

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-863803

Matthias Boehm, Dirk Habich, Wolfgang Lehner

On-demand re-optimization of integration flows

Erstveröffentlichung in / First published in:

Information Systems. 2014. 45, S. 382-399. Elsevier. ISSN 0306-4379.

DOI: https://doi.org/10.1016/j.is.2008.06.001

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-853467

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
n Corr

Work d
E-m

http://d
On-demand re-optimization of integration flows

Matthias Boehm n, Dirk Habich, Wolfgang Lehner
Technische Universität Dresden, Dresden, Germany
a r t i c l e i n f o

Article history:
Received 10 June 2012
Received in revised form
27 September 2013
Accepted 25 March 2014

Recommended by: Philippe Bonnet

reduce message latency. State of the art strategies to address this performance bottleneck
Available online 13 April 2014

Keywords:
Integration flows
Optimization
Workload adaptation
esponding author. IBM Research - Almaden

one while the author was at Technische Uni
ail address: mboehm@us.ibm.com (M. Boehm

x.doi.org/10.1016/j.is.2014.03.005

Provided by Sächsisc
a b s t r a c t

Integration flows are used to propagate data between heterogeneous operational systems
or to consolidate data into data warehouse infrastructures. In order to meet the increasing
need of up to date information, many messages are exchanged over time. The efficiency
of those integration flows is therefore crucial to handle the high load of messages and to

are based on incremental statistic maintenance and periodic cost based re optimization.
This also achieves adaptation to unknown statistics and changing workload character
istics, which is important since integration flows are deployed for long time horizons.
However, the major drawbacks of periodic re optimization are many unnecessary re
optimization steps and missed optimization opportunities due to adaptation delays. In
this paper, we therefore propose the novel concept of on demand re optimization. We
exploit optimality conditions from the optimizer in order to (1) monitor optimality of the
current plan, and (2) trigger directed re optimization only if necessary. Furthermore, we
introduce the PlanOptimalityTree as a compact representation of optimality conditions
that enables efficient monitoring and exploitation of these conditions. As a result and in
contrast to existing work, re optimization is immediately triggered but only if a new plan
is certain to be found. Our experiments show that we achieve near optimal re optimiza
tion overhead and fast workload adaptation.
1. Introduction

Increasing amounts of data as well as technical and
organizational issues, like new technologies and pragmatic
behavior, fundamentally changed the scope of data man
agement towards distributed data management across
numerous heterogeneous systems, applications, and small
devices [1]. For this reason, the seamless and efficient
integration of these systems becomes more and more
crucial for an IT infrastructure and it is seen as one of
the most expensive challenges information technology
faces today [2].
, San Jose, CA, USA.

versität Dresden.
).

1

he Landesbibliothek, St
In order to cope with the high degree of system hetero
geneity and complex procedural integration tasks, impera
tive integration flows are modeled and executed to exchange
data between these systems [3]. There are many important
application domains such as enterprise information systems,
financial messaging, energy data management, telecommu
nications, or health care management [4]. Integration flows
are deployed once and then repeatedly executed by an
integration platform, often over months and years. Examples
of such platforms are ETL (Extraction Transformation Load
ing) tools, EAI (Enterprise Application Integration) servers or
MOM (Message Oriented Middleware) systems, which have
converged more and more in the past [3,5].

In general, there are two major types of use cases
for integration flows. First, horizontal integration refers to
data synchronization between operational systems by EAI
or MOM tools. Data exchange is triggered on updates and
aats- und Universitätsbibliothek Dresden

http://dx.doi.org/10.1016/j.is.2014.03.005
http://dx.doi.org/10.1016/j.is.2014.03.005
http://dx.doi.org/10.1016/j.is.2014.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.03.005&domain=pdf
mailto:mboehm@us.ibm.com

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
hence realized by propagating many small messages [6].
Second, vertical integration refers to consolidating data of
operational systems into data warehouse infrastructures
by ETL tools. There is an increasing demand of operational
business intelligence that also requires immediate data
synchronization in order to achieve up to date operational
reports [7 9]. This immediate synchronization is realized
with techniques like increased delta load frequencies or
even update driven data propagation (trickle feeds) [7,10].

Both types of use cases lead to the execution of many
independent plan instances of integration flows over time.
Additionally, often low message latency is required due to
the need for up to date information and potentially block
ing source systems. The high load combined with low
latency requirements inherently leads to a need for opti
mization to overcome the performance bottleneck. Exist
ing work on optimizing integration flows can be classified
as follows into rule based, cost based, and adaptive cost
based approaches:

Rule based optimization applies static rewrite rules
(e.g., algebraic simplifications) during initial deployment
of an integration flow (optimize once) [11 14]. While
this approach imposes low optimization overhead, many
optimization opportunities cannot be exploited because
rewriting often requires dynamic cost based decisions.

Cost based optimization exploits the full optimization
potential by applying dynamic rewritings based on estimated
costs [10,13,15,16]. Existing approaches are still only executed
once during initial plan deployment (optimize once). These
works are important steps towards adaptive behavior but
they cannot adapt the deployed integration flows to changing
workload characteristics [17 19] such as varying cardinal
ities, selectivities, or execution times.

Reasons for workload changes are manifold such as
varying usage schemes of external systems [20] or varying
network properties [18]. For example, consider a web
shop, where new orders are immediately propagated to a
central system. Time varying numbers of orders cause
changing input cardinalities (load shifts). Fluctuating order
frequencies per product category reason changing selec
tivities (data shifts). Varying utilization of external systems
or network speeds especially, in wide area networks
influences execution times. Workload characteristics in
real productive systems change significantly over time as
shown by surveys on eLearning query workloads [21],
Website requests [20], and storage workload traces [22].
Missing adaptation to such workload changes is a serious
problem because integration flows are deployed for long
time horizons. Clearly, existing approaches could easily be
extended to an adaptive optimize always model by trig
gering optimization for each new plan instance or even
permanently. However, due to many short running plan
instances, this is inefficient and thus reasons the need for
dedicated re optimization models.

Adaptive cost based optimization tries to repeatedly
improve the current plan according to the changing
workload characteristics. In contrast to traditional adap
tive query processing [17], many consecutive instances
of deployed integration flows are executed over time.
This allows for efficient, asynchronous, inter instance plan
re optimization. Here, the state of the art is periodic
2

Provided by Sächsische Landesbibliothek, Sta
re optimization, where optimization is triggered with fixed
optimization interval [4,23]. On the positive side, this
simple model ensures full optimization potential and
robust workload adaptation with moderate optimization
overhead. On the negative side, it has the drawbacks of (1)
many unnecessary re optimization steps, (2) adaptation
delays, where we miss optimization opportunities, (3)
maintenance of statistics that might not be used by the
optimizer, and (4) the optimization interval as a high
influence parameter.

1.1. Contributions

The main contribution of this paper is the novel concept
of on demand re optimization for integration flows. This over
comes drawbacks of existing techniques and ensures near
optimal adaptive re optimization. The core idea is to exploit
optimality conditions from the optimizer for monitoring
optimality of the current plan and triggering directed
re optimization only if necessary. Furthermore, we make the
following detailed contributions that also reflect the struc
ture of this paper (an extended and revised version of
[4, Chapter 6]):
�

ats
First of all, we give a concise background description of
integration flows and their optimization in Section 2.
Additionally, we present the vision and solution over
view of on demand re optimization in Section 3.
�
 Second, we introduce the monitoring of optimality in
Section 4. We define the PlanOptTree as a compact
representation of optimality conditions as well as we
describe algorithms for creating PlanOptTrees and
for monitoring optimality during statistic maintenance.
�
 Third, we introduce the directed re optimization in
Section 5. This includes algorithms for determining the
re optimization search space, directed re optimization
for example optimization techniques and updating
PlanOptTrees after re optimization.
�
 Fourth, we describe detailed results of our experiments
in Section 6, where we achieve near optimal optimiza
tion overhead and workload adaptation.
�
 Finally, we extensively survey related work in Section 7
and conclude the paper in Section 8.

2. Background and preliminaries

As a foundation, we first briefly describe the back
ground of integration flows and their optimization. Sub
sequently, we systematically analyze drawbacks of existing
techniques for adaptive cost based optimization.

2.1. Integration flows

An integration flow is an imperative workflow descrip
tion consisting of control flow , data flow , and interaction
oriented operators that receive, extract, transform, and
propagate data in the form of messages. Often control
flow oriented languages such as BPEL (Business Process
Execution Language), extended by relational operators, are
used to specify these integration flows [4,7,14]. Compared
- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
to pure data flows, these imperative control flows addition
ally express temporal dependencies between operators,
e.g., execute operator o1 before o2. Intermediate results of
integration flows are represented as messages, where each
message is modeled as msgi ¼ ðti; diÞ with tiAZþ being
the message creation timestamp and di being a tree of
name value data elements. Formally, an integration flow is
defined as follows:
Fig. 1. Running example integration flow.
Definition 1 (Integration flow). A plan P of an integration
flow is a sequence of atomic or complex operators o¼
fo1; o2;…g, where complex operators recursively contain
operator sequences. We denote the total number of
operators as m¼ joj. Each operator oi may have an arbi
trary number of input variables fdsin1 ðoiÞ;…; dsink1 ðoiÞg and
output variables fdsout1 ðoiÞ;…; dsoutk2 ðoiÞg spanning a direc
ted graph of (temporal and data) dependencies δ. An
instance pi of a plan P is instantiated in a time based
manner or for each received message, and it executes o
once. Due to complex operators such as iterations and
alternatives some operators may be executed multiple
times or not at all.

The following example shows such an integration flow.
We use this as a running example throughout the whole
paper.
Example 1 (Integration flow). New product orders are pro
pagated from a specific ERP system s1 to a DWH s2 using plan
P as shown in Fig. 1. An ERP adapter instance receives the
incoming messages and transforms them into an internal
XML representation. Plan instances are initiated and exe
cuted for each received message in arrival order (Receive
operator). We then execute three different Selection

operators in order to filter special purpose orders, where in
this case each Selection applies an expensive probe filter.
Such a filter probes all returned elements of a given XPath
expression against a hashset of disjunctive predicates and
discards elements where this probe is unsuccessful. Subse
quently, a Switch operator redirects the control flow using
content based predicates to specific Translation operators
that apply XMLmessage transformations. Finally, the result is
loaded into the DWH using Assign and Invoke operators as
well as a DB adapter instance.

