
Ontologies to Support Information Systems

Development

Abstract: Ontologies can provide many benefits during information systems de-

velopment. They can provide domain knowledge to requirement engineers, are re-

usable software components for web applications or intelligent agent developers,

and can facilitate semi-automatic model verification and validation. They also as-

sist in software extensibility, interoperability and reuse. All these benefits critical-

ly depend on the provision of a suitable ontology (ies). This paper introduces a

semantically-based three stage-approach to assist developers in checking the con-

sistency of the requirements models and choose the most suitable and relevant on-

tology (ies) for their development project from a given repository. The early re-

quirements models, documented using the i* language, are converted to a retrieval

ontology. The consistency of this retrieval ontology is then checked before being

used to identify a set of reusable ontologies that are relevant for the development

project. The paper also provides an initial validation of each of the stages.

Keywords: Information Systems Development, Ontologies, Early Requirements,

Ontology Retrieval, i* Models

1. Introduction

Ontologies provide a mechanism for representing domain knowledge to a varying

degree of formalism [1]. Guarino (1998) defines an “ontology driven information

system” as a system in which the ontology is an integral component of the system

and is used at run time to ensure that the system achieves its goals and functionali-

ty. Ontologies can also be used at design time by software developers [2]. In fact,

ontology-driven information system development is another recently coined term

referring to the use of ontologies as a central artifact in information systems de-

velopment [3]. For example, ontologies can be read by future users of a system,

and as a joint development element with the user, they can be used to validate and

improve the quality of software work products during various phases of the devel-

opment process [4]. They can improve the outcome of various requirement engi-

neering activities. For example, they can improve elicitation by bridging common

communication gaps between users and developers (e.g. [5]). They can also be

used to improve the requirements models by supporting a dedicated verification

and validation requirement engineering activity [6].

Ontologies can also play a prominent role in expediting software development

knowledge reuse. This includes reuse of artifacts as well as development

knowledge and work products [7]. As attention is increasingly paid to higher level

reuse issues (beyond code reuse), (e.g. reuse of models and reuse of project devel-

2

opment and management knowledge [8]), ontologies are emerging as a promising

vehicle in delivering much touted promises of runtime and design time flexibility

in new paradigms such as software-as-a service and Service Oriented Architec-

tures. They also have been proposed as a conduit to the reuse of design models

and developers’ skills by having them as central constructs driving the whole of

the Software Development Life Cycle [8].

Benefits of ontologies, in development and in reuse, are often predicated on

identifying appropriate domain ontology (ies) that are readily available to software

developers. These can then guide software work product modeling and verifica-

tion. Ontologies can also facilitate the interoperability of work products and the

continuing operation of a correct system [9].The focus of this paper is on identify-

ing appropriate ontologies for information systems developers based on early sys-

tem requirements to enable subsequent ontology-based information systems de-

velopment. The paper provides a three stage approach that validates and uses early

requirement models to identify suitable ontologies to support the development of a

given application. Often a single ontology from a given repository may not be se-

mantically adequate. A subsequent integration of a number of ontologies may

therefore be necessary to ensure the semantic coverage of the application domain.

Our proposed approach identifies suitable ontologies which may be subsequently

integrated and adapted for the software project at hand. This then acts as a filter

that can be used to retrieve a relevant set of ontologies. The approach consists of

the following stages:

 Stage 1: Develop an intermediate retrieval ontology. A theoretical

mapping converts early requirements models into an intermediate re-

trieval ontology.

 Stage 2: Perform consistency check of the intermediate retrieval on-

tology and refine the early requirements models (if necessary).

 Stage 3: Compare domain ontologies with the intermediate retrieval

ontology to identify a set of relevant ontologies.

Our work is based on the insight that, whilst they may be ambiguous, incom-

plete and/or inconsistent, early requirements expressed informally can robustly be

used to generate a formal ontology that can be used to recommend an ontology

from a repository that “best” matches the early requirements. This ontology may

also suggest modifications and/or additions to the early requirements. With subse-

quent processing, ontologies retrieved using early requirement models can reliably

support the development of the work products of a system with the added bonus

that ontology-based work products are reusable components and can themselves

be stored and indexed for later information systems development activities. Thus

this paper automatically integrates early requirement models into ontology-driven

information systems development.

