

Edinburgh Research Explorer

On the Data Complexity of Relative Information Completeness

Citation for published version:
Cao, Y, Deng, T, Fan, W & Geerts, F 2014, 'On the Data Complexity of Relative Information Completeness',
Information Systems, vol. 45, pp. 18-34. https://doi.org/10.1016/j.is.2014.04.001

Digital Object Identifier (DOI):
10.1016/j.is.2014.04.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Information Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1016/j.is.2014.04.001
https://doi.org/10.1016/j.is.2014.04.001
https://www.research.ed.ac.uk/en/publications/7710539f-5724-498c-83af-be26eaf08b2d

Contents lists available at ScienceDirect
Information Systems

Information Systems 45 (2014) 18–34
http://d
0306-43

n Corr
E-m

dengtin
floris.ge
journal homepage: www.elsevier.com/locate/infosys
On the data complexity of relative information completeness

Yang Cao a,b, Ting Deng b,n, Wenfei Fan a,b, Floris Geerts c

a School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
b School of Computer Science and Engineering, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, China
c Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
a r t i c l e i n f o

Article history:
Received 19 July 2013
Received in revised form
20 February 2014
Accepted 15 April 2014

Recommended by: D. Suciu

complete information to answer the query, i.e., extending the database by adding more
Available online 24 April 2014

Keywords:
Incomplete information
Relative completeness
Master data management
Partially closed databases
Data complexity
x.doi.org/10.1016/j.is.2014.04.001
79/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: caoyang@act.buaa.edu.cn (Y. C
g@act.buaa.edu.cn (T. Deng), wenfei@inf.ed.a
erts@ua.ac.be (F. Geerts).
a b s t r a c t

Databases in an enterprise are often partially closed: parts of their data must be contained
in master data, which has complete information about the core business entities of the
enterprise. With this comes the need for studying relative information completeness: a
partially closed database is said to be complete for a query relative to master data if it has

tuples either does not change its answer to the query or makes it no longer partially
closed w.r.t. the master data. This paper investigates three problems associated with
relative information completeness. Given a query Q and a partially closed database D w.r.t.
master data Dm, (1) the relative completeness problem is to decide whether D is complete
for Q relative to Dm; (2) the minimal completeness problem is to determine whether D is a
minimal database that is complete for Q relative to Dm; and (3) the bounded extension
problem is to decide whether it suffices to extend D by adding at most K tuples, such that
the extension makes a partially closed database that is complete for Q relative to Dm.
While the combined complexity bounds of the relative completeness problem and the
minimal completeness problem are already known, neither their data complexity nor the
bounded extension problem has been studied. We establish upper and lower bounds of
these problems for data complexity, all matching, for Q expressed in a variety of query
languages.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

When we query a database, we naturally expect the
database to have complete information for answering our
query. However, databases in the real world are often
incomplete, from which tuples are missing. Indeed, it is
estimated that “pieces of information perceived as being
needed for clinical decisions were missing from 13.6% to
81% of the time” [27].
ao),
c.uk (W. Fan),
This gives rise to the following question: for a given query
Q, can its complete answer be found from an incomplete
database D? That is, the answer to Q in D remains unchanged
no matter how D is extended by adding new tuples. In other
words, although D is generally incomplete, it still possesses
sufficient information to answer Q. The need for studying this
problem is evident in practice: if D does not have complete
information for answering Q, one can hardly expect that the
answer to Q in D is complete or even correct.

The traditional Closed World Assumption (CWA) or the
Open World Assumption (OWA) does not help us here. The
CWA assumes that a database contains all the tuples represent-
ing real-world entities, i.e., it assumes that no tuples are
missing from a database. As remarked earlier, this rarely
happens in practice. The OWA assumes that tuples representing

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.04.001
http://dx.doi.org/10.1016/j.is.2014.04.001
http://dx.doi.org/10.1016/j.is.2014.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.04.001&domain=pdf
mailto:caoyang@act.buaa.edu.cn
mailto:dengting@act.buaa.edu.cn
mailto:wenfei@inf.ed.ac.uk
mailto:floris.geerts@ua.ac.be
http://dx.doi.org/10.1016/j.is.2014.04.001

Y. Cao et al. / Information Systems 45 (2014) 18–34 19
real-world entities may be missing, but we cannot do much
about it (see [2,34] for surveys). Indeed, for few sensible
queries Q and databases D, adding tuples to D does not change
the answer to Q in D.

The good news is that real-life databases are neither
entirely closed-world nor entirely open-world, in light of
the increasing use of master data management (MDM [26])
systems provided by, e.g., IBM, SAP, Microsoft and Oracle.
An enterprise nowadays typically maintains master data (a.
k.a. reference data), a single repository of high-quality data
that provides various applications with a synchronized,
consistent view of its core business entities. Master data
consists of a closed-world database Dm about the enter-
prise in certain aspects, e.g., employees and products.
Other databases of the enterprise are partially closed w.r.t.
Dm: parts of their data are contained in Dm, e.g., employees
and products, while the other parts are not constrained by
Dm and are open-world, e.g., product shipments.

To understand partially closed databases, relative infor-
mation completeness has been proposed in [12] and
studied in [13,14]. For a database D and master data Dm,
a set V of containment constraints is used to specify that D
is partially constrained by Dm. A containment constraint is
of the form qðDÞDpðDmÞ, where q is a query in a language
LQ and p is a simple projection query on Dm. Intuitively,
the part of D that is constrained by V is bounded by Dm,
while the rest is open-world. We refer to a database D that
satisfies all containment constraints in V as a partially
closed database w.r.t. ðDm;VÞ.

For a query Q and a partially closed database D w.r.t.
master data ðDm;VÞ, D is said to be complete relative to
ðDm;VÞ if for all databases D0, Q ðDÞ ¼Q ðD0Þ as long as DDD0

and D0 is also partially closed w.r.t. ðDm;VÞ. That is, when
Dm is asserted as an “upper bound” of certain information
in D, the answer to Q remains unchanged no matter how D
is extended. In other words, adding tuples to D either does
not change the answer to Q, or makes it no longer partially
closed w.r.t. ðDm;VÞ.

It is likely to find complete answer to a query in a
partially closed database D, even when D is generally
incomplete, as illustrated by the following example.

Example 1. Consider a (simplified) product relation of
Amazon, specified by the following schema:

productðasin; brand; model; price; saleÞ;
where each item is specified by its id (asin), brand, model

and price. A flag sale indicates whether the item is on sale
or not. Consider the following queries:
(1) Query Q1 is to find all wireless reading devices that

have brand¼“Nook” and pricer150, but are not on sale by
Sony. The answer to Q1 in the product relation may not be
complete. Indeed, Nook is a brand of Sony, and Amazon
may not carry all the products of Sony. Worse still, the
answer may not even be correct: the chances are that
some device found by Q1 is actually on sale by Sony, when
Amazon does not have complete information about Sony
products that are on sale.
(2) Query Q2 is the same as Q1 except that it asks for

brand¼“Kindle” instead. In contrast to Q1, we may trust
the answer to Q2 in product to be complete. That is, even
though the product relation is incomplete in general, we
can still find the complete answer to Q2 in it. Indeed,
“Kindle” is Amazon's own brand name, and Amazon
maintains complete “master data” about its own products
and their promotion sales. In other words, relative to
Amazon's master data, the product relation is complete
for Q2 provided that product contains all the information
relevant to “Kindle” and sales from the master data.
(3) Query Q3 is to find all wireless reading devices with

brand¼“Nook” andmodel¼“PRS-600”. One can conclude that
the answer to Q3 in product is complete as long as the answer
is nonempty, since (brand; model-asin; price; sale) is a
functional dependency (FD) defined on product. Note that in
the presence of the FD, when the answer to Q3 is empty, we
can make product complete for Q3 by including at most one
tuple with brand¼“Nook” andmodel¼“PRS-600”. In Example
2, we will show that the FD given above can be expressed as
three containment constraints. □

The analysis of relative information completeness has
been studied in [12–14], for combined complexity. In
practice, one often has to deal with a predefined set of
queries. That is, the queries are fixed, and only the under-
lying databases vary. For instance, the queries given in
Example 1 can be issued by using fixed Web forms
provided by Amazon's Website. In practice, when queries
are fixed, so are the associated constraints. Indeed, people
typically first design constraints based on the schema of a
database, and then populate and maintain database
instances. This highlights the need for studying the data
complexity of relative information completeness, for a
fixed set of queries and a fixed set of containment constraints.

Contributions: Adopting the model of relative informa-
tion completeness of [12,14], we study the data complexity
of the following problems associated with relative infor-
mation completeness. Let LQ be a query language.

1. The relative completeness problem (RCPðLQ Þ) is to
determine, for a fixed query Q in LQ and a fixed set V of
containment constraints, given master data Dm and a
database D partially closed w.r.t. Dm and V, whether D is
complete for Q relative to ðDm;VÞ. That is, we want to find
out whether the answer to Q in D is complete when D is
possibly incomplete.

2. The minimal completeness problem (MinPðLQ Þ) is to
decide, for a fixed query Q in LQ and fixed V, given Dm and D
as above, whether D is a minimal database partially closed
w.r.t. ðDm;VÞ and is complete for Q relative to ðDm;VÞ. That is,
removing any tuple from D would make it incomplete for Q
relative to ðDm;VÞ. Intuitively, we want to know whether D
has redundant data when answering Q is concerned.

3. The bounded extension problem (BEPðLQ Þ) is to
determine, for a fixed query Q in LQ and fixed V, given
Dm and D as above and a nonnegative integer K, whether
there exists an extension D0 of D by adding at most K
tuples such that D0 is partially closed w.r.t. Dm and V, and
moreover, D0 is complete for Q relative to ðDm;VÞ. Intui-
tively, when D may not have complete information to
answer Q, we want to know whether D can be “made”
complete for Q by adding at most K tuples.

The study of these problems helps us find out whether
we can get the complete answer to a set of predefined

Y. Cao et al. / Information Systems 45 (2014) 18–3420
queries in a possibly incomplete database, what excessive
data is in a database for answering the queries, and how
we can make a database complete for the queries by
minimally extending the database.

We parameterize each of these problems with various
query languages LQ in which query Q and the query q of
containment constraint qðDÞDpðDmÞ in V are expressed.
We consider the following LQ , all with equality ‘¼ ’ and
inequality ‘a ’:
�
 conjunctive queries (CQ),

�
 union of conjunctive queries (UCQ),

�
 first-order queries (FO), and

�
 datalog (DATALOG).
4. Complexity results: We establish upper and lower
bounds of these problems parameterized with these lan-
guages, all matching, for their data complexity. We show
the following:

(1) It is known that the combined complexity analyses of
RCPðLQ Þ and MinPðLQ Þ are undecidable [12–14], when LQ

is FO or DATALOG. We show that fixing query Q and contain-
ment constraints V does not make our lives easier here. That
is, the data complexity analyses of RCPðLQ Þ, MinPðLQ Þ and
BEPðLQ Þ are all undecidable when LQ is either FO or DATALOG.
Furthermore, these complexity results are rather robust: all
these problems remain undecidable for FO when master
data Dm and containment constraints V are both absent, and
for DATALOG when master data Dm is absent and containment
constraints V are a fixed set of FDs.

(2) In contrast, when LQ is CQ or UCQ, their data com-
plexity becomes much lower: RCPðLQ Þ and MinPðLQ Þ are
tractable; while BEP is NP-complete, it becomes tractable
when K is fixed, i.e., when the number of tuples added to
database D is bounded by a constant. Compare these with
their combined complexity: RCPðLQ Þ is Π2

p
-complete for

CQ and UCQ [12,14], and MinPðLQ Þ is Δ3
p
-complete for CQ and

UCQ [13].
(3) The data complexity results of this paper remain

unchanged no matter whether the language for expressing
query q in containment constraints qðDÞDpðDmÞ is CQ, UCQ,
FO or DATALOG. Indeed, (a) RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ
are undecidable for FO when master data Dm and contain-
ment constraints in V are absent, and for DATALOG when Dm

is absent and V is a fixed set of FDs, while FDs can be
expressed using q in CQ. (b) When LQ is CQ or UCQ, the
algorithms for the upper bound proofs in Section 5 have
the same data complexity when q is expressed in CQ, FO or
DATALOG. Indeed, checking fixed containment constraints is
in PTIME no matter whether the constraints are defined
with queries in FO or DATALOG. In light of this, we can assume
w.l.o.g. that containment constraints are defined with
queries in the same language that expresses query Q.

Taken together with the combined complexity bounds
established in [12–14], these results provide a comprehen-
sive picture of complexity bounds for important decision
problems in connection with relatively complete informa-
tion. While the combined complexity bounds of RCPðLQ Þ
and MinPðLQ Þ have been settled in [12] and [13], respec-
tively, no previous work has studied their data complexity.
Furthermore, we are not aware of any previous work that
has considered BEPðLQ Þ, an interesting and practical issue.
A variety of techniques are used to prove the results,
including constructive proofs with algorithms and a wide
range of reductions.

Related work. The model of relative information com-
pleteness was introduced in [12], which we use in this
work. The combined complexity analysis of RCPðLQ Þ was
shown to be undecidable for FO and DATALOG, and
Π2
p
-complete for CQ and UCQ in [12,14], referred to as the

relatively complete database problem there. In contrast,
we show that while the data complexity analysis of
RCPðLQ Þ remains undecidable for FO and DATALOG, it is down
to PTIME for CQ and UCQ. The proofs for the data complexity
bounds make use of the characterization developed in
[12,14], but are more involved than their counterparts for
the combined complexity. A revision of RCPðLQ Þ is studied
in [18] for data exchange, a very different setting; no data
complexity results are given there.