Integration flows such as our example are deployed
once into an integration platform and then repeatedly
executed.

System architecture: The major commercial integration
platforms such as SAP Process Integration, IBM Message
Broker, or MS Biztalk Server all exhibit a common system
architecture. Inbound adapter instances (e.g., s1 in Example 1)
receive messages from external systems, transform them
into an internal presentation (e.g., XML), and append them
to persistent inbound message queues. For each received
message a plan instance is executed, in serial order of
message arrival. Those plans interact (read/write) with exter
nal systems via outbound adapter instances (e.g., s2), which
are similar to inbound adapters an abstraction of different
types and instances of external systems.
3

Provided by Sächsische Landesbibliothek, St
2.2. Optimization of integration flows

Regarding the existing high performance demands on
integration platforms, we now give an overview of adap
tive cost based re optimization of integration flows [4,23].

Cost model: As a foundation for cost based optimization
and due to the specific characteristics of (1) missing
statistics (external and unknown data), (2) arbitrary inter
actions with external systems (black box), and (3) control
flow oriented operators, we employ a double metric cost
model. Essentially, we monitor and incrementally maintain
runtime statistics such as execution timesWðoiÞ and input/
output cardinalities jdsj at an operator level. These statis
tics are fed into operator type specific cost formulas of
cardinality dependent costs CðoiÞ (tailor made for known
operators, linear for black box interactions) and execution
times WðoiÞ. The execution time of a rewritten subplan P0

can then be estimated by an aggregate (e.g., sum for
operator sequences) over adjusted operator costs with

Ŵ ðo0iÞ ¼ Ĉ ðo0iÞ=CðoiÞ �WðoiÞ: ð1Þ
This time based cost model enables the comparison of all
different types of operators, allows one to take paralleliza
tion into account, and it is self adjusting to changing
workload characteristics.

Optimization algorithm: Our optimization algorithm then
uses this cost model as a basis for cost based optimization
techniques. We use a transformation based approach in
order to preserve semantic correctness of the initially speci
fied, imperative plan. In order to ensure low latency, our
basic optimization objective is to minimize the average plan
execution time with

ϕ:min Ŵ ðPÞ ð2Þ
but it can be combined with techniques for throughput
optimization by taking message waiting times into account.
The algorithm essentially iterates over the hierarchy of
operator sequences and applies optimization techniques.
Finally, it recompiles and exchanges plans. Each optimization
technique relies on specific optimality conditions for certain
rewriting pattern. We employ techniques from traditional
data management, techniques from programming language
compilers, and new tailor made techniques for integration
flows.
aats- und Universitätsbibliothek Dresden

Fig. 2. Example periodic re-optimization.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
Adaptive re optimization: Furthermore, we use periodic
re optimization for adaptation to changing workloads [23].
The simple yet effective basic idea is to periodically trigger
re optimization with an optimization interval Δt to adapt
the deployed plan to the current runtime statistics. We use
an example to illustrate this re optimization model.

Example 2 (Periodic re optimization). Fig. 2 shows the
plan execution times in a scenario with two workload
shifts. Periodic re optimization triggers re optimization
with an optimization interval Δt. After a workload shift
occurred (e.g., ws1), the next re optimization will find the
new optimal plan (e.g., P0) but there is an adaptation delay
until plan rewriting takes place. If no workload shift has
occurred during Δt, we do not find a new plan and thus
execute unnecessary re optimization steps.

To summarize, periodic re optimization exhibits several
drawbacks. First, there are adaptation delays, where we miss
optimization opportunities. Second, we might execute many
unnecessary full re optimization steps. Third, we might
gather statistics that are not used by the optimizer. Fourth,
the optimization interval is a parameter that requires
tuning. Since the severity of these drawbacks depends on
the workload, we systematically quantify the problems (1),
(2), and (4) by the following sensitivity analysis.

Example 3 (Sensitivity analysis). Assume a scenario,
where we serially execute n¼100,000 instances of plan
P. Let jwsj denote the number of workload shifts that occur
uniformly distributed every n=jwsj plan instances. Further
more, let WðPÞ ¼ 0:5 s be the unoptimized plan execution
time, let WðP0Þ ¼ 0:1 s be the optimized plan execution
time, and let WðoptÞ ¼ 2 s be the optimization time. Fig. 3
then shows the total runtime when using periodic re
optimization with optimization interval Δt. Fig. 3(a) shows
the influence of jwsj with fixed Δt ¼ 5 min. For increasing
workload dynamics, periodic re optimization degenerates
from near optimal performance to the unoptimized case.
Fig. 3(b) illustrates the impact of Δt. For small Δt there is
high re optimization overhead and for large Δt there are
high adaptation delays. In case of almost static workloads
Fig. 3. Sensitivity of periodic re-optimization. (a) Workloads shifts and (b) optimization interval.

1 Traditional two-dimensional plan diagrams [24] rely on a complete
what-if search space analysis, while we model break-even points of plans
via multi-dimensional optimality conditions.
(jwsj ¼ 10), the overall performance is indeed fairly in
sensitive to Δt. However, as workload dynamics increase
(jwsj ¼ 100 and jwsj ¼ 1;000) the sensitivity increases and
4

Provided by Sächsische Landesbibliothek, Sta
thus it becomes difficult to find a good Δt. Finally, it is
noteworthy that the alternative approach of triggering
re optimization if statistics have changed significantly
has the same conceptual problem. Due to statistic fluctua
tions, a sensitivity parameter is required for deciding on
change significance. If it is chosen too high, there are high
adaptation delays; if chosen too low, there are many
unnecessary re optimization steps.

We conclude that periodic re optimization is a simple
indeed effective technique if workload changes are
rare events or if the workload is exactly known. On the
downside, the overall performance can degenerate to the
performance of the unoptimized case.

3. Solution overview

In this paper, we present the novel on demand re
optimization model that achieves both, robust and near
optimal adaptive re optimization. Our core idea is (1) to
monitor optimality of the current plan via optimality
conditions and (2) to apply directed re optimization if
conditions are violated. The following example illustrates
these two basic concepts.

Example 4 (On demand re optimization). Consider the sub
plan P ¼ ðo2; o3Þ consisting of two Selection operators
(see Fig. 1). The search space for this subplan is illustrated
as a plan diagram1 in Fig. 4(a). The plan ðo2; o3Þ is optimal
ats- und Universitätsbibliothek Dresden

Fig. 4. Plan search space partitioning. (a) Plan diagram Pðo2 ; o3Þ and (b)
plan diagram Pðo2 ; o3 ; o4Þ.

Fig. 5. PlanOptTree of the running example.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
as long as oc1: selðo2Þrselðo3Þ (with selðoiÞ ¼ jdsoutðoiÞj=
jdsinðoiÞj), i.e., the selectivity of o2 is lower or equal to the
selectivity of o3. Thus, the optimality condition oc1 models
optimality of the current plan (1a). Then, we maintain only
necessary statistics that are involved in this optimality
condition, i.e., selðo2Þ and selðo3Þ, and use them for con
tinuously monitoring of optimality (1b). If oc1 is violated,
we use this condition for directed re optimization in order
to determine P0 ¼ ðo3; o2Þ as the new optimal plan (2).
As shown for a larger subplan P ¼ ðo2; o3; o4Þ in Fig. 4(b),
we maintain only optimality conditions of the current
(optimal) plan, i.e., oc1 and oc2 instead of all possible plans.
For the sake of a clear presentation, we use this simple
example throughout the whole paper but as we will
exemplify in Section 5.2 the basic concepts apply to
arbitrary operators and optimization techniques.

For enabling on demand re optimization, we introduce
the PlanOptTree data structure as a compact representation
for arbitrary optimality conditions. The PlanOptTree of a
current plan indexes monitored and derived statis
tics as well as current optimality conditions. We then use it
for incremental online statistics maintenance and checking
of optimality conditions. This continuous monitoring of opti
mality allows us to immediately trigger re optimization if
necessary, i.e., if violated conditions guarantee that we will
find a plan with lower costs. In addition, the violated condi
tions can also be exploited for directed re optimization.

Example 5 (PlanOptTree). The PlanOptTree of our
running example (Fig. 1) is shown in Fig. 5. It includes
two optimality conditions (oc1, oc2) for expressing the
ordering of the Selection operators o2, o3 and o4
according to their selectivities (oc3 is omitted due
to transitivity) and the condition oc4 expressing branch
prediction of the Switch operator o5 regarding its cost
weighted path frequencies.

In the following, we explain the monitoring of optimality
and directed re optimization using PlanOptTrees in detail.
2 For clarity of presentation, we omit the usage and maintenance of
this MEMO structure in our algorithms. From a high-level perspective, it
can be understood as a lookup table for memoization in order to reuse
results of subgraphs and to prevent redundant computations.
4. Monitoring optimality

In this section, we formally define the PlanOptTree

and show how to create a PlanOptTree during initial
plan optimization. Furthermore, we explain how to use it
for statistic maintenance and discuss when to trigger re
optimization.
5

Provided by Sächsische Landesbibliothek, St
4.1. Plan optimality trees

A PlanOptTree, which general structure is shown in
Fig. 6, models plan optimality and it is defined as follows:

Definition 2 (PlanOptTree). Let P denote the optimal
plan with regard to the current statistics, let m be the
number of operators, and let s be the number of statistics
per operator. Then, the PlanOptTree is defined as
a graph of five strata representing all optimality condi
tions of P:
�

aat
RNode (stratum 1): A single root node refers to m0

(1rm0rm) operator nodes (ONode).

�
 ONode (stratum 2): An operator node specifies a unique

plan operator via a node identifier nid and it refers to s0

(1rs0rs) statistic nodes (SNode).

