉},Protein, f alse,
{m2,m3}〉

In addition to true positives and false positives, the
user can also specify false negatives, i.e., results that are
expected by the user and are not returned. The tuple t5 in
Figure 1 is, for example, a false negative as specified by
the following feedback instance.

u f4 = 〈AttV4,Protein, true, ‘userSpeci f ied’〉
AttV4 = {〈accession, ‘Q06589’〉, 〈name, ‘Cecropin − 1’〉,

〈gene, ‘CEC1’〉, 〈length, ‘63’〉}

The following process can be used to specify feedback
of the form illustrated above. The user begins by specify-
ing if a given tuple is expected. If the tuple is annotated
as unexpected, e.g., tuples t2 and t2 in the above exam-
ple, then the user is invited to specify why the tuple is
unexpected. To do so, the user specifies illegal attribute
values, if any, i.e., values that do not belong to the domain
of the attributes in question according to the user expec-
tations. For example, the user can tag the value X51342 of
the accession attribute of tuple t2 as illegal. The user can also
specify illegal combinations of legal attribute values. For
example, the user can tag the combination of attributes
values HP70 and CTXD in the tuple t4, as illegal.

In what follows, given a mapping candidate m for pop-
ulating a relation r in the integration schema, and given a
set of feedback instances UF supplied by the user, we use
tp(m,UF), f p(m,UF), f n(m,UF), respectively, to denote the
true positives, false positives and false negatives tuples of
m given the feedback instances in UF.

3. Annotating Schema Mappings

We now show how candidate mappings can be labeled
with annotations specifying their fitness to user expecta-
tions using feedback instances of the form described in
the previous section.

We can annotate a schema mapping as either correct or
incorrect using a simple annotation scheme: a mapping is
correct iff it meets the needs of users, i.e., its source query
returns all the expected answers, and does not return any
unexpected ones. However, since the set of candidate
mappings derived using matching algorithms is likely to
be incomplete in the sense that it may not contain a map-
ping that meets user needs, there is a risk of annotating
as incorrect all the candidate mappings for populating a
given relation. We therefore opt for a less stringent an-
notation scheme that tags schema mappings with metrics
specifying the degree to which they meet user require-
ments.

3.1. Cardinal Annotations
The quality of candidate mappings for populating a

relation r can be quantified using precision and recall [53].
Of course, we cannot compute these metrics since they
presuppose access to the extent of r, i.e., the set of tu-
ples that belong to r in the users’ conceptualization of the
world. Notice, however, that the feedback instances sup-
plied by users provide partial information about the extent
of r. Specifically, they allow the identification of (some of
the) true positives, false positives and false negatives of
a given candidate mapping. Using this information, we
can compute precision and recall relative to (the extent of
r identified through) the feedback supplied by the user.

We adapt the notions of precision and recall [53] to
measure the quality of a mapping. We define the precision
of a mapping m relative to the feedback instances in UF
as the ratio of the number of true positives of m given UF
to the sum of true positives and false positives of m given
the feedback instances in UF. That is:

Precision(m,UF) =
|tp(m,UF)|

|tp(m,UF)| + | f p(m,UF)|

Similarly, the recall of a mapping m relative to the feed-
back instances in UF is defined as the ratio of the number
of true positives of m given UF to the sum of true positives
and false negatives of m given the feedback instances in
UF. That is:

Recall(m,UF) =
|tp(m,UF)|

|tp(m,UF)| + | f n(m,UF)|

We also compute an F-measure [53] relative to user
feedback that combines both precision and recall, and
use it for ranking candidate mappings. The relative F-
measure of a mapping m w.r.t. the feedback instances in
UF can be defined as:

F(m,UF) =
(1 + β2) × Precision(m,UF) × Recall(m,UF)
β2 × Precision(m,UF) + Recall(m,UF)

where β is a parameter that controls the balance between
precision and recall. For example, if β is 1 then precision
and recall have the same weight.

Notice that the precision and recall are computed
based on tuple-based feedback, that is feedback speci-
fying true positive, false positive and false negative tu-
ples. Our feedback model, however, provides users with
a means for specifying feedback at a finer granularity, if
they wish. In particular, they can specify that a given
value of a relation attribute, or a combination of values
of a subset of attributes, is expected or unexpected. Con-
sider, for example, the Protein relation, the user provided
feedback specifying that the value C51342 of the attribute
accession is unexpected. Attribute-based feedback can be
used to infer tuple-based feedback. For example, from the
above feedback instance, we can infer that all the tuples of
the protein relation in which the attribute accession takes
the value C51342, are unexpected. Note, however, that
when the attribute-based feedback instance specifies that
a given attribute value is expected, we cannot infer any
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Table 1: Information regarding the mapping annotation experiment.

Integration relation FavoriteCity MyReading
Datasource Mondial Amalgam
# of binary matches 15 37
# of mappings generated 12 15
by the IBM data architect
# of mappings obtained 50 100
by combining initial mappings
# of source relations 12 17
involved in the mappings
Total # of tuples retrieved 2197 2138
by the candidate mappings
# of “ground truth” tuples 100 200
% of expected tuples 4.55% 9.36%
% of unexpected tuples 95.54% 90.64%

feedback at the tuple level. For example, if the user pro-
vided a feedback specifying that the value P17110 of the
accession attribute is expected, then we cannot infer any
feedback at the tuple level. This is because expected and
unexpected tuples may have that attribute value.

Given that relative precision and recall are computed
based on partial knowledge about the user’s conceptual-
ization of the integration relation, the following question
arises:

How much user feedback is required to approximate the real
precision and recall, i.e., the precision and recall computed based
on the true extent of the integration relation?

To investigate the above question, empirically, we used
two datasets: the Mondial geographical database6 and
the Amalgam data integration benchmark7. We chose the
Mondial and Amalgam datasets for the following reasons.
The schema and contents of the two datasets are straight-
forward to understand: Mondial contains geographical
information, and Amalgam contains bibliographical in-
formation. This helps when examining the quality of
schema mappings. The two datasets are not synthetic,
rather they are real. In particular, Amalgam is com-
posed of 4 databases that were developed independently
to cater for bibliographical information [45]. Finally, the
two datasets, Mondial and Amalgam, are widely used
in schema mappings literature for testing and validation
purposes, e.g., [3],[9].

We created an integration relation
FavoriteCity(name, country, province) and specified binary
matches between the attributes of this relation and the
attributes of the source relations in the Mondial database.
For example, the match < FavoriteCity.name,Located.city >
specifies that the attribute name of the FavoriteCity relation
and the attribute city of the Located relation are semantically
the same. Using different subsets of binary matches of

6http://www.dbis.informatik.uni-goettingen.de/Mondial
7http://dblab.cs.toronto.edu/ miller/amalgam

this form, we then generated multiple candidate schema
mappings to populate the FavoriteCity relation using IBM
Infosphere Data Architect8. We also created an integration
relation MyReading(title, journal, volume,number), specified
binary matches between the attributes of this relation and
the attributes of the source relations of Amalgam, and
generate candidate mappings to populate the MyReading
relation using IBM Infosphere Data Architect. For the
purposes of our experiment, we needed to increase
the number of candidate mappings for FavoriteCity and
MyReading. To do this, we randomly combined the map-
pings obtained using the IBM Infosphere Data Architect
by using the union and intersection relational operators.
As an example, we illustrate below the specification of
three mappings for populating the FavoriteCity relation:
the mappings m1 and m2 were generated by the IBM
data architect, and the mapping m12 was generated by
unioning the source queries of the mappings m1 and m2.
m1 = < FavoriteCity,Πname,countryprovinceMondial.City >
m2 = < FavoriteCity,Πcity,country,provinceMondial.Located >
m12 = < FavoriteCity,Πname,countryprovinceMondial.City

∪ Πcity,country,provinceMondial.Located >

The reader may notice that creating mappings by com-
bining base mappings gives rise to correlated mappings.
However, candidate mappings are often correlated in
practice [8]. This is particularly the case when the map-
pings are generated based on binary matches, that do
not necessarily specify how the relations in the sources
should be combined to populate a relation in the integra-
tion schema, and therefore give rise to correlated candi-
date mappings. The reader may also wonder if the base
mappings are privileged over combined mappings. This
is not the case. As we will show later on in Section 5, it
is possible to create better quality mappings by mutating
and combining base mappings.
We then specified the ground truth extents for FavoriteCity
and MyReading by randomly selecting a subset of the tu-
ples returned by their respective candidate mappings.
These extents serve two purposes. They allow the au-
tomatic generation of synthetic user feedback as well as
computation of the “ground truth” against which the
annotations computed based on user feedback are com-
pared. Table 1 specifies the number of binary matches
we specified, the number of mappings generated using
the IBM Infosphere Data Architect, the number of source
relations that participate in the mappings, the number of
tuples retrieved by the candidate mappings, the number
of “ground truth” tuples, and the percentage of expected
and unexpected tuples. Notice that the percentage of ex-
pected tuples is low compared with the percentage of
unexpected tuples. This is because, in practice, the ma-
jority of the tuples obtained based on mappings that are
obtained automatically are likely to be unexpected.

8http://www-01.ibm.com/software/data/studio/data-architect
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Figure 2: Average error in precision.

To annotate the mappings, we applied the following
two-step procedure iteratively.

1. Generate feedback instances.
2. Compute the relative precision and recall of the can-

didate mappings given cumulative feedback.

At every iteration, we generated a set of feedback in-
stances. For the purposed of this experiment we only
consider tuple-based feedback. Specifically, we randomly
generated a stratified sample of 10 annotated tuples out
of the set of tuples returned by the candidate mappings.
Stratified sampling ensures that the members of a popu-
lation are first grouped into relatively homogeneous sub-
populations before sampling. Stratified sampling is per-
formed as follows. Given the ground truth which par-
titions the tuples retrieved by the candidate mappings
into expected and unexpected, a sample of 10 tuples is
randomly selected from that set of tuples retrieved by
the candidate mappings, and for which feedback has not
been provided yet, such that the ratio of expected (resp.
unexpected tuples) in the sample is the same as the ratio
of expected (resp. unexpected) tuples within the ground
truth. This sampling method improves the representa-
tiveness of the feedback instances generated. It ensures
that the number of expected and unexpected tuples in
the sample is proportional to the number of expected and
unexpected tuples in the result set obtained using all can-
didate mappings.

To measure the quality of the relative precision and
recall, we repeated the annotation experiment described
above multiple times, specifically 25 times9, and com-
puted the average error in precision and recall at every
feedback iteration. The error in precision (resp. recall)
is the difference between the relative precision (resp. re-
call) of a candidate mapping computed using supplied
feedback and the “ground truth” precision (resp. recall).

Figure 2 illustrates the average error in precision, and
Figure 3 illustrates the average error in recall. Note that

9We chose to run the experiment for 25 times because it has been
shown statistically to yield good estimations [54].

the scale of the vertical axis is different in the two figures.
The two figures show that when the user provided 10
feedback instances the error in both precision and recall
are relatively high. For example, the error in precision is
0.23 and the error in recall is 0.22 for the mappings that
are candidate to populate the FavoriteCity relation. The er-
ror drops significantly in the first few feedback iterations,
specifically from 10 to 80 feedback instances. For exam-
ple, the error in precision for the mapping candidates of
the FavoriteCity relation drops from 0.23 to 0.08, and that
of recall drops from 0.22 to 0.11. The error in precision for
the mapping candidates of the MyReading relation drops
from 0.14 to 0.07, and that of recall drops from 0.28 to
0.11. Note that 80 feedback instances is a relatively small
number if compared with the number of tuples retrieved
by the candidate mappings. It represents 3.64% of the to-
tal number of tuples retrieved by the candidate mappings
of FavoriteCity, and 3.74% of the total number of tuples
retrieved by the candidate mappings of MyReading. 80
feedback instances is also small if we consider the num-
ber of candidate mappings subject to annotation: 50 in the
case of FavoriteCity and 100 in the case of MyReading.

Beyond 80 feedback instances, the error in precision
and the error in recall decreases steadily as more feed-
back instances are provided, but this improvement in-
curs diminishing returns. For example, after collecting
600 feedback instances, the error in precision for the map-
ping candidates of FavoriteCity decreases from 0.08 to 0.05,
and the error in precision for the mapping candidates of
MyReading drops from 0.07 to 0.04. The same observation
applies to the error in recall. 600 feedback instances is
an important number as it represents 27.3% of the total
number of tuples retrieved by the candidate mappings
of FavoriteCity, and 28.1% of the total number of tuples
retrieved by the candidate mappings of MyReading. This
slow improvement can be explained by the fact that the
smaller the error, the larger the number of feedback in-
stances required to reduce it.

The above experiment shows that the quality of map-
ping annotations is incrementally improved as the user
provides more feedback instances thereby reflecting the
pay-as-you-go philosophy behind dataspaces.

As well as stratified sampling, we also ran the above
experiment using a random sampling strategy, in which
the tuples on which feedback was given, were randomly
selected. The error in the precision and recall estimates
computed for schema mapping in this case were similar to
those obtained using the stratified sampling strategy. Us-
ing the above sampling strategies, the user provides feed-
back specifying both expected and unexpected tuples. In
practice, however, it is possible that the user focuses on
one particular class of feedback, i.e., expected tuples or
unexpected. This raises the question as to what impact
on annotation estimates this may have. Consider, for ex-
ample, that the user provides feedback specifying only
expected tuples. Using this kind of feedback has a nega-
tive impact on the precision estimates. Indeed, given the
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Figure 3: Average error in recall.

definition of precision, the precision of a given mapping
takes the value 1, if the user identified expected tuples
that are retrieved by that mapping, or undefined, other-
wise. Consider now the case in which the user provides
feedback specifying only unexpected results. Given the
definition of recall, recall estimates cannot be computed
for schema mappings. Moreover, the precision takes the
value 0, if the mapping retrieves at least one false positive
that is identified by the user, or is undefined, otherwise.
The above analysis suggests that it is important for the
user to provide feedback specifying both expected and
unexpected results for the annotation estimates computed
for schema mappings to be informative.