The model of [12] was extended in [13] by incorporating
missing values in terms of representation systems, which
we do not consider in this work. The combined complexity
of MinPðLQ Þ was studied there, referred to as the minimality
problem; it was shown to be undecidable for FO and DATALOG,
and Δp

3�complete for CQ and UCQ. In this work we show that
the data complexity analysis of MinPðLQ Þ remains undecid-
able for FO and DATALOG, and it becomes tractable for CQ and
UCQ. Again, the proofs of MinPðLQ Þ in this work are rather
different from their counterparts in [13].

To the best of our knowledge, no previous work has
studied either the bounded extension problem BEPðLQ Þ or
the data complexity of RCPðLQ Þ and MinPðLQ Þ. A problem,
referred to as the boundedness problem, was studied in [13],
which is to decide, given a query Q, master data Dm and a
constant K, whether there exists a partially closed database
D of size K such that D is complete for Q relative to ðDm;VÞ.
Note that BEPðLQ Þ takes an existing database D as input and
looks for bounded extensions of D. The boundedness pro-
blem of [13] is a special case of BEPðLQ Þ, when D is empty.
The proof of [13] for the boundedness problem does not
carry over to BEPðLQ Þ.

A few other problems were investigated in [12–14], to
decide, e.g., given Q and Dm, whether there exists a
partially closed database such that D is complete for Q
relative to ðDm;VÞ. We do not consider those problems in
this work since their data complexity analysis is not very
sensible in practice.

Several approaches have been proposed to represent or
query databases with missing tuples. In [35], a complete and
consistent extension of an incomplete database D is defined
to be a database Dc such that DDπLðDcÞ and DcFΣ, where
π is the projection operator, L is the set of attributes in D,
and Σ is a set of integrity constraints. Complexity bounds for
computing the set of complete and consistent extensions of
D w.r.t. Σ are established there. A notion of open null is
introduced in [19] to model locally controlled open-world
databases: parts of a database D, values or tuples, can be
marked with open null and are assumed to be open-world,
while the rest is closed. Relational operators are extended to
tables with open null values. In contrast to [19], this work

Y. Cao et al. / Information Systems 45 (2014) 18–34 21
aims to model databases partially constrained by master
data Dm and consistency specifications, both via contain-
ment constraints. In addition, we study decision problems
that are not considered in [19].

Partially complete databases D have also been studied in
[29], which assumes a virtual database Dc with “complete
information”, and assumes that part of D is known as a view
of Dc. It investigates the query answer completeness pro-
blem, the problem for determining whether a query posed
on Dc can be answered by an equivalent query on D. In this
setting, the problem can be reduced to query answering
using views. Along the same lines, Levy [23] assumes that D
contains some CQ views of Dc. It reduces the query answer
completeness problem to the independence problem for
deciding independence of queries from updates [24]. As
opposed to [23,29], we assume neither Dc with complete
information nor an incomplete database D containing some
views of Dc. Instead, we consider Dm as an “upper bound” of
certain information in D. Moreover, the decision problems
studied here can be reduced to neither the query rewriting
problem nor the independence problem (see below).

We now clarify the difference between our decision
problems and the independence problem (e.g., [9,24]). The
latter is to determine whether a query Q is independent of
updates generated by another query Qu, such that for all
databases D, Q ðDÞ ¼Q ðD � ΔÞ, where Δ denotes updates
generated by Qu. In contrast, we study problems to decide,
for a fixed query Q, (a) whether a given database D is
relatively complete w.r.t. master data, where D and Dm

satisfy containment constraints V; (b) whether a given D is
a minimal witness for Q to be relatively complete, and (c)
whether D can be minimally extended such that it is
relatively complete for Q w.r.t. master data. Due to the
difference between the problems, results for the indepen-
dence problem do not carry over to ours, and vice versa.

A revision of the models of [23,12,29] has recently been
introduced in [31], to study partially complete databases.
The problems investigated there are quite different from
RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ considered in this work.

One may also think of an incomplete database as a
“view” of a database with complete information. There
has been a large body of work on answering queries
using views (e.g., [1,5,25,32]), to determine certain
answers [1], compute complete answers from views
with limited access patterns [7,25], or to decide whether
views determine queries [32] or are lossless [5]. This
work differs from that line of research in that one may
not find a definable view to characterize a relatively
complete database D in terms of the database with
complete information. Indeed, D is only partially con-
strained by master data Dm via containment constraints,
while Dm itself may not contain the complete informa-
tion of the entities that D intends to represent.

There has also been work on modeling negative infor-
mation and incomplete information via logic program-
ming (see [34] for a survey). For instance, protected
circumscription is studied in [28], where databases may
contain null values that are not known to be true or false
under the closed world assumption. The prior work con-
siders neither partially complete databases nor the deci-
sion problems studied in this work.
Representation systems have also been studied for
incomplete information, e.g., c-tables [20,21]. Such systems
aim to represent databases with missing values rather
than missing tuples (see [2,34] for surveys). Master data
and the problems investigated in this work are not
considered in the prior work.

There has also been recent work on consistent query
answering (e.g., [3,4,6]). That is to decide whether a tuple
is in the answer to a query in every repair of a database D,
where a repair is a database that satisfies a given set of
integrity constraints and moreover, minimally differs from
the original D w.r.t. some repair model. Master data Dm is
not considered there, and we do not consider repairs in
this work. Note that most containment constraints in this
paper are not expressible as integrity constraints studied
for data consistency.

Organization. Section 2 reviews the model of relative
completeness. Section 3 states the decision problems stu-
died in this paper. Section 4 provides the undecidability
results for FO and DATALOG, followed by the decidable cases for
CQ and UCQ in Section 5. Finally, Section 6 summarizes the
main results of the paper and identifies open questions.
2. Relative information completeness

In this section, we review the model of relative com-
pleteness proposed in [12]. We start with basic notations.

Databases and master data. A database is specified by a
relational schema R, which is a collection of relation
schemas ðR1;…;RnÞ. Each schema Ri in R is defined over
a fixed set of attributes. For each attribute A of R, its
domain is specified in R, denoted by domðAÞ. To simplify
the discussion we assume that all attributes have a
countably infinite domain d, a setting commonly adopted
in database theory (see, e.g., [2]).

A relation (instance) over a relation schema RðA1;…;AmÞ
is a finite set I of m-arity tuples tða1;…; amÞ such that for
each iA ½1;m�, ai is in domðAiÞ. A database (instance) over a
relational schemaR¼ ðR1;…;RnÞ is a collection of finite sets
ðI1;…; InÞ, where each Ii is a relation over Ri.

We will use the following notion. Consider instances
D¼ ðI1;…; InÞ and D0 ¼ ðI01;…; I0nÞ of the same schema R. We
say that D is contained in D0, denoted by DDD0, if IjD I0j for
all jA ½1;n�. If DDD0, we say that D0 is an extension of D.

Master data (a.k.a. reference data) Dm is specified by a
relational schema Rm. As remarked earlier, an enterprise
typically maintains master data that is assumed to be
consistent and complete about certain information of the
enterprise [8,30]. We do not impose any restriction on the
relational schemas R and Rm.

Partially closed database. Databases D are usually par-
tially constrained by master data Dm. We specified such
relationship between D and Dm in terms of containment
constraints (CCs). Let LC be a query language. A CC ϕ in LQ is
of the form

qðRÞDpðRmÞ;

where q is a query in LQ defined over schema R, and p is a
projection query over schema Rm. That is, p is a query

Y. Cao et al. / Information Systems 45 (2014) 18–3422
of the form (x! Rm
i ð x
!

; y!Þ for some relation schema Ri
m

in Rm.
Intuitively, constraint ϕ assures that Dm is an “upper

bound” of the information extracted by q(D). In other
words, the CWA is asserted for Dm, which constrains the
part of data identified by q(D) from D. More specifically,
while this part of D can be extended, the expansion cannot
go beyond the information already in Dm. On the other
hand, the OWA is assumed for the part of D that is not
constrained by any CC ϕ.

An instance D of R and master data instance Dm of Rm

satisfy CC ϕ, denoted by ðD;DmÞFϕ, if qðDÞDpðDmÞ.
Example 2. Recall schema product described in Example 1.
Suppose that there exists a master relation productm
specified by schema Rm(asin; model; price; sale), which
maintains a complete record of Kindle products. We
specify a CC qðproductÞDRm, where qðproductÞ is a query
defined as qða;m; p; sÞ ¼ (bðproductða; b;m; p; sÞ4b¼
‘Kindle’Þ. This CC assures that productm is an upper bound
on the Kindle product information possibly contained in
relation product.
As shown in [12,13] and as will be seen shortly, many

integrity constrains commonly used in practice can be
expressed as CCs. For example, consider a functional depen-
dency (FD) ψ: (brand; model-asin; price; sale), which assures
that if two products have the same brand and model, then
they refer to the same itemwith the same id, price and status
of sale. Assume that there exists an empty relation product∅ in
master data Dm. Then ψ can be written as CCs included in V:

qasinðproductÞDproduct∅;

qpriceðproductÞDproduct∅;

qsaleðproductÞDproduct∅;

where

qasinðb;mÞ ¼ (a1; a2; p1; p2; s1; s2 ðproductða1; b;m; p1; s1Þ
4productða2;b;m; p2; s2Þ4a1aa2Þ;

which detects violations of FD ðbrand; model-asinÞ; similarly
one can specify the other CCs qpriceðproductÞDproduct∅ and
qsaleðproductÞDproduct∅. □

We say that D and Dm satisfy a set V of CCs, denoted by
ðD;DmÞFV , if for each ϕAV , ðD;DmÞFϕ.

A database D is said to be a partially closed w.r.t. ðDm;VÞ
if ðD;DmÞFV . That is, the information in D is partially
bounded by Dm via the CCs in V.

A database D0 is a partially closed extension of D w.r.t.
ðDm;VÞ if DDD0 and D0 is partially closed w.r.t. ðDm;VÞ.

Relative completeness: We are now ready to introduce the
notion of relative information completeness. Consider a
database D of schema R, master data Dm of schema Rm and
a set V of CCs, such that D is partially closed w.r.t. ðDm;VÞ.

We say that D is complete for query Q relative to ðDm;VÞ
if Q ðDÞ ¼Q ðD0Þ for every partially closed extension D0 of D,
i.e., DDD0 such that ðD0;DmÞFV . The set of complete
databases for Q w.r.t. ðDm;VÞ, denoted by RCQðQ ;Dm;VÞ,
is the set of all complete databases for Q relative to ðDm;VÞ.

Intuitively, if D is complete for Q relative to ðDm;VÞ,
then no matter how D is expanded by including new
tuples, as long as the extension does not violate contain-
ment constraints V, the answer to query Q remains
unchanged. In other words, D has already got complete
information for answering Q.

To simplify the discussion, we assume that query Q and
the CCs in V are expressed in the same language LQ .
As remarked in Section 1, this does not lose generality. All
the results of this paper remain the same if Q and V are
expressed in the different languages CQ, UCQ, FO or DATALOG.

Example 3. Recall the Amazon instance of product

(also referred to as product), queries Q1, Q2 and Q3 from
Example 1, and master data productm and CCs V from
Example 2. As shown in Example 1, product is complete for
Q2 relative to ðproductm;VÞ if Q2ðproductÞ returns all wire-
less reading devices in productm with brand¼ “Kindle” and
pricer150.
Consider Q3, to find all wireless reading devices with

brand¼“Nook” and model¼“PRS-600”. Suppose that there
exist such device records in productm, but Q3ðproductÞ is
empty. Then product is not complete for Q3. Nonetheless,
we can make product complete for Q3 by adding at most
one product with brand¼“Nook” and model¼“PRS-600”.
Indeed, V includes the CCs encoding the FD ψ, assuring that
there exists at most one product with this brand and
model. Thus the expanded product is complete for Q3

relative to ðproductm;VÞ.
In contrast, consider Q1, to find all wireless reading

devices that have brand¼“Nook” and pricer150, but are
not on sale by Sony. Then master data productm does not
help when we want to make product complete: productm
has no complete information about Sony products with
brand¼“Nook”. In this case we cannot make product

complete for Q1 relative to ðproductm;VÞ by adding tuples
of productm to product. □

Relative completeness and consistency. Several classes of
constraints have been used to capture inconsistencies in
relational data (see e.g., [6,10] for recent surveys), notably
denial constraints, conditional functional dependencies
(CFDs, which are an extension of functional dependencies
(FDs)), and conditional inclusion dependencies (CINDs,
which are an extension of inclusion dependencies (INDS)).
As shown in [12,14], denial constraints and CFDs can be
expressed as CCs in CQ, and CINDs can be expressed as CCs
in FO. Moreover, in all three cases only an empty master
data relation is required. This allows us to capture both
data consistency and relative information completeness in
a uniform logic framework [14].
3. Determining relative information completeness

In this section, we formulate three decision problems in
connection with relative complete databases, each of them
parameterized by a query language LQ . Consider a query
QALQ , master data Dm, a set V of CCs defined in terms of
queries in LQ , and a partially closed database D w.r.t. ðDm;VÞ.

The first problem is referred to as the relative complete-
ness problem. It is to decide whether a given D is complete
for a query Q relative to ðDm;VÞ. The need for studying this
problem is evident: one naturally wants to know whether
one can trust their databases to yield complete answers to
queries.

Y. Cao et al. / Information Systems 45 (2014) 18–34 23
RCPðLQ Þ:
 The relative completeness problem.

INPUT:
 A query QALQ , master data Dm, a set V of CCs in LQ ,

and a partially closed database D w.r.t. ðDm ;VÞ.

QUESTION:
 Is D in RCQðQ ;Dm;VÞ? That is, is D complete for Q

relative to ðDm ;VÞ?
To decide what data should be collected in a database

in order to answer a query Q, we want to identify a
minimal amount of information that is complete for Q.
To capture this, we use a notion of minimality given as
follows.

A database D is called a minimal database complete for a
query Q relative to ðDm;VÞ if it is in RCQðQ ;Dm;VÞ and
moreover, for any D0⊊D, D0 is not in RCQðQ ;Dm;VÞ.

These suggest that we study the following problem,
referred to as the minimal completeness problem.