�
 SNode (stratum 3): A statistic node exhibits one of the s

atomic statistic types sj (e.g., input cardinality), where
this type must be unique for the parent operator oi.
Each SNode maintains a sliding window of statistic
tuples monitored for ðoi; sjÞ, a single aggregate, as well
as references to child sets of complex statistic nodes
(CSNode) and optimality condition nodes (OCNode).
�
 CSNode (stratum 4): A complex statistic node is a mathe
matical expression using all referenced parent SNodes
or CSNodes as operands, where a CSNode can refer to
SNodes of different operators. Further, a CSNode refers to
child sets of CSNodes and OCNodes. Hence, arbitrary
hierarchies of CSNodes are possible. CSNodes can also
be constants or external values.
�
 OCNode (stratum 5): An optimality condition node is
defined as a boolean expression op1θop2, where θ
denotes an arbitrary binary comparison operator and
the operands op1 and op2 refer to any CSNode or SNode,
respectively. The optimality condition is defined as
violated if the expression evaluates to false. In addition,
each OCNode refers to its source of creation in terms of
the originating optimization technique.

References to nodes of strata 1 and 2 are unidirectional,
while nodes of strata 3 5 are bidirectional. Furthermore, a
PlanOptTree includes a MEMO structure2 in order to
optionally mark subgraphs that have already been evalu
ated because nodes might be reachable over multiple
paths.
s- und Universitätsbibliothek Dresden

Fig. 6. General PlanOptTree structure.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
The defined general PlanOptTree structure exhibits
the following four fundamental properties:
�
 Optimality: Since PlanOptTree models plan opti
mality, we will only find a plan with lower cost if at
least one optimality condition is violated. Thus, there is
no need for re optimization until we detect a violation.
�
 Transitivity: If statistics are included in multiple optim
ality conditions, we can leverage transitively given
optimality conditions. For this reason, potentially
only a subset of all relevant optimality conditions are
required to monitor the optimal plan.
�
 Minimality: A PlanOptTree includes only operators and
statistics that are included in optimality condi
tions. Thus, we achieve minimal statistics monitoring and
minimal condition evaluation (see transitivity) under the
requirement of still ensuring optimality.
�
 Directed re optimization: In case of violated optimality
conditions, the knowledge of still valid conditions can
be exploited for reducing the re optimization search
space to a subset of the original search space.

These properties hold for a complete PlanOptTree that is
defined to cover all relevant optimality conditions of a
plan. Otherwise, we would have redundancy or miss
ing conditions.
4.2. Creating PlanOptTrees

During initial deployment of a plan, the full cost based
optimization is executed once and an initial PlanOptTree
is created. Subsequently, we solely rely on incremental and
directed re optimization by leveraging this PlanOptTree.
We now explain how to create the initial PlanOptTree.

Our transformation based optimization algorithm
(described in Section 2.2) recursively iterates over the
hierarchy of operator sequences and changes the current
plan by applying optimization techniques. For on demand
re optimization, we extended the optimizer in a way that
it does not only change the current plan but additionally,
each applied optimization technique also returns a partial
PlanOptTree representing optimality conditions for the
considered subplan. The use of partial PlanOptTrees at
6

Provided by Sächsische Landesbibliothek, Sta
the optimizer interface is reasonable because directed re
optimization potentially considers only subplans and thus
can only return partial PlanOptTrees. Creating the initial
PlanOptTree then reduces to merging all partial Pla

nOptTrees to a minimal representation. In the following,
we describe an example and the general case algorithm.

Example 6 (Merging partial PlanOptTrees). Recall the
running example plan P and assume the two partial Pla

nOptTrees shown in Fig. 7(a) and (b). These PlanOptTrees

have been created by applying selection reordering on opera
tors ðo2; o3; o4Þ. In detail, they consist of ONodes, SNodes, a
CSNode Selectivity, and an OCNode. Both partial Pla

nOptTrees include operator o3 and its selectivity CSNode.
Therefore, we add only o4 and its child nodes from pot2 to pot1.
When doing so, the dangling reference from the new optim
ality condition to selðo3Þ of pot2 is modified to refer to the
existing selðo3Þ of pot1. The final merged PlanOptTree pot is
shown in Fig. 7(c).

Algorithm 1. PlanOptTree creation (A PC).
ats- u
Require operator op, global PlanOptTree root (initially NULL)

1:
 o’op:getSequenceOfOperatorsðÞ

2:
 for i’1 to joj do // for each operator oi

3:
 if typeðoiÞAðPlan;Switch;Fork;IterationÞ

then // complex

4:
 A�PCðoiÞ // recursive invocation for complex operators

5:
 else // atomic operators

6:
 ppot’getPartialOptTreeðoiÞ

7:
 if root NULL then

8:
 root’ppot

9:
 else // merge partial PlanOptTrees
10:
 for all onAppot:onodes do // for each ONode on

11:
 if root:containsONodeðon:nidÞ then

12:
 eon’root:getOperatorðon:nidÞ

13:
 for all snAon:snodes do // for each SNode sn

14:
 if eon:containsSNodeðsn:typeÞ then

15:
 eson’eon:getSNodeðsn:typeÞ

16:
 modifyDanglingRefsðeon; eson; on; snÞ

17:
 else

18:
 eon:snodes:addðsnÞ

19:
 else

20:
 root:onodes:addðonÞ // add operator subtree

21:
 return root
Algorithm A PC (PlanOptTree creation): The A PC (see
Algorithm 1) creates the initial PlanOptTree by recursively
nd Universitätsbibliothek Dresden

Fig. 7. Merging partial PlanOptTrees. (a) Partial pot1, (b) partial pot2 and (c) merged pot.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
iterating over all operators and merging respective partial
PlanOptTrees. In case of complex operators, we recursively
invoke the A PC, where all subcalls have access to the root
PlanOptTree. At each operator (atomic or complex), we
apply all operator type related optimization techniques,
where each technique returns resulting partial PlanOpt

Trees. Some optimization techniques directly optimize
whole sequences of operators during the first invocation on
an operator of this sequence, where invocations for other
operators of this sequences are then ignored. For example,
the first invocation of selection reordering on operator o2 will
reorder the sequence (o2, o3, o4) and returns pot1 and pot2. If
no PlanOptTree exists so far, the first partial PlanOptTree
is used as root; otherwise, we merge the partial PlanOpt
Tree with the existing root. When merging, we check the
existence of operators as well as statistic nodes, and we add
new nodes if required. For complex statistic nodes, wemodify
dangling references in order to recursively change the refer
ences of complex statistics and optimality conditions to the
existing PlanOptTree. Identical CSNodes are determined by
ID or equivalence of input nodes and CSNode class.

Optimizations: Context knowledge of operators can be
exploited for optimization. For example, we reuse the
output cardinality SNode of operator oi as input cardinality
SNode for operators with data dependencies to oi (partially
applied in our examples) because these statistics are per se
equivalent. In general, reusing statistics is beneficial for
expensive statistic maintenance approaches.

Complexity analysis: Clearly, the space complexity of a
PlanOptTree and the time complexities of PlanOptTree

algorithms depend on the complexity of applied optimization
techniques and their optimality conditions. Regarding mon
itoring optimality, the PlanOptTree is indeed optimal due
to its properties of transitivity and minimality. However, for
certain plan structures and problems, efficient bounds can be
established. For example, Appendix A shows a worst case
complexity of Oðm2Þ for local reordering sequences of
operators.

The PlanOptTree represents plan optimality via
optimality conditions based on current statistics. Hence,
only the update of statistics can cause the need for
re optimization.
4.3. Updating and evaluating statistics

In order to enable immediate re optimization in case
of violated optimality conditions, we use the PlanOpt

Tree also for incremental online statistic maintenance and
continuous monitoring of plan optimality via optimality
conditions.
7

Provided by Sächsische Landesbibliothek, St
A PlanOptTree maintains statistics that are required for
monitoring optimality conditions. Atomic statistics are
as usual gathered at operator level during plan execution
and immediately inserted into the PlanOptTree, where
unnecessary statistics are declined. Every SNode exhibits
a state in terms of aggregated atomic statistics (e.g., average
input cardinality) because we optimize the average case.
Different aggregation methods or even time series models
can be used. By default, we employ the simple exponential
smoothing:

EMAt ¼ EMAt�1þαðstðoiÞ EMAt�1Þ with αA ½0;1�: ð3Þ
Included statistics stðoiÞ exhibit exponentially decaying
weights due to the recursive computation, where α is used
to adjust the smoothing sensitivity. Here, general purpose
optimization algorithms such as L BFGS B [25] can be used
for parameter estimation. This EMA is suitable for incre
mental statistics maintenance with sliding window semantics
because (1) it relies on positive incremental maintenance for
new values anyway, (2) it can adapt fast to workload changes,
and (3) it does not require negative maintenance for expired
values due to decaying weights. After incremental statistics
maintenance, we also update the hierarchy of relevant com
plex statistic measures (CSNodes), and finally we evaluate
relevant optimality conditions (OCNodes) as well as trigger
re optimization on demand, i.e., only if required because a
plan with lower costs exists.

Robustness strategies: Triggering re optimization naïvely
for any violated optimality condition ensures immediate
adaptation but might cause the problem of frequently chan
ging plans (instability). There are two potential reasons. First,
by assuming independence of monitored conditional selec
tivities, data correlation can lead to cyclic re optimizations.
Second, if statistics are close to a break even point and
fluctuate to some extend for different reasons, we might
also have frequent plan changes. We explicitly address these
issues of instability with the following strategies:
�

aat
Correlation tables: Data correlations are addressed by
computing conditional selectivities via so called correla
tion tables. The idea is to maintain selectivities over
multiple versions of a plan, where we store and maintain
a row of unconditional and conditional selectivities for
each pair of operators with data dependencies in the
current plan. Until we are able to monitor and use the
unconditional selectivity, we assume statistical indepen
dence only. However, using statistics from multiple plan
versions prevents us from making wrong decisions multi
ple times. Starvation due to outdated statistics is avoided
by a time based decay. The integration into the PlanOpt

Tree is done via a CSNode ConditionalSelectivity
s- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
that maintains and reads the correlation table. This light
weight approach is effective for groups of few correlated
attributes.
�
 Lazy condition violation: In order to overcome the
problem of statistic fluctuations and serialized statistic
updates, we trigger re optimization lazily, i.e., only if
the condition is violated τ1 times (lazy count). As a
heuristic, we set this count to the number of SNodes of
the PlanOptTree because often already small lazy
counts are sufficient. Furthermore, the condition must
be violated at least by a relative cost threshold τ2 and a
true condition evaluation resets the lazy count.
�
 Minimal existence time: As a fall back mechanism for all
problems of instability, we introduce Δt as minimal
existence time of a plan. We collect statistics but
do not evaluate optimality during Δt after the last
re optimization. However, Δt is only the minimal
interval between re optimizations; afterwards, we con
tinuously monitor optimality and adapt the plan if
necessary in order to prevent adaptation delays.