3.2. Inconsistent Feedback and its Impact on Mapping Anno-
tations

We have, so far, assumed that the feedback instances
supplied by users are consistent with their expectations.
In practice, this assumption may not hold. Users may mis-
takenly provide feedback that contradicts their needs, e.g.,
a scientist who is looking for Fruit Fly proteins may tag a
tuple representing a protein that belongs to that species as
a false positive. Also, users may in error provide incorrect
feedback, e.g., when they have partial knowledge of the
domain of expected results.

It is worth mentioning that inconsistencies between
feedback and user expectations may also be caused by
changes in user expectations. For example, the user may
decide to study the chicken proteome instead of the Fruit
Fly proteome. This shift in expectations may cause incon-
sistencies between the feedback instances collected before
the change and those collected subsequently. In this pa-
per we do not consider inconsistencies stemming from
changes in requirements, and focus on those caused by
user mistakes.

Inconsistent feedback may have an impact on map-
ping annotations. In particular, we can anticipate that
the error in precision and recall, in the presence of in-
consistent feedback instances, will be larger than would
otherwise be the case. In this section, we aim to assess
the impact that inconsistent feedback instances have on

mapping annotations. In particular, we aim to identify
the amount/percentage of inconsistent feedback instances
that can be tolerated before the annotations computed for
mappings become uninformative, i.e., exhibit an unac-
ceptable error level.

We investigated the above problem empirically by run-
ning an experiment for annotating the candidate map-
pings for populating FavoriteCity. In doing so, we intro-
duced incorrect feedback and measured the error in pre-
cision and recall computed based on feedback with the
ground truth annotation. Specifically, we ran the follow-
ing procedure iteratively.

1. Generate a sample of feedback instances. We ran-
domly generated 10 feedback instances by applying
a stratified sampling to the set of tuples returned by
the candidate mappings.

2. Introduce inconsistent feedback into the generated
sample.

3. Compute the relative precision and recall of the can-
didate mappings given cumulative feedback.

Inconsistent feedback instances are introduced by al-
tering a specific percentage p of the feedback instances
generated in (1). To do so, we randomly select a subset S
of the feedback generated. The size of S is specified using
the percentage p. We then alter the feedback instances
in S. If a feedback instance specifies that a tuple t is an
expected result (resp. unexpected result), we substitute it
with a feedback instance specifying that t is an unexpected
result (resp. expected result).

To measure the effect that inconsistent feedback has
on mapping annotations, we used as a metric the differ-
ence between the error observed in precision (resp. recall)
when inconsistencies are present and the error in preci-
sion (resp. recall) recorded when all feedback instances
are consistent with the expectations. We will refer to that
difference in the rest of this section using the term “error
due to inconsistent feedback”.

We repeated the annotation experiment described
above 25 times, and computed for each percentage value
of inconsistent feedback, the average error in precision
due to inconsistent feedback, shown in Figure 4, and the
average error in recall due to inconsistent feedback, shown
in Figure 5. Note that the scale of the vertical axis is dif-
ferent in the two figures.

As expected, Figures 4 and 5 show that the error in
annotation due to inconsistent feedback increases as the
percentage of inconsistent feedback instances increases.
However, they also show that the annotation computed
based on user feedback is reliable even in the presence of
a significant amount of inconsistent feedback. Indeed, the
charts show that 10% of inconsistent feedback introduces
a small error, less than 0.02, in the annotations computed.
This is further evidence that the pay-as-you-go approach
is viable as a strategy for gradual improvement. Notice
that the average error in precision is quite high when
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Figure 4: Error in precision due to inconsistencies in feedback.

Figure 5: Error in recall due to inconsistencies in feedback.

all feedback instances, i.e., 100%, are inconsistent with
user expectations. This is because the average “ground
truth” precision of the mappings is low, it is equal to 0.14.
Regarding the recall, the error when all feedback instances
are inconsistent is not as high as for precision. This is
because the average “ground truth” recall is higher, 0.34.

3.3. Ordinal Annotations
Another source of information that can be exploited

for mapping annotation is the dependencies between the
candidate mappings in terms of the tuples they retrieve
from the sources. We capture these dependencies in the
form of ordinal annotations that partially order the can-
didate mappings in terms of true positives and false pos-
itives. Consider, for example, two candidate mappings
m1 and m2 for populating a relation r in the integration
schema. We say that m1 covers m2 in terms of true pos-

itives iff m1 retrieves all the true positives that are ob-
tained using m2 given the feedback instances in UF, i.e.,
tp(m2,UF) ⊆ tp(m1,UF). We write m2 ≤

UF
tp m1. Similarly,

m1 covers m2 in terms of false positives iff m1 returns all
the false positives that are obtained using m2 given the
feedback instances in UF, i.e., f p(m2,UF) ⊆ f p(m1,UF). We
write m2 ≤

UF
f p m1.

Ordinal annotations are used as input to the mapping
refinement process in Section 5.3.

4. Selecting Schema Mappings

An element of an integration schema is likely to be
associated with many candidate mappings. We consider
a setting in which the candidate mappings are generated
based on a large number of matches obtained using mul-
tiple matching mechanisms. In this context, by evaluating
a user query using all candidate mappings, there is a risk
of significantly increasing the processing time of the user
query, and obtaining a large collection of results, the ma-
jority of which are unlikely to meet user needs. We show
in this section how the mapping annotations presented
in the previous section can be employed for selecting the
candidate mappings to be used for populating a given
element in the integration schema.

4.1. Mapping Selection as an Optimization Problem
Not all users of dataspaces will have the same re-

quirements in terms of precision and recall. Consider,
for example, a dataspace providing access to proteomic
data sources. A drug designer who issues queries to this
dataspace may require high precision; the existence of
false positives in query results may lead to further ex-
pensive investigation of inappropriate candidate drugs.
On the other hand, an immunologist who is using the
proteomic dataspace to identify the proteins responsible
for an infection may tolerate low precision, since further
investigation may potentially give rise to the identifica-
tion of new proteins associated with the infection under
investigation.

In order to tailor mapping selection to user require-
ments, we use a technique that aims to maximize the re-
call of the results while guaranteeing that their precision
is higher than a given threshold λp, which can be specified
by the user. The selection method can be formulated as a
search problem that maximizes the following evaluation
function:

evalrecall(V,UF, λp) =

0, if prec(V,UF) < λp

recall(V,UF), otherwise
(1)

where V = 〈b1, . . . , bn〉 is a vector of booleans that specifies
the selected mappings: bi is true iff the candidate mapping
mi is selected. prec(V,UF) and recall(V,UF) denote the pre-
cision and recall of the union of the results obtained using
the mappings specified by V given the feedback instances
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in UF. An optimization problem is then to identify values
for V (i.e., subsets of mappings) that maximize evalrecall
while satisfying the constraint prec(V,UF) < λp.

The user may also be interested in maximizing the
precision of the results obtained, provided that the recall
is higher than a given threshold, λr. As for the above case,
this problem can be formulated as a search that aims to
maximize the evaluation function obtained by swapping
the roles of precision and recall in evalrecall(V,UF, λp).

The above evaluation function poses a problem during
the search for suitable values for V, in that it associates all
vectors of mappings with a precision below λp with the
same value, viz. zero. Therefore, a vector of mappings
with a precision that closely misses λp is ranked equally
as badly as a vector with zero precision. To overcome this
problem, we use a function by Menascé and Dubey [41] for
estimating utility in service-oriented architectures in order
to return, for those vectors of mappings with a precision
lower than the threshold λp, a decreasing value as the
precision decreases, as follows:

evalrecall(V,UF, λp) = recall(V,UF) × Kp × C(prec(V,UF), λp) (2)

where C(x, λp) is a monotonic function that increases as x
increases defined as:

C(x, λp) =
1

1 + e−
x
λp
×10+5

−
1

1 + e5 ,

and Kp = 1+e5

e5 a scaling factor so that
limprec(V,UF)→λp (evalrecall(V,UF, λp)) = recall(V,UF). For our
purposes, the specific formulas used to compute Kp and
C are not especially significant, but the resulting curve
shape is. Figure 6 shows the graph of the function when
the precision threshold λp is equal to 0.5 and the recall is
equal to 1. As depicted in this figure, the value returned
by the function increases as the precision does. It reaches
the maximum value of 1 when the precision reaches the
threshold λp. Crucially, for the optimization algorithm,
in contrast with Equation (1), Equation (2) discriminates
between different values where prec(V,UF) < λp, prefer-
ring values that are closer to λp over those that are further
away.

For the purpose of solving this constrained optimiza-
tion problem, we use the Mesh Adaptive Direct Search
(MADS) approach [1], which is centered on a nonlinear
search algorithm that is appropriate for solving black-box
constrained optimization problems.

4.2. Experimental Evaluation
The optimization method for selecting schema map-

pings presented in Section 4.1, based on the evaluation
function in equation (2), uses as input feedback instances
to estimate the precision and recall of the results retrieved
by a set of mappings. This raises the following questions:

Figure 6: The graph of the evaluation function when the precision thresh-
old is equal to 0.5 and the recall is 1.

Table 2: Precision and recall obtained using the mappings selected when
the “ground truth” expectations of the user are known.

λp 0 0.2 0.5 0.7 1
Precision 0.09 0.28 0.57 0.7 1

Recall 1 0.82 0.72 0.28 0.04

• What is the amount of feedback that is needed for the
precision threshold set by the user to be respected by the
results retrieved by the mappings selected based on that
optimization method?

• What is the amount of feedback needed to select mappings
that yield the same recall as the mappings selected with
complete knowledge of user expectations.

To answer the above questions, we used the mappings
candidates to populate the FavoriteCity relation. Table 2
shows the precision and recall of the results obtained using
the mappings selected based on the optimization method
presented in Section 4.1 where the “ground truth” expec-
tations of the user are known and the precision threshold
varies between 0 and 1.

We then used the optimization method to select the
mappings to be used to populate the FavoriteCity relation
based on feedback supplied by the user. In doing so, we
varied the following parameters: i) the number of feed-
back instances supplied by the user, and ii) the threshold
set by the user. To do so, we applied the following proce-
dure to the candidate mappings of FavoriteCity iteratively.

1. Generate a sample of feedback instances.
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2. Select mappings that maximize the evaluation func-
tion evalrecall in equation (2) with a precision thresh-
old λp.

3. Compute the ground truth precision and recall of
the results obtained using the mappings selected.

At every iteration, we generate a sample of 10 feedback
instances using stratified sampling as described in Section
3.1. We then select the mappings that maximize the recall
with a given precision thresholdλp, i.e., the mappings that
maximize the evaluation function evalrecall in equation (2).
To do this, we used NOMADm10, an implementation of
the Mesh Adaptive Direct Search algorithm [1].

We repeated the above experiment by changing the
value of the precision thresholdλp from 0 to 1. The ground
truth precision of the results obtained using the mappings
selected at every feedback iteration appears in Figure 7,
and their ground truth recall appears in Figure 8. Note
that, for the sake of clarity in the figures, Figures 7 and 8
have scales of Precision Threshold inverted.

The analysis of the results shows that using a num-
ber of feedback instances that is greater or equal to 170
(which represents 7.72% of the result set retrieved by the
candidate mappings) the precision threshold is respected
and the recall is the same as the recall of the results of
the mappings selected with complete knowledge of the
ground truth expectations.

During the earlier feedback iterations, the precision
threshold is not always respected. For example, the preci-
sion threshold λp = 1 could not initially be satisfied. This
is because none of the annotated mappings has a preci-
sion of 1 with the feedback collected at that point. Later
on, when the cumulative number of feedback instances
reached 150 (i.e., 6.81% of the result set retrieved by the
candidate mappings) the only mapping with a precision
equal to 1 was identified, thereby allowing the solver to
satisfy the constraint specified by λp. For λp = 0.7, when
the number of feedback instances supplied is lower than
170, the precision of the results obtained using the map-
pings selected was below the threshold. When the number
of feedback instances supplied reached 170, the precision
of the results obtained using the mappings selected was
greater than the precision threshold of 0.7.

Regarding the recall, we notice that in the first feed-
back iteration the recall of the results obtained using the
mappings selected for λp ≤ 0.5 is lower that the recall
obtained using the mappings selected based on complete
knowledge of the ground truth expectations. As more
feedback instances were provided, the recall reached the
recall obtained using the mapping selected based on com-
plete knowledge of the ground truth expectation. On
the other hand, in the first feedback iterations, the re-
call obtained using the mappings selected for λp ≥ 0.7 is
greater than the recall obtained using the mappings se-
lected based on complete knowledge of the ground truth

10http://www.gerad.ca/NOMAD/Abramson/nomadm.html

Figure 7: Precision of the results obtained using the mappings selected
using the evaluation function evalrecall.

Figure 8: Recall of the results obtained using the mappings selected
using the evaluation function evalrecall.

expectations. At a first glance this seems to be odd. How-
ever, it can be explained by the fact that for λp ≥ 0.7, the
results obtained using the mappings selected in the first
feedback iterations did not respect the precision threshold
(see Figure 7).