MinPðLQ Þ:
 The minimal completeness problem

INPUT:
 Q, Dm, V, D as in RCP.

QUESTION:
 Is D a minimal database complete for Q relative to

ðDm , VÞ?
When a database D is not complete for Q, one naturally
wants to extend D with minimal information to make it
complete. We use ΔD to denote a set of tuples to be
inserted into D and D [ΔD to denote the database
obtained by adding all tuples of ΔD to D. Given a positive
integer KZ1, we call ΔD a bounded set of updates for
ðQ ;Dm;V ;D;KÞ if (a) jΔDjrK , and (b) D [ΔD is complete
for Q relative to ðDm;VÞ.

There is a practical need for studying the following
problem, referred to as the bounded extension problem.
Indeed, this problem may assist practitioners to identify
how much additional data needs to be collected to make
the database complete for Q.

BEPðLQ Þ:
 The bounded extension problem

INPUT:
 Q, Dm, V and D as in RCP, and a positive integer KZ0.

QUESTION:
 Does there exist a bounded set of updates ΔD for

ðQ ;Dm;V ;D;KÞ?
Query languages. We study these problems when LQ

ranges over the following query classes (see, e.g., [2], for
the details):

(1) conjunctive queries (CQ), built up from atomic
formulas with constants and variables, i.e., relation atoms
in database schema R, equality (¼) and inequality (a),
by closing under conjunction 4 and existential quantifi-
cation (;

(2) union of conjunctive queries (UCQ) of the form
Q1 [⋯ [Qk, where for each iA ½1; k�, Qi is in CQ;

(3) first-order logic queries (FO) built from atomic
formulas using 4 , 3 , negation :, (and universal quanti-
fication 8; and

(4) datalog queries (DATALOG), defined as a collection of
rules pðxÞ’p1ðx1Þ;…; pnðxnÞ, where each pi is either an
atomic formula (a relation atom in R, ¼ , a) or an IDB
predicate.

One might also want to consider positive existential
FO queries ((foþ), which is built from atomic formulas by
closing under 4 , disjunction 3 and (. Note that any fixed
(foþ query can be unfolded into a UCQ in constant time.
Thus all the complexity results of this paper for UCQ carry
over to (foþ .
As remarked earlier, we express both the user's query Q
and CCs of V in the same query language LQ , with LQ as
one of the languages given above.

Data complexity. In the rest of the paper, we investigate
the data complexity of RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ,
i.e., when both the query Q and the set V of CCs are
predefined and fixed, while databases D and master data
Dm may vary (see, e.g., [2] for details about data complex-
ity). As mentioned earlier, in practice the containment
constraints are often predefined, and users execute a fixed
set of queries, while the underlying database D and master
data Dm may vary from time to time. We establish the
complexity of these problems in this setting, when LQ

ranges over all the query languages given above.

4. Undecidability results for FO and DATALOG

In this section we establish the data complexity of
RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ when LQ is either FO or
DATALOG.

It is known that for the combined complexity, RCPðLQ Þ and
MinPðLQ Þ are undecidable when LQ is FO or DATALOG[12–14].
One might think that fixing queries and containment con-
straints would make our lives easier. The results in this section
tell us, however, that these two problems remain undecidable
when data complexity is concerned (Theorems 1 and 2).
Furthermore, we also show that BEPðLQ Þ is undecidable
when LQ is FO or DATALOG (Theorem 3).

In addition, the undecidability results are rather robust:
RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ remain undecidable for
FO even in the absence of both master data Dm and
containment constraints V; moreover, they are undecid-
able for DATALOG when Dm is absent and V is a fixed set of
FDs, which can be expressed as CCs in CQ (see Example 2
and [12–14]).

In fact, we show the undecidability of RCPðLQ Þ,
MinPðLQ Þ and BEPðLQ Þ for these special cases in
Theorems 1, 2 and 3, respectively. Clearly, this implies
the undecidability for the general case of these problems.

Deciding relative completeness. We start with RCP(LQ),
the relative completeness problem. We show that for the
data complexity analysis, RCP(LQ) is undecidable when
LQ is FO or DATALOG. The proofs of the undecidability of the
data complexity analyses are rather different from their
combined complexity counterparts given in [12–14].

Theorem 1. The data complexity of RCPðLQ Þ is undecidable
when LQ is FO or DATALOG. The problem remains undecidable
�
 for FO, even when master data Dm and containment
constraints V are absent; and
�
 for DATALOG, even when Dm is absent and V is a fixed set of
FDs. □

Proof. We first settle the data complexity of RCPðLQ Þ
when LQ is FO, and then consider RCPðLQ Þ when LQ is
DATALOG.

When LQ is FO. We show that RCPðLQ Þ is undecidable by
reduction from the embedding problem for the class of all

Y. Cao et al. / Information Systems 45 (2014) 18–3424
finite semigroups, which is known to be undecidable [22].
To formulate the embedding problem we need the follow-
ing notions.
A semigroup A is a structure of the form A¼ ðA; f Þ such

that A is a nonempty set, called the domain of A, and f is an
associative binary function on A; this means that, for every
a, b, cAA, we have that f ðf ða; bÞ; cÞ ¼ f ða; f ðb; cÞÞ. A finite
semigroup is a semigroup whose domain is a finite set. A
partial semigroup is a structure B of the form B¼ ðB; gÞ
where, as before, B is a nonempty set but now g is a partial
binary function that is associative. Let B¼ ðB; gÞ be a partial
finite semigroup and A¼ ðA; f Þ a finite semigroup. We say
that B is embeddable in A if BDA and f is an extension of
g, that is, whenever gðb1; b2Þ is defined, we have that
f ðb1; b2Þ ¼ gðb1; b2Þ.
The embedding problem for finite semigroups is to decide

whether a given partial finite semigroup is embeddable in
some finite semigroup. This problem is undecidable [22].
Given a finite partial semigroup B¼ ðB; gÞ, we define a fixed

relational schema R, a database D on R, a fixed FO query Q
such that D is partially closed w.r.t. ðDm;VÞ, where Dm and V
are both empty. We show that DARCQðQ ;Dm ¼∅;V ¼∅Þ if
and only if B is not embeddable.
(1) Let R consist of a single schema RgðA;X;Y ; ZÞ, where

attributes A;X;Y and Z have a countably infinite domain,
and D consist of a single relation Ig over Rg, which is
defined as follows. For any three elements a; b and c in B,
there exists a tuple ð0; a; b; cÞ in Ig if gða; bÞ ¼ c. Intuitively, Ig
encodes the function g of the finite partial semigroup B.
Extensions g0 of g are encoded by extensions I0g of Ig by
means of tuples of the form ð1; a0;b0; c0Þ such that
g0ða0;b0Þ ¼ c0.
We say that an instance I0g of Rg is well-formed if (a) each

tuple of the form ð0; a; b; cÞ in I0g has a counterpart of the
form ð1; a; b; cÞ in I0g; and (b) I0gð1; x; y; zÞ encodes an asso-
ciative binary function f such that z¼ f ðx; yÞ. Obviously, an
extension I0g of Ig that is well-formed encodes an extension
of g that is an associative binary function.
(2) The query Q is a boolean query that encodes the

conditions (a) and (b) given above. It returns true on an
instance of Rg if and only if this instance is well-formed.
More specifically, Q is the conjunction of sub-queries Q1,
Q2, Q3, and Q4, which are defined as follows:

Q1 ¼ 8x; y; z ðRgð0; x; y; zÞ-Rgð1; x; y; zÞÞ;
Q2 ¼ 8x; y; z; z0 ðRgð1; x; y; zÞ4Rgð1; x; y; z0Þ-z¼ z0Þ;
Q3 ¼ 8x; y; z;u; v;w ðRgð1; x; y;uÞ4Rgð1; y; z; vÞ4

Rgð1;u; z;wÞ-Rgð1; x; v;wÞÞ;
Q4 ¼ 8x; y; z; x0; y0; z0 ðRgð1; x; y; zÞ4Rgð1; x0; y0; z0Þ-

(w1;…;w9 ðRgð1; x; x0;w1Þ4Rgð1; x; y0;w2Þ
4Rgð1; x; z0;w3Þ4Rgð1; y; x0;w4Þ4Rgð1; y; y0;w5Þ4
Rgð1; y; z0;w6Þ4Rgð1; z; x0;w7Þ4Rgð1; z; y0;w8Þ4
Rgð1; z; z0;w9ÞÞÞ:

Clearly, for any database D0 ¼ ðI0gÞ on R, Q1ðD0Þa∅ if and
only if the condition (a) given above is satisfied, and
Q2ðD0Þa∅ if and only if the subset I0gð1; x; y; zÞ encodes a
function. Furthermore, for such databases D0, Q3ðD0Þa∅ if
and only if I0gð1; x; y; zÞ encodes an associative function.
Finally, Q4ðD0Þa∅ if and only if for any two elements that
occur in two triples in I0gð1; x; y; zÞ, function f is defined on
the values of these elements and is encoded in I0gð1; x; y; zÞ.
In other words, Q4ðD0Þa∅ if and only if I0gð1; x; y; zÞ encodes
a total function. Hence, Q ðD0Þa∅ if and only if the set
I0gð1; x; y; zÞ encodes an associative binary function f such
that f ðx; yÞ ¼ z, and moreover, it is an extension of g.
Observe that since V is empty, D is partially closed w.r.t.

ðDm;VÞ and so is any D0 of R such that DDD0. Furthermore,
Q ðDÞ ¼∅ since Q1ðDÞ ¼∅ by the definition of D.
We next show that we have indeed defined a reduction,

i.e., DARCQðQ ;Dm ¼∅;V ¼∅Þ if and only if B cannot be
embedded in a finite semigroup.
ð)Þ First assume that DARCQðQ ;∅;∅Þ. Then for each

partially closed extension D0 of D, Q ðD0Þ ¼Q ðDÞ ¼∅. Sup-
pose by contradiction that there exists a finite subgroup
A ¼ ðA; f Þ such that B can be embedded in A. Let I0g be an
instance of Rg such that ð0; a; b; cÞ; ð1; a; b; cÞA I0g if and only
if f ða; bÞ ¼ c. Let D0 ¼ ðI0gÞ. It is easy to see that D0 is an
extension of D since B can be embedded in A. Moreover,
one can readily verify that Q ðD0Þa∅ by the definition of Q.
Obviously, as discussed above, D0 is a partially closed
extension of D since V is empty. This contradicts the
assumption that DARCQðQ ;∅;∅Þ.
ð(Þ Conversely, assume that D=2RCQðQ ;∅;∅Þ. Then

there exists a partially closed extension D0 ¼ ðI0gÞ of D such
that Q ðD0Þa∅. Thus I0gð1; x; y; zÞ encodes an associative
binary function g0 that is an extension of g, i.e., for each
a; bAB, g0ða; bÞ ¼ gða; bÞ if gða;bÞ is defined. We next con-
struct a semigroup A¼ ðA; f Þ such that B can be embedded
in A. Note that Ig is defined in terms of the function g and
that even though I0g encodes a total function, I0g may not
contain all values in B.
Given I0g , we therefore let A consist of (i) all elements in B,

(ii) all values of attributes X;Y or Z that appear in a tuple of
the form ð1; a; b; cÞ in I0g , and (iii) a fresh constant ϵ that does
not appear in B or I0g . Moreover, we define a function f such
that for each pair of elements a and b in A, (a) f ða; bÞ ¼ c if
g0ða; bÞ ¼ c for some cAA\fϵg; (b) f ða;bÞ ¼ ϵ if aaϵ, baϵ,
and g0ða; bÞ is not defined (i.e., a; bAB, and gða; bÞ and g0ða; bÞ
are both undefined); and (c) f ða;bÞ ¼ a if b¼ ϵ and
f ða; bÞ ¼ b if a¼ ϵ. Obviously, by the definition of A and f,
we have that BDA and f is an extension of g. Moreover, one
can readily verify that f is an associative binary function on
A. Thus A is a semigroup and B can be embedded in A.