Putting it altogether, we now describe the overall
statistic maintenance algorithm and analyze existing
parameters.

Algorithm 2. Insert statistics (A IS).

Require operator id nid, statistic type, statistic value, lastopt

1:
 if ðon’root:getOperatorðnidÞÞ NULL or
ðsn’on:getSNodeðtypeÞÞ NULL then

2:
 return // statistic not required

3:
 sn:maintainAggregateðvalueÞ

4:
 ret’true

5:
 if ðtime�ΔtÞ4 lastopt // min existence time

6:
 for all cnAsn:csnodes do // for each CSNode cn

7:
 ret’ret and cs:computeStatsðÞ

8:
 for all ocAsn:ocnodes do // for each OCNode oc

9:
 ret’ret and oc:isOptimalðÞ

10:
 if :ret then

11:
 A-PTR() // actively triggering re-opt (start thread)
Algorithm A IS (insert statistics): The A IS (see Algo
rithm 2) is invoked as we measure statistics. It then
realizes incremental online statistics maintenance for each
operator statistic and triggers re optimization if required.
Starting from the root, we search the operator node by nid,
then search the statistic node of this operator by type and
finally, if the node exists, maintain the aggregate. Further
more, if the minimum existence time is exceeded, we
check optimality conditions. For this purpose, we recur
sively compute and check relevant complex statistic mea
sures and optimality conditions that are reachable over
child references. During checking optimality, we also
update the specific lazy counters. If there is at least one
violated optimality condition that reached the lazy count,
we trigger re optimization by starting an asynchronous re
optimization thread.

Asynchronous re optimization: In contrast to synchro
nous mid query optimization where the remaining plan
depends on the optimizer output we do not block plan
execution and statistic maintenance. Furthermore, all
additional triggers for re optimization are simply rejected
as long as the optimizer thread is running. Finally,
8

Provided by Sächsische Landesbibliothek, Sta
after successful optimization, we switch plans on the next
possible point i.e., just before starting the next plan
instance and enable re optimization again.

Parameter analysis: The parameters of on demand re
optimization have fairly static influence and thus do not
require much tuning. First, if the minimal existence time
Δt is smaller than the interval between workload shifts,
there are no changes. Otherwise, adaptation delays line
arly increase. Second, adaptation delays also linearly
increase with increasing lazy count τ1. However, Δt and
τ1 can be kept low by default as we will show in our
evaluation. All other parameters are the same for both on
demand and periodic re optimization.

To summarize, the monitoring of plan optimality and
re optimization on demand minimizes adaptation delays
and at the same time prevents unnecessary re optimi
zation steps.

5. Directed re-optimization

Once re optimization has been triggered by violated opti
mality conditions during statistic maintenance, we exploit
these conditions for directed re optimization of the cur
rent plan. We first determine the reduced re optimization
search space. Then, we apply directed re optimization
instead of full re optimization. Finally, we incrementally
update the existing PlanOptTree according to the new
conditions.

5.1. Re optimization search space

Since directed plan re optimization aims at considering
only a subset of the complete search space as already
shown in Fig. 4, we first need to determine this reduced
re optimization search space. We exploit violated optimal
ity conditions for determining (1) the optimization techni
ques that produced these conditions and (2) the minimal
set of operators that need to be reconsidered by those
techniques. Generally speaking, the re optimization search
space consists of the set of operators, affected by violated
optimality conditions. In case of multiple violated condi
tions, this is the union of affected operators. In order to
guarantee optimality, we also need to take the transitivity
property of the PlanOptTree into account.

In general, we follow a bottom up approach to deter
mine this re optimization search space. We start at each
violated optimality condition and traverse all optimality
conditions that are reachable over transitivity connections.
Such a transitivity connection is defined as an atomic
or complex statistic node connected with two or more
optimality conditions. Transitivity chains of arbitrary
length are possible, where the end is given by the lack of
transitive connections or by the first condition that is still
optimal. Finally, termination is guaranteed because the
MEMO structure prevents cycles.

Example 7 (Re optimization search space). Assume the
PlanOptTree of Example 6. During initial optimization,
selectivities of selðo2Þ ¼ 0:2, selðo3Þ ¼ 0:3 and selðo4Þ ¼ 0:4
resulted in the optimality conditions shown in Fig. 8(a).
Re optimization was triggered because the selectivity of
ats- und Universitätsbibliothek Dresden

Fig. 8. Re-optimization search space. (a) Violated OCNode and (b)
transitive OCNode.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
operator o2 changed to selðo2Þ ¼ 0:45 and thus violates
selðo2Þrselðo3Þ. Hence, we would directly reorder opera
tors o2 and o3 during re optimization. Due to the transi
tivity of optimality conditions, we need to check the
selectivity of operator o4 as well, because we do not know
if the implicit optimality condition of selðo2Þrselðo4Þ
(given by selðo2Þrselðo3Þ and selðo3Þrselðo4Þ) still holds.
We traverse the PlanOptTree as shown in Fig. 8(b) and
see that this transitive condition is violated as well, while
the second optimality condition selðo3Þrselðo4Þ is
still valid.

Algorithm 3. Trigger re optimization (A TR).

Require plan P, invalid optimality conditions C

1:
 C0’C

2:
 for all ocAC do // for each OCNode

3:
 for all oc1Aoc:op1:ocnodes do // for each OCNode of op1

4:
 if oc1:θ oc:θ and oc1:op2 oc:op1 then

5:
 if :oc1:isOptimalðoc1:op1:agg; oc:op2:aggÞ then

6:
 C0’C0 [oc1

7:
 rCheckTransitivity ðoc; oc1:op1; leftÞ

8:
 for all oc2Aoc:op2:ocnodes do // for each OCNode of op2

9:
 if oc2:θ oc:θ and oc2:op1 oc:op2 then

10:
 if :oc2:isOptimalðoc2:op2:agg; oc:op1:aggÞ then

11:
 C0’C0 [oc2

12:
 rCheckTransitivityðoc; oc2:op2; rightÞ

13:
 PPOT’optimizePlanðP; C0Þ // apply directed re-opt

14:
 A-UP(PPOT; C0) // update PlanOptTree
Algorithm A TR (trigger re optimization): The A TR (see
Algorithm 3) adds all violated optimality conditions to the
set C and then it recursively traverses transitivity chains
for each condition in C in order to collect transitively
violated conditions. There, we check transitivity filters
(direction of operands and comparison operator) and
transitive optimality filters. Finally, we invoke the optimi
zer with all violated conditions C0 as re optimization
search space. After successful re optimization, we update
the PlanOptTree (A PPR).

Optimality analysis: Directed re optimization with
the reduced search space and full re optimization create
equivalent plans. The intuition is as follows. Any rewriting
possibility between operators is represented by an explicit
or a transitive optimality condition. Arbitrary complex
optimality conditions can be used to prevent the starva
tion in local minima. All operators included in violated
explicit or transitive conditions are used by directed re
optimization. Hence, directed re optimization guarantees
optimality. For a detailed analysis, we refer to Appendix B.

5.2. Example optimization techniques

Based on the determined re optimization search space,
we apply directed re optimization. As this depends on the
9

Provided by Sächsische Landesbibliothek, St
concrete optimization techniques, we exemplify the mon
itoring of optimality and directed re optimization for local
selection reordering, heuristic join reordering, and heur
istic vectorization. On demand re optimization is applic
able for arbitrary operators and optimization techniques
because a PlanOptTree can represent arbitrary opti
mality conditions. However, since the PlanOptTree com
plexity depends on the used optimization techniques, it is
especially practical for local and heuristic rewrites.

5.2.1. Selection reordering
Our running example optimization technique selection

reordering applies local rewriting decisions via a variant of
bubble sort with an average time complexity of Oðm2Þ.
This exchange based sort algorithm is well suited for
rewriting imperative plans because it allows for on the
fly correctness checks. The optimality condition is selðoiÞr
selðojÞ, where operator oi is a data flow predecessor of
operator oj. As shown throughout the paper, on demand
re optimization then requires m 1 optimality conditions
for monitoring optimality of m (or selective) operators. In
the best case, the re optimization search space comprises
a single violated condition, where we directly reorder the
two involved operators with Oð1Þ. In the worst case, all
optimality conditions are violated such that we need to
sort all m operators with Oðm2Þ.

5.2.2. Heuristic join reordering
Join ordering heuristics are typically used if the number

of joins exceed certain limits or if we assume independence
of selectivities [26,27]. In the following, we first describe our
used heuristic join reordering algorithm and subsequently
discuss our extensions for on demand re optimization.

Preliminaries: We consider (1) only left deep join trees
(no zig zag trees, no bushy trees), (2) without cross
products, and (3) only one join implementation, but we
decide on join implementations afterwards. Using these
assumptions and our asymmetric cost functions, there
exist at most i.e., for clique queries n! alternative plans
for joining n datasets [27]. Using our cost model, the costs
of, for example, a nested loop join are computed by
CðR⋈SÞ ¼ jRjþjRjjSj and the join output cardinality can be
derived by jR⋈Sj ¼ f R;S � jRjjSj with a join filter selectivity
of f R;S ¼ jR⋈Sj=ðjRjjSjÞ. Thus, the costs of a left deep join
tree ðR⋈SÞ⋈T are CððR⋈SÞ⋈TÞ ¼ jRjþjRjjSjþ f R;S � jRjjSjþ
f R;S � jRjjSjjT j.

Algorithm: Our basic algorithm is again an exchange
based join reordering heuristic and it relies on binary
reordering decisions between subsequent join operators
(e.g., ððn⋈RÞ⋈SÞ⋈n vs. ððn⋈SÞ⋈RÞ⋈n). The underlying obser
vation is similar to Bellman's Principle of Optimality used
for dynamic programming that the costs of subplans
before and after such a local reordering are independent
of that order. Hence, we just compare Cððn⋈RÞ⋈SÞr
Cððn⋈SÞ⋈RÞ. The algorithm works as follows: first, we
select the input dataset with the smallest cardinality and
reorder it with the existing first join operand if possible.
Second, we iterate over all joins and reorder adjacent join
pairs if possible and if beneficial. This algorithm basically
applies to clique and star queries only, while for arbitrary
query types, groups of operators are reordered similar to
aats- und Universitätsbibliothek Dresden

Fig. 9. Example join reordering. (a) Opt. conditions and (b) example
PlanOptTree.