It is worth mentioning that, except for the case where
λp equals 1, the number of mappings required to reach the
correct recall and precision ranges from 3 to 5 (see Table 3).

5. Refining Schema Mappings

Mapping annotations may reveal that the quality of
the candidate mappings is poor. Specifically, they may
indicate that the number of true positives obtained us-
ing the best mapping, i.e., the mapping with the highest
F-measure, is small compared with the number of false
positives. One response in this case is to try to improve
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Table 3: Number of mappings selected when the recall reaches the max-
imum.

λp 0 0.2 0.5 0.7 1
Number of mappings selected 5 4 3 3 1

the quality of candidate mappings through refinement.
In mapping refinement, one or more mappings are con-
structed out of existing ones taking into account available
user feedback. We distinguish two kinds of mapping re-
finement: one that seeks to reduce the number of false
positives, and one that aims to increase the number of
true positives.

5.1. Refining Mappings to Reduce the Number of False Posi-
tives

A candidate mapping is refined by modifying the cor-
responding source query so as to reduce the number of
false positives it returns. This requires results filtering.
There are four operators in the relational algebra that al-
low filtering of the results, viz. join, selection, intersection
and difference. We now explore how they can be used to
reduce the number of false positives.

Join. Assume that in the user conceptualization of the
world, the Protein relation in the integration schema is to
be populated with tuples providing information about
the proteins that belong to the Fruit Fly species, and con-
sider the mapping 〈Protein,ProteinEntry〉, which maps Protein
to ProteinEntry in the source schema. The source schema
is illustrated in Figure 9. Using this mapping, the user
will obtain both true positives and false positives, viz.,
proteins that belong to the Fruit Fly and proteins that
belong to other species. The number of false positives
returned may be reduced by joining the source query of
the mapping with relations in the sources. To identify
which source relations can be used for this purpose, we
exploit information provided by the source schemas. For
example, Figure 9 shows that ProteinEntry is connected to
FlyProteome by a referential integrity constraint. This con-
straint can be used to reduce the number of false positives
that would be obtained using the above mapping. It can
be used to filter out proteins that belong to other species,
e.g., mouse and chicken. The source query of the mapping
obtained by this refinement is:

ProteinEntry Xacc = id FlyProteome

Here, the symbol X denotes the semi-join. This style of
refinement is based on input information that is readily
available in the source schemas, viz., foreign key con-
straints. As well as foreign key constraints, it would be
possible to refine mappings using associations that are in-
ferred from the results obtained by matching the sources
[51]. Using this kind of association, a mapping can be
refined by joining elements across sources.

Figure 9: Source schema used for mapping refinement.

To specify which relations are to be joined with the
source query of a given mapping, we use the notion of a
path. A path p can be defined as a sequence:

p = (〈R1, attout
1 〉, . . . , 〈Ri, attin

i 〉, 〈Ri, attout
i 〉, . . . , 〈Rn, attin

n 〉)

where n ≥ 2, and attin
i and attout

i are attributes of the relation
Ri. Let m be a mapping and 〈R1, attout

1 〉 an attribute that is
involved in the source query of m (i.e., an attribute of a
relation in the from clause of the query). To refine the
source query of m using the path p, we use the function
constructJoinMapping(m, p), which returns a mapping where
query is obtained by joining the source query of m with
the relations in p (except R1) and projecting the values of
the attributes of m.source:

constructJoinMapping(m, p) =
〈m.integration,m.source X jp1 . . . X jpn−1 Rn〉

where jpi = “(Ri.attout
i = Ri+1.attin

i+1)”, 1 ≤ i ≤ n − 1.
Note that only a subset of the paths that contain an

attribute involved in the source query of the mapping
m are useful for refinement; not every path reduces the
number of false positives retrieved using m. Also, a path
that reduces the number of false positives retrieved by the
mapping m may reduce the number of true positives as
well. Therefore, we use the F-measure to quantify whether
the decrease in terms of false positives outweighs the loss
in terms of true positives.

Difference. The number of false positives retrieved by a
mapping m for populating r, a relation in the integration
schema, may be reduced by applying the difference oper-
ator between the source query of m and a query qs over the
sources that is union compatible with m.source. To identify
qs, we exploit the fact that there are multiple candidate
mappings for populating r. In particular, if there is a map-
ping m’ which is a candidate for populating r that is known
to return some false positives that are retrieved using the
mapping m, then the source query of m’ can play the role
of qs:

m.source ← m.source − m′.source

Intersection. If there is a mapping m’ that is known to have
true positives in common with the mapping m, then m can
be refined by applying the intersection operator between
the source query of m and the source query of m’. That is:
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m.source ← m.source ∩ m′.source

Note that this refinement may lead to a loss of true
positives that are not retrieved by m′. To avoid this, we
make use of ordinal annotations by using only the candi-
date mappings that are known to cover m in terms of true
positives.

Selection. The number of false positives returned by a
given candidate mapping m can be reduced by applying
a selection to its source query:

m.source ← σC m.source

The problem is, of course, identifying a selection con-
dition C that causes the number of false positives to be re-
duced. This condition can be specified based on the avail-
able user feedback. Assume, e.g., that the user is searching
for proteins that belong to the Uniprot database11. If the
available user feedback stipulates that the attribute acces-
sion of Protein cannot have the values X51342 and AA6513
then we can specify a selection condition that rules out
all accession tuples containing either of these values. The
downside of this technique is that it may result in predi-
cates that overfit the available feedback, e.g., the number
of conjuncts could be equal to the number of incorrect
attribute values. To avoid this problem, it may be pos-
sible to use an external source of information for spec-
ifying selection conditions, e.g., ontologies that encode
the application domains that are of interest to the user.
An ontology is a set of concepts and relationships be-
tween them [26]. The concepts of a domain ontology are,
in certain cases, associated with recognizers [19]. Typ-
ically, a recognizer is a regular expression using which
it is possible to determine whether a given object is an
instance of the concept in question [32]. If these rec-
ognizers are available, then they can be used to spec-
ify selection predicates for reducing the number of false
positives. Assume, for example, an ontology that en-
codes the domain of bioinformatics, e.g., the myGrid on-
tology12, and assume that this ontology contains a con-
cept associated with the following regular expression:
re = ‘[A−N,R−Z][0−9][A−Z][A−Z, 0−9][A−Z, 0−9][0−9]’.
This expression specifies the format of Uniprot accession
numbers. Only the true positive accession values match
re. In other words, the concept associated with re captures
the domain of the accession attribute. Therefore, in order
to rule out the proteins that do not belong to the Uniprot
database, we let C be a predicate that is true when the
accession value matches the regular expression re.

5.2. Refining Mappings to Increase the Number of True Posi-
tives

To increase the number of true positives returned by
a mapping m that is a candidate for populating a rela-
tion r, we union its source query with a query over the

11http://www.uniprot.org
12www.mygrid.org.uk

sources that is union compatible with m.source and known
to retrieve true positives that are not returned by m. Here
again, we use the fact that there are multiple candidate
mappings for r and union m.source with the source query
of a mapping m’ that is known to retrieve true positives
that are not retrieved by m:

m.source ← m.source ∪ m′.source

Notice that the increase in true positives may be ac-
companied by an increase in false positives. Once again,
we use the F-measure to establish whether the increase in
terms of recall outweighs the decrease in terms of preci-
sion that may have occurred.

Relaxing a selection condition is one means that can
be used for augmenting the number of true positives re-
trieved using m. Assume that the source query of m is of
the form σC qs. The number of true positives retrieved by
m may be increased by replacing C with a less stringent
condition C’ such that C ⇒ C’. In its simplistic form, the
relaxation consists in replacing C with >, a predicate that
always evaluates to true. In other words, m.source ← qs.

5.3. Exploring the Space of Refined Mappings
The space of mappings that can be obtained by re-

finement is very large. The refinement operations can
potentially be composed and recursively applied. For ex-
ample, a refined mapping can be obtained by unioning
the source query of a candidate mapping with the query
obtained by joining the source query of another candi-
date mapping with other source relations. Also, a query
obtained by joining the source query of a candidate map-
ping with some source relations can be joined with other
source relations. This raises the question as to how to
explore the space of potential mappings that can be con-
structed by refinement, with the objective of discovering
the best possible mapping(s). An exhaustive enumeration
of all potential mappings is likely to be too expensive.
In this section, we present an evolutionary algorithm for
exploring the space of refined mappings in bounded time.

Evolutionary algorithms are heuristics for solving
combinatorial optimization problems [43]. The literature
is rich with combinatorial optimization algorithms [8].
We chose to use an evolutionary algorithm because it
is a population-based approach: unlike point-based al-
gorithms, which explore a single solution at a time,
population-based algorithms explore multiple competing
solutions at a time. This feature fits our purpose since
we aim to explore an initial set of candidate mappings
aiming to derive a new set of better candidate mappings.
Figure 10 presents the algorithm used for refining candi-
date mappings. The mappings given as input are iter-
atively refined. At each iteration, a subset of candidate
mappings is selected (line 2), viz., the mappings with an
F-measure greater than a given threshold. This thresh-
old can be specified either manually or based on the F-
measure of the initial set of candidate mappings, e.g., the
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threshold can be set as the F-measure of the top mapping
in the initial set. Variation operators are then applied to
the selected mappings in order to derive new ones. To
effectively and efficiently explore the space of mappings
obtained by refinement, two variation operators are used,
viz., a cross over and a mutation operator (lines 3 and 4). The
cross over operator is used to construct new mappings by
combining the “good parts” of existing mappings. The
mutation operator, on the other hand, is used to avoid
the premature convergence towards a sub-optimal solu-
tion by diversifying the space of candidate mappings to
be explored [8].

The mappings constructed using cross over and muta-
tion are then annotated with respect to the available feed-
back (line 5), before the next generation of candidate map-
pings for the next iteration is selected (line 6). Multiple
schemes can be used for selecting candidate mappings.
For example, the top-k mappings in terms of F-measure
can be used in the next iteration. Note, however, that
a mapping with a low F-measure can be crucial for con-
structing the best mapping(s): this is the case, e.g., of a
mapping that retrieves true positives (or false positives)
that are not retrieved by other mappings. Because of this,
we also use, in addition to the top-k mappings, a minimal
subset of mappings that cover all the true positives and
false positives identified through user feedback.

The process presented above is repeated until a termi-
nation condition is met, e.g., when the time allocated for
refinement expires, or when a candidate mapping with
an F-measure higher than a given threshold, e.g., 0.95, is
discovered.

Algorithm RefineMappings
Inputs Map : A set of candidate mappings

UF: A set of user feedback instances
OutputsMap : A set of candidate mappings
Begin
1 While Termination condition not met Do
2 S Map ← SelectMappings(Map)
3 M Map ← MutateMappings(S Map)
4 C Map ← CrossOverMappings(S Map,Map,UF)
5 AnnotateMappings(M Map ∪ C Map,UF)
6 Map ←

SelectNewGeneration(Map ∪ M Map ∪ C Map)
7 Return Map
End

Figure 10: Evolutionary Algorithm for Refining Candidate Mappings.

Mutating a Candidate Mapping. A mapping is mutated by
applying the join or selection relational algebra operators
to its source query. Figure 11 illustrates the subroutine
used for mutating schema mappings. Given a mapping m,
a path p that originates from an attribute of a relation that
is involved in the source query of m is selected (line 2). The
mapping obtained by joining the source query of m with
the relations in p is added to the set of mutated mappings

(line 3). Note that the path p is selected randomly among
candidate paths. However, this selection, as we shall see
next, avoid paths that are known from previous iterations
not to improve the F-measure.

The number of paths that originate from an attribute in
the source query of m can be large and even infinite if we
consider cyclic paths. To reduce the number of paths to
be explored, we exploit the dependencies between paths.
To illustrate this idea, consider the path:

p = (〈R1, attout
1 〉, . . . , 〈Ri, attin

i 〉, 〈Ri, attout
i 〉, . . . , 〈Rn, attin

n 〉)

and let p’ be a path that originates from the same attribute
as p and covers p, i.e., p’ contains the sequence of attributes
in p as follows:

p′ = (〈R1, attout
1 〉, . . . , 〈Rn, attin

n 〉, 〈Rn, attout
n 〉, . . . , 〈Rk, attin

k 〉)

The source query of the mapping m’r, obtained by mutat-
ing m using p’, is equivalent to the join of the source query
of the mapping mr, constructed by mutating m using p,
with a query over the sources. Specifically:

constructJoinMapping(m, p′).source =
constructJoinMapping(m, p).source ./ jpn+1 . . . ./ jpk Rk

where jpi,n ≤ i ≤ k − 1, is a predicate of the form:
Ri.attout

i = Ri+1.attin
i+1.

Therefore, if mr does not retrieve any true or false pos-
itives (in which case it is of no relevance to the refine-
ment process), then m’r will not retrieve any true or false
positives. We exploit this property in order to reduce
the number of paths to consider in subsequent iterations.
Specifically, if the annotations computed by the main al-
gorithm (Figure 10, line 5) show that the mapping mr does
not return any true or false positives, then none of the
paths that cover p, including p, are used for mutating m in
subsequent iterations. As well as m, these paths will not
be used in the next iterations for mutating any mapping m’
with a source query contained within the source query of
m. The above behavior is ensured by the function getPath
(Figure 11, line 2).

Mappings can also be mutated by applying a selection
predicate to their source queries. If an ontology θdomain

that describes the application domain of the integration
schema is available, and a selection predicate prec can be
derived based on user feedback (lines 4,5), then a mapping
that is obtained by augmenting the source query of m with
a selection predicate prec, is added to the set of mutated
mappings (line 6).