The work presented in this paper ensures that information system developers

are provided with a set of supporting relevant ontologies that can be used to un-

derpin the development of the whole system. The approach identifying the ontolo-

gies is theoretically grounded. Its effectiveness and reliability as a cornerstone for

 3

ontology-based system development is demonstrated using a case study example.

The rest of this paper is organized as follows: Section 2 discusses related work

with emphasis on recent efforts to integrate the use of ontologies within the In-

formation Systems development lifecycle. Section 3 presents the conceptual un-

derpinning of how we use requirement models to retrieve supporting ontologies

for IS development. An initial validation of our proposed approach is presented in

Section 4. Finally Section 5 concludes with a discussion of limitations and future

extensions of the work.

2 Related Work

The use of ontologies for general software development on the basis that this pro-

duces better quality models is not a new idea. Ontologies impact on information

systems in both the temporal and structural dimensions [3]. The temporal dimen-

sion refers to whether the ontology is used at development time or run time while

the structural dimension considers how an ontology could affect the IS compo-

nents (e.g. database, user interface and/or application program). At development

time, the use of ontologies typically involves reusing ontologies organised into li-

braries of domain, task or generic ontologies. They typically assist in ensuring sys-

tem correctness. For example, ontologies have been used to decide what models

should be included in the Model Driven Architecture for a system (e.g [10]). On-

tologies are generally easier to understand than most analysis and design models

that require specific and in-depth methodological knowledge. They have been ad-

vocated as intermediary elements to support the development of analysis models

[5]. A methodology-independent technique is presented to use ontologies in sup-

port of the validation processes in [11] to facilitate the creation of models for in-

experienced modellers or to assist more experienced ones detecting and resolving

errors.

The use of ontologies in our work to be detailed in Section 3 is multifaceted

(see Figure 1 in Section 3). An ontology is used as a knowledge filter (in Stage 1

and Stage 3), a consistency check platform of requirement models (in Stage 2) and

a central artifact in an ontology-centric methodology (beyond Stage 3, as later

elaborated in Section 5). The filtering aspect of our work in Stage 3 is similar to

[12], where an ontology filters relevant mathematical models for adaptive soft-

ware. Our matching in Stage 3 is syntactic rather semantically driven as in [12].

However Stage 3 is not the main contribution in this paper. Our key contribution

is how the ontology is generated in Stage 1. A mapping filters through a set of

concepts and relationships from the requirement model(s) to form a retrieval on-

tology. This automatically generated (formal) ontology is then used as a filter for

relevant ontologies (in Stage 3). The (formal) retrieval ontology is first exploited

to execute a consistency check of the requirement models (Stage 2). This heeds

earlier proposals to specify a suitable conceptual modeling language for a domain

4

to improve the quality of models (e.g. [13]). Our work is similar to the work in [5]

which uses ontologies to validate and verify software models. However our work

here is innovative in automatically providing such a conceptual model from the

early requirement models. More recently [14] proposed a tool to build and auto-

matically verify conceptual models developed in a specific language, OntoUML,

that uses a foundation ontology to extend UML. OntoUML conceptual models are

automatically transformed to a logic-based language to allow the validation of the

model meta-properties. It also requires that the models are expressed in OWL.

This condition is common to other studies e.g. [12] which insist on models built in

a specified language. While the current work uses OWL to represent the retrieval

ontology, the original requirements models can be expressed in various notations.

The proposal is independent of the modeling language, as the defined mapping

operators can be adapted to a range of models (see later). This makes the proposal

applicable in different development methodologies.

The work in [15] presents a MDA/Ontology approach to improve the creation

of models. Similar to our Stage 1, an ontology is automatically generated from the

design models in a multi agent system methodology. Their work is focused on the

design models of MAS while our work is applicable to any application architec-

ture. Their work is also different in two other significant ways: firstly, there is an

overreliance on the automatically generated ontology to represent the models and

check for inconsistencies. In our case, the automatically generated retrieval ontol-

ogy can also be used to check for consistency (provided the requirement models

are sufficiently formal). However, the automatically generated retrieval ontology

is mainly a springboard into a repository of ontologies which is then used to later

verify the models for consistency and completeness. Secondly, the authors do not

validate the models against the client specification (the same can be said about

[14]). In our work, the early requirement models are checked and this ensures that

any requirement errors are detected early in the IS development process. Similarly

[15, 16] propose the use of ontologies to verify MAS designs. The authors use an

ontology to define a MAS modeling language. These model-diagram mappings

enable the automatic validation of the models. They are claimed to guard against

intra-model and inter-model inconsistencies, but this claim is yet to be fully vali-

dated. Moreover, they do not incorporate information about the early requirements

as does this paper.