Table 1
Analysis of example optimization techniques.

Optimization technique Traditional
algorithm

jocj Directed reopt

Best Worst

Selection reordering (5.2.1) Oðm2Þ OðmÞ Oð1Þ Oðm2Þ
Join reordering (5.2.2) Oðm2Þ OðmÞ Oð1Þ Oðm2Þ
Vectorization (5.2.3) Oðm3Þ OðmÞ Oð1Þ OðmÞ

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
the IKKBZ algorithm [27]. In general, this heuristic algo
rithm exhibits an average time complexity of Oðm2Þ.

On demand re optimization: For monitoring plan opti
mality of arbitrary left deep join trees, we require m
optimality conditions. Fig. 9(a) shows an example join
reordering of R⋈S⋈T⋈V⋈W (m¼4 operators, clique
query) and its optimality conditions. First, one condition
monitors the minimal cardinality of the first dataset with
oc1: jRjrminðjSj; jTj; jV j; jWjÞ. Second, there are m 1 con
ditions monitoring the ordering of join operators. For
example, the optimality of executing n⋈S before its suc
cessor n⋈T is given if the following condition holds:

oc2: jRjþjRjjSjþ f R;S � jRjjSjþ f R;S � jRjjSjjT j
r jRjþjRjjT jþ f R;T � jRjjTjþ f R;T � jRjjT jjSj; ð4Þ

where oc2 can be algebraically simplified. It is possible to
monitor all cardinalities jRj;…; jWj but only the condi
tional selectivities f R;S;…; f n;W . Hence, we either assume
statistical independence of selectivities with f R;T ¼ f ðR⋈SÞ;T
or we use our correlation table as described in Section 4.3.
The PlanOptTree of this example is shown in Fig. 9(b).
Finally, directed re optimization sorts only operators in
violated conditions such that we have a re optimization
time complexity of Oðm2Þ for the worst case but Oð1Þ for
the best case.

5.2.3. Heuristic vectorization
Plan vectorization is an integration flow specific opti

mization technique [28]. The core idea is to rewrite
instance based plans (operator at a time) into vectorized
plans with pipelined message execution (one thread per
operator) in order to exploit pipeline parallelism over
multiple plan instances. This increases message through
put and still ensures semantic correctness for control
flows. We introduced the cost based vectorization that
computes the optimal grouping of operators to a minimal
number of k execution buckets (threads). This ensures the
optimal degree of pipeline parallelism but achieves less
message latency and less resource contention (threads,
cache). Cost based vectorization is a generalization of
execution strategies because instance based plans (k¼1)
and fully vectorized plans (k¼m) are specific cases.

Algorithm: The objective is to minimize k under the
constraint that bucket execution time of the most expen
sive operator because it limits the pipeline throughput
anyway (convoy effect [29]):

ϕ: min
1rkrm

j8 iA ½1; k�: ∑
oj Abi

WðojÞrWðomaxÞ: ð5Þ
10

Provided by Sächsische Landesbibliothek, Sta
This problem exhibits an exponential complexity of Oð2mÞ.
Hence, we apply the following heuristic algorithm: First,
we determine the maximum operator execution time.
Second, depending on the plan structure (flow/sequence),
we group operators, similar to bin packing heuristics,
in a first fit/next fit manner with a time complexity of
Oðm2Þ=OðmÞ. In any case, the total algorithm complexity is
dominated by dependency graph creation with Oðm3Þ.

On demand re optimization: Plan optimality for a
sequence of operators is then monitored via k (1rkrm)
optimality conditions. First, one condition ensures that
each bucket bi fulfills the constraint that its total execution
time does not exceed the execution time of the most time
consuming operator with oc1:maxðWðbiÞ;…;WðbkÞÞr
WðomaxÞ. Second, regarding the next fit approach of our
heuristic algorithm, for each bucket except the first one
(k 1), one condition monitors if the first operator oj of
this bucket bi still cannot be assigned to the previous
bucket bi�1 with oci:Wðbi�1ÞþWðoiÞZWðomaxÞ. Directed
re optimization starts at the bucket determined by oci.
Hence, we have a re optimization time complexity of
Oð1Þ for the best case and OðmÞ for the worst case, but
dependency graph creation is not required.

5.2.4. Discussion of complexity analysis
Table 1 summarizes the complexity analysis of the

presented example techniques. We compare the time
complexity of the full algorithms, monitoring optimality
(jocj) and directed re optimization. Based on these obser
vations we can draw two important conclusions.

First, monitoring optimality is commonly more efficient
than full re optimization. Keeping all possible plans is prohi
bitive as this would result in many cases in factorial time and
space complexity for creating all plans. In contrast, our idea
relies on monitoring optimality of the current (optimal) plan
only. Generally speaking, we benefit from monitoring optim
ality whenever the complexity of deciding if a solution is
optimal is lower than the complexity of finding the optimal
solution. This holds for many optimization problems.

Second, there are many cases, where we can benefit
from directed re optimization. Commonly, the best case
re optimization is constant because a single violated condi
tion can enable to directly infer the new optimal plan, while
the worst case (e.g., all conditions violated) is equal to the
traditional algorithm. The benefit of directed re optimization
is due to (1) a reduced search space per technique, and
(2) potentially reconsidering only a subset of techniques. The
latter is especially important in scenarios, where we have a
mixture of static optimization decisions and high dynamics
for other decisions. Furthermore, directed re optimization
ats- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
allows for step wise re optimization, which is beneficial for
incrementally learning conditional statistics and sometimes
in highly dynamic scenarios, where we have many re
optimizations. We refer to Appendix B for an analysis of
convergence properties of step wise re optimization.

Finally, there is a trade off between monitoring and re
optimization efficiency. So far we realized on demand re
optimization for example techniques, including the here
presented ones. The specific PlanOptTree design, espe
cially for complex optimization techniques, constitutes
interesting future work.

5.3. Updating PlanOptTrees

Directed re optimization considers only a subset of
operators and thus, can only return partial PlanOptTrees
of rewritten subplans. We therefore incrementally update
the existing PlanOptTree with new partial PlanOptTrees
after successful re optimization. The result is equivalent to
creating the PlanOptTree from scratch (A PC).

Algorithm A UP (Update PlanOptTree): The A UP starts
bottom up from all violated optimality conditions and
removes those OCNodes except for transitively violated
conditions because the new partial PlanOptTree is aware
of them. Then, it recursively removes statistic nodes that do
not refer to any child nodes and were affected by re
optimization. This removes only nodes included in violated
optimality conditions. Finally, we apply the merge of A PC
(Section 4.2) for new partial PlanOptTrees, copy statistics
if necessary, and switch plans as described in Section 4.3.

To summarize, directed re optimization reduces the over
head per re optimization step, especially for techniques with
large search space. Future work might consider reusing plans
and PlanOptTrees. Finally, we start over with monitoring
optimality during statistic maintenance (Section 4.3).

6. Experimental evaluation

Our experiments study the behavior of on demand
re optimization regarding total execution times, optimiza
tion times, and workload adaptation properties. We com
pare it with periodic re optimization and unoptimized
execution (i.e., the initial optimal plan). To summarize,
the major results are
�
 Execution time improvements increase with increasing
workload dynamics due to immediate adaptation.
�
 We gain optimization time improvements for static
workloads due to no unnecessary re optimizations.
�
 Overheads for statistic maintenance, monitoring optim
ality, and PlanOptTree algorithms are negligible.
�
 Directed re optimization benefits increase with the
plan size and the complexity of optimization.

6.1. Experimental setting

We ran our experiments on an IBM blade LS20 with
two AMD Opteron 270 processors, each a 2 GHz Dual Core,
and 9 GB RAM, where we used Linux openSUSE 9.1 (32 bit)
11

Provided by Sächsische Landesbibliothek, St
as the operating system. Our WFPE (workflow process
engine) is a prototype integration platform including our
cost based optimizer. The WFPE is implemented using Java
1.6 as the programming language and consists of approxi
mately 37,000 lines of code. It includes several inbound
and outbound adapters for the interaction with external
systems, where we currently support files, databases, and
Web services.

The test integration flows are four plans with different
characteristics: Plan P1 with m¼9 is our simple running
example shown in Fig. 1. Plan P2 with m¼19 is more
complex, where we receive messages, load data from four
systems, apply schema transformations, join all datasets
(clique query type) and finally send the results to another
system. The related optimality conditions are shown
in Fig. 9. For both plans, the benchmark drivers invoke
synchronous inbound adapters and we use file outbound
adapters as external systems in order to reduce external
influences. Furthermore, we use two additional plans P3
and P4 (described in detail later on), where we vary the
number of operators up to 100 in order to investigate the
influence of plan sizes. All experiments use synthetic data
because we want to generate workloads with different
selectivities and cardinalities. Any relative time improve
ments are specified as 1 t2=t1, where t1 represent the
baseline, and thus are upper bounded by 100%.

Our default parameters are as follows. Both optimiza
tion models use EMA (α¼ 0:5) for statistics aggregation and
a relative cost threshold of τ2 ¼ 0:0. For clarity of pre
sentation, we disabled all optimization techniques except
selection and join reordering. The periodic re optimization
interval is Δt ¼ 5 min. On demand uses a minimal exis
tence time of Δt ¼ 1 s, a lazy condition count of τ1 ¼ 10,
and our MEMO structure.
6.2. End to end overall comparison

In a first series of experiments, we investigate the major
characteristics of on demand and periodic re optimization
as well as unoptimized execution in terms of their total
execution times and optimization times.