Combining Candidate Mappings. Two mappings are
crossed over by applying the union, intersection or dif-
ference relational operators to their source queries. Fig-
ure 12 shows the algorithm used for crossing over can-
didate mappings. Given a mapping that is provided as
input and a cross over operator, e.g., union, we identify
candidate mappings that can act as recombination map-
pings, a.k.a. neighbors. To identify the neighbors of a
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Algorithm MutateMappings
Inputs S Map : A set of candidate mappings
Outputs M Map : A set of mutated mappings
Begin
1 For Each m ∈ S Map Do
2 p ← getPath(m)
3 Add constructJoinMapping(m, p) To M Map
4 prec ← getPredicate(m, θdomain)
5 If (prec , null)
6 Add 〈m.integration, σprecm.source〉 To M Map
7 Return S Map
End

Figure 11: Algorithm for Mutating Mappings.

mapping m, we use the ordinal annotations associated
with candidate mappings (see Section 3). Consider, e.g.,
the case of union. This operator is used to increase the
number of true positives returned by a mapping m. The
neighbors of m w.r.t. union are, therefore, the mappings
that return true positives that are not retrieved by m. We
reduce the set of neighbor mappings by considering only
the mappings that are not covered by others in terms of
true positives. That is:

union neighbors(m,Map,UF) =
{mi , m ∈ Map s.t. (tp(mi,UF) − tp(m,UF) , ∅)
and (@ m j ∈ Map, mi <UF

TP m j)}

Unlike union, the intersection and difference opera-
tors are used for reducing the number of false positives
returned by a given mapping. The neighbors of a mapping
m w.r.t. intersection are those that cover m in terms of true
positives but not in terms of false positives (see below).
The queries obtained by constructing the intersection of
the source query of each of the neighbor mappings with
the source query of m, retrieve all the true positives ob-
tained using m and a subset of the false positives obtained
using m. In other words, it allows an increase in precision
without a reduction in the recall.

intersection neighbors(m,Map,UF) =
{mi , m ∈ Map s.t. (m ≤

UF
TP mi) and (m �UF

FP mi)}

Similarly, the neighboring mappings of m w.r.t. dif-
ference are the mappings that cover m in terms of false
positives but not in terms of true positives. That is:

di f f erence neighbors(m,Map,UF) =
{mi , m ∈ Map s.t. (m ≤

UF
FP mi) and (m �UF

TP mi)}

The query obtained by applying a difference operator
to the source query of m and the source query of one of its
neighbors mi, i.e., m.source − mi.source, does not return any
false positive obtained using m. Note, however, that such
queries may return a subset of the true positives obtained
using m, i.e., the recall of the resulting mapping may be
lower than that of m.

Algorithm CrossOverMappings
Inputs S Map : A set of candidate mappings

Map : A set of candidate mappings
UF : A set of feedback instances

Outputs C Map : A new set of mappings
Begin
1 For Each m ∈ S Map Do
2 Union Map ← union neighbors(m,Map,UF)
3 For Each u m ∈ Union Map Do
4 Add 〈m.integration,m.source ∪ u m.source〉 To C Map
5 Inter Map ← intersection neighbors(m,Map,UF)
6 For Each i m ∈ Inter Map Do
7 Add 〈m.integration,m.source ∩ i m.source〉 To C Map
8 Di f f Map ← di f f erence neighbors(m,Map,UF)
9 For Each d m ∈ Di f f Map Do
10 Add 〈m.integration,m.source − d m.source〉 To C Map
11 Return C Map
End

Figure 12: Algorithm for Combining Mappings.

Note that some of the mappings obtained by mutation
and cross-over may have lower quality than the candidate
mapping used as input. These mappings will be found
unfit to remain in the population when the candidate map-
pings to be explored in the next iteration of refinement are
selected (Figure 10, line 6).

5.4. Experimental Evaluation
The approach described above for mapping refine-

ment raises the following questions: Can mapping refine-
ment improve the quality of initial candidate mappings, and,
if so, at what cost, i.e., what is the amount of user feedback
required?

To answer the above questions, we conducted an
experiment in which the candidate mappings for Fa-
voriteCity are refined using the RefineMappings algorithm
in the light of user feedback. Specifically, we iterated
over the process listed below until the F-measure of the
top mapping constructed through refinement reaches the
maximum, i.e., 1.

1. Generate 10 feedback instances.
2. Annotate the set of candidate mappings.
3. Refine candidate mappings using the RefineMap-

pings algorithm.

Regarding the RefineMappings algorithm, we chose the
following setup. At every iteration in the algorithm, the
three mappings with the best F-measure are selected for
constructing new offspring mappings (Figure 10, line 2).
The algorithm iterates until the population of mappings
remains unchanged for 10 consecutive iterations (Fig-
ure 10, line 1). If a newly constructed mapping returns the
same result set as an existing mapping, then it is removed
(Figure 10, line 6). We also considered the general case in
which no domain ontology that captures the domain of
the source schemas is known, and, therefore, the selection
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Figure 13: Average F-measure of the top, second and third mapping
obtained by refinement.

conditions used for mutating the mappings are derived
based on the tuples annotated through the feedback.

We repeated the above experiment 10 times. In each
repetition, we specified the set of correct tuples based on
a mapping that was randomly created by mutating and
combining candidate mappings using the selection, join,
intersection, union and difference relational operators.

The results of this experiment are shown in Figure 13,
which shows the F-measure of the top, second and third
mappings constructed through refinement at every feed-
back iteration averaged over the 10 runs.

The figure shows that the quality of the top mappings
improves substantially during the first few feedback it-
erations. The average F-measure of the top mapping in-
creases from 0.58 to 0.8 after the 5th feedback iteration
(i.e, after collecting 50 feedback instances, which repre-
sents 2.27% of the result set retrieved by the candidate
mappings). It then increases to 0.9 after collecting 80 feed-
back instances (i.e., 3.63% of the result set retrieved by the
candidate mappings). On the other hand, the number
of feedback instances required to reach the maximum F-
measure value, i.e., 1, is important. Specifically, 360 feed-
back instances, i.e., 16.36% of the result set retrieved by
the candidate mappings, were needed for the F-measure
of the top mapping to reach the maximum value. This
observation can be explained as follows. If the F-measure
of a mapping is high, i.e., close to 1, then the number of
expected results that are not returned by the mapping and
the number of unexpected results returned by the map-
ping is small. Therefore, it is very likely that the feedback
supplied does not cover the few expected tuples that the
mapping does not return or the few unexpected tuples
that the mapping does return. Because of this, the oppor-
tunities for improving the quality of such a mapping are
few in principle.

The F-measure of the second and third mappings fol-
lows a pattern similar to that of the top mapping, and the
above observation applies to them as well (see Table 4).

Figure 14 shows the number of offspring mappings
that were created at each iteration. The figure shows that
the number of offsprings is small in the first feedback it-
eration. This is because not all candidate mappings were
annotated at this stage due to the small amount of feed-

Figure 14: Number of offspring mappings.

Table 4: Average percentage of the result set that needed to be annotated
by feedback to reach a given F-measure.

top mapping 2nd mapping 3rd mapping
F-measure ≥ 0.7 0.9 2.27 3.18
F-measure ≥ 0.8 2.27 3.18 4.99
F-measure ≥ 0.9 3.63 5.9 11.36
F-measure ≥ 0.95 4.99 11.81 NA
F-measure ≥ 0.99 13.17 NA NA
F-measure = 1 16.36 NA NA

back, i.e., 10 feedback instances. The number of off-spring
mappings then increases until it reaches 48. This number
then starts decreasing, due to the fact that the number
of off-spring mappings that could improve the F-measure
and that were not identified in earlier feedback iterations
decreases.

In summary, this experiment shows that refinement
can construct good quality mappings in a pay-as-you-go
fashion: the more feedback instances that are provided,
the better the mappings constructed. The experiment also
shows that refinement is more cost effective during the
early feedback iterations. The quality of the mapping
constructed improves substantially during the first feed-
back iterations, whereas the amount of feedback required
to reach an F-measure that is close to the maximum value
was, in this example, almost four times larger for only a
small increment in the F-measure.

6. Annotating Integration Queries

To annotate schema mappings, we have so far consid-
ered that, given an element of the integration schema, the
user provides feedback commenting on the membership
of tuples to that element. In practice, however, the user is
more likely to provide feedback on results to queries s/he
issued. The process of evaluating an integration query can
be viewed as a two step process, as illustrated in Figure
15. The query issued by the user against the integration
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Figure 15: Query evaluation.

schema is first rewritten in terms of the constructs in the
source schemas. To do so the query is unfolded using
schema mappings. The query obtained is then evaluated,
and the results are returned to the user. The user can
then provide feedback specifying whether the result tu-
ples meet the requirements intended by the query s/he
issued.

In this section, we investigate two problems: we show
how estimates for precision and recall can be computed for
queries that the user issues against an integration schema,
and show how the feedback the user supplies, given the
results of a query, can be propagated down to the map-
pings used to populate the base relations in that query.

6.1. Propagating Feedback for Annotating Integration Queries
Just like schema mappings, integration queries can be

annotated using precision and recall estimates that pro-
vide the user with insights into the quality of query re-
sults. In this respect, we propagate the feedback about
the relations in an integration schema to queries over that
schema. For a range of query operators, viz., selection,
projection, join, intersection and union, we now show
how the set of true positives, false positives and false neg-
atives can be derived for an integration query given the
feedback accumulated for the base relations involved in
that query.

Selection. Consider the following selection query q = σcR,
where R = (a, b)13 and c is a Boolean predicate. To compute
the precision and recall for q, we need to identify the set of
true positives, false positives and false negatives obtained
when evaluating q. To do so, we exploit existing feedback
about the extent of the relation R. The true positives of R
that satisfy the selection predicate c are also true positives
for the query q, i.e.:

tp(q,UF) = {t ∈ tp(R,UF) s.t. holds(t, c)}

where holds(t, c) is a Boolean predicate that is true iff the
tuple t satisfies the condition c.

13Note that we use simple binary relational tables in this section for
explanation purposes, and that the technique presented for propagating
feedback works for relational table schemas of any arities.

Table 5: Example of tuples annotated based on user feedback.

name country feedback
t1 Manchester UK true positive
t2 Cardiff Wells false positive
t3 Manchester Morocco false positive
t4 Dublin Ireland false negative
t5 London UK false negative

Similarly, the false positives (resp. negatives) of R that
satisfy the selection predicate c are false positives (resp.
negatives) for the query q, i.e.:

f p(q,UF) = {t ∈ f p(R,UF) s.t. holds(t, c)}

f n(q,UF) = {t ∈ f n(R,UF) s.t. holds(t, c)}

Projection. Consider the following projection query q =
ΠaR, where R = (a, b) is a relation in an integration schema,
and let UF be the set of feedback instances that the user
provided about the extent of R. If the feedback instances
in UF are attribute-based, by which we mean feedback
that annotates the values of the individual attributes of R,
then we can derive true positives, false positives and false
negatives for q as follows:

tp(q,UF) = { 〈x〉 s.t. ∃ u f ∈ UF, (u f .AttV = {〈a, x〉)})}
∧ (u f .Table = R) ∧ (u f .exists = true)
∧ (u f .provenance ! = ‘UserSpeci f ied′)}

f p(q,UF) = { 〈x〉 s.t. ∃ u f ∈ UF, (u f .AttV = {〈a, x〉)})}
∧ (u f .Table = R) ∧ (u f .exists = f alse)
∧ (u f .provenance ! = ‘UserSpeci f ied′)}

f n(q,UF) = { 〈x〉 s.t. ∃ u f ∈ UF, (u f .AttV = {〈a, x〉)})}
∧ (u f .Table = R) ∧ (u f .exists = true)
∧ (u f .provenance = ‘UserSpeci f ied′)}

If, on the other hand, the feedback instances in UF are
tuple-based, in the sense that they do not annotate the
values of individual attributes but rather entire tuples,
then we can only derive true positives for q. We can
derive neither false positives nor false negatives for the
query q.

To illustrate this, consider Table 5, which shows tuples
in the relation City(name, country). Given annotations as
exemplified in Table 5, we can derive true positives of the
projection query ΠcountryCity. If a tuple t is known to be
a true positive given UF, then t[country] is a true positive
for the query ΠcountryCity. For example, the first tuple
t1 is a true positive, and so is the value of the country
attribute, ÙḰ. If on the other hand a tuple t is known
to be a false positive given UF, then t[country] can be
either a true positive or a false positive for ΠcountryCity.
For example, both the tuples t2 and t3 in Table 5 are false
positives. The value of the Country attribute in t2, Ẁellś,
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is a false positive, whereas the value of the same attribute
in t3, M̀oroccó, is a true positive. Similarly, if a tuple t is
known to be a false negative given UF, then t[country] can
be either a true positive or a false negative for ΠcountryCity.
For example, both t4 and t5 in Table 5 are false negatives.
The value of the Country attribute in t4, Ìreland́, is a false
negative, whereas the value of the same attribute in t5,
ÙḰ, is a true positive.

The reader may wonder why we do not infer that a
value is a false negative when all annotated tuples of this
value are false negatives, e.g., Ireland. The reason is that
the set of annotated tuples provides only a partial descrip-
tion of user expectations. In the case of the attribute value
Ireland, for example, there may exist a non-annotated tu-
ple 〈Galway, Ireland〉 that is unexpected according to the
ground truth, in other words, false positive or true neg-
ative, in which case, the attribute value Ireland can be a
false negative or a true negative. The same applies for the
attribute value UK: we cannot conclude that it is a true
positive despite the fact that all annotated tuples that this
value appears in are true positive or false negative tuples.
There may exist a non annotated tuple, e.g., 〈York,UK〉
that is unexpected, i.e., false positive or true negative, in
which case the attribute value UK can be a true positive
or a false positive. Note, however, that if we have com-
plete knowledge of the ground truth expectations as to
which tuples are expected, then we can make the above
inferences.