The retrieved ontologies from Stage 3 in our approach will facilitate infor-

mation systems development in an ontology-based development process. The first

stage in any development process is requirements analysis. The use of ontologies

to assist in requirements analysis was noted in [17]. Early-phase requirements elic-

itation activities have usually been performed informally [18], beginning with

stakeholder interviews and discussions about the existing system(s) and rationale

for the new system. Initial requirements are often considered to be ambiguous, in-

complete and inconsistent. They are usually expressed informally. Traditionally in

the ’90s (e.g. CommonKADS [19]) actor and task models were used to create a

domain ontology. With the maturation of ontology repositories, the workflow is

 5

reversed; in other words, ontologies themselves can provide a benchmark for

completeness that serves to support the elicitation process and complete stake-

holder-related conceptual models. Informally, a conceptual model is deemed to be

complete with respect to an ontology if it makes reference to every concept in the

concept vocabulary of the ontology. Ontologies can also support consistency test-

ing of conceptual models (e.g. [20]). A conceptual model would be deemed incon-

sistent relative to an ontology if it violated any of the rules associated with the on-

tology. These could be violations of the structural rules (for instance if a subclass-

superclass relationship is reversed in a model) or violations of semantic con-

straints (for instance, an activity that involves an actor making his/her appoint-

ments schedule publicly available may violate security constraints).

A domain ontology describes domain concepts and their relationships. A do-

main ontology can facilitate reuse of business processes and their technologies.

For example, certain accounting practices are the same across various industries.

Such practices, if well documented and prescribed, can provide reusable business

processes that can be adapted using an appropriate domain ontology as required. It

is fair to say that the development of any IS system can benefit from a domain on-

tology and perhaps this is clearest to developers during the analysis phase. A do-

main ontology may be available from an existing repository (e.g. [21]) or a do-

main analysis yielding an ontology may be considered the first stage of developing

the system (e.g. as proposed in [22] or in [17]). Some industries such as banking

and finance are inclined to provide their own ontologies to enable speedier IS de-

velopment (e.g. LIXI [23]).

There is clear inter-play between reuse and other roles of ontologies. Reuse

roles cannot be smoothly accommodated (e.g. interoperability at run-time) without

careful consideration of run-time temporal requirements. For example, an ontolo-

gy’s role in reasoning at run-time is based on fulfilling knowledge requirements at

design time. This requires scoping the domain analysis for each component at de-

sign time. An ontology retrieved based on early requirements can be used to iden-

tify further details of system goals [24]. Various goal oriented languages can be

used (e.g. i* [25], KAOS [26] or AOR [27]).

3. Proposed Approach

Our proposed approach has two purposes: identifying suitable ontologies which

may be subsequently integrated and adapted for a particular software project; and

validating and identifying possible refinements of the early requirements models.

The approach consists of the following stages:

 Stage 1: Develop an intermediate retrieval ontology. A theoretical

mapping converts early requirements models into an intermediate re-

trieval ontology. The primary purpose of this retrieval ontology is to

facilitate stage 3, but it can also be used in Stage 2.

6

 Stage 2: Perform consistency check of the intermediate retrieval on-

tology and refine the early requirements models (if necessary). The

extent of the rigor in this stage depends on how formal the require-

ment models are. The more formal they are, the more rigorous this

step becomes. The less formal they are, the bigger the role in con-

sistency checking the retrieved ontologies from Stage 3 will play;

and

 Stage 3: Compare domain ontologies with the intermediate retrieval

ontology to identify a set of relevant ontologies to retrieve.

We now look at each stage in detail.