When LQ is DATALOG. We show that RCP(DATALOG) is unde-
cidable by reduction from the emptiness problem for
deterministic finite 2-head automata, which is known to
be undecidable [33]. Our proof closely follows the reduction
presented in [33, Theorem 3.4.1], which shows that the
satisfiability of the existential fragment of transitive-closure
logic, EþTC, is undecidable over a schema having at least two
non-nullary relation schemas, one of them being a function
symbol. Although EþTC allows the negation of atomic
expression as opposed to DATALOG, the undecidability proof
only uses a very restricted form of negation, which can be
simulated using a and a fixed set of FDs.
For readers' convenience, we present necessary defini-

tions taken from [33]. A deterministic finite 2-head auto-
maton (or 2-head DFA for short) is a quintuple
A¼ ðS;Σ;Γ; s0; saccÞ consisting of a finite set of states S, an
input alphabet Σ ¼ f0;1g, an initial state s0, an accepting

Y. Cao et al. / Information Systems 45 (2014) 18–34 25
state sacc, and a transition function Γ: S� Σϵ � Σϵ-

S� f0; þ1g � f0; þ1g, where Σϵ ¼ Σ [fϵg. A configuration
of A is a triple ðs;ω1;ω2ÞAS� Σn � Σn, representing that A
is in state s, and the first head and the second head of A
are positioned on the first symbol of ω1 and ω2, respec-
tively. On an input string ωAΣn, A starts from the initial
configuration ðs0;ω;ωÞ; and the successor configuration is
defined as usual.
We say that A accepts ω if a configuration ðsacc;ω1;ω2Þ

can be reached, based on the successor relation, from the
initial configuration for ðs0;ω;ωÞ; otherwise we say that A
rejects ω. The language accepted by A, denoted by LðAÞ,
consists of all strings that are accepted by A. The emptiness
problem for 2-head DFAs is to determine, given a 2-head
DFA A, whether LðAÞ is empty. This problem is known to
be undecidable [33].
Given a 2-head DFA A¼ ðS;Σ;Γ; s0; saccÞ, we define a fixed

relational schema R, empty master schema Rm, a database
D on R, a fixed DATALOG-query Q, a fixed set V of FDs and
empty master data Dm. We show that LðAÞ is empty if and
only if DARCQðQ ;Dm ¼∅;VÞ.
(1) Let R consist of four relation schemas RPðU;AÞ,

RF ðW ;A1;A2Þ, RT ðB1;B2; S1; In1; In2; S2;M1;M2Þ and RCðC1;

C2Þ, where all attributes in R have a countably infinite
domain. Intuitively, instances I0P and I0F of RP and RF, respec-
tively, are to represent a string ωAΣn such that (i) elements in
sU ¼ 1ðI0PÞ represent the positions in ω where an 1 occurs, (ii)
sU ¼ 0ðIP0 Þ records those positions in ω that are 0; and (iii) I0F is
to represent a successor relation over these positions. More
specifically, the successor relation will be given by πA1 ;A2

ðsA1 aA2 ðI0F ÞÞ [πA1 ;A2 ðsA1 ¼ A2 4W ¼ 1ðI0F ÞÞ in which the last part
identifies the final position in the successor relation. This will
be further explained when considering the CCs below.
Furthermore, the instance IT of RT is to encode thetransitions
in Γ of A. More specifically, for each transition Γ: ðs; in1; in2Þ-
ðs0;move1;move2Þ, there exists a tuple ðb1; b2; s; in1; in2; s0;
move1;move2Þ in IT, such that the first two attributes of all
tuples in IT result in a sequence 0-1-⋯-n, where n is the
number of transition in Γ. That is, πB1 ;B2 ðIT Þ consists of all
tuples ð0;1Þ; ð1;2Þ;…; ðn�1;nÞ. We set IC ¼ fð0;nÞg. We
define D¼ ðIP ; IF ; IT ; ICÞ, where IP and IF are empty instances
of RP and RF, respectively, which encode an empty string, and IT
and IC are defined above.
(2) The set V consists of five FDs to assure that we only

consider well-formed instances of R. An instance D0 ¼
ðI0P ; I0F ; I0T ; I0CÞ of R is well-formed if (a) sU ¼ 1ðI0PÞ and
sU ¼ 0ðI0PÞ are disjoint (i.e., a string can only have one letter
at each position); and πA1 ;A2 ðsA1 aA2 ðI0F ÞÞ [πA1 ;A2 ðsA1 ¼ A2 4
W ¼ 1ðI0F ÞÞ must (b) be a function and (c) contain a unique
tuple of the form (k, k) for some constant k indicating the
final position. We additionally require that I0F contains a
tuple of the form ðw;0; iÞ, where 0 represents the initial
position and i is some constant. Similarly, we require the
presence of a tuple ð1; k; kÞ in I0F representing the final
position, where k is some constant. These two extra
requirements will be assured by the DATALOG-queries
Q ini and Q fin to be defined shortly. Furthermore, (d)
πC2sC1 ¼ 0I

0
CðC1;C2Þ is to contain a single value only, (e)

πB1 ;B2 ðI0T Þ encodes a bijection, and finally, (f) there is a
unique transition in I0T for each value in πB1 ðI0T Þ. More
specifically, the set V consists of the following FDs:
�
 A-U, enforcing that for any instance D0 ¼ ðI0P ; I0F ; I0T ; I0CÞ
of R such that I 0FV , condition (a) is satisfied for I0P;
�
 A1-A2, ensuring that πA1 ;A2 ðI0F Þ encodes a function;
hence condition (b) is satisfied;
�
 W-A1;A2, ensuring that there can be at most one tuple
with its W-attribute set to 1 in I0F . As a result,
πA1 ;A2 ðsA1 ¼ A2 4W ¼ 1ðI0F ÞÞ contains at most one tuple,
and condition (c) is satisfied;
�
 C1-C2, ensuring that πC2sC1 ¼ 0I
0
CðC1;C2Þ consists of a

single value only, ensuring that (d) is satisfied;

�
 B1-B2 and B2-B1, ensure that fðb1; b2Þ∣πB1 ;B2 ðI0T Þg is

bijection from πB1 ðI0T Þ to πB2 ðI0T Þ, and hence condition
(e) is satisfied; and finally,
�
 B1-B2; S1; In1; In2; S2;M1;M2, ensuring that condition
(f) is satisfied.

Recall that FDs can be encoded by CCs in CQ together
with an empty master database (Example 2 and [12–14]).
In summary, any instance D0 ¼ ðI0P ; I0F ; I0T ; I0CÞ of R that

satisfies V is well-formed, with the exception that we still
need to check for the existence of an initial and a final
position in the instance I0F of RF in D0. Obviously, we have
that ðD;DmÞFV .
(3) We next define the query Q. To do this, we first give

some auxiliary DATALOG queries, and then show how the
non-emptiness of LðAÞ can be expressed in terms of these
queries. Let ΠPðu; aÞ’RPðu; aÞ;u¼ 0 and ΠPðu; aÞ’RPðu; aÞ;
u¼ 1. Furthermore, let ΠF ða1; a2Þ’RF ðw; a1; a2Þ; a1aa2
and ΠF ða1; a2Þ’RF ðw; a1; a2Þ; a1 ¼ a2;w¼ 1. These DATALOG -

queries are to extract the strings and successor relation on
strings from the database instances. Let TCðb1; b2Þ’RT ðb1;
b2; s; in1; in2; s0;move1;move2Þ and TCðb1; b2Þ’TCðb1; b3Þ;
TCðb3; b2Þ. That is, TC contains the transitive closure of
πB1 ;B2 ðRT Þ. We define

Πpostðb2Þ’TCðb1;b2Þ; b1 ¼ 0
Πpreðb2Þ’TCðb1; b2Þ;RCðc1; b2Þ; c1 ¼ 0;

and define ΠΓðs; in1; in2; s0;move1;move2Þ as
RT ðs; in1; in2; s0;move1;move2Þ;Πpostðb2Þ;Πpreðb1Þ:
It can be readily verified that for each extension

D0 ¼ ðI0P ; I0F ; I0T ; I0CÞ of D, if ðD0;DmÞFV then ΠΓðD0Þ returns
exactly all tuples in IT. Indeed, this follows from the fact
that by ðD0;DmÞFV , πB1 ;B2 ðI0T Þ encodes a bijection; Πpre

returns all transitions reachable from 0; Πpost returns all
transitions that can reach n; and that I0T contains a unique
transition for each B1-value. Here n is the number of
transitions in Γ.
Finally, from ΠΓ we construct the following queries

to represent how A run on the string encoded by I0P and
I0F : for each i1Afϵ;0;1g, i2Afϵ;0;1g, m1Af0; þ1g, and
m2Af0; þ1g,
Πi1 ;i2 ;m1 ;m2

ðx; y; z; x0; y0; z0Þ’ΠΓðx; i1; i2; x0;m1;m2Þ;
ψ i1 ;i2 ;m1 ;m2

ðy; z; y0; z0Þ;

where

ψ i1 ;i2 ;m1 ;m2
ðy; z; y0; z0Þ’α1ði1; yÞ; α2ði2; zÞ;

β1ðm1; y; y0Þ; β2ðm2; z; z0Þ;
and α1ði1; yÞ’ΠF ðy; y0Þ;ΠPði1; yÞ; yay0 if i1 ¼ 0;1; and
α1ði1; yÞ’ΠF ðy; yÞ if j¼ ϵ; similarly for α2ði2; zÞ.

Y. Cao et al. / Information Systems 45 (2014) 18–3426
Furthermore, β1ðm1; y; y0Þ’ΠF ðy; y0Þ if m1 ¼ þ1 and β1ðm1;

y; y0Þ’y¼ y0 if m1 ¼ 0; similarly for β2ðm2; z; z0Þ.
Intuitively, αiðj; yÞ enforces y to be a position in the string

coded by ΠPð1; yÞ (when j¼1) or ΠPð0; yÞ (when j¼0) that
has a successor, unless y is the final position (when j¼ ϵ),
where αiðj; yÞ demands ΠF ðy; yÞ. Moreover, βiðy; y0Þ ensures
that y and y0 are consecutive positions when A makes a
move (with head i) and y¼ y0 otherwise.
Putting these together, ψ i1 ;i2 ;m1 ;m2

ðy; z; y0; z0Þ expresses
valid moves of A on the string encoded by I0P and I0F . Then,

Πtransðx; y; z; x0; y0; z0Þ’ ⋀
i1 ;i2 ;m1 ;m2

Πi1 ;i2 ;m1 ;m2
ðx; y; z; x0; y0; z0Þ

Πtransðx; y; z; x0; y0; z0Þ’Πtransðx; y; z; x″; y″; z″Þ;
Πtransðx″; y″; z″; x0; y0; z0Þ

represents all possible valid transitions in A; hence, the
query

Q 0ðÞ ¼ (y1y2Πtransðq0;0;0; qacc; y1; y2Þ
is satisfiable if and only if LðAÞa∅.
Clearly, we can express Q 0 in DATALOG. Recall that we still

need to assure the existence of an initial and a final
position in well-formed instance of RF. The final DATALOG-
query Q is therefore defined as the conjunction of Q 0ðÞ, Q ini

and Q fin, where Q iniðÞ’RF ðw;0; xÞ and Q finðÞ’RF ð1; x; xÞ so
that initial and final positions in IP and IF are also checked.
We next show that it is indeed a reduction. Recall that

ðD;DmÞFV; since Q finðDÞ ¼∅, we have that Q ðDÞ ¼∅. It
remains to show that LðAÞ ¼∅ if and only if for each
partially closed extension D0 ¼ ðI0P ; I0F ; I0T ; I0CÞ of D, Q ðD0Þ ¼∅.
Observe that for such D0, the addition of extra tuples in IT
does not affect the query results since Q only selects tuples
already in IT, and V does not allow the addition of other
tuples in IC representing the number of transitions in Γ.
Thus I0P and I0F encode a string ω such that Q ðD0Þ is
nonempty if and only if ωALðAÞ. As a result, LðAÞ ¼∅ if
and only if for each partially closed extension D0 of D,
Q ðD0Þ ¼∅, i.e., DARCQðQ ;∅;VÞ.
This completes the proof of Theorem 1. □

Determining minimal completeness. When it comes to
the minimal complete problem MinPðLQ Þ, we show that it
is also beyond reach in practice when LQ is FO or DATALOG.
Indeed, we get results similar to Theorem 1: the data
complexity of MinP(FO) is undecidable in the absence of
master data Dm and CCs V (i.e., Dm ¼∅ and V ¼∅); and
moreover, MinP(DATALOG) is undecidable even when Dm is
absent and V is a fixed set of FDs (i.e., V can be expressed
in CQ).

Theorem 2. The data complexity of MinPðLQ Þ is undecidable
when LQ is FO or DATALOG. The problem remains undecidable
�
 for FO, even when both the master data Dm and contain-
ment constraints V are empty; and
�
 for DATALOG, even when Dm is empty and V is a fixed set of
FDs. □

Proof. We first study MinPðLQ Þ when LQ is FO, and then
investigate it when LQ is DATALOG.
When LQ is FO. We show that MinP(FO) is undecidable by
Turing reduction from RCP(FO) to MinP(FO). By Theorem 1,
RCP(FO) is undecidable even when master data Dm and
containment constraints V are absent. We consider such
special case of RCP(FO) in the reduction. To give the
reduction, we first show the following lemma.

Lemma 1. For any FO query Q, empty master data Dm, empty
V of CCs, and any database D that is partially closed w.r.t.
ðDm;VÞ, DARCQðQ ;Dm ¼∅;V ¼∅Þ if and only if there exists
a database D0DD such that D0 is a minimal database
complete for Q relative to ðDm ¼∅;V ¼∅Þ. □

Lemma 1 can be easily verified as follows. First, assume
that DARCQðQ ;Dm ¼∅;V ¼∅Þ. Then there must be
D0DD such that D0 is a minimal database complete for
Q relative to (Dm, V), by the definition of minimal relatively
complete databases. Conversely, assume that there exists
a minimal complete database D0DD for Q relative to
ðDm ¼∅;V ¼∅Þ. Then for any extensions D0

0 of D0,
Q ðD0Þ ¼Q ðD0

0Þ and ðD0
0;DmÞFV . We next show that

DARCQðQ ;Dm ¼∅;V ¼∅Þ. Indeed, for each partially
extension D0 of D, Q ðD0Þ ¼Q ðD0Þ ¼ Q ðDÞ, since D0 and D
are both extensions of D0. Thus, we have that DARCQ

ðQ ;Dm ¼∅;V ¼∅Þ.
We next give the Turing reduction. Let TMMinP(Q, D,

Dm, V) be an oracle that returns “yes” if D is a minimal
database complete for a query Q relative to (Dm, V);
otherwise, it returns “no”. We give an algorithm Ω for
RCP(FO) that calls TMMinP(Q, D, V, Dm) at most Oð2jDjÞ
times, where Dm and V are both empty. Algorithm Ω works
as follows:
1.
 enumerate all databases D0DD and do the following;

2.
 check whether TMMinPðQ ;D0;Dm ¼∅;V ¼∅Þ returns

“yes”; if so return “yes”;

3.
 return “no” otherwise if no such D0 exists.

The correctness of algorithm Ω follows from Lemma 1.
Moreover, Ω calls TMMinP(Q, D, V, Dm) at most Oð2jDjÞ
times. Therefore Ω is a Turing reduction from RCP(FO) to
MinP(FO), in the absence of Dm and V. Thus MinP(FO) is
undecidable even when Dm and V are absent.

When LQ is DATALOG. The proof is similar to its counter-
part for FO above. First, the lemma below can be easily
verified.