Scenario setup: We use the described plans P1 and P2
and execute different workload scenarios, each with
n¼100,000 plan instances but different dynamics in terms
of the number of workload shifts (jwsj): low (jwsj ¼ 1),
med (jwsj ¼ 10), and high (jwsj ¼ 100). We use uniform
data distributions for all scenarios. For plan P1, we use an
input data size (per plan instance) of 400 KB and selectiv
ities of f1:0;0:8;0:1g for the three Selection operators. A
single experiment thus executed P1 on 38.1 GB of input
data. For plan P2, we use an input data size of 167 KB and
cardinalities of {200 KB, 67 KB, 100 KB, 33 KB} for the four
loaded datasets in order to make plan execution times
comparable to P1. Workload shifts are realized by shifting
the selectivities (P1) or cardinalities (P2) round robin to the
front (e.g., selðo1Þ ¼ selðo2Þ, etc.), done every n=jwsj plan
instances. By shifting selectivities/cardinalities jwsj times,
the workload dynamics include both different impact and
frequency of workload shifts. The results are shown in
Fig. 10.
aats- und Universitätsbibliothek Dresden

Fig. 10. Overall comparison results with changing workload dynamics. (a) exec plan P1, (b) exec plan P2, (c) re-opt plan P1, and (d) re-opt plan P2.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
Execution time: Fig. 10(a) and (b) presents the most
important results in the form of total execution times that
already include all monitoring and optimization over
heads. The runtime for unoptimized execution is not
constant because the initially bad plan becomes optimal3

from time to time. For static to medium dynamics, on
demand achieves only slight improvements because there
are only few workload shifts and thus total adaptation
delays are low. However, for dynamic workloads, periodic
degenerates to unoptimized. In contrast, on demand
shows almost constant execution time. The slight increase
for high dynamics is reasoned by the lazy count of τ1 ¼ 10
per workload shift. The relative benefits depend on the
optimization techniques and workload characteristics. For
example, in our dynamic scenarios, we achieved improve
ments of 40.0% for plan P1 and 60.4% for plan P2.

Optimization time: In addition, Fig. 10(c) and (d) shows
the related total optimization times and number of
re optimization steps. Unoptimized does not exhibit these
overheads. Although periodic optimization uses a fixed
optimization interval Δt, we observe increasing optimiza
tion times with increasing workload dynamics because
the resulting number of re optimization steps directly
depends on the total execution time. For on demand, the
number of re optimizations is almost equal to the number
of workload shifts. The additional steps are caused by
initial optimization and smoothed statistics that led to
multiple re optimizations for some workload shifts. In
these scenarios, we benefit only slightly from directed
re optimization due to a rather small search space.
3 The runtime for unoptimized execution is decreasing with increas-
ing workload dynamics because the initially very bad plan is used less
often for dynamic workloads. For example, the initial plan of P1 is used
for 50% of plan instances on low, 36% on med, and 34% on high.

12

Provided by Sächsische Landesbibliothek, Sta
However, we reduced the total optimization time for static
workloads by 93.1% for plan P1 and by 90.4% for plan P2.

6.3. Workload adaptation in depth

In a second series of experiments, we now have a more
detailed look at workload adaptation in specific scenarios.
The purpose is to quantify adaptation properties rather
than an overall performance comparison as discussed
before.

6.3.1. Simple plan scenario
Scenario setup: Scenario A consists of n¼100,000 plan

instances of plan P1 and compares periodic and on
demand re optimization. We varied the selectivities of
the three Selection operators as shown in Fig. 11(a).
The input data was generated without correlations and
we varied its cardinality with f1;3;4;5;5;2;1;3;3;3g
(in 100 KB). There are four workload shifts (ws1, ws2, ws3,
and ws4), where crossing selectivities cause new optimal
plans.

Runtime results: Fig. 11(c) shows the smoothened and
sampled execution times of periodic and on demand.
Besides the cardinality dependent execution times, we
observe adaptation delays for periodic, where we miss
optimization opportunities (ws2 and ws3). The workload
shifts ws1 and ws4 have only minor influence due to
unchanged minimum operator selectivity (o2). In contrast,
on demand immediately adapts plans, which led to a
cumulative execution time improvement of 2.5%. Fig. 11(e)
shows the optimization time (incl. recompilation, etc.)
per re optimization step. We see that periodic triggers
optimization with fixed interval. It took 25 steps in this
scenario. In contrast, on demand was only triggered if
necessary (at workload shifts) such that we only required
ats- und Universitätsbibliothek Dresden

Fig. 11. Simple-plan workload adaptation scenario (without/with correlation). (a) Workload scenario A, (b) workload scenario B, (c) execution time A,
(d) execution time B, (e) re-optimization time A, and (f) re-optimization time B.

Table 2
Overhead statistics/condition monitoring.

Traditional Minimal POT c1 POT c2 POT c3

159 ms 73 ms 172 ms 314 ms 470 ms

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
four steps and achieved a cumulative optimization time
improvement of 84.3%. Single directed re optimizations
are not significantly faster than full re optimizations due
to the small search space. The high execution and optimi
zation times at the beginning are caused by Java just in
time compilation.

Statistic maintenance overhead: Table 2 shows the statis
tics maintenance and monitoring overhead of on demand.
For that we investigate the algorithm A IS in detail. We
use the operator statistic trace from Scenario A that
consists of 2,100,000 atomic statistics. Traditional is the
baseline (as used for periodic re optimization), where all
statistics of all operators are maintained. Minimal refers to
13

Provided by Sächsische Landesbibliothek, St
a hypothetical scenario, where we know the required
statistics and maintain only these. The relative difference
between both is the benefit we gain by maintaining only
relevant statistics. In contrast, POT monitoring includes the
overhead of our PlanOptTree. Although the A IS algo
rithm declines unnecessary statistics, it is slower than
Traditional because for each statistic tuple, we compute
the hierarchy of complex statistics and evaluate optimality
conditions. We distinguish three configurations: c1 refers
to statistic maintenance without condition evaluation,
while c2 and c3 (without/with the MEMO structure) show
the small absolute overhead of continuously monitoring
optimality. In this scenario, using the MEMO structure is
slightly slower due to simple optimality conditions. To
summarize, the overhead for statistic maintenance and
monitoring at operator granularity is negligible compared
to the overall execution time of Scenario A (see Fig. 11(c)).

PlanOptTree algorithm overhead: We also investigated
the other PlanOptTree algorithms for (1) PlanOptTree

creation (A PC), (2) triggering re optimization (A TR), and (3)
aats- und Universitätsbibliothek Dresden

Fig. 12. Directed re-optimization results. (a) Selection reordering P3 and (b) join reordering P4.

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
PlanOptTree updating (A UP). For this experiment, we
varied the number of Selection operators of plan P1 up
to m¼35 operators, generated random statistics, and for A
TR/A UP, we forced one violated condition. Even for m¼35,
the mean execution time of 100 repetitions was 0.57 ms
(A PC), 0.02 ms (A TR), and 0.21 ms (A UP). Hence, these
overheads are also negligible compared to the overall opti
mization time in Scenario A (see Fig. 11(e)).

All optimization techniques: On demand, with selection
reordering enabled, reduced the total unoptimized execu
tion time of Scenario A from 151.7 min to 123.9 min. With
all of our cost based optimization techniques enabled (e.g.,
batched execution, parallel flows, message pipelining),
we reduced this total execution time even to 69.2 min.
Accordingly, the relative improvements of on demand to
periodic re optimization increased almost linearly.

6.3.2. Simple plan scenario with correlation
In the interest of a fair evaluation, we now investigate a

possible limitation of on demand re optimization: the
problem of frequent plan changes caused by correlation.

Scenario setup: Scenario B executes again n¼100,000
instances of plan P1. We use the input cardinalities of Scenario
A but generated correlated data. Fig. 11(b) shows the condi
tional selectivities selðo2Þ, selðo3jo2Þ, selðo4jo24o3Þ, while we
set selðo3j:o2Þ ¼ 1:0 and Pðo4j:o23:o3Þ ¼ 1:0. Hence, there
are strong correlations and the selectivities selðo3Þ and selðo4Þ
depend on the operator ordering4 (only ws2 and ws3 are real
workload changes). We compare on demand and on demand
CA (with correlation table, see Section 4.3).

Runtime results: Fig. 11(d) and (f) shows again the execu
tion and optimization times. Without the correlation table
selection reordering changes the plan back and forth (up
from ws1), even in case of a constant workload because it
wrongly assumes statistical independence. Due to immediate
re optimization and the small minimal existence time of
Δt ¼ 1 s, we executed 8,530 re optimization steps. In addi
tion, the permanent change between suboptimal and optimal
plans led to a degradation of the execution time because
non optimal plans were used (e.g., after ws2 and ws3). With
the correlation table, the number of re optimization steps
4 For example, from ws3 to the end, we have conditional selectivities
of selðo2Þ 0:7, selðo3jo2Þ 0:2, selðo4jo24o3Þ 0:4 but total selectivities
of selðo2Þ 0:7, selðo3Þ 0:44, selðo4Þ 0:92. This leads to different opera-
tor orderings.

14

Provided by Sächsische Landesbibliothek, Sta
was reduced to five. There, all three workload shifts have
been recognized, where both ws1 and ws2 required two
re optimizations each. For ws1, this was due to reverting
the wrong decision, while for ws2, this was due to multiple
crossing selectivities, which were learned incrementally
via step wise directed re optimization. As a result of the
reduced number of re optimization steps and preventing
suboptimal plans, we also achieved a 4.4% total execution
time improvement.

6.4. Directed re optimization in depth

In our third series of experiments, we analyzed the
benefit of directed re optimization. We generated plans
with varying numbers of Selection (P3) and Join (P4)
operators jojA ½10;100� and measured full and directed re
optimization time. In contrast to previous experiments,
the optimizer was tested standalone (without dependency
graph maintenance, plan compilation, etc.). We fixed the
input cardinalities and randomly generated operator selec
tivities. For directed re optimization, we randomly picked
k1 ¼ 1 and k2 ¼ 10 operators and generated new statistics
for them to violate optimality conditions. All measure
ments were repeated 100 times.