3.1. Stage 1: Development of the intermediate retrieval ontology

To enable automatic processing of initial requirements at the knowledge level, we

aim to represent them as a well specified ontology. We therefore define a mapping

between the early requirement models (the i* models in our example), and a well

specified ontology. This mapping is largely structural in that it preserves the i*

relationships but converts the i* model into a hierarchical ontology with strict set-

theoretical definitions. Using a hierarchical ontology provides for a flexible

representation amenable to later refinement. A hierarchical ontology can also be

used as a starting point for verification during development and for multiple

access at multiple abstraction levels depending on the knowledge

(modeling/analysis) requirement. Multiple Hierarchical Restricted Domain

(MHRD) ontologies have been employed by many authors (e.g. [28]). They are

well understood and expressive for most domains. MHRD-resultant models are

sets of inter-related concepts that are defined through a set of attributes, so the

presence of axioms between these attributes is not considered. There can be part-

of and taxonomic relations among the concepts so that attribute (multiple)

inheritance is permitted. The resulting ontology from the mapping described in

this section can then be employed to choose the domain ontologies from the

repository that best match the defined requirements. The whole process is depicted

in Figure 1. The mapping converts early requirements into an intermediate

retrieval ontology (a populated i* (retrieval) ontology in Figure 1) which is used

as a filter to select relevant ontologies from the repository.

An i* requirement model consists of two components: The Strategic Depend-

ency (SD) model describing different actors and relations between them and the

Strategic Rationale (SR) model describing different tasks each actor has and the

different proposed alternatives to accomplish these tasks. Other goal-oriented lan-

guages, such as KAOS [26] or AOR [27], could be alternatively used. However,

there are many recent encouraging experiences using i* [29]. Particularly, an i*

modeler can readily describe organizational early requirements using the concepts

of actors and dependencies. In mapping i* requirements, we consider the Strategic

Dependency (SD) and the Strategic Rational (SR) models separately. The map-

 7

ping preserves the number of relations in each of the models while articulating the

individual relations in a set theoretic form amenable for automation. In addition, it

expresses implicit relations between constructs, enabling further consistency and

completeness checks that otherwise would be intractable in i*. The mapping is

presented in this section: we first overview the constructs in i* and present their

corresponding concepts/relations in our ontological approach, and then we detail

the set theoretic mapping of the relations between these constructs.

User

Ontology

repository

I* ontology

scheme

I* model

Mapper

Populated

I* ontology

Filter

Relevant domain

ontologies

Consistency

Checker

Inconsistencies

detected

OWL 2

reasoner

Figure 1. From early requirement to ontology retrieval

3.1.1. Ontology used to describe an i* model

The i* Strategic Dependency (SD) models are concerned with the concept of “de-

pendency”, between two actors, the “depender” which depends on the “dependee”

for some object (the “dependum”) to attain some goal. The i* model has four types

of dependency relations: resource dependency, task dependency, goal dependency,

and soft-goal dependency. A resource dependency refers to a relation in which the

“depender” depends on the “dependee” for the availability of an entity. A task

dependency is a kind of relationship in which the “depender” depends on the

8

“dependee” to carry out an activity. The goal dependency is established between

two actors when one depends on the other to bring about a certain state in the

world. Finally, the soft-goal dependency can be described as a relation in which

the “depender” depends on the “dependee” to perform some task that meets a

soft-goal (i.e., a goal specified in terms of the methods that are chosen in the

course of pursuing the goal). The four types of dependency relationships are rep-

resented in the ontology by means of a taxonomy (see Figure 2).

Figure 2. Dependencies taxonomy

 Figure 3. Elements that take part in a dependency

A dependency relation is composed of the actors involved (i.e., “depender” and

“dependee”), its strength (either “open”, “commited” or “critical”) and the central

 9

object (i.e. “dependum"). The type of dependency is partially determined by the

category of the object of dependency (either a “task”, a "goal” or a “resource”).

These entities are categorized into another taxonomy of dependency elements (see

Figure 3). With these two taxonomies (Figures 2 and 3), a dependency is then

characterized by an incoming and an outgoing restriction, its strength and the ele-

ment of dependency. The incoming restriction indicates the depender of the rela-

tionship while the outgoing restriction reveals the dependee. Figure 4 depicts the

ontology concepts and relations that represent a goal dependency.