Lemma 2. For any DATALOG query Q, empty master data Dm, a
set V of FDs, and any database D that is partially closed w.r.t.
ðDm;VÞ, DARCQðQ ;Dm;VÞ if and only if there exists a
database D0DD that is a minimal database complete for Q
relative to ðDm;VÞ. □

It is known that RCP(DATALOG) is undecidable when Dm

is absent and V is a fixed set of FDs (Theorem 1). We
construct a Turing reduction from such a special case of
RCP(DATALOG) to MinP(DATALOG) along the same lines as the
one given above for FO, which show that MinP(DATALOG) is
undecidable even when Dm is absent and V is a fixed set
of FDs.

This completes the proof of Theorem 2. □

Y. Cao et al. / Information Systems 45 (2014) 18–34 27
Determining bounded extensions. We next study the
bounded extension problem BEP(LQ). Just like RCPðLQ Þ
andMinPðLQ Þ, we show that BEP(LQ) is undecidable when
LQ is FO or DATALOG. Moreover, we show that the problem
remains undecidable (a) for FO, when master data Dm and
containment constraints V are both absent; and (b) for
DATALOG, when V is a fixed set of FDs and master data Dm is
empty. Furthermore, all the results hold for any positive
integer KZ1. We remark that BEP(LQ) has not been
studied by previous work.

Theorem 3. The data complexity of BEPðLQ Þ is undecidable
when LQ is FO or DATALOG. The problem remains undecidable
for any positive integer KZ1, and
�
 for FO, even when master data and containment con-
straints are absent; and
�
 for DATALOG, even when master data is absent and contain-
ment constraints are a fixed set of FDs. □
Proof. We first study the data complexity of BEPðLQ Þ
when LQ is FO, and then investigate it when LQ is DATALOG.

When LQ is FO. We show that BEP(LQ) is undecidable
even when both master data and containment constraints
are absent, by reduction from the embedding problem for
the class of all finite semigroups. We refer to the proof of
RCP(FO) in Theorem 1 for the statement of the embedding
problem. The reduction below is similar to the one given in
that proof.
Given a finite partial semigroup B¼ ðB; gÞ, we define a

database D and a fixed query Q in FO, and let the set V of
CCs and master data Dm be empty. We show that for any
positive integer KZ1, there exists a bounded set of
updates ΔD for ðQ ;D;Dm ¼∅;V ¼∅;KÞ if and only if B
cannot be embedded in a finite semigroup.
(1) Let R consist of a single relation schema RgðA;X;Y ; ZÞ,

where attributes A;X;Y and Z all have a countably infinite
domain. The database D of R consists of a single relation Ig
over schema Rg encoding the given finite semigroup B, as
described in the proof of Theorem 1. In addition, Ig
contains Kþ1 tuples of the form ð2; i; i; iÞ for all iA ½0;K�.
Furthermore, along the same line as the proof of Theorem
1 for RCP(FO), the extensions of g are encoded by tuples of
the form ð1; a0; b0; c0Þ. Accordingly, we define that an
instance I0g of Rg is well-formed if (a) each tuple of the
form ð0; a; b; cÞ in I0g has a counterpart of the form ð1; a; b; cÞ
in I0g; (b) Ið1; x; y; zÞ encodes an associative binary function;
and (c) each tuple of the form ð2; i; i; iÞ in I0g has a counter-
part of the form ð3; i; i; iÞ in I0g .
(2) The query Q is a boolean query that encodes the

conditions (a), (b) and (c), such that Q returns true on an
instance if and only if this instance is well-formed. As in
the proof of Theorem 1 for RCP(FO), Q is the conjunction of
queries Q1, Q2, Q3, Q4, and Q5, where the extra query Q5 is
defined as

8x ðRgð2; x; x; xÞ-Rgð3; x; x; xÞÞ;

which encodes condition (c). It is easy to see that, for each
collection ΔD of tuples, if jΔDjrK , Q ðD [ΔDÞ ¼∅ since
Q5ðD [ΔDÞ ¼∅. Furthermore, for such ΔD, we have that
ðD [ΔD;DmÞFV since V ¼∅.
We next show that it is indeed a reduction, i.e., there

exists a bounded set of updates ΔD for ðQ ;D;Dm ¼∅;

V ¼∅;KÞ if and only if B cannot be embedded in a finite
semigroup.
ð)Þ Assume that there exists a bounded set of updates

ΔD for ðQ ;D;Dm ¼∅;V ¼∅;KÞ. Then D [
ΔDARCQðQ ;∅;∅Þ and jΔDjrK . Since Q ðD [ΔDÞ is
empty, we have that for each partially closed extension
D0 of D [ΔD, Q ðD0Þ ¼∅. Along the same line as the proof of
Theorem 1 for RCP(FO), one can prove that B cannot be
embedded in a finite semigroup.
ð(Þ Conversely, if B cannot be embedded in a finite

semigroup, assume by contradiction that there exists no
bounded set of updates ΔD for ðQ ;D;Dm ¼∅;V ¼∅;KÞ.
This implies that for each set of updates ΔD such that
jΔDjrK , we have that ðD [ΔD;Dm ¼∅ÞFV , Q ðD [ΔDÞ ¼
∅, and furthermore, there exists a partially closed exten-
sion D0 of D [ΔD such that Q ðD0Þ is nonempty. Along the
line as the proof of Theorem 1 for RCP(FO), we can
construct from D0 a finite semigroup A such that B can
be embedded in A, contradicting the assumption that B
cannot be embedded in a finite semigroup.

When LQ is DATALOG. We next show that BEP(DATALOG) is
undecidable by reduction from RCP(DATALOG). The latter
has been shown to be undecidable in the proof of Theorem
1, even for a fixed query Q and database D such that
Q ðDÞ ¼∅, and when Dm is empty and V is a fixed set of FDs.
We consider this special case of RCP(DATALOG). Given such
an instance Q, D, Dm and V of RCP(DATALOG), we construct a
fixed query Q 0 in DATALOG, a database D0, an empty master
database D0

m and a fixed set V 0 of FDs. We show that for
any integer KZ1, D is in RCQðQ ;Dm ¼∅;VÞ if and only if
there exists a bounded set of updates for ðQ 0;D0;Dm

0 ¼
∅;V 0;KÞ.
To simplify the discussion, we assume that D, Q and V

are defined over a relation schema R, where R consists of a
single relation RðA1;…;AlÞ for a constant l. Indeed, the
assumption does not lose the generality, since one can
always transform an arbitrary instance of RCP(DATALOG) to
an equivalent one defined over a single schema, as shown
by the following lemma.

Lemma 3 (Fan and Geerts [14]). For any relational schema
R¼ ðR1;…;RnÞ, there exist a single relation schema R, a
linear-time computable bijective function hD from instðRÞ to
instðRÞ, a linear-time computable function hQ :LQ-LQ such
that for any instance I of R and any query QALQ over R,
Q ðI Þ ¼ hQ ðQÞðhDðI ÞÞ. Here LQ ranges over CQ, UCQ, FO and
DATALOG, and instðRÞ denotes all the instances of schema R. □

We next give the reduction. By Lemma 3 and Theorem 1,
we consider a database D¼ ðIÞ and a fixed DATALOG query Q
both defined over schema RðA1;…;AlÞ such that Q(D) is
empty, along with empty master data Dm and a set V of
FDs, where l can be taken as a constant since Q and V
are fixed.
(1) Let R0 consist of two relation schemas R0ðG;A1;…;AlÞ

and RE(C), where R0ðG;A1;…;AlÞ extends R with a fresh

Y. Cao et al. / Information Systems 45 (2014) 18–3428
attribute G that has an infinite domain, and RE(C) is a unary
relation schema consisting of a single attribute C with an
infinite domain. We denote by I(g) and IE(c) the instances
of R0 and RE, respectively, where I(g) consists of fgg � I,
for some constant g in domðGÞ, and IEðcÞ ¼ fðcÞg for
some constant c in domðCÞ. In particular, we consider the
database instance D0 of R0 consisting of the two relations
Iðg0Þ and IEðc0Þ for some constants g0 in domðGÞ and c0 in
domðCÞ.
(2) The master data D0

m is assumed to be an empty
relation.
(3) We define V 0 such that for each FD X-A in V, there

exists an FD ðG;XÞ-A in V 0 defined over R0. It is easy to
verify that the following two are equivalent: for any
instance I of R defined with constants gAdomðGÞ and
cAdomðCÞ as above,
�
 ðI;Dm ¼∅ÞFV;

�
 ððIðgÞ; IEðcÞÞ;D0

m ¼∅ÞFV 0.
In particular, we have that ðD0;∅ÞFV 0 since ðD;∅ÞFV , for
D and D0 given above.
(4) To define Q 0, we first construct a query Q1 on R0 by

substituting R0ðz; y!Þ for each occurrence of Rð y!Þ in Q,
where z is a common variable shared across all the atoms
in Q1. Obviously, for each instance I of R and any
gAdomðGÞ, Q(I) is nonempty if and only if Q1ðIðgÞÞ is
nonempty. We next define

Q 0ðxÞ ’ Q1ðg; y! Þ;REðxÞ:
Intuitively, for any instance I0 of R0 and instance IE of RE, Q

0

returns the relation IE if there exists g such that Q1ðI0gÞ is
nonempty, where I0g is the subset of I0 consisting of tuples t
such that t½G� ¼ g, and Q 0 returns empty otherwise. As a
consequence, for any instance I of R, any gAdomðGÞ, and
any nonempty instance IE of RE, the following two are
equivalent:
�
 ðI;∅ÞFV and Q(I) is nonempty;

�
 ððIðgÞ; IEÞ;∅ÞFV 0 and Q 0ðIðgÞ, IEÞ is nonempty,
In particular, Q 0ðD0Þ ¼∅ since Q ðDÞ ¼∅.
We next show that this is indeed a reduction, i.e., for any

integer KZ1, D is in RCQðQ ;Dm ¼∅;VÞ if and only if there
exists a bounded set of updates for ðQ 0;D0;D0

m ¼∅;V 0;KÞ.
ð)Þ Assume that D is in RCQðQ ;Dm ¼∅;VÞ. Recall that

we assume that Q ðDÞ ¼∅. Then for any partially closed
extension D″ of D, we have that Q ðD″Þ ¼ Q ðDÞ ¼∅. Let
ΔD0 ¼∅. We show that ΔD0 is a bounded set of updates for
ðQ 0;D0;D0

m ¼∅;V 0;KÞ, i.e., D0ARCQðQ 0;D0
m ¼∅;V 0Þ. Recall

that D0 ¼ ðIðg0Þ; IEðc0ÞÞ. As argued above, ðD0;∅ÞFV 0 and
Q 0ðD0Þ ¼∅. Since ΔD0 ¼∅, it remains to show that for any
partially closed extension ðI0; I0EÞ of D0, Q 0ðI0; I0EÞ ¼∅. Assume
by contradiction that there exists a partially closed exten-
sion ðI0; I0EÞ of D0 such that ðI0; I0EÞaD0 and Q 0ðI0; I0EÞ is none-
mpty. Then by the definition of Q 0, there exists gAdomðGÞ
such that Q1ðI0gÞ is nonempty. Thus Q ðπA1 ;…;Al

ðI0gÞÞ is none-
mpty, as discussed above. Obviously, πA1 ;…;Al

ðI0gÞ is a par-
tially closed extension of D, which contradicts the
assumption that D is in RCQðQ ;∅;VÞ since Q ðDÞ ¼∅.
Hence D0ARCQðQ 0;∅;V 0Þ and ΔD¼∅ is a bounded set of
updates for ðQ 0;D0;D0

m ¼∅;V 0;KÞ, for any integer KZ1.
ð(Þ Conversely, assume that D is not in RCQðQ ;∅;VÞ.

Then there exists a partially closed extension De ¼ Ie of D
such that DeaD, ðDe;DmÞFV and Q ðDeÞ is nonempty.
Assume by contradiction that there exists a bounded set
of updates ΔD0 ¼ ðΔI0;ΔIEÞ for ðQ 0;D0;D0

m ¼∅;V 0;KÞ, where
ΔI0 and ΔIE are instances of R0 and RE, respectively. Then
D0 [ΔD0 is in RCQðQ 0;D0

m ¼∅;V 0Þ. Recall that D0 ¼
ðIðg0Þ; IEðc0ÞÞ. Then D0 [ΔD0 ¼ ðIðg0Þ [ΔI0; IEðc0Þ [ΔIEÞ. By
the definition of Q 0, Q 0ðD0 [ΔD0Þ must be empty, since
otherwise for any extension I0E of IEðc0Þ [ΔIE such that
I0Ea IEðc0Þ [ΔIE , we have that ðIðg0Þ [ΔI0; I0EÞ is a partially
closed extension of D0 [ΔD0, but Q 0ðIðg0Þ [ΔI0; I0EÞ ¼
I0Ea IEðc0Þ [ΔIE ¼Q 0ðD0 [ΔD0Þ. Now consider the follow-
ing extension I″¼ Iðg0Þ [ΔI0 [Ieðg1Þ of Iðg0Þ [ΔI0, where
g1 is a fresh constant in domðGÞ but it does not appear in
any tuple in Iðg0Þ [ΔI0. Obviously, D″¼ ðI″; IEðc0Þ [ΔIEÞ is a
partially closed extension of ðD0 [ΔD0Þ since ðIðg0Þ[
ΔI0;∅ÞFV 0, ðIeðg1Þ;∅ÞFV 0 and the tuples in Iðg0Þ [ΔI0

differ in their G-attribute with tuples in Ieðg1Þ. We next
show that Q 0ðD″Þ is nonempty, and thus D0 [ΔD=2
RCQðQ 0;∅;V 0Þ. Recall that De ¼ Ie and Q ðDeÞa∅. Then as
argued above, Q1ðIeðg1ÞÞ is nonempty, and hence Q1ðI″g1 Þ is
not empty since Ieðg1Þ ¼ I″g1 . As a result, Q 0ðD″Þ is none-
mpty by the definition of Q 0, and thus D0 [ΔD=2
RCQðQ 0;∅;V 0Þ. As a consequence, there exist no bounded
sets of updates ΔD0 ¼ ðΔI0;ΔIEÞ for ðQ 0;D0;D0

m ¼∅;V 0;KÞ for
any positive integer KZ1.
This completes the proof of Theorem 3. □

5. Decidable cases for CQ and UCQ

In this section we study RCP, MinP and BEP, focusing
on query languages CQ and UCQ. We show that both RCP

and MinP are tractable (Theorems 4 and 5). In addition, we
show that BEP is NP-complete when the number K is
a variable, while it is tractable when K is a constant
(Theorem 6).