Given the above analysis, it follows that we cannot de-
rive false positives or false negatives for projection queries
given tuple-based feedback. All we can safely derive are
the following inclusion constraints:

1. {〈x〉s.t.〈x,−〉 ∈ tp(R,UF)} ⊆ tp(q,UF)
2. f p(q,UF) ⊆ {〈x〉s.t.〈x,−〉 ∈ f p(R,UF)}
3. f n(q,UF) ⊆ {〈x〉s.t.〈x,−〉 ∈ f n(R,UF)}

The first constraint states that if a tuple t is known
to be a true positive for R, then t[a] is a true positive for
the projection query q. The second constraint states that
if a value x is a false positive for the projection query q,
then there is a false positive tuple t for R in which the a
attribute takes the value x. Indeed, the value x cannot be
part of a true positive or a false negative tuple. The third
constraint states that if a value x is a false negative for the
projection query q, then there is a false negative tuple for
the R relation in which the attribute a takes the value x.

Given the above inclusion constraints, we can derive
lower bounds on the precision and recall of q. Consider
the following cardinalities:

Ltp = |{〈x〉s.t.〈x,−〉 ∈ tp(R,UF)}|
U f p = |{〈x〉s.t.〈x,−〉 ∈ f p(R,UF)}|
U f n = |{〈x〉s.t.〈x,−〉 ∈ f n(R,UF)}|

The inequalities illustrated below define lower bounds on
the precision and recall of q:

Ltp

Ltp+U f p
≤ precision(q,UF)

Ltp

Ltp+U f n
≤ recall(q,UF)

Instead of computing the lower bounds for precision
and recall, we can compute estimates for these metrics.
We may do so by predicting the number of false positives
of q in {〈x〉s.t.〈x,−〉 ∈ f p(R,UF)}, and the number of false
negatives of q in {〈x〉s.t.〈x,−〉 ∈ f n(R,UF)}.

A tuple t of R(a, b) is false positive if:

i t[a] is a false positive,

ii t[b] is a false positive, or

iii t[a] is a true positive and so is t[b], however, there is
no expected tuple in R that combines t[a] and t[b].

If we assume that (i), (ii) and (iii) have the same prob-
ability of occurrence, then we can expect that 1

3 of the
values in {〈x〉s.t.〈x,−〉 ∈ f p(R,UF)} are false positives for
q, and that the rest of values, i.e., 2

3 , are true positives for
q.

Similarly, a tuple t of R(a, b) is false negative if:

i t[a] is a false negative,

ii t[b] is a false negative, or

iii t[a] is a true positive and so is t[b], however, there is
no expected tuple of R that combines t[a] and t[b].

If we assume that (i), (ii) and (iii) have the same prob-
ability of occurrence, then we can expect 1

3 of the values
in {〈x〉s.t.〈x,−〉 ∈ np(R,UF)} are false negatives for q, and
that the rest of values, i.e., 2

3 , are true positives for q.
Therefore, under the above assumptions, the precision

and recall of q can be estimated as follows:

precision(q,UF) =
tp(q,UF)

tp(q,UF) + f p(q,UF)

=
(Ltp + 2

3 U f p + 2
3 U f n)

(Ltp + 2
3 U f p + 2

3 U f n) + 1
3 U f p

=
Ltp + 2

3 (U f p + U f n)
Ltp + U f p + 2

3 U f n

recall(q,UF) =
tp(q,UF)

tp(q,UF) + f n(q,UF)

=
(Ltp + 2

3 U f p + 2
3 U f n)

(Ltp + 2
3 U f p + 2

3 U f n) + 1
3 U f n

=
Ltp + 2

3 (U f p + U f n)
Ltp + U f n + 2

3 U f p

Join. Consider the join query q = R ./(b=c) S, where R(a, b)
and S(c, d) are two relations in the integration schema.
In what follows, we show how the true positives, false
positives and false negatives of q can be derived from
the true positives, false positives and false negatives of
the base relations R and S. For exposition purposes, we
assume the existence of relations Rtp(a, b), R f p(a, b) and
R f n(a, b) that log the tuples of R that are true positives,
false positives and false negatives, respectively. Similarly,
we consider the existence of relations Stp(b, c), S f p(b, c) and
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S f n(b, c) that log the tuples of S that are true positives, false
positives and false negatives, respectively.

The true positives of q is the set of tuples obtained by
joining the true positives of R with the true positives of S,
i.e.:

Rtp ./(b=c) Stp

A false positive of q is the result of joining a false
positive of R with a false positive of S, or a false positive
of R with a true positive of S, or a true positive of R with a
false positive of S. The false positives of q can, therefore,
be defined as follows.

(R f p ./(b=c) S f p) ∪ (R f p ./(b=c) Stp) ∪ (Rtp ./(b=c) S f p)

A false negative of q is the result of joining a false
negative of R with a false negative of S, a false negative of
R with a true positive of S, or a true positive of R with a
false negative of S. Therefore, the false negatives of q can
be defined as:

(R f n ./(b=c) S f n) ∪ (R f n ./(b=c) Stp) ∪ (Rtp ./(b=c) S f n)

Intersection. Consider the intersection query q = R ∩ S,
where R and S are intersection-compatible relations. A
tuple t is a true positive for q iff it is a true positive for both
R and S. Therefore, the true positives of q can be derived
from the true positives of R and S using the following set
intersection.

(Rtp ∩ Stp)

A tuple t is a false positive for q iff it is a false positive
for both R and S, or a false positive for R and a true
positive for S, or a true positive for R and a false positive
for S. Therefore, the false positives of q can be defined as:

(R f p ∩ S f p) ∪ (R f p ∩ Stp) ∪ (Rtp ∩ S f p)

A tuple t is a false negative for q iff it is a false negative
for both R and S, or a false negative for R and a true
positive for S, or a true positive for R and a false negative
for S. Therefore, the false negatives of q can be defined as:

(R f n ∩ S f n) ∪ (R f n ∩ Stp) ∪ (Rtp ∩ S f n)

Union. Consider the union query q = R ∪ S, where R and
S are union-compatible relations.

A tuple that is a true positive of R or S is a true positive
for q. Also, a tuple that is a false positive for R (resp., S)
and false negative for S (resp., R) is a true positive for q.
Therefore, the true positives of q can be defined as:

(Rtp ∪ Stp) ∪ (R f p ∩ S f n) ∪ (R f n ∩ S f p)

A tuple that is a false positive for R (resp., S), and that
is neither a true positive nor a false negative for S (resp.,
R), is a false positive for q. Therefore, the false positives
of q can be defined as:

(R f p − (Stp ∪ S f n)) ∪ (S f p − (Rtp ∪ R f n))

A tuple that is known to be a false negative for R (resp.,
S), and that is neither true positive nor false positive for
S (resp., R), is a false negative for q. Therefore, the false
negatives of q can be defined as:

(R f n − (Stp ∪ S f p)) ∪ (S f n − (Rtp ∪ R f p))

6.2. Experimental Evaluation
We have shown in Section 3, through empirical eval-

uation, that schema mappings can be usefully annotated
as to their precision and recall in a pay-as-you-go fashion
by using feedback provided by end users. In this sec-
tion, we report on the results of an experiment that we
conducted to see whether the same applies to annotating
integration queries, the base relations of which are pop-
ulated using candidate schema mappings. In particular,
we seek to determine whether a small amount of feedback
suffices to obtain a small error in the precision and recall
computed for integration queries. The parameters of the
experiment are the amount of feedback provided for an-
notating the candidate mappings, the precision and recall
of the candidate mappings, and the kind of integration
query, specifically, selection, projection, join, intersection
and union queries.

For the purposes of the experiment, we used the fol-
lowing two relations FavoriteCity(name, province, country)
and VisitedCity(name, province, country). We created for
each of these relations three candidate mappings with dif-
ferent precisions and recalls. We also specified integration
queries, that we shall present later.

For each integration query, we repeated the following
two-step procedure iteratively.

1. Generate 10 feedback instances for FavoriteCity and
10 feedback instances for VisitedCity. For selection
and projection queries, we use FavoriteCity. As with
the experiment in Section 3, we used a stratified
method for feedback sampling.

2. Compute the precision and recall of the query in
question. In doing so, we consider all possible per-
mutations of the candidate mappings for populating
the base relations FavoriteCity and VisitedCity.

We repeated the above experiment 25 times and av-
eraged the error obtained in precision and recall. In the
following, we analyze the results obtained for each kind
of query.

Selection. We used the selection query below to assess the
quality of precision and recall estimates:

σ(country = ÙSÁ)FavoriteCity

The chart in Figure 16 illustrates the error in precision
for the above query, and the chart in Figure 17 shows the
error in recall. The charts plot the mean and min/max
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Figure 16: Error in precision for selection query.

Figure 17: Error in recall for selection query.

error bars across the different mapping permutations14.
Initially, the error for both precision and recall is high.
However, the error decreases substantially after the first
feedback iterations and keeps decreasing as the number of
feedback instances increases. Specifically, to reach an av-
erage error of 0.2 in precision, 130 feedback instances were
needed, which represents 4.3% of the size of the resultset
returned by the candidate mappings of FavoriteCity. To
reach the same error in recall, 160 feedback instances, that
is 5.33% of the size of the result-set retrieved by the can-
didate mapping, were needed.

To examine if the selectivity of the query has an impact
on the quality of precision and recall estimates, we re-
run the above experiment using a selection query that
has a higher selectivity, which is illustrated below. The
chart in Figure 18 illustrates the error in precision for such
query, and the chart in Figure 19 shows the error in recall.
The two charts show that selectivity does indeed have an
impact on the quality of the precision and recall estimates.
In particular, the error does not decrease in a pay-as-you-
go fashion in the first iterations. Moreover, we notice that

14All the charts in the rest of this section plot the mean error and the
min/max error bars.

Figure 18: Error in precision for selection query with high selectivity.

Figure 19: Error in recall for selection query with high selectivity.

the variability of the error is high. This can be explained
by the fact the number of feedback instances that are used
to compute the precision of the query is very small due
to the selectivity. The same analysis applies to the case of
recall.

σ(country = Ìtalý)FavoriteCity

Projection. We used the projection query below to assess
the quality of precision and recall estimates.

ΠprovinceFavoriteCity

The chart in Figure 20 illustrates the error in precision
for the above query, and the chart in Figure 21 shows the
error in recall. The error for both precision and recall is
small. However, the rate at which the error decreases is
low. This can be explained by the following facts. Firstly,
the initial error is already small. Secondly, given the na-
ture of the projection, multiple feedback instances on the
base table can coalesce into a single feedback instance for
the projection query. Consider for example two tuples
of FavoriteCity that have the same value for the province
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Figure 20: Error in precision for projection query.

Figure 21: Error in recall for projection query.

attribute. If the two tuples are known to be true posi-
tives, then we can only derive a single true positive for
the projection query.

Join. We used the equi-join query below to assess the qual-
ity of precision and recall estimates:

FavoriteCity ./name VisitedCity

Figure 22 shows the error obtained for precision. We
distinguish two phases in this chart. In early feedback
iterations, from point A to point B in the chart, the error in
precision increases as the amount of feedback does. This
can be explained by the following. The error in precision
we compute is averaged over 25 executions of the experi-
ment described above. Initially, i.e., when the number of
feedback instances is 20, we were only able to compute the
precision for a few executions (specifically, 3 executions).
The join of these executions produced only one annotated
tuple. This tuple was a true positive when the ground
truth annotation of the join was high, and one false pos-
itive when the ground truth precision was low. As the
number of feedback instances increased, the number of
executions for which the join produced an annotated tu-
ple increased too. However, not all executions followed

Figure 22: Error in precision for join query.

the same pattern; the join of some executions produced a
false positive even though the ground truth precision is
high, or a true positive when the ground truth precision is
low. Because of this, we observe an increase in the error in
precision from point A to point B. After point B, the join
in most executions begins to produce a more representa-
tive collection of annotated tuples, and the average error
in precision starts decreasing as the number of feedback
instances increases as expected in a the pay-as-you-go ap-
proach.

The chart in Figure 22 also shows that the average er-
ror in precision is high compared with the error obtained
for selection. For example, to reach an average error of
0.2, 600 feedback instances were needed (i.e., 10.2% of
the resultset returned by the candidate mappings for Fa-
voriteCity and VisitedCity). This can be explained by the
fact that among the feedback instances generated for Fa-
voriteCity and VisitedCity, only a small proportion satisfies
the join condition, and, therefore, are used to compute the
precision for the join query.

Figure 23 shows the error obtained for recall. The er-
ror in recall follows a similar pattern to that for precision.
The error in recall increases in the first feedback itera-
tions. It then starts decreasing as the number of feedback
instances increases. As for precision, the error in recall is
high and 580 feedback instances (i.e., 9.8% of the result-set
returned by the candidate mappings for FavoriteCity and
VisitedCity) were needed to reach an average error of 0.2
in recall.

Intersection. We used the intersection query below to as-
sess the quality of precision and recall estimates:

FavoriteCity ∩ VisitedCity

Figure 24 shows the error obtained for precision. As
for join, in the first feedback iterations, the average error
in precision does not decrease, which can be explained
by the fact that a very small fraction of the result pro-
duced by intersection was annotated. Note, however,
that while the average error does not decrease, we notice
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Figure 23: Error in recall for join query.