Figure 4. Goal dependency

Figure 5. Ontological representation of the i* rational model

10

The Strategic Rational i* (SR) model requires knowledge units within the on-

tology to describe relationships between various goals and tasks. The i* SR model

illustrates how an actor meets its incoming dependencies by describing relations

between “goals”, “tasks”, “resources” and “soft-goals” within the actor scope.

All this knowledge is included in the i* retrieval ontology scheme as shown in

Figure 5. In total, the ontology is composed of 28 concepts, 57 relations of which

26 are taxonomic (i.e. “IS-A”) relationships, and 5 attributes. Elements of the on-

tology are shown in Table 1 while the ontological mapping and the rationale are

described in the next section.

Actor pursue Goal

Actor perform Task

Actor play Role

Actor has-a Goal

Actor has-a Task

Actor has-a Role

dependee instance-of Role

depender instance-of Role

Actor is-a Dependency_Element

Task consume Resource

Task deploy Resource

Task decomposedInto {Goal, Task}

Task has-a Actor

Task has-a Resource

Soft_Goal is a Goal

Hard_Goal is-a Goal

Goal requireTask {Task, Soft_Goal}

Depender is-a Actor

Dependee is-a Actor

Dependency_Element part-of Dependency_Relation

Dependency_Strength is-a Dependency_Element

CommD is-a Dependency_Strength

OpenD is-a Dependency_Strength

CriticD is-a Dependency _Strength

Dependum_Object is-a Dependency_Element

Goal_Dependency is-a Dependency_Relation

Soft_Goal_Dependency is-a Dependency_Relation

Task_Dependency is-a Dependency_Relation

Resource_Dependency is-a Dependency_Relation

Dependency_Relation has-a Depender

Dependency_Relation has-a Dependee

Dependency_Relation has-a Dependency_Strengh

Table 1. An excerpt of the relationships used in the i* ontology.

3.1.2. i* Ontological Mapping

i* semantics are partly informal. The semantics describing dependencies are not

fully specified formally. Specifically, the characterization of a dependency as

critical, open or committed is informal. It simply tags dependencies ranking the

importance of the dependum delivered to the depender. Without a formal

grounding to resort to, we use tags to annotate these concepts in the resultant

ontology. These tags do not have a specific formal role in the retrieval (or later

consistency and completeness checks of the formed ontology). However, they are

added in case they are needed in processing the retrieved ontologies.

The formal definitions of the dependencies use implicit relations between the

central notions of goal, task and resource. These are important to highlight since

they are not explicit in i* but are made explicit in the corresponding ontology. A

 11

goal motivates an actor to harness resources to achieve a goal. Harnessing the re-

sources is through the execution of tasks, either by proxy (depending on other ac-

tors) or directly (producing the resources). In other words, a goal is the highest ab-

straction, which is formed/achieved from the execution of a sequence/collection of

tasks. Tasks are more abstract than resources, a task can generate one or more re-

sources. In other words, the order of abstraction is goals, tasks and then resources.

This underlies the conversion: a resource is produced by a task for the sake of an-

other task using it, towards goal (s). Abstract relations between these three notions

are represented by appropriate set memberships within our formal ontology map-

ping. In total there are nine distinct mappings. Three for each type of dependen-

cies: a resource dependency mapping, a goal dependency mapping and a task de-

pendency for each type (committed, open or critical).

If a dependency is a committed dependency then it has a pair of sets,

Comm.dependers and Comm.dependees where:

 Comm.dependers is the set of actors that play the role of depender. Any

given actor in this set, ai , has a set of tasks that it can execute and a set of

goals that it can pursue, ai.tasks and ai.goals respectively.

 Comm.dependees is the set of actors that play the role of dependee. Any

given actor in this set, ai, has a set of tasks that it can execute and a set of

goals that it can pursue, ai.tasks and ai.goals respectively.

Similarly, if a dependency is critical or open then it has two similar pairs of

sets: Critic.dependers and Critic.dependees for critical dependencies, and

Open.dependers and Open.dependees for open dependencies. All these sets have

actors which have associated tasks that they can execute and goals they can pur-

sue. Moreover, any given task related to any actor in any of the sets, ti, has a set of

resources, ti.resources, that are deployed when the task ti is executed. Before we

introduce