5.1. Preliminaries

Before we present the proofs, we first present some
notations of [12,14] that will be used in the proofs in this
section.

To simplify the discussion, we consider CQ queries that
are defined over a single relation. This does not lose
generality by Lemma 3, which we have seen in Section 4.

We represent a CQ query Q as a tableau query ðTQ ;uQ Þ,
where TQ denotes formulas in Q and uQ is the output
summary (see, e.g., [2] for details). For each variable x in Q,
we use eqðxÞ to denote the set of variables y in Q such that
x¼y is induced from equalities in Q. In TQ, we represent
atomic formula x¼y by assigning the same distinct vari-
able to all variables in eqðxÞ, and x¼c by substituting
constant ‘c’ for each occurrence of y in eqðxÞ. This is well
defined when Q is satisfiable, i.e., when there exists a
database D such that Q(D) is nonempty. Note that the size
of TQ and the number of variables in TQ are bounded by the
size of Q. We assume w.l.o.g. that distinct tableaus carry
distinct variables.

Y. Cao et al. / Information Systems 45 (2014) 18–34 29
We denote by Adom the set consisting of (a) all
constants that appear in D;Dm;Q or V, and (b) a set New
of distinct values not in D;Dm;Q and V, one for each
variable that is in either TQ or in the tableau representa-
tions of the queries in V.

A valuation μ for variables in TQ is said to be valid w.r.t.
D if (a) for each variable y in TQ, μðyÞ is a value from Adom,
and (b) Q ðμðTQ ÞÞ is nonempty, i.e., μ observes inequality
conditions xay and xab specified in Q.

A database D is said to be bounded by ðDm;VÞ for a
CQ query Q if for each valid valuation μ for variables in TQ,
either ðD [μðTQ Þ;DmÞjV or μðuQ ÞAQ ðDÞ.

Now consider a UCQ query Q ¼ Q1 [⋯ [Qn where
each Qi is a CQ query. For each iA ½1;n�, we represent Qi as
a tableau query ðTi;uiÞ, where Ti denotes formulas in Qi and
μi is the output summary of Qi. A valuation μ for Q in UCQ is
ðμ1;…; μnÞ such that for each iA ½1;n�, μi is a valuation for
variables in Ti and moreover, for each variable y in Ti,
μiðyÞAAdom. The valuation is valid w.r.t. D if there exists
some jA ½1;n�, such that QjðμiðTjÞÞ is nonempty, i.e.,
μ observes inequality conditions xay and xab specified
in Qi.

Consider master data Dm and a set V of CCs. A database
D is said to be bounded by ðDm;VÞ for a UCQ query Q if for
each valid valuation μ¼ ðμ1;…; μnÞ for Q, either
ðD [Δ;DmÞjV , or for each iA ½1;ℓ�, μiðuiÞAQ ðDÞ, where Δ
denotes μ1ðT1Þ [⋯ [μkðTnÞ.

As shown in [12,14], when Q is in CQ or UCQ, this
notion of bounded databases provides us with a suffi-
cient and necessary condition for a database D to be in
RCQðQ ;Dm;VÞ.

Example 4. The following examples illustrate the intui-
tion behind the notion of bounded databases. Recall
schema product from Example 1. Let product∅ be the
empty instance of product. Consider a CC ϕ1: qðproductÞD
product∅, where

q1ðbÞ ¼ (a1;m1; p1; s1;…; akþ1;mkþ1; pkþ1; skþ1

� ⋀
jA ½1;kþ1�

productðaj;b;mj;pj; sjÞ4 ⋀
j;lA ½1;kþ1�

ðajaalÞ
 !

:

It asserts that each brand has at most k products. Consider
query Q4 that is to find all products with brand¼“Kindle”.
Let D1 be a database over product and Dm be an empty
instance of product∅, such that Q4ðD1Þ returns k distinct
tuples. Then one can verify that D1 is bounded by ðDm;V1Þ
for Q4, where V1 consists of ϕ1. Indeed, for any valid
valuation μ for TQ4

, either (a) μðTQ4
Þ contains a new tuple

t that is not in D1 and has t½brand�¼“Kindle”; this violates
ϕ1, or (b) μðuQ4

ÞAQ4ðD1Þ. It is easy to see that D1 is
complete for Q4 relative to ðDm;V1Þ.
As another example, recall from Example 2 the FD

ψ : ðbrand;model-asin; price; saleÞ on product, which can
be expressed as three CCs in CQ, denoted by V2, using
product∅. Consider the CQ query Q3 given in Example 3,
which is to find all wireless reading devices with
brand¼“Nook” and model¼“PRS-600”. Let D2 be an
instance of product such that Q3ðD3Þ contains one tuple.
Then D2 is bounded by ðDm;V2Þ for Q3, since for any valid
valuation μ0 for TQ3

, either μ0ðTQ3
Þ adds a tuple that violates

the FD ψ, or the addition of μ0ðTQ3
Þ does not change the
answer to Q3. Again one can see that D2 is complete for Q3

relative to ðDm;V2Þ. □

5.2. Decidability results

We now study the data complexity of RCPðLQ Þ,
MinPðLQ Þ and BEPðLQ Þ when LQ is CQ or UCQ. We show
that dropping negation and recursion for LQ do make our
lives easier: RCPðLQ Þ and MinPðLQ Þ are both in PTIME, and
BEPðLQ Þ is NP-complete while it is in PTIME for a fixed K.
This is in contrast to the undecidability results shown in
the previous section.

Problem RCPðLQ Þ. We start with the relative complete-
ness problem RCPðLQ Þ. We show that its data complexity
analysis is tractable when LQ is CQ or UCQ. In contrast, as
shown in [12,14], the combined complexity of this pro-
blem is Π2

p
-complete for the same LQ .

Theorem 4. The data complexity of RCPðLQ Þ is in PTIME

when LQ is CQ or UCQ. □

Proof. It suffices to show that RCP(UCQ) is in PTIME.
We provide a PTIME algorithm that returns “yes” if the
given database D is in RCQðQ ;Dm;VÞ, and returns “no”
otherwise.
The key ingredient of the algorithm is a sufficient and

necessary condition for characterizing what databases D
are in RCQðQ ;Dm;VÞ, stated in Lemma 4 below. The lemma
is taken from [12,14], where it was verified.

Lemma 4 (Fan and Geerts [12,14]). For any UCQ query Q,
any master data Dm, any set V of CCs in UCQ, and any partially
closed database D w.r.t. ðDm;VÞ, D is in RCQðQ ;Dm;VÞ if and
only if D is bounded by ðDm;VÞ for Q. □

Capitalizing on the characterization, we next present
the PTIME algorithm, denoted by ARCP. Given a fixed
UCQ query Q ¼Q1 [⋯ [Qn, where each Qi is a CQ query
denoted by ðTi;uiÞ, the tableau query of Qi, ARCP checks
whether the given partially closed database D is bounded
by ðDm;VÞ for Q, based on Lemma 4. Note that n is a
constant since Q is fixed. More specifically, the algorithm
works as follows:
1.
 for each ðTi;uiÞ and each valid valuation μi of Ti, do the
following:
(a) let Δi ¼ μiðTiÞ;
(b) check whether ðD [Δi;DmÞFV; if so, continue;

otherwise move to the next valid valuation of Qi;
(c) check whether μiðuiÞ=2Q ðDÞ; if so, return “no”;

otherwise move to the next valid valuation of Qi;

2.
 return “yes”.

Algorithm ARCP is correct by Lemma 4: It returns “yes”
if and only if the database D is bounded by ðDm;VÞ. We
next show that ARCP is in PTIME. Since Q is fixed, there are
only a constant number of queries Qi in Q. Thus there are
only constantly many Ti's in step 1. For the same reason,
there are only polynomially many valid valuations for each
query Ti in step 1, since jAdomjjTij is an upper bound on the
number of valuations and the size of Ti, denoted by jTij, is a

Y. Cao et al. / Information Systems 45 (2014) 18–3430
constant. Moreover, steps 1(b) and 1(c) are in PTIME since
both V and Q are fixed. Thus step 1 is in PTIME. Putting these
together, ARCP is in PTIME. □

Example 5. We next illustrate how ARCP works. Recall
from Example 1 the schema product(asin, brand, model,
price, sale) and from Example 2 the FD ψ : ðbrand; model-

asin; price; saleÞ on product which can be expressed as
three CCs in CQ, denoted by V2, and empty master relation
Dm. Consider the UCQ query Q5 ¼ q [q0, where

qðxaÞ ¼ (xp; xsðproductðxa;Nook;PRS� 600; xp; xsÞÞ;

q0ðxaÞ ¼ (xp; xsðproductðxa;Kindle;Paperwhite; xp; xsÞÞ;

which is to find all wireless reading devices with brand¼
“Nook” and model¼“PRS-600”, or brand¼“Kindle” and
model¼“Paperwhite”. Let D be as shown in Fig. 1, which
consists of two tuples t1 and t2 that specify two items. Let
master data Dm consist of the empty relation product∅.
Clearly, Q5ðDÞ ¼ fðB002MWYUFUÞ; ðB00AWH595MÞg.
As shown in Fig. 1, queries q and q0 can be represented as

tableau queries ðTq;uqÞ and ðTq0 ;uq0 Þ, respectively. To decide
whether D is complete for Q5 relative to ðDm ¼∅;V2Þ, ARCP

checks whether D is bounded by ðDm ¼∅;V2Þ for Q5. More
specifically, ARCP carries out steps 1(a)–(c) for every valid
valuation of Tq and Tq0 . Assume w.l.o.g. that ARCQ picks
ðTq;uqÞ first in step 1. Then Adom¼{B002MWYUFU, Nook,
PRS-600, $145, B00AWH595M, Kindle, Paperwhite, $119,
Y, ca, cp, cs, c0a, c

0
p, c

0
s}, where ca, cp and cs are new constants

in New associated with xa; xp and xs, respectively. Similarly,
c0a, c

0
p and c0s correspond to the variables in Tq0 . (We omit

constants denoting variables in V2 for simplicity.) We
assume w.l.o.g. that variables xa, xp and xs have an infinite
domain that contains Adom. Denote by Γq the set of all
valid valuation μq for variables in Tq, where μqðxaÞ;
μqðxpÞ; μqðxsÞAAdom. Let μq

0
be the valuation in Γq that

maps ðxa; xp; xsÞ to ðB002MWYUFU; $145;YÞ. Obviously, μq0
is the only valuation in Γq such that ðD [μ0qðTqÞ;DmÞFV2

and μ0qðuqÞ ¼ ðB002MWYUFUÞAQ5ðDÞ, and moreover, for
any other valuation μq in Γq, ðD [μqðTqÞ;DmÞjV2.
After this, algorithm ARCP moves to ðTq0 ;uq0 Þ, and gets

similar result as above. It returns “yes” and terminates.
That is, it concludes that database D is complete for query
Q5 relative to the empty master data Dm and the CCs in
V2. □

Problem MinPðLQ Þ. We show that dropping negation
and recursion from queries also makes the minimal
completeness problem MinPðLQ Þ tractable, as opposed to
the Δ3

p
-completeness of their combined complexity coun-

terparts [13].
Fig. 1. Tableau queries and the da
Theorem 5. The data complexity of MinPðLQ Þ is in PTIME

when LQ is CQ or UCQ. □

Proof. We only need to show that MinP(UCQ) is in PTIME.
We present a PTIME algorithm to check whether a given
database D is a minimal database complete for Q relative
to ðDm;VÞ. To do this, we first give a sufficient and
necessary condition for characterizing minimal complete-
ness, by the lemma below.

Lemma 5. For any database D, UCQ query Q, master data
Dm, and any set V of CCs in UCQ such that D is complete for Q
relative to ðDm;VÞ, D is not minimal if and only if there exists
a tuple tAD such that D\ftg is also complete for Q relative to
ðDm;VÞ. □

We now prove Lemma 5. First assume that there exists a
tuple tAD such that D\ftg is in RCQðQ ;Dm;VÞ. Then
obviously, D is not minimal. Conversely, suppose that D is
not minimal. Then there exists a subset D1⊊D such that D1 is
in RCQðQ ;Dm;VÞ. Observe that there must exist a subset
D2 ¼D\ftg for some tAD such that D1DD2 since D1⊊D, and
moreover, ðD2;DmÞFV since ðD;DmÞFV . Indeed, for any
containment constraint ϕAV , let ϕ be qðRÞDpðDmÞ, where q
is a UCQ query. We have that qðD2ÞD qðDÞDpðDmÞ since
D2DD and UCQ queries are monotonic. We next show that
D2ARCQðQ ;Dm;VÞ, i.e., for any partially closed extension
D0
2 of D2, Q ðD0

2Þ ¼Q ðD2Þ. Indeed, for such D0
2, D0

2 is also
a partially closed extension of D1, andhence, Q ðD0

2Þ ¼
Q ðD1Þ ¼Q ðD2Þ since D1ARCQðQ ; Dm;VÞ. Thus D2 is in
RCQðQ ;Dm;VÞ. This concludes the proof of Lemma 5.
Based on Lemma 5, we give a PTIME algorithm, denoted by

AMinP, for determining whether D is a minimal database
complete for a query Q w.r.t. Dm and V, as follows:
1.
tab
check whether D is in RCQðQ ;Dm;VÞ; if so, continue;
otherwise return “no”;
2.
 check whether there exists a tuple tAD such that D\ftg
is in RCQðQ ;Dm;VÞ; if so, return “no”; otherwise
return “yes”.