Figure 24: Error in precision for intersection query.

that the variability in the error decreases as more feed-
back is accumulated. For example, the maximum error
is 0.67 when the number of feedback instances accumu-
lated is 100. That error decreases to 0.48 when the number
of feedback instances accumulated reaches 380. At later
stages, the average error starts decreasing as the number
of feedback instances increases. The same observation
applies to recall. Figure 25 shows the error in recall.

Union. We used the union query below to assess the qual-
ity of precision and recall estimates:

FavoriteCity ∪ VisitedCity

Figure 26 shows the error obtained for precision. Com-
pared with join and intersection, the error in precision is
small, and decreases as the number of feedback instances
increases. Figure 27 shows the error obtained for recall.
Similar to precision, the initial error in recall is small com-
pared with that of join and intersection, and decreases as
the number of feedback instances increases. This can be
explained by the fact that, unlike join and intersection,
all feedback instances provided at the level of the base
relations are propagated up to the union query.

Figure 25: Error in recall for intersection query.

Figure 26: Error in precision for union query.

To further investigate the behavior of the error in the
estimates computed based on propagated feedback, we
ran an experiment using queries that contain 2 occurrences
of the same binary relational operator.

Query with 2 occurrences of join. We used the join query
below to assess the quality precision and recall estimates:

FavoriteCity ./name VisitedCity ./name OtherCity

where OtherCity(name,province,country) is a relation that
we created for experimentation purposes.

Figure 28 shows the error obtained for precision. The
precision, and therefore the error in precision, could not be
estimated in early feedback iterations due to the absence of
annotated result tuples. The precision could only be com-
puted when the number of feedback instances reaches 520.
Once the precision could be computed using propagated
feedback, the error does not decrease straightaway. In-
deed, the error in precision gets worse before it gets better.
Figure 29 shows the error obtained for recall. As with pre-
cision, a large number of feedback instances, specifically
520, were needed before the recall could be computed. A
further number of feedback instances were needed before
the error in recall starts decreasing. This negative result is
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Figure 27: Error in recall for union query.

Figure 28: Error in precision for query with join operators.

due to the high selectivity of the join, which implies that
only a small proportion of the feedback supplied is prop-
agated up to the join results. To confirm the validity of
this hypothesis, we ran an experiment for annotating the
join query specified below. This query has a low selectiv-
ity: every tuple in each of the three relations, FavoriteCity,
VisitedCity and OtherCity, is used to construct at least one
tuple in the query results.

FavoriteCity ./province VisitedCity ./province OtherCity

Figure 30 shows the error obtained for precision, and
Figure 31 shows the error obtained for recall. The results
illustrated by these charts confirm our hypothesis. The
precision can be computed using a small number of feed-
back instances, specifically 90 feedback instances. Fur-
thermore, the error decreases in a pay-as-you-go fashion.
The same analysis applies for recall.

Query with 2 occurrences of intersection. We used the inter-
section query below to assess the quality precision and
recall estimates:

FavoriteCity ∩ VisitedCity ∩ OtherCity

Figure 29: Error in recall for query with two join operators.

Figure 30: Error in precision for query with two join operators having a
low selectivity.

Figure 32 shows the error obtained for precision, and
Figure 33 shows the error obtained for recall. The error in
precision and recall could not be computed during the first
iterations. Notice, also, that once the precision could be
computed, the error does not decrease in a pay-as-you-go
fashion. This can be explained by the fact the number of
feedback instances that are used to compute the precision
of the intersection at this stage is very small. The same
analysis applies to the case of recall. As for the case of
join, this negative result is due to the high selectivity of
the intersection.

Query with 2 occurrences of union. We used the union query
below to assess the quality precision and recall estimates:

FavoriteCity ∪ VisitedCity ∪ OtherCity

Figure 34 shows the error obtained for precision, and
Figure 35 shows the error obtained for recall. The error in
both precision and recall could be computed using a small
number of feedback instances. Moreover, it decreases
in a pay-as-you-go fashion. This can be explained by
the fact that, unlike join and intersection, all feedback
instances provided at the level of the base relations can be
propagated up to the union query.
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Figure 31: Error in recall for query with two join operators having a low
selectivity.

Figure 32: Error in precision for query with intersection operators.

In summary, the experiment showed that the pay-as-
you-go can be applied to projection and union queries. On
the other hand, the experiment showed that one needs to
pay relatively more in the case of selection, join and inter-
section queries. In particular, if the selectivity is high then
the improvement takes longer to be felt because, with few
feedback iterations, the error in both precision and recall
is high and increases due to the small number of feedback
instances that can be propagated from the base tables to
the query. In a second stage, when a representative collec-
tion of feedback instances are propagated up to the query,
the error in precision and recall begins to decrease as the
number of feedback instances increases.

These results suggest that the precision and recall esti-
mates computed for projection and union queries can, in
general, be trusted even with small numbers of feedback
instances. On the other hand, users should anticipate high
errors in the estimates computed for selection, join and in-
tersection queries having high selectivities until a larger
amount of feedback is made available.

Figure 33: Error in recall for query with two intersection operators.

Figure 34: Error in precision for query with union operators.

6.3. Propagating Feedback From Query Results to Schema
Mappings

We have, so far, focused on annotating the (global-as-
view) mappings used to populate base relations in an in-
tegration schema. In doing so, we assumed that end users
will provide feedback about the membership of tuples to
those relations. In practice, however, end-users are more
likely to be willing to provide feedback about the results
of queries that they issued against the integration schema.
With this in mind, in this section we study the problem
of propagating feedback about the results of an (integra-
tion) query down to the mappings used to populate the
base relations involved in that query. For each relational
operator, we analyze the possibility of propagating true
positives, false positives and false negatives annotations.

Selection. Consider the selection query q = σcR, where R =
(a, b)15 and c is a boolean predicate. A feedback instance
specifying a true positive, false positive or false negative
tuple for q gives rise to a true positive, false positive or

15Note that we use simple binary relational tables for explanation
purposes and that the propagation technique presented in this section
can be applied to any relational table.
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Figure 35: Error in recall for query with two union operators.

false negative tuple, respectively, for the mapping used
for populating the R relation.

Projection. Consider the projection query q = ΠaR, where
a is an attribute of the R relation. We cannot propagate
feedback specifying true positive, false positive or false
negative tuples for q into true positive, false positive or
false negatives tuples for the mapping used to populate
R. All we can safely infer are true positive, false positive
or a false negative values for the projected attribute a of
the R relation.

Join. Consider the join query q = R ./ S, where R = (a, b)
and S = (c, d) are two relations in the integration schema.
A feedback instance specifying a true positive tuple for q
gives rise to a true positive tuple for R and a true positive
for S. A feedback instance specifying a false negative tuple
t for q gives rise to a true positive or a false negative for
R and a true positive or false negative for S. To illustrate
this, consider that the tuple t was obtained by joining the
tuple tR in R and the tuple tS in S. If tR is retrieved by
the mapping that populates R, then tR is a true positive,
otherwise, it is a false negative. Similarly, if tS is retrieved
by the mapping that populates S, then tS is a true positive,
otherwise, it is a false negative. Note that, given that t is a
false negative, at least one of the two tuples tR or tS, if not
both, is a false negative.

On the other hand, we cannot propagate feedback
specifying false positive tuples for q down to R and S.
To see the reason why, consider the case of tuple that is
annotated as a false positive for q. Such a tuple can be
constructed by joining a false positive tuple of R with a
false positive tuple of S, a true positive tuple of R with
a false positive tuple of S, or a false positive of R with a
true positive of S. Because of this ambiguity, we cannot
deduce any feedback for R or S when the user identifies a
false positive in q results.

Intersection. Consider the intersection query q = R ∩ S,
where R and S are intersection-compatible relations. Sim-
ilar to join queries, a feedback instance specifying a true

Table 6: Propagation of feedback on query results down to feedback on
base relations.

True positive False positive False negative
Selection

√ √ √

Projection
√? √? √?

Join
√

×
√

Intersection
√

×
√

Union ×
√

×

√
: Feedback can be propagated.
×: Feedback cannot be propagated.
?: The feedback propagated is not tuple-based; it comments on values
of the attributes projected out by the query.

positive tuple for q gives rise to a true positive tuple for R
and a true positive for S. A feedback instance specifying
a false negative tuple t for q gives rise to a true positive or
a false negative for R and a true positive or false negative
for S. To illustrate this, consider that the tuple t was ob-
tained using the tuple tR in R and the tuple tS in S. If tR
is retrieved by the mapping that populates R, then tR is a
true positive, otherwise, it is a false negative. Similarly, if
tS is retrieved by the mapping that populates S, then tS is
a true positive, otherwise, it is a false negative. As for join
queries, given that t is a false negative, at least one of the
two tuples tR or tS, if not both, is a false negative.

On the other hand, we cannot propagate feedback
specifying false negative tuples for q down to R and S.
A false positive tuple can be constructed by intersection
of a false positive tuple of R with a false positive tuple of
S, a true positive tuple of R with a false positive tuple of S,
or a false positive of R with a true positive of S. Because
of this ambiguity, we cannot deduce any feedback for R
or S when the user identifies a false positive in q results.

Union. Consider the union query q = R ∪ S, where
R and S are union-compatible relations. A feedback in-
stance specifying a false positive tuple t for q may give
rise to a false positive for R and/or a false positive for
S. Specifically, t is a false positive for R (resp. S) if it is
retrieved by the mapping that populate R (resp. S).

On the other hand, feedback specifying true positives
and false positives for a union query cannot be propa-
gated down to the base relations. Consider that the user
provided a feedback instance specifying a true positive
tuple for q. Such a tuple can be a true positive for R and
S, a true positive for R and a false positive S, a false for
R and a true positive for S. Because of this ambiguity,
the feedback cannot be propagated to R or S. The same
analysis applies to false negatives.

The results of the above analyses are summarized in
Table 6. The table shows that the majority of feedback can
be propagated down to the base relation, with the excep-
tion of false positives in the case of join and intersection
queries, and true positives and false negatives for union
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Table 7: Queries used for propagating of feedback on query results down
to feedback on base relations.

Query
selection σcountry=′GB′FavoriteCity
selection σcountry=′MA′FavoriteCity
selection σcountry=′AL′VisitedCity
selection σcountry=′E′VisitedCity

join FavoriteCity ./country VisitedCity
join FavoriteCity ./city VisitedCity

intersection FavoriteVity ∩ VisitedCity
union FavoriteVity ∪ VisitedCity

queries. To overcome this limitation, a finer grained feed-
back acquisition process can be used when the query is a
join, intersection or union. For example, if the user anno-
tates a tuple t obtained by a union query, R ∪ S, as a false
positive, the system can ask the user whether t is a false
positive for R, S or both.

To examine the degree to which the feedback given
on query results are useful in the annotation of schema
mappings that populate the base relations, we ran an ex-
periment using the query workload in Table 716.

To annotate the mappings that are candidate to popu-
late the FavoriteCity and VisitedCity relation, we applied
the following procedure iteratively.

1. For each query in Table 7, generate randomly one
feedback instance annotating a tuple returned by
the query.

2. Propagate, when possible, the feedback generated in
the previous step to the base relations: FavoriteCity
and VisitedCity.

3. Compute the relative precision and recall of the
candidate mappings given cumulative feedback for
FavoriteCity and VisitedCity.

We then computed the average error in the preci-
sion and recall estimates for the candidate mappings of
FavoriteCity and VisitedCity. Figure 36 illustrates the av-
erage error in precision for the candidate mappings, and
Figure 37 illustrates the average error in recall. The two
figures show that the quality of mapping annotations is
incrementally improved as the user provides more feed-
back instances. In particular, the error in precision drops
significantly in the early feedback iterations. Specifically,
Figure 36 shows that when the user provided 100 feedback
instances, the average error in the precision estimate for
FavoriteCity drops from 0.27 to 0.1, and that of VisitedCity
drops from 0.23 to 0.08. Similarly, Figure 37 shows that
when the user provided 100 feedback instances, the av-
erage error in the recall estimate for FavoriteCity drops

16For the purpose of this experiment, we considered only queries that
allow propagation of tuple-based feedback, in other words, we did not
consider projection queries.
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Figure 36: Error in precision.

from 0.33 to 0.15, and that of VisitedCity drops from 0.31
to 0.05. As the number of feedback instances increases,
the improvement in the precision and recall estimates di-
minishes. For example, we observe little change in the
precision estimate for VisitedCity beyond 100 feedback in-
stances.

The reader may wonder why the error in precision and
recall estimates follows the pay-as-you-go model, even
when certain kinds of feedback instances are not prop-
agated down for certain kinds of queries. For example,
true positives and false negatives cannot be propagated
down to the base relations for union queries (see Table 6).
This can be explained by the following. The fact that the
union query does not allow for propagating true positive
and false negatives tuples is somewhat counter-balanced
by the fact that queries such as selection, join and inter-
section allow for propagating those kinds of feedback.
Similarly, the fact that join and intersection queries do
not allow for propagating false positive tuples is counter-
balanced by the fact that selection and union queries allow
for propagating false positives. Therefore, the main les-
son that can be learned from the above experiment is that
the pay-as-you-go philosophy is applicable as long as the
query workload whereby feedback instances are propa-
gated, contains a mixture of different kinds of queries.
Also, a single item of feedback for join and intersection
results in two items of feedback at the mapping level.