Fig. 12 shows the results for the optimization techni
ques selection reordering (Fig. 12(a), Section 5.2.1, Plan P3)
and join reordering (Fig. 12(b), Section 5.2.2, Plan P4).
With all optimization techniques enabled, we observe a
full optimization time that empirically grows with Oðn5Þ
(the not shown measurements are annotated at the top
right). Here, the optimization time is mainly dominated by
the technique of parallel flow rewriting. With all other
optimization techniques disabled, the optimization time
of both full selection reordering (sel opt) and full join
reordering (join opt) increase still quadratically. For full
re optimization, these techniques required similar optimi
zation times due to dependency checking. In contrast,
the directed re optimization times for one (reopt1) and
ten (reopt10) changed operator selectivities (which led to
multiple violated optimality conditions) increase almost
linearly with the number of plan operators and with the
number of violated conditions. Thus, benefits of directed
re optimization increase with increasing number of opera
tors and with increasing complexity of optimization tech
niques. Even for ten changed operators, we gain significant
benefits. Comparing selection reordering and join
ats- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
reordering, the latter took understandably longer but both
show the same typical behavior. To summarize, we benefit
from the reduced re optimization search space per tech
nique and from reconsidering only a subset of techniques.
7. Related work

On demand re optimization belongs to the research
field of adaptive query processing (AQP) [17,30] that
addresses unknown/mis predicted statistics or changing
workloads. AQP also inspired our work but the different
runtime model of integration flows requires a different
optimization model. We aim at optimizing many consecu
tive plan instances of a deployed integration flow, which
work on new input data. In the following, we show the
relationship of on demand re optimization to important
areas and techniques of AQP.

Plan based adaptation in DBMS: Traditional inter query
optimization aims at optimizing individual query instances.
Adaption in this context mainly reduces to the decisionwhen
and how to update statistic of the underlying database [17]
but optimization happens on granularity of single or multiple
concurrent (for sharing opportunities) queries. In contrast,
existing work on AQP mainly use inter operator or intra
operator re optimization of single query instances in order to
account for mis predicted cardinalities of intermediates.
Regarding inter operator, we distinguish reactive and proac
tive approaches [31]. Reactive, inter operator re optimization
uses the traditional optimizer to create a plan, intermediate
results are materialized, and if estimation errors are detected,
the remaining plan is reactively re optimized. Examples
are ReOpt [32] that invokes the optimizer if statistics differ
significantly, and Progressive Optimization [33] that uses
validity ranges of statistics. In contrast, proactive, inter
operator re optimization proactively creates switchable plans
before execution. Rio [31] computes bounding boxes (similar
to validity ranges) around all used estimates and then creates
robust or switchable plans. During runtime one of three
paths can be chosen based on the real statistics (below,
estimate, above). Another proactive technique is Parametric
Query Optimization (PQO). Due to unknown query para
meters during query compile time, PQO [34] and Progressive
PQO (PPQO) [35] optimize a query into possible candidate
plans and pick the most suitable plan when parameters are
bound. Intra operator approaches triggered re optimization
even during operator runtime. For example, corrective query
processing [18] creates new plans for unprocessed data
only and the results are combined by stitch up phases.
On demand differs in several ways. First, our re optim
ization scope is not a single query but the average case of
short running plan instances of a deployed plan. Hence, fine
grained adaptation (inter/intra operator) based on inter
mediate results of a single plan instance is not applicable.
Second, we use optimality conditions instead of validity
ranges (or bounding boxes). Those validity ranges are defined
as absolute cardinalities for subplans, which does not neces
sarily mean that the subplan is suboptimal. In contrast, we
trigger re optimization only if necessary, i.e., if a new plan is
certain to be found and our approach allows for directed re
optimization. Furthermore, we do not enumerate alternative
15

Provided by Sächsische Landesbibliothek, St
plans beforehand but monitor optimality of the current
(optimal) plan only.

Adaptation of continuous queries (CQ) in DSMS: CQ based
adaptation differs in its re optimization scope of a standing
query. Existing work is classified as routing or rewriting
based adaptation. Routing based approaches do not rely on
predefined plans but route tuples along different stateful
operators. An example is Eddies [36,37] with its eddy
operator. Dynamic decisions on routing paths via routing
policies enable fine grained adaptation [36,38,39] but might
incur significant overhead. This overhead can be reduced by
routing groups of tuples as done by the self tuning query
mesh [19]. For rewriting based adaptation, the optimizer
requests relevant statistics and re optimization is triggered
periodically or on significant changes [30]. Rewriting CQs
requires state migration (e.g., tuples in hash tables) [40] to
prevent missing tuples, duplicates, or changed tuple orders.
Hence, reordering relies on extensive statistic profiling.
The Adaptive Greedy algorithm [41] even uses a so called
matrix view for conditional selectivity profiling and directed
re optimization for the specific technique of reordering
stream filters (selection reordering). On demand differs
again in several ways. First, the re optimization scope of
CQs and integration flows are similar but CQs are stateful
that requires state migration on re optimization. Second,
in contrast to passive structures such as matrix views [41],
on demand enables monitoring optimality and directed
re optimization for arbitrary optimization techniques and
actively triggers re optimization that overcomes the need for
determining when to re optimize.

Adaptation of integration flows: Related work of opti
mizing integration flows use rule based [11 14], cost based
[10,13,15,16], and adaptive cost based [4,13] approaches.
Rule and cost based techniques (optimize once) cannot
adapt the plan to changing workloads. Adaptive cost based
approaches either use an optimize always model that
triggers optimization for each plan instance [13] or peri
odic re optimization [4,23] that triggers re optimization
with a fixed time interval. On demand achieves near
optimal re optimization behavior and thus overcomes
the drawbacks of existing adaptive cost based approaches.

8. Conclusions

To summarize, we introduced the concept of on demand
re optimization that exploits optimality conditions for
re optimization of integration flows. The PlanOptTree

as a compact representation of optimality conditions
enables us to monitor plan optimality during online
statistic maintenance and to immediately trigger directed
re optimization if the current plan is not optimal. The
experiments have shown that on demand re optimization
achieves near optimal re optimization behavior in terms
of monitoring and re optimization overhead as well as
adaptation delays. In conclusion, on demand re optimiza
tion perfectly adapts to the dynamics of the current
workload, i.e., there are no re optimizations for static but
many immediate re optimizations for dynamic workloads.
Hence, we benefit from minimized adaptation delays
and reduced re optimization efforts. Finally, on demand
re optimization is also applicable in other areas. For
aats- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
example, it can be extended for re occurring queries,
continuous queries or workflows of MapReduce jobs.
In addition, future work might investigate on demand
re optimization for specific optimization techniques.
Acknowledgments

We would like to thank Benjamin Schlegel, Ulrike
Fischer, Tim Kiefer, and Maik Thiele for valuable comments
on earlier versions of this paper.

Appendix A. Analysis of PlanOptTree complexity

For certain plan structures and problems, worst case
complexity bounds can be guaranteed. Here, we focus on
local operator reordering for a sequence of operators. For
m operators, there are m! alternative plans.

Proposition 1 (Local operator reordering PlanOptTree

Complexity). Monitoring local optimality of a sequence of m
operators has a worst case PlanOptTree space complexity of
Oðm2Þ nodes and accordingly, the algorithms A IS, A TR, and A
UP have a worst case time complexity of Oðm2Þ.

Proof. Assume a plan P of a sequence of m operators o.
A minimal PlanOptTree has at most m ONodes, m � s
SNodes, 2 � jocj CSNodes (two complex statistics nodes for
each binary optimality condition), and jocj OCNodes. Each
operator can be included at most in one local optimality
condition per dependency (in case of a data dependency
this subsumes any temporal dependency). Then, an arbi
trary operator oi with 1r irm can in the worst case be
the target of i 1 dependencies δ�i , and it can be the
source of m i dependencies δþi . Based on the equivalence
of δ� ¼ δþ and thus, jδ� j ¼ jδþ j, the maximum number of
optimality conditions is inherently given by

jocj ¼ ∑
m

i 1
i 1ð Þ ¼mðm 1Þ

2
: ðA:1Þ

The total number of nodes is therefore mþs �mþ3�
mðm 1Þ=2. Since s is a constant, we have Oðm2Þ nodes in
the worst case. Processed nodes are memoized such that
the algorithms A IS, A TR, and A UP access at most Oðm2Þ
nodes per invocation. Hence, Proposition 1 holds. □

Appendix B. Analysis of directed re-optimization

In the general case, but depending on the PlanOpt

Tree design per optimization technique, we can give
correctness guarantees for directed re optimization. Here,
we focus on (1) equivalence to full re optimization and (2)
convergence of step wise re optimization, for reordering
sequences of operators.

B.1. Directed re optimization
Proposition 2 (Directed operator recordering equivalence).
Directed re optimization (re ordering) of all operators
o0AP included in violated optimality conditions C0 of a
16

Provided by Sächsische Landesbibliothek, Sta
PlanOptTree (for a sequence of m operators o) is equiva
lent to the full re optimization of all operators oAP.

Proof. Assume all dependencies between operators o of plan
P to be a directed graph G¼ ðV ; EÞ of vertexes (operators) and
edges (dependencies). Then, the re optimization of P is a
graph homomorphism f :G-H. In order to prove Proposition
2, we show that

8oi =2o0: ðvpreðoiÞAG� vpreðoiÞAHÞ4 ðvsucðoiÞAG� vsucðoiÞAHÞ;
ðB:1Þ

where vpreðoiÞ denotes the set of predecessors of operator oi
and vsucðoiÞ denotes the set of successors of oi. (1) If there
exists a homomorphism f :G-H such that

vj!oiAG4oi!vjAH; ðB:2Þ
then, the order vj!oi is represented by an optimality
condition oc with oi; vjAoc or by a transitive optimality
condition toc with oi; vjAtoc. The same is true for success
of oi. (2) The PlanOptTree allows for arbitrary optimality
conditions between operators and input statistics. Hence,
during re optimization, f :G-H, the globally optimal solution
will be found. (3) Further, all operators o0 included in violated
optimality conditions 8oiAoc0 with oc0AC0 or transitive
optimality conditions 8oiAtoc0 with toc0AC0 are used by
f :G-H. As a result,

∄ðoi =2o04ððvpreðoiÞAGavpreðoiÞAHÞ3ðvsucðoiÞAGavsucðoiÞAHÞÞÞ;
ðB:3Þ

such that both directed re optimization and full re optimi
zation results in the same plan. Hence, Proposition 2 holds. □

B.2. Step wise directed re optimization
Proposition 3 (Step wise directed re optimization conver
gence). For optimization problems min Ŵ ðPÞ with a single
minimum, step wise directed re optimization converges to
the same plan P0 as directed re optimization if the workload
ω is static in the time interval ½T1; T2� with ∄wsiA ½T1; T2�.

Proof. Assume a finite plan search space S and exact
runtime statistics. (1) For an optimization problem with a
single minimum, we have

P0 ¼ arg min
8PAS

Ŵ ðPÞ ¼ opt
8PAS

ðPÞ; ðB:4Þ

independent of the optimization start point plan P because
for problems with a single minimum, there is by definition
only one local optimum and hence it is also the global
optimum. (2) Given a static workload ω in the time
interval ½T1; T2� with ∄wsiA ½T1; T2� directly implies that
the optimal plan P0 ¼ arg min8PASŴ ðPÞ is constant in
½T1; T2�. (3) By definition of the PlanOptTree, any partial
re optimization step addresses at least one optimality
condition oci and all of its transitive optimality conditions
tocðociÞ. Each partial re optimization P0

oci
¼ optoci ðPÞ

reduces the plan costs with Ŵ ðP0
oci ÞoŴ ðPÞ. Thus, no cycles

are possible. Re optimization steps are triggered as long as
at least one optimality condition oci is violated. Without
loss of generality, assume T1 ¼ 0 and T1 ¼1. Then, we can
conclude that step wise directed re optim;ization in the
ats- und Universitätsbibliothek Dresden

Final edited form was published in "Information Systems". 45. ISSN: 0306-4379.
https://doi.org/10.1016/j.is.2008.06.001
finite search space S converges to P0 ¼ argmin8PASŴ ðPÞ.
Hence, Proposition 3 holds. □

Given our monotonic operator cost function (see
Section 2.2), any plan optimization problem min Ŵ ðPÞ
can be transformed into an optimization problem with a
single minimum by adding new optimality conditions, i.e.,
by conceptually transforming it into a higher dimensional
space. However, this property clearly depends on the
specific PlanPlanOptTree design.

Appendix C. Supplementary data

Supplementary data associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.is.
2014.03.005.
References

[1] L.M. Haas, Beauty and the beast: the theory and practice of
information integration, in: ICDT, 2007, pp. 28–43.

[2] P.A. Bernstein, L.M. Haas, Information integration in the enterprise,
Commun. ACM 51 (9) (2008) 72–79.

[3] A.Y. Halevy, N. Ashish, D. Bitton, M.J. Carey, D. Draper, J. Pollock, A.
Rosenthal, V. Sikka, Enterprise information integration: successes,
challenges and controversies, in: SIGMOD, 2005, pp. 778–787.

[4] M. Boehm, Cost-based optimization of integration flows (Ph.D.
thesis), TU Dresden, Available at 〈http://wwwdb.inf.tu-dresden.de/
boehm/diss_final.pdf〉, 2011.

[5] M. Stonebraker, Too much middleware, SIGMOD Rec. 31 (1) (2002)
97–106.

[6] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Addison-Wesley, 2004.

[7] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson, Data integration
flows for business intelligence, in: EDBT, 2009, pp. 1–11.

[8] W. O'Connell, Extreme streaming: business optimization driving
algorithmic challenges, in: SIGMOD, 2008, pp. 13–14.

[9] R. Winter, P. Kostamaa, Large scale data warehousing: trends and
observations, in: ICDE, 2010, p. 1.

[10] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal, QoX-driven ETL
design: reducing the cost of ETL consulting engagements, in:
SIGMOD, 2009, pp. 953–960.

[11] A. Behrend, T. Joerg, Optimized incremental ETL jobs for maintaining
data warehouses, in: IDEAS, 2010, pp. 1–9.

[12] M. Bhide, M. Agarwal, A. Bar-Or, S. Padmanabhan, S. Mittapalli,
G. Venkatachaliah, XPEDIA: XML processing for data integration,
Proc. VLDB Endow. 2 (2) (2009) 1330–1341.

[13] U. Srivastava, K. Munagala, J. Widom, R. Motwani, Query optimiza-
tion over web services, in: VLDB, 2006, pp. 355–366.

[14] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier,
T. Kraft, An approach to optimize data processing in business
processes, in: VLDB, 2007, pp. 615–626.

[15] A. Simitsis, P. Vassiliadis, T.K. Sellis, Optimizing ETL processes in data
warehouses, in: ICDE, 2005, pp. 564–575.
17

Provided by Sächsische Landesbibliothek, St
[16] A. Simitsis, K. Wilkinson, U. Dayal, M. Castellanos, Optimizing ETL
workflows for fault-tolerance, in: ICDE, 2010, pp. 385–396.

[17] A. Deshpande, Z.G. Ives, V. Raman, Adaptive query processing,
Found. Trends Databases 1 (1) (2007) 1–140.

[18] Z.G. Ives, A.Y. Halevy, D.S. Weld, Adapting to source properties in
processing data integration queries, in: SIGMOD, 2004, pp. 395–406.

[19] R.V. Nehme, E.A. Rundensteiner, E. Bertino, Self-tuning query
mesh for adaptive multi-route query processing, in: EDBT, 2009,
pp. 803–814.

[20] P. Bodík, A. Fox, M.J. Franklin, M.I. Jordan, D.A. Patterson, Character-
izing, modeling, and generating workload spikes for stateful
services, in: SoCC, 2010, pp. 241–252.

[21] T. Rabl, A. Lang, T. Hackl, B. Sick, H. Kosch, Generating shifting
workloads to benchmark adaptability in relational database systems,
in: TPCTC, 2009, pp. 116–131.

[22] S. Kavalanekar, B.L. Worthington, Q. Zhang, V. Sharda, Characteriza-
tion of storage workload traces from production windows servers,
in: IISWC, 2008, pp. 119–128.

[23] M. Boehm, D. Habich, W. Lehner, U. Wloka, Workload-based opti-
mization of integration processes, in: CIKM, 2008, pp. 1479–1480.

[24] N. Reddy, J.R. Haritsa, Analyzing plan diagrams of database query
optimizers, in: VLDB, 2005, pp. 1228–1240.

[25] R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Comput. 16 (5) (1995)
1190–1208.

[26] N. Bruno, C.A. Galindo-Legaria, M. Joshi, Polynomial heuristics for
query optimization, in: ICDE, 2010, pp. 589–600.

[27] G. Moerkotte, Building Query Compilers, Available at 〈http://pi3.
informatik.uni-mannheim.de/�moer/querycompiler.pdf〉, 2009.

[28] M. Boehm, D. Habich, S. Preissler, W. Lehner, U. Wloka, Cost-based
vectorization of instance-based integration processes, Inf. Syst. 36
(1) (2011) 3–29.

[29] M.W. Blasgen, J. Gray, M.F. Mitoma, T.G. Price, The convoy phenom-
enon, SIGOPS Operat. Syst. Rev. 13 (2) (1979) 20–25.

[30] S. Babu, P. Bizarro, Adaptive query processing in the looking glass,
in: CIDR, 2005, pp. 238–249.

[31] S. Babu, P. Bizarro, D.J. DeWitt, Proactive re-optimization, in:
SIGMOD, 2005, pp. 107–118.

[32] N. Kabra, D.J. DeWitt, Efficient mid-query re-optimization of sub-
optimal query execution plans, in: SIGMOD, 1998, pp. 106–117.

[33] V. Markl, V. Raman, D.E. Simmen, G.M. Lohman, H. Pirahesh, Robust
query processing through progressive optimization, in: SIGMOD,
2004, pp. 659–670.

[34] Y.E. Ioannidis, R.T. Ng, K. Shim, T.K. Sellis, Parametric query optimi-
zation, in: VLDB, 1992, pp. 103–114.

[35] P. Bizarro, N. Bruno, D.J. DeWitt, Progressive parametric query
optimization, IEEE Trans. Knowl. Data Eng. 21 (4) (2009) 582–594.

[36] R. Avnur, J.M. Hellerstein, Eddies: continuously adaptive query
processing, in: SIGMOD, 2000, pp. 261–272.

[37] S. Madden, M.A. Shah, J.M. Hellerstein, V. Raman, Continuously adaptive
continuous queries over streams, in: SIGMOD, 2002, pp. 49–60.

[38] P. Bizarro, S. Babu, D.J. DeWitt, J. Widom, Content-based routing:
different plans for different data, in: VLDB, 2005, pp. 757–768.

[39] F. Tian, D.J. DeWitt, Tuple routing strategies for distributed eddies,
in: VLDB, 2003, pp. 333–344.

[40] Y. Zhu, E.A. Rundensteiner, G.T. Heineman, Dynamic plan migration for
continuous queries over data streams, in: SIGMOD, 2004, pp. 431–442.

[41] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive
ordering of pipelined stream filters, in: SIGMOD, 2004, pp. 407–418.
aats- und Universitätsbibliothek Dresden

http://dx.doi.org/10.1016/j.is.2014.03.005
http://dx.doi.org/10.1016/j.is.2014.03.005
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref2
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref2
http://wwwdb.inf.tu-dresden.de/boehm/diss_final.pdf
http://wwwdb.inf.tu-dresden.de/boehm/diss_final.pdf
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref5
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref5
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref6
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref6
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref12
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref17
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref17
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref25
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref25
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref25
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref35
http://refhub.elsevier.com/S0306-4379(14)00055-6/sbref35

	On-demand re-optimization of integration flows
	Introduction
	Contributions

	Background and preliminaries
	Integration flows
	Optimization of integration flows

	Solution overview
	Monitoring optimality
	Plan optimality trees
	Creating PlanOptTrees
	Updating and evaluating statistics

	Directed re-optimization
	Re-optimization search space
	Example optimization techniques
	Selection reordering
	Heuristic join reordering
	Heuristic vectorization
	Discussion of complexity analysis

	Updating PlanOptTrees

	Experimental evaluation
	Experimental setting
	End-to-end overall comparison
	Workload adaptation in depth
	Simple-plan scenario
	Simple-plan scenario with correlation

	Directed re-optimization in depth

	Related work
	Conclusions
	Acknowledgments
	Analysis of PlanOptTree complexity
	Analysis of directed re-optimization
	Directed re-optimization
	Step-wise directed re-optimization

	Supplementary data
	References

	ADP3314.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	Matthias Boehm, Dirk Habich, Wolfgang Lehner