Clearly, AMinP is correct by Lemma 5. We now prove that
AMinP is in PTIME. By Theorem 4, it is in PTIME to check
whether a database D is in RCQðQ ;Dm;VÞwhen Q is a fixed
UCQ query; so step 1 is in PTIME. Moreover, step 2 is also in
PTIME since there are at most jDj tuples tAD for which we
need to check whether D\ftg is in RCQðQ ;Dm;VÞ, which is
also in PTIME by Theorem 4. Hence AMinP is in PTIME.
This completes the proof of Theorem 5. □

Example 6. Consider Q5;D;Dm ¼∅ and V2 described in
Example 5, where D is complete for Q5 relative to
ase used in Example 5.

Y. Cao et al. / Information Systems 45 (2014) 18–34 31
ðDm ¼∅;V2Þ. To check whether D is a minimal complete
database for Q5, AMinP checks whether there exists a tuple
tAft1; t2g such that D\ftgARCQðQ5;Dm;V2Þ; if so, the
algorithm returns “no”; otherwise it returns “yes”.
Assume w.l.o.g. that the algorithm first checks whether

D\ft1g ¼ ft2g is in RCQðQ5;Dm;V2Þ, in step 2. Here
Adom¼{Nook, PRS-600, B00AWH595M, Kindle, Paper-
white, $119, Y, ca, cp, cs, c0a, c0p, c0s}, and Q5ðD\ft1gÞ ¼
fðB00AWH595MÞg. By algorithm ARCP given in Theorem 4
(for RCP(UCQ)), there exists a valid valuation μq

1
of vari-

ables in Tq where μ1qðxaÞ ¼ ca, μ1qðxpÞ ¼ cp and μ1qðxsÞ ¼ cs,
such that ððD\ft1gÞ [μ1qðTqÞ;Dm ¼∅ÞFV and μ1qðuqÞ ¼
ðcaÞ=2Q5ðD\ft1gÞ.That is, ðD\ft1gÞ=2RCQðQ5, Dm;V2Þ. Then
AMinP moves to D\ft2g ¼ ft1g. Similarly, algorithm ARCP finds
a valid valuation μ1q of variables in Tq0 witnessing that
ðD\ft2gÞ=2RCQðQ5;Dm;V2Þ. In light of these, algorithm AMinP

returns “yes”. That is, it concludes that D is a minimal
database complete for Q5 relative to ðDm;V2Þ. □

Problem BEP(LQ). Finally, we study the bounded exten-
sion problem BEP(LQ). In contrast to RCPðLQ Þ and
MinPðLQ Þ, BEP(LQ) is intractable when LQ is CQ or UCQ.
However, it is in PTIME when K is fixed, i.e., when the
number of tuples in updates ΔD is bounded by a pre-
defined constant K. As remarked earlier, no previous work
has studied this problem.

Theorem 6. When LQ is CQ or UCQ, the data complexity of
BEPðLQ Þ is NP-complete; it is in PTIME for fixed K. □

Proof. We first study BEPðLQ Þ when K varies, and then
investigate it when K is fixed, for CQ and UCQ.

When K varies. It suffices to show that BEPðLQ Þ is NP-
hard when LQ is CQ and it is in NP for UCQ.

Lower bound. We show that BEP(CQ) is NP-hard by
reduction from the 3SAT problem, which is known to be
NP-complete (cf. [17]). An instance φ of 3SAT is a formula
C14⋯4Cr in which each clause Ci is a disjunction of three
variables or negations thereof taken from X ¼ fx1;…; xng.
Given φ, 3SAT is to decide whether φ is satisfiable, i.e.,
whether there exists a truth assignment for variables in X
that satisfies φ.

Given an instance φ of 3SAT above, we define two fixed
relational schemas R and Rm, a database D of R, master
data Dm of Rm, a fixed CQ query Q and a set V of fixed
CCs in CQ. We show that there exists a bounded set of
updates ΔD for ðQ ;Dm;V ;D;KÞ if and only if φ is satisfiable,
where K ¼ r�1. Here r is the number of clauses in φ.

(1) Let R consist of two relation schemas RCðcid, X1, V1,
X2, V2, X3, V3, VÞ and R1ðA;BÞ. We define the database D as
ðIC ; I1Þ, where IC is an empty instance of RC and I1 ¼ fð1;
0Þ; ð0;0Þg is an instance of R1.

(2) Let Rm consist of three relation schemas: Rm
C ¼ RC ,

Rm
1 ¼ R1 and Rm

2 ¼ R1. We first define an instance IC
m
of RC

m
.

Intuitively, IC
m
encodes truth assignments of the clauses in

φ. For reasons that will become clear later on, we assign
variables (or negations thereof) that appear in a single
clause with a fixed truth value: 1 if it concerns a variable
and 0 if it concerns a negated variable. More specifically,
let Xp (resp. Xn) denote the set of variables (resp. negated
variables) in X that occur in a single clause only. For each
clause Ci ¼ ℓi
13ℓi

23ℓi
3, for iA ½1; r�, we include tuples ði; xk,

vk, xj, vj, xm, vm, vÞ such that (i) xk ¼ ℓi
1 if ℓi

1AX and xk ¼ ℓ
i
1

if ℓi
1AX; (ii) vk¼1 if ℓi

1AXp and vk¼0 if ℓ i
1AXn; and (iii) xk

can be either 0 or 1 if ℓi
1AX\fXp [Xng. Similarly for xj, vj

and xm and vm. We set v¼1 if the truth assignment
encoded in the tuple makes Ci true and set v¼0 otherwise.
Further, we define the instance I1

m
of R1

m
as fð1;0Þ; ð0;0Þg,

i.e., I1
m
is the same as I1, and let I2

m
be the empty instance of

R2
m
. We set Dm ¼ ðImC ; Im1 ; Im2 Þ.
(3) The set V consists of the following 15 CCs ϕ1�ϕ12:

ϕ1:RCDRm
C ;

ϕ2:R1DRm
1 ;

ϕ3�ϕ5: q
p
x ði; i0ÞDRm

2 ; pAf1;2;3g;
ϕ6�ϕ8: q

p
vði; i0ÞDRm

2 ; pAf1;2;3g;
ϕ9: qvði; i0ÞDRm

2

ϕ10�ϕ15: q
p;p0 ði; i0ÞDRm

2 ; p; p0Af1;2;3g; p⩽p0;
where the queries qx

p
, qv

p
and qp;p

0
are defined as follows:

For pAf1;2;3g, qpx ði; i0Þ is given by

(z1;w1; z2;w2; z3;w3;w; z01;w
0
1; z

0
2;w

0
2; z

0
3;w

0
3;w

0

ðRCði; z1;w1; z2;w2; z3;w3;wÞ
4RCði0; z01;w0

1; z
0
2;w

0
2; z

0
3;w

0
3;w

0Þ4ði¼ i0Þ4 ðzpaz0pÞÞ;

qpvði; i0Þ is given by

(z1;w1; z2;w2; z3;w3;w; z01;w
0
1; z

0
2;w

0
2; z

0
3;w

0
3;w

0

ðRCði; z1;w1; z2;w2; z3;w3;wÞ
4RCði0; z01;w0

1; z
0
2;w

0
2; z

0
3;w

0
3;w

0Þ4ði¼ i0Þ4 ðwpaw0
pÞÞ;

qvði; i0Þ is given by

(z1;w1; z2;w2; z3;w3;w; z01;w
0
1; z

0
2;w

0
2; z

0
3;w

0
3;w

0

ðRCði; z1;w1; z2;w2; z3;w3;wÞ
4RCði0; z01;w0

1; z
0
2;w

0
2; z

0
3;w

0
3;w

0Þ4ði¼ i0Þ4 ðwaw0ÞÞ;
and for each pair p; p0Af1;2;3g where p⩽p0,

qp;p
0 ði; i0Þ ¼ (z1;w1; z2;w2; z3;w3;w; z01;w

0
1; z

0
2;w

0
2; z

0
3;w

0
3;w

0

ðRCði; z1;w1; z2;w2; z3;w3;wÞ4
RCði0; z01;w0

1; z
0
2;w

0
2; z

0
3;w

0
3;w

0Þ4
ðzp ¼ zp0 04wpaw0

p0 ÞÞ:

Note that ϕ1 is relative to master data IC
m
; ϕ2 to I1

m
; and ϕ3–

ϕ15 to the empty master data instance I2
m
. Intuitively,

for any extension D0 ¼ ðI0C ; I01Þ of D, we have that (a)
ðD0;DmÞFϕ1 if and only if each tuple in I0C encodes one
clause Ci of φ and a truth assignment μ of variables in Ci,
as well as the truth value of Ci under μ; (b) ðD0;DmÞFϕ2

if and only if I01 ¼ I1, i.e., D0 keeps I1 unchanged; (c)
ðD0;DmÞFfϕ3;…;ϕ9g if and only if all tuples in I0C have
pairwise distinct cid values, i.e., they corresponds to dis-
tinct clauses of φ; and finally, (d) ðD0;DmÞFfϕ10;…;ϕ15g if
and only if each pair of tuples in I0C have the same value for
common variables. That is, I0C encodes a partial truth
assignment of X.

(4) We define the query Q as follows:

Q ði; i0Þ ¼ (z1;w1; z2;w2; z3;w3;w; z01;w
0
1; z

0
2;w

0
2; z

0
3;w

0
3;w

0

ðRCði; z1;w1; z2;w2; z3;w3;wÞ
4RCði0; z01;w0

1; z
0
2;w

0
2; z

0
3;w

0
3;w

0Þ4R1ðw;w0Þ4 ia i0Þ:
Intuitively, for any partially closed extension D0 ¼ ðI0C ; I01Þ of D,
since I01 must be fð1;0Þ; ð0;0Þg by the definition of ϕ2, Q ðD0Þ

Y. Cao et al. / Information Systems 45 (2014) 18–3432
returns all pairs ði; i0Þ such that there exist two distinct tuples
t and t0 in I0C corresponding to clauses Ci and Ci0 , respectively,
i.e., t½cid� ¼ i and t½cid� ¼ i0, where the truth values of Ci and
Ci0 are not both true under the truth assignments encoded
by t and t0, respectively. That is, Q returns a nonempty result
if not all clauses encoded in I0C are true.

We now show that φ is satisfiable if and only if there
exists a bounded set of updates ΔD for ðQ ;Dm;V ;D;KÞ for
K ¼ r�1.

ð)Þ Assume that φ is satisfiable and let μX
0
be a truth

assignment that makes φ true. We modify μX
0
into a truth

assignment μX
1
such that μX

1
coincides with μX

0
on all variables

in X\fXp [Xng, μ1XðxÞ ¼ 1 if xAXp and μ1XðxÞ ¼ 0 if xAXn.
Clearly, μX

1
makes φ true as well. Let IC

r
consist of tuples t1;…; tr

in IC
m
, one for each clause in φ, such that the values of the

variables in these tuples agree with μX
1
. We let Ir�1

C consist of
the first r�1 tuples t1;…; tr�1 and ΔD¼ Ir�1

C . Then jΔDjrK
and D [ΔD¼ ðIr�1

C ; I1Þ. It is easy to see that ðD [
ΔD;DmÞFV and Q ðD [ΔDÞ ¼∅, by the definitions of V
and Q. We next show that ΔD is a bounded set of updates
for ðQ ;Dm;V ;D;KÞ, i.e., for any partially closed extension D0 of
D [ΔD, Q ðD0Þ ¼ Q ðD [ΔDÞ ¼∅. Observe that ðIrC ; I1Þ is the
only partially closed extension of D [ΔD such that
ðIrC ; I1ÞaD [ΔD, by the definitions of V and the truth assign-
ment μX

1
. Indeed, only a single tuple, corresponding to clause

Cr, can be added in any extension. Furthermore, the truth
assignment encoded in this tuple is completely determined:
for variables in X\fXp [Xng, this tuple must take the value of
such variables as encoded by Ir�1

C ; and for variables in Xp [
Xn we fixed the variables to 1 (for Xp) and 0 (for Xp), as
encoded in IC

m
and the definition of V. Moreover, Q ðIrC ; I1Þ ¼∅

by the definition of Q, since all the truth assignments encoded
by tuples in IC

r
make the corresponding clauses true. HenceΔD

is a bounded set of updates for ðQ ;Dm;V ;D;KÞ for K ¼ r�1.
ð(Þ Conversely, assume that φ is not satisfiable. Then

there exists no truth assignment μX that satisfies φ. Let ΔD
be an arbitrary set consisting of no more than K tuples such
that D [ΔD is a partially closed extension of D. Then by the
definition of V, ΔD consists of only tuples over RC that
encodes distinct clauses of φ, and moreover, for each pair of
such tuples t and t0, they have the same value for each
variable appearing in both of them. We next show that D [
ΔD is not in RCQðQ ;Dm;VÞ. Let μX1 be a truth assignment of X
variables that agrees with the partial truth assignment
stored in ΔD. Let D0 ¼ ðI0C ; I1Þ, where I0C consists of r tuples,
one for each clause in φ, such that the values of the variables
in these tuples agree with μ1X. Obviously, D

0 is a partially
closed extension of D [ΔD, and D0aD [ΔD. Note that μX

1

must make φ false since φ is not satisfiable. That is, the t½V �
values of tuples t in I0C cannot be all 1. By the definition of Q,
it can be readily verified that Q ðD [ΔDÞaQ ðD0Þ. Hence D [
ΔD is not in RCQðQ ; Dm;VÞ.As a result, there exists no
bounded set of updates for ðQ ;Dm;V ;D;KÞ where K ¼ r�1.

Upper bound. We show that BEP(UCQ) is in NP by giving
an NP algorithm, which returns “yes” if there exists a
bounded set of updates ΔD for ðQ , Dm, V , KÞ and returns
“no” otherwise.