An integration schema is, generally, composed from
multiple relations. A user may provide feedback in-
stances annotating tuples from each relation in the inte-
gration schema. This form of feedback may be expensive
when the number of relations that compose the integra-
tion schema is large. To partially address this problem,
the method for propagating feedback presented in this
section can be exploited. Specifically, by providing feed-
back on queries that are issued against multiple relations
in the integration schema, the feedback the user provides
on the results of such queries can, for certain kinds of
queries (see Table 6), be propagated to the integration re-
lations involved in that query. A second solution that can
be adopted exploits the constraints defined between the
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Figure 37: Error in recall.

relations in the integration schema. Indeed, the relations
that compose an integration schema can be related with
some dependencies, e.g., they can be connected using ref-
erential integrity constraints. Such constraints can be used
to propagate feedback given on one relation to other rela-
tions in the integration schema. To illustrate this, consider
two relations ri and r j, and consider that there is a refer-
ential integrity constraint that connects the attribute ar j of
r j to a key attribute kri of ri. Consider now that the user
annotated a value v of the attribute ar j as expected. Given
the referential integrity constraint, we can infer that the
value v is expected for the attribute kri of ri. Conversely, if
the user annotated the value v′ of the attribute kri as unex-
pected, then we can infer that the value v′ is unexpected
for the attribute ar j . Furthermore, we can infer that all
tuples of r j in which the attribute ar j takes the value v′ are
unexpected.

Note that feedback can be propagated for queries that
involve multiple operators. Consider, for example, the
query below, which involves join and selection operators.
Such a query allows propagation of true positive and false
negative feedback down to the base tables: FavoriteCity
and VisitedCity. This is because selection allows the prop-
agation of all kinds of feedback, and join allows the prop-
agation of true positives and false negatives (See Table 6).
This observation also applies to queries involving selec-
tion and intersection. Similarly, queries involving union
and selection operators allow propagation of false posi-
tives, since the union operator only supports the propa-
gation of that kind of feedback.

σcountry=′GB′FavoriteCity ./country σcountry=′GB′VisitedCity

On the other hand, queries involving union and join
(or union and intersection) do not allow feedback prop-
agation. Consider, for example the query illustrated bel-
low. Such a query does not support the propagation of
any kind of feedback down to the base tables. This is
because the kinds of feedback that can be propagated by
union and join do not overlap. The former allows propa-

gation of false positives, whereas the second supports the
propagation of true positives and false negatives.

(FavoriteCity ./country VisitedCity)
∪

(OtherCity ./country PopularCity)

7. Related Work

In this section, we present and analyze existing pro-
posals and compare them to ours. In doing so, we focus
our attention on two kinds of proposals: proposals that
fall under the dataspace vision, and data exchange and
integration proposals that aim to facilitate the design of
schema mappings.

7.1. Dataspaces
The vision of dataspaces has been articulated as pro-

viding various of the benefits of classical data integration
with reduced up-front costs. In particular, a dataspace
system is distinct from a classical data integration system
in the following way. Before any services can be provided,
a data integration system requires a semantic integration
stage to identify relevant data sources and specify the
precise relationship between user requirements and the
contents of the data sources. Differently, a dataspace sys-
tem provides services from the start. Initially, a dataspace
provides few guarantees on the quality of the services it
provides. However, the quality of those services is incre-
mentally improved given user inputs. In this paper, we
described an approach in which we assumed that the in-
tegration schema together with a set of candidate schema
mappings are given, and showed how those mappings can
be annotated and refined over time to identify the map-
pings that meet user requirements. While the techniques
we presented in this paper are in the spirit of dataspaces,
they represent a point in the broad space of dataspace
solutions, which includes aspects such as bootstrapping
dataspaces to provide users with services from the start
[49], providing users with the means for querying hetero-
geneous data sources in the absence of schema mappings,
using e.g., keyword search [52, 51], indexing dataspaces
[17], profiling dataspaces in the absence of schema infor-
mation [30]. In this section, we analyze and compare these
proposals to ours.

7.1.1. Bootstrapping and Improving Dataspaces
Sarma et al. [49] proposed an approach for automat-

ically setting up a dataspace. Specifically, they show
how probabilistic mediated schemas and associated prob-
abilistic schema mappings can be automatically gener-
ated based on the similarity scores between attributes of
data sources. A probabilistic mediated schema is a set
of mediated schemas, each of which is associated with
a probability specifying the likelihood that the schema
correctly captures the domain of the sources. Similarly,
a probabilistic schema mapping describes a probabilistic
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distribution of possible mappings between a source and a
mediated schema. The authors show how the set of medi-
ated schemas defined by a probabilistic mediated schema
can be consolidated within a single mediated schema that
can be exposed to the user. While the focus of the pro-
posal by Sarma et al. [49] is on automatically setting up
a dataspace with little or no cost, our work focuses on
the improvement phase in the dataspace life-cycle, and
is therefore complementary to the work by Sarma et al.
[49]. In particular, the quality of the set of mappings spec-
ified by a probabilistic schema mappings can be measured
while the system is used by soliciting feedback from the
user, as we illustrated in this paper. Also, the quality of
those mappings can be improved through refinement. On
the other hand, our work can be extended to help users
identify among the set of schemas specified by a proba-
bilistic mediated schema, the one that best captures the
requirements of the user. To this end, the feedback model
introduced in this paper will need to be revised and ex-
tended.

Dong et al. [18] investigated the problem of data inte-
gration with uncertainty. In particular, they studied the
problem of query answering against integration schema
using probabilistic mappings. They showed that there
are two possible semantics for such mappings: by-table
semantics, which assumes that there exists a correct map-
ping, albeit unknown, and by-tuple semantics, which as-
sumes that the correct mapping may depend on the par-
ticular tuple in the source data. We note that the semantics
that we consider in our work fits the by-tuple semantics.
As pointed out by Dong et al. [18], a critical issue with
probabilistic mappings is the presence of a reliable source
of probabilities. In our work, we took a different ap-
proach. We did not assume that the candidate mappings
are associated with probabilities, but rather tried to gain
knowledge about their fitness through feedback. In this
respect, we note that the form of feedback that we intro-
duced in our work can be used as a source for computing
schema mapping probabilities.

Building on the work by Dong et al. [18], Gal et al.
[25] investigated the semantics of aggregate queries when
such queries are evaluated against uncertain schema map-
pings. Specifically, they studied three possible semantics
for aggregate queries: i) under the range semantics, the
query returns an interval within which the aggregate is
guaranteed to be found, ii) using the distribution semantics,
the query returns a set of possible values, each associated
with a probability value, finally iii) expected value semantics
is used when the user wishes to get a single value. Gal et
al. [25] show that the above semantics combine with the
by-table and by-tuple semantics in six ways, and proposed
algorithms that can be used to efficiently process aggre-
gate queries under the six semantics. In our work, we
did not consider aggregate queries, however, the work by
Gal et al. raises the following interesting questions: What
kinds of feedback are suitable to provide against aggregate query
results with the purpose of annotating and refining underlying

uncertain schema mappings? Rather than simply specifying
that a given count (resp. average or max) value is false,
the user may provide additional information specifying,
for example, that the value returned is too small or too
large. Also, How can the schema mappings be annotated and
refined based on feedback given on aggregate query results? The
above questions bring out interesting research problems
that need to be investigated further.

DeRose et al. [14] investigated the problem of building
community portals. Given a set of relevant sources (web
pages) and an integration schema that is specified by the
user, the user applies plans, which consist of a set of infor-
mation extraction and integration operators to populate
the integration schema given the contents of the underly-
ing sources. Although the approach followed by DeRose
et al. is similar to ours in the sense that they assume that
the integration schema is given, their proposal is different
from ours as it requires the user to specify the plans that
need to be applied to populate the integration schema. In-
deed, the proposal by DeRose et al. is aimed at developers
who wish to build community portals as opposed to end
users who utilize such portals.

7.1.2. Annotating Schema Mappings Using Feedback
The work by McCann et al. [39] is similar to ours;

they developed a community-based approach that solicits
feedback from the community members. The objective is,
however, different from ours. Their aim is to use feedback
in order to inform the schema matching operation. In do-
ing so, the feedback is used to assess the matches between
attributes in two schemas. For example, user feedback can
be used to verify the data type of an attribute (e.g., month),
or the validity of a domain constraint (e.g., the value of
an attribute is always less that the value of another). In
contrast, we seek to assess the quality of executable map-
pings that are candidates for populating the elements of
an integration schema.

Feedback can also be solicited in a way that maxi-
mizes the benefits the user can draw. For example, Jeffery
et al. [31] developed a decision-theoretic framework for
specifying the order in which candidate mappings can be
confirmed by soliciting feedback from users with the ob-
jective of providing the most benefit to a dataspace. Our
proposal is different from this work in the following re-
spects. Firstly, Jeffery et al. assume that a mapping is either
correct or incorrect. As we mentioned earlier, if the initial
set of candidate mappings is not complete, i.e., does not
contain a candidate mapping that meets the exact expecta-
tions of users, all the candidate mappings will ultimately
be found to be incorrect. Because of this, we opted for
a finer-grained annotation scheme that orders candidate
mappings and labels them with metrics specifying their
precision and recall. Secondly, Jeffery et al. do not spec-
ify the means by which feedback instances are collected.
In our proposal, we showed how feedback can be pro-
vided by users by examining the results to queries that
they issued, and which were evaluated using the candi-
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date mappings. Thirdly, Jeffery et al. did not address the
problems of mapping selection or refinement, whereas we
have.

7.1.3. Profiling and Indexing Dataspaces
Salles et al. [48] investigated the use of hints, which

they termed trails, as a mechanism for pay-as-you-go in-
formation integration. The core idea is that trails can be
used as a lightweight mechanism to declaratively define
relationships between loosely integrated data sources or
between user requirements, specified in the form of key-
words, and the underlying data sources. As mentioned by
Salles et al., such trails can be specified by administrators
or domain experts who are knowledgeable of the struc-
ture and semantics of the underlying data sources. The
form of feedback that we presented in this paper does
not require knowledge of the structure or semantics of the
underlying data sources for the user to be able to provide
feedback. We also note that the form of feedback that we
have investigated in this paper can be used as input for
the creation or refinement of trails. Indeed, just like with
mapping refinement, one can envisage a refinement oper-
ation that, given initial trails created when bootstrapping
the dataspace, creates better quality trails in the light of
feedback supplied by the user.

Dong and Halevy [17] investigated indexing support
for dataspaces. In particular, they explored several exten-
sions to inverted lists to capture structure, and showed
how such extensions can be used to answer predicate
queries and neighborhood keyword queries. Predicate
queries allow the user to specify keywords as well as sim-
ple structural requirements, whereas neighborhood key-
word queries explores association between data items.
The indexing techniques developed by Dong and Halevy
can be useful when refining schema mappings. In par-
ticular, where the user identifies false negative tuples (or
attribute values) that are expected, and are not retrieved
by any of the candidate mappings, then the keyword
queries of the form investigated by Dong and Halevy can
be used to detect the source relations that contain such
tuples (attribute values). Those relations can be used
to construct new mappings that retrieve those expected
tuples (attribute values). For example, if the user iden-
tify that the tuple 〈Manchester,GB〉 is a false negative for
the City(name, country) relation in the integration schema,
then indexing support can be used to identify the sources
that contain such information.

Howe et al. developed a system called Quary
[30], which provides capabilities for profiling dataspaces.
Specifically, it provides techniques for discovering struc-
tural characteristics and properties of data sources with
limited or no explicit schema information. This can be
used for example, to assess the suitability of a data source
for a given task or application. It can also be used to ver-
ify conditions that are required in order to add a given
capability over the data source(s). Using Quary, the user
may discover that instances of a given concept are al-

ways connected to the instances of another concept, or
that a functional dependency holds between the instances
of two concepts. In the context of our work, Quary can
be used to discover structural characteristics and regular-
ities of the integration schema by exploring the feedback
supplied by the user. For example, the analysis of feed-
back may suggest the presence of a foreign key that is
not explicitly enforced in the integration schema. Also,
using Quary, users may be able to identify opportunities
for generalizing feedback. For example, by analyzing the
feedback instances provided by the user, it may transpire
that all the tuples of the FavoriteCity relation in which the
attribute Country takes a given value GB are false posi-
tives.

Kot et al. [34] investigated the problem of updates
propagation based on schema mappings. The idea is that
users can update relations in the underlying databases,
by inserting, deleting or modifying tuples. Such updates
are then propagated to other relations using pre-defined
schema mappings. User input considered by Kot et al.
are to a certain extent similar to the feedback we consid-
ered in this paper, for example, a tuple insertion (resp.
deletion) can be seen as identifying a false negative (resp.
false positive), and a tuple modification can be seen as
identifying a false positive and providing a false nega-
tive. The objective of user input in the proposal by Kot et
al., is however different from the role that feedback plays
in our proposal. Kot et al. considers that schema map-
pings are correct, and they focus on propagating updates
when violation of those schema mappings occurs. Note,
however, that our work can benefit from the idea of up-
dates propagation investigated by Kot et al.. In particular,
feedback provided on a given integration relation can be
used to infer feedback on other integration relations when
the relationships between the relations that constitute the
integration schema are encoded in the form of schema
mappings. Using this approach, for example, a false neg-
ative for a given relation r in the integration schema can
be inferred given a true positive tuple that was identified
for another integration relation r′.