By Lemma 3, we may assume w.l.o.g. that database D is
an instance of a single relation schema RðA1;…;AnÞ. Let
NewV be a set of K � n new constants disjoint from Adom.
The algorithm for BEP(UCQ), denoted by ABEP, is as follows:
1.
 guess an instance ΔD of R with no more than K tuples,
such that ΔD draws values from Adom [NewV;
2.
 check whether D [ΔD is in RCQðQ ;Dm;VÞ; if so, return
“yes”; otherwise, reject the guess and go back to step 1.
The algorithm is indeed in NP as it involves guessing K
tuples ΔD from a finite set Adom [NewV (step 1) and
verifying that D [ΔD is in RCQðQ ;Dm;VÞ (which is in PTIME

by Theorem 4). We next verify the correctness of the
algorithm ABEP. It suffices to show that there exists a
bounded set of updates ΔD for ðQ ;Dm;V ;KÞ only if there
exists a bounded set of updates ΔD0 for ðQ ;Dm;V ;KÞ which
draws values from Adom [NewV.

Given ΔD we construct such a ΔD0 as follows: Let τ be
an injective function from the active domain of D [ΔD (i.
e., the set of all constants occurring in D [ΔD) to
Adom [NewV, such that τ when restricted to elements
in Adom is the identity mapping. Note that such a function
always exists since Adom [NewV contains sufficiently
many distinct values. Then, we define ΔD0 ¼ ft0 ¼ ðτða1Þ;
…; τðanÞÞ∣t ¼ ða1;…; anÞAΔDg. Observe that jΔD0j ¼ jΔDj.
We claim that ΔD0 is a bounded set of updates for ðQ ,
Dm, V , KÞ provided that ΔD is a bounded set of updates.

We first verify that D [ΔD0 is partially closedw.r.t. ðDmVÞ.
Indeed, assume by contradiction that D [ΔD is partially
closed but D [ΔD0 is not partially closed. This implies that
one of the CCs is violated. Assume that qðD [ΔD0Þ⊈pðDmÞ for
a UCQ query q¼ q1 [⋯ [qk. Let ðTi;uiÞ be the tableau
representing qi, for iA ½1; k�. Then there exists a valuation
μ0q ¼ ðμ01;⋯; μ0kÞ of variables in T1;…; Tk that draws values
from D [ΔD0 such that μ0iðuiÞ=2pðDmÞ for some iA ½1; k�. By
the definition of ΔD0, one can now verify that there exists a
valid valuation μi of variables in Ti such that μ0i ¼ τ○μi and μi
draws values from D [ΔD,and moreover μiðuiÞ=2pðDmÞ.
Hence, D [ΔD is not partially closed, contradicting the
assumption. Thus D [ΔD0 is partially closed w.r.t. ðDmVÞ.

We next verify that D [ΔD0ARCQðQ ;Dm;VÞ. Assume
by contradiction that D [ΔDARCQðQ ;Dm;VÞ but D[
ΔD0 =2RCQðQ ;Dm;VÞ. Let Q ¼ Q1 [⋯ [Qn and denote by
ðTQ

i ;u
Q
i Þ the tableau representing Qi, for each iA ½1;n�. By

Lemma 4, there must exist a valid valuation μ0Q ¼ ðμ01;…; μ0nÞ
w.r.t. D [ΔD0 for Q such that ðD [ΔD0 [⋃iA ½1;n�μi

0ðTQ
i Þ;

DmÞFV and μ0iðuQ
i Þ=2Q ðD [ΔD0Þ. By the definition of ΔD0,

one can readily verify that there exists a valid valuationμi
w.r.t. D [ΔD for Q such that μ0i ¼ τ○μi and μi witnesses that
D [ΔD is not bounded by ðDm;VÞ for Q. This contradicts
the assumption above. Thus, D [ΔD0ARCQðQ ;Dm;VÞ.

When K is fixed. It suffices to show that BEP(UCQ) is in
PTIME for a constant KZ1. Consider the algorithm given
above, in the setting when K is fixed. Clearly, there are
polynomially many instances ΔD to guess in step 1 since
both Q and V are fixed and K is a constant. So we revise the
algorithm such that it returns “no” when all such ΔD are
considered and none of them satisfies the condition given
in step 2. Otherwise it returns “yes”. Denote by Af

BEP

the revised algorithm above. Obviously, algorithm Af
BEP is

in PTIME.

Table 1
Data complexity of relative information completeness.

Y. Cao et al. / Information Systems 45 (2014) 18–34 33
This completes the proof of Theorem 6. □

Example 7. We now illustrate how algorithm Af
BEP works.

Consider Q5;V2;Dm ¼∅ given in Example 5, and an empty
database D∅ of schema product. Let K¼2. Taking these as
input, Af

BEP checks whether there exists a bounded set ΔD
of updates for ðQ5;D∅ ¼∅;Dm ¼∅;V2;K ¼ 2Þ. It enumer-
ates all instances ΔD of product with no more than 2
tuples, by drawing values from Adom [NewV, where
Adom¼{Kindle, Paperwhite, Nook, PRS-600, ca, cp, cs, c0a,
c0p, c

0
s}. and NewV¼ fd1; d2;…; d10g. For each such instance

ΔD, it checks whether D∅ [ΔD is complete for Q5 relative
to ðDm;V2Þ. For example, consider ΔD0 consisting of
the following two tuples: t01 ¼ fðca; “Nook”; “PRS�600”;
cp; d1Þg and t02 ¼ fðd3; “Kindle”; “Paperwhite”; d3; c0sÞg.
Using the algorithm ARCP given in the proof of Theorem
4 for RCPðUCQÞ, we can see that D∅ [ΔD0 is complete for
Q5 relative to ðDm;V2Þ. Thus Af

BEP returns “yes”. That is,
there exists a bounded set ΔD0 of updates for ðQ5;D∅;

Dm ¼∅;V2;K ¼ 2Þ. □

6. Conclusions

We have studied the data complexity of three decision
problems associated with relative information complete-
ness, namely, RCPðLQ Þ for deciding whether a database D is
complete for a given fixed query Q relative to master data
Dm and containment constraints V, MinPðLQ Þ for determin-
ing whether D is a minimal database complete for Q relative
to Dm and V, and BEPðLQ Þ for deciding whether we can
complete a database D for answering Q by adding no more
than K tuples to D. We have studied these problems when
LQ ranges over a variety of query languages for expressing
queries and containment constraints. We have established
the upper and lower bounds of these problems, all match-
ing, for data complexity.

The main complexity results are summarized in Table 1,
annotated with their corresponding theorems. Putting
these together with the results of [12–14], our main
conclusion is that different query languages dominate
the complexity, even when data complexity is concerned.
Indeed, from Table 1 we can see the following. (1) The data
complexity analyses of RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ
are all undecidable when LQ is FO or DATALOG. The undecid-
ability is rather robust: when LQ is FO, these problems
remain undecidable when master data Dm and contain-
ment constraints V are both absent. When it comes to
DATALOG, these problems are undecidable in the absence of
Dm, when containment constraints are fixed FDs. (2)
RCPðLQ Þ, MinPðLQ Þ and BEPðLQ Þ become simpler for
query languages without negation and recursion. More
specifically, when LQ is CQ or UCQ, the data complexity
analyses of RCPðLQ Þ and MinPðLQ Þ become tractable;
BEPðLQ Þ is NP-complete, but it is in PTIME when K is fixed.

The study of relative information completeness is still
in its infancy. A number of issues are targeted for future
work. We have focused on incomplete databases from
which tuples may be missing. In practice, both tuples
and attribute values may be missing. Preliminary results
on relative information complexity have been reported
in [13], when both tuples and values are missing. Never-
theless, the data complexity analyses of related decision
problems have not been studied in that setting.

The data complexity analyses of RCPðLQ Þ, MinPðLQ Þ
and BEPðLQ Þ are beyond reach in practice when LQ is FO or
DATALOG. A natural question is to identify special cases of
these problems that are decidable and practical. Further-
more, heuristic algorithms are yet to be developed for
analyzing these problems, ideally with certain perfor-
mance guarantees.

Incomplete information is just one of the issues of data
quality. Other central data quality issues include data con-
sistency, data accuracy, data currency and entity resolution
(see, e.g., [15] for details). To make practical use of the study
on data quality, it is necessary to investigate the interaction
among these issues. As shown in [12,14], relative information
completeness and data consistency can be supported by a
uniform framework. Nevertheless, it remains to be studied
whether containment constraints can be used to specify
currency constraints for data currency [16] and dynamic
constraints for entity resolution [11].
Acknowledgements

Cao, Deng and Fan are supported in part by 973
Programs 2014CB340302, China. Cao and Fan are also
supported in part by NSFC 61133002, 973 Programs
2012CB316200, China. Fan is also supported in part by
Guangdong Innovative Research Team Program 2011D005
and Shenzhen Peacock Program 1105100030834361,
China, and EPSRC EP/J015377/1, UK.
References

[1] S. Abiteboul, O.M. Duschka, Complexity of answering queries using
materialized views, in: PODS, 1998.

Y. Cao et al. / Information Systems 45 (2014) 18–3434
[2] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, Boston, MA, USA, 1995.

[3] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in
inconsistent databases, in: PODS, 1999.

[4] A. Cali, D. Lembo, R. Rosati, On the decidability and complexity of
query answering over inconsistent and incomplete databases, in:
PODS, 2003.

[5] D. Calvanese, G.D. Giacomo, M. Lenzerini, M.Y. Vardi, View-based
query processing: on the relationship between rewriting, answering
and losslessness, Theor. Comput. Sci 371 (3) (2007).

[6] J. Chomicki, Consistent query answering: Five easy pieces, in: ICDT,
2007.

[7] A. Deutsch, B. Ludäscher, A. Nash, Rewriting queries using views
with access patterns under integrity constraints, Theor. Comput. Sci.
371 (3) (2007).

[8] A. Dreibelbis, E. Hechler, B. Mathews, M. Oberhofer, G. Sauter, Master
Data Management Architecture Patterns, IBM, 2007.

[9] C. Elkan, Independence of logic database queries and updates, in:
PODS, 1990.

[10] W. Fan, Dependencies revisited for improving data quality, in: PODS,
2008.

[11] W. Fan, H. Gao, X. Jia, J. Li, S. Ma, Dynamic constraints for record
matching, VLDB J. 20 (4) (2011) 495–520.

[12] W. Fan, F. Geerts, Relative information completeness, in: PODS,
2009.

[13] W. Fan, F. Geerts, Capturing missing tuples and missing values, in:
PODS, 2010.

[14] W. Fan, F. Geerts, Relative information completeness, ACM Trans.
Database Syst. 35 (4) (2010).

[15] W. Fan, F. Geerts, Foundations of Data Quality Management, Morgan
& Claypool Publishers, USA, 2012.

[16] W. Fan, F. Geerts, J. Wijsen, Determining the currency of data, ACM
Trans. Database Syst. 37 (4) (2012) 25.

[17] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New
York, NY, USA, 1979.
[18] F. Geerts, B. Marnette, Static analysis of schema-mappings ensuring
oblivious termination, in: ICDT, 2010.

[19] G. Gottlob, R. Zicari, Closed world databases opened through null
values, in: VLDB, 1988.

[20] G. Grahne, The Problem of Incomplete Information in Relational
Databases, Springer, Secaucus, NJ, USA, 1991.

[21] T. Imieliński, W. Lipski Jr., Incomplete information in relational
databases, J. ACM 31 (4) (1984).

[22] P.G. Kolaitis, J. Panttaja, W.-C. Tan, The complexity of data exchange,
in: PODS, 2006, pp. 30–39.

[23] A.Y. Levy, Obtaining complete answers from incomplete databases,
in: VLDB, 1996.

[24] A.Y. Levy, Y. Sagiv, Queries independent of updates, in: VLDB, 1993.
[25] C. Li, Computing complete answers to queries in the presence of

limited access patterns, VLDB J. 12 (3) (2003).
[26] D. Loshin, Master Data Management, Morgan Kaufmann, San Fran-

cisco, CA, USA, 2008.
[27] D.W. Miller, et al., Missing prenatal records at a birth center: a

communication problem quantified, in: AMIA Annu Symposium
Proceedings, 2005.

[28] J. Minker, D. Perlis, Computing protected circumscription, J. Log.
Program 2 (4) (1985).

[29] A. Motro, Integrity¼validity þ completeness, ACM Trans. Database
Syst. 14 (4) (1989).

[30] J. Radcliffe, A. White, Key Issues for Master Data Management,
Gartner, USA, 2008.

[31] S. Razniewski, W. Nutt, Completeness of queries over incomplete
databases, in: VLDB, 2011.

[32] L. Segoufin, V. Vianu, Views and queries: determinacy and rewriting,
in: PODS, 2005.

[33] M. Spielmann, Abstract state machines: verification problems and
complexity (Ph.D. thesis), RWTH Aachen, 2000.

[34] R. van der Meyden, Logical approaches to incomplete information: a
survey, in: J. Chomicki, G. Saake (Eds.), Logics for Databases and
Information Systems, Kluwer, 1998.

[35] M. Vardi, On the integrity of databases with incomplete information,
in: PODS, 1986.

http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref2
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref2
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref5
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref5
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref5
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref7
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref7
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref7
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref11
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref11
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref14
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref14
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref15
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref15
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref16
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref16
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref17
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref17
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref17
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref20
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref20
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref21
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref21
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref25
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref25
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref26
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref26
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref28
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref28
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref29
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref30
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref30
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref34
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref34
http://refhub.elsevier.com/S0306-4379(14)00056-8/sbref34

	On the data complexity of relative information completeness
	Introduction
	Relative information completeness
	Determining relative information completeness
	Undecidability results for foand datalog
	Decidable cases for cqand ucq
	Preliminaries
	Decidability results

	Conclusions
	Acknowledgements
	References