7.1.4. Authoring Integration Queries over Dataspaces
Assisting end users in authoring queries over multi-

ple sources is another area that is related to our work. An
example is the Q system, which, given a set of keywords
specified by the user, infers a collection of candidate struc-
tured queries over the underlying data sources [52, 51].
Similar to our approach, the Q system uses as input feed-
back provided by end users about the results obtained us-
ing the candidate queries. However, the solution adopted
in the Q system is different from ours. They use feed-
back to rank candidate queries, whereas the annotations
that we compute estimate the precision and recall of can-
didate mappings, thereby opening the door to tailorable
selection, i.e., one that seeks to meet specific user require-
ments in terms of these criteria. In addition to ranking
candidate mappings, these annotations allow the quality
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of each candidate mapping to be measured. Also, the
assumptions underlying the Q system are different from
ours. Using the Q system, it is assumed that a candi-
date query returns few answers, and that feedback about
a given tuple can be applied to all the tuples of the same
query. We do not make this assumption in our work: the
same candidate mapping can produce tuples that meet
users expectations (i.e., are true positives), and tuples that
do not (i.e., are false positives). In addition, we allow, and
derive benefits, from false negatives that the user is able
to supply.

Another proposal that seeks to help users author
queries over multiple sources is that by Cao et al. [12]. Cao
et al. developed a method for exploring semi-structured
data collections [12] with the objective of identifying
queries that are relevant to the user. In doing so, they
seek two kinds of feedback from end users: soft feed-
back and hard feedback. Soft feedback is used for ranking
candidate queries, whereas hard feedback is used to rule
in, or rule out a candidate query. Candidate queries are
ranked, with the top query being the one that meets to the
highest degree the user needs that were learned through
supplied feedback. While the problem tackled in our pa-
per is similar, in the sense that we seek to identify the
mapping (or query) that meet users needs, the means we
use for collecting feedback is fundamentally different. In
the work, by Cao et al., the user is required to provide
feedback by examining query specifications. In contrast,
in our work, the user provides feedback by commenting
on results obtained using the candidate mappings, i.e., we
assume a setting in which the user is not necessarily famil-
iar with the sources and their schemas, and as such may
not be able to provide feedback that requires examining
mapping specifications.

Sattler et al. [50] developed VIbE, a system that as-
sists designers in information integration tasks by pro-
viding them with the means for querying data sources
using query-by-example (QBE) style queries. In the light
of the specification of such queries and the results they re-
trieve, the designer specifies the mappings that reconcile
the heterogeneities between data sources. The approach
taken by the authors of this work is similar to ours in
the sense that query results are used to judge the fitness
of a mapping. However, different from our proposal, in
VIbe, it is up to the designer, who is assumed to be able to
manually specify and refine the mappings.

7.2. Data Exchange and Integration
Schema mappings are central to data exchange and in-

tegration. In data exchange, they are used as a means to
transform data structured according to a source schema
into data structured according to a target schema. In
data integration, schema mappings are used to reformu-
late queries issued against the integration schema into
queries that are expressed in terms of the underlying
source schemas. In this section, we present data exchange
and integration proposals that aim to facilitate the design,

to refine and to verify schema mapping specifications, and
compare them to our work.

7.2.1. Designing and Refining Schema Mappings
Our proposal for designing and refining schema map-

pings is inspired to some extent by the work by Yan et
al. [57] and Alexe et al. [3], in that we use information pro-
vided by the source schemas. However, their approach
is different from ours. In particular, in the above propos-
als, the mappings that do not meet users expectations are
considered incorrect, and are ruled out. In contrast, in
our proposal, refinement does not seek to remove “bad”
candidate mappings: we allow for the co-existence of all
candidate mappings, including those that are known to re-
turn false positives. This means that refinement operation
seeks to create new better-quality candidate mappings
from existing ones by iteratively mutating and crossing
over the mappings in the initial set of mappings derived
using existing generation techniques (e.g., [44, 56]).

As well as the above proposals, a number of re-
searchers investigated the issue of designing and refin-
ing schema mappings using data examples [2, 6, 22]. For
example, Alexe et al. [2, 6] developed a system for gener-
ating mapping specifications based on data examples that
the user provides. Initially, the user provides a set of data
examples, where a data example is a pair (I,J), where I is
an instance of the source schema and J is an instance of
the target schema. A schema mapping that fits the data
examples is generated. The user can then refine the map-
ping specifications by modifying the data examples s/he
provided or add new ones.

Our work differs from the proposal by Alexe et al. [2, 6]
in the following points. Firstly, as stated by Alexe et al.
[2], the intended users of their system are mappings de-
signers who wish to design a schema mapping over a
pair of source and target relational schemas. In particu-
lar, the users of the system developed by Alexe et al. [2]
are expected to be able to detect that a schema mapping
needs to be refined by examining the mapping specifica-
tion, and to modify existing data examples in a way that
yields the desired refinement. Using our approach, users
do not have to examine mapping specifications. They do
not have to specify data examples either. Rather, they are
simply asked to identify expected and unexpected tuples
within the integration schema. Secondly, the system de-
veloped by Alexe et al. [2] assumes that the user is familiar
with the structure and is knowledgeable of the semantics
of the source and the target schemas, and is able to pro-
vide for data structured according to the source schema,
the corresponding data structured according to the target
schema. The techniques that we presented in this paper
are intended for users who are not familiar with the struc-
ture and semantics of the source schemas, but are able to
comment on tuples of the target schema.

Fletcher and Wyss [22] developed a system called Tu-
pelo for automatically defining schema mappings by iter-
atively restructuring the source schema until the resulting
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schema is the same as the target schema. This process is
driven by data examples that are specified by the user.
Tupelo considers a subset of the structural transformation
defined by the Federated Interoperable relational Algebra
[55]. The mapping discovery process implemented is sim-
ilar to mapping refinement that we proposed in this paper,
in the sense that the discovery (or refinement) of mappings
is driven by a heuristic that seeks to improve the quality of
the mapping. There are however fundamental differences
between the mapping discovery process implemented by
Tupelo and the mapping refinement presented in this pa-
per. Firstly, like Alexe et al. [2], the mapping discovery
process in Tupelo is driven by data examples that specify
instances of the source schema and the corresponding in-
stances structured according to the target schema. These
data examples are provided by the user who is assumed
to know the semantics of the source and target schemas,
and is able to specify the structure of the same data con-
tent according to the source and target schema. In our
setting, the user is supposed to know the semantics of the
integration (target) schema, but does not have to be famil-
iar with the semantics of the source schemas. Secondly,
the data examples provided by the user in Tupelo are as-
sumed to uniquely characterize the schema mapping that
is expected by the user. These data examples are called by
the authors of the Tupelo system critical instances. Specify-
ing critical instances is, as acknowledged by the authors
of Tupelo, a hard task that requires deep knowledge as
well as the specificities of the source and target schemas.
The authors of Tupelo briefly mentioned the possibility of
generating critical instances using techniques developed
for record linkage. However, in the context of data inte-
gration, often, the integration schema is a virtual one in
the sense that it is not associated with instances. Because
our approach is targeted towards users who are not able
to specify critical feedback instances that can uniquely be
used to specify the mapping, the user provides feedback
specifying both expected as well as unexpected results.
This is an important feature: negative feedback specifying
unexpected tuples allows reduction of the space of unde-
sired solutions during the search. Thirdly, the mapping
discovery process in Tupelo assumes that it is always pos-
sible to derive the schema mapping that exactly captures
user requirements based on data examples. In certain
cases, this process may fail to locate the ideal mapping,
either because the content of the sources does not allow
such a mapping to be derived, or because the mapping
language is not expressive enough to allow for the deriva-
tion of such a mapping. Using Tupelo in such cases, the
process of mapping discovery simply fails. Instead, using
our approach, the refinement process attempts to identify
the best mappings, in terms of F-measure, in the light of
the feedback provided by the user.

Also related to our work, is the MapMerge operator de-
veloped by Alexe et al. [5]. Given a set of mappings, which
are expressed as second order tuple generating depen-
dencies [21], between one (or more) source schema and a

target schema, MapMerge correlates those mappings in a
meaningful manner. In particular, the MapMerge opera-
tor ensures that duplicates tuples are not created within
the target schema, and that the associations between tu-
ples in the source and target schemas are preserved. In
our work, we confine ourselves to global as view map-
pings, using which every element in the integration (tar-
get) schema is associated with a query over the sources
that can be used to populate such a relation. Our work
can benefit from the MapMerge operator. In particular,
the mappings that are selected using our method to pop-
ulate the different relations in an integration schema can
be correlated using MapMerge. Also, MapMerge can be
used to check that the feedback provided by the user on
different relations of the integration schema, are consistent
with the constraints defined between those relations.

7.2.2. Verifying Schema Mappings
While schema mappings can be automatically derived

using existing mapping generation techniques [44, 56],
the mappings output by these techniques may not con-
form to users expectations. Some researchers attempted
to address the issue of mapping verification within the
context of data exchange. Chiticariu et al. [13] proposed a
debugger for understanding and exploring schema map-
pings. To do this, they compute, and display on request,
the relationships between source and target data with the
schema mapping in question. Bonifati et al. proposed
Spicy [9, 10], a system for verifying the quality of map-
pings between a source and target schema. To verify a
collection of schema mappings, their source queries are
issued against the source schema and the results obtained
are compared with instances from the target schema, the
contents of which are assumed to be available. The re-
sults of this comparison are meant to identify incorrect
mappings and to suggest to designers which mappings
are likely to be accurate. Using the above tools, the ver-
ification of schema mappings takes place before the data
integration system is setup, potentially incurring a consid-
erable up-front cost [23, 27]. In contrast, our proposal falls
under the dataspaces vision, since we seek to annotate
and refine the candidate mappings as the data integration
proceeds incrementally.

7.2.3. Soliciting Feedback on Universal Solutions
In this paper, we considered the case in which the

user provides feedback on tuples in which all attributes
are bound to constant values. This approach was also
adopted in other proposals, e.g., the work on authoring
integration queries by Talukdar et al. [7]. A second ap-
proach that can be adopted when soliciting feedback is
the use of universal solutions.

A universal solution exhibits properties that favor
them over other solutions when providing feedback.
Firstly, a universal solution captures exactly what the
mappings specify: it captures no less and no more than
what the mapping specifications state [21]. Therefore,
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providing feedback on tuples that belong to a universal
solution, allows the user’s attention to focus on tuples that
are an exact reflection of the candidate mapping specifica-
tion. Secondly, the feedback given on tuples that belong
to a universal solution can be propagated to tuples that
belong to other solutions. To illustrate this, consider that
Ti is a relation in the integration schema T, and consider
that the user provides feedback annotating a tuple t of
the universal solution J (for a given candidate mapping).
Given the feedback supplied by the user, we can infer
feedback on tuples that are obtained in other solutions for
that candidate mapping. Specifically, for every solution
J′, we can make the following inference:

If t is expected in J, then h(t) is expected in J′.

The above inference follows from the definition of a
universal solution [21]. Unfortunately, we cannot prop-
agate false positives from the universal solution to other
solutions. In particular, if t is unexpected in J, then we
cannot infer that h(t) is unexpected in J′, unless J′ is ho-
momorphically equivalent to J′.

Note that while universal solutions exhibit good prop-
erties as discussed above, it assumes that the user is
knowledgeable of the semantics of the target schemas,
and are able to specify universal solutions. In dataspaces
in general different categories of user may contribute to
pay-as-you-go-integration. Those who are knowledge-
able with the semantics of the sources schemas and the
target schema will be in a position to specify universal
solutions that capture the semantics of the mappings that
they want. However, the approach that we described in
this paper, is primarily targeted towards users who are
familiar with the semantics of the target schema, but not
that of the source schema, and do not have the necessary
skill to be able to directly specify universal solutions.

8. Conclusions

In this paper, we explored the use of feedback supplied
by end users for annotating, selecting and refining schema
mappings in the context of dataspaces. We showed how
schema mappings can be incrementally annotated with
metrics that estimate the precision and recall of the results
they retrieve based on feedback supplied by end users.
The results of evaluation exercises showed the effective-
ness of our solution. They demonstrated that it follows
the pay-as-you-go philosophy: the more feedback the user
supplies, the better the quality of the estimates computed.
Empirical evaluation showed that mapping annotation is
more cost effective in early feedback iterations (in that it
suffers from diminishing returns), and that inconsisten-
cies in feedback (as expected) may lead to an increase in
the error of the estimates computed.

We presented a method for selecting mappings for
populating an element of the integration schema that is
responsive to user needs. This method casts the problem

of mapping selection as a constrained optimization prob-
lem that we solve using the mesh adaptive direct search
algorithm. Ours is, to the best of our knowledge, the
first proposal that tackles the problem of schema map-
ping selection in this way. The experiment showed that
the method for selecting schema mappings is effective: a
small number of feedback instances allows the selection of
the schema mappings that would have been chosen had
the complete set of expected tuple results been known.

We also showed how better quality mappings can be
constructed from an initial set of candidate mappings
through refinement by using an evolutionary algorithm.
The pay-as-you-go approach to gradual improvement
seems to be applicable to mapping refinement. The more
feedback used as input, the better the quality of the map-
pings obtained through refinement. Also, as for mapping
annotation, mapping refinement is more cost effective in
early feedback iterations.

Finally, we investigated the problem of annotating
queries issued over an integration schema by propagat-
ing feedback given on the base relations that those queries
rely on. Overall, the lesson is that the lower the query se-
lectivity, the smaller the error in the precision and recall
estimated for the query.

The mapping strategies that are reported in the paper
have been incorporated within a toolkit for managing data
integration systems, called DSToolkit [1,2], throughout
their life cycle, from their initialization to their improve-
ment and maintenance. In particular, DSToolkit provides
users with the means to select the data sources they wish
to integrate, to match their schemas, to create schema
mappings based on the matches identified, and to anno-
tate, select and refine such mappings using the methods
presented in the paper.
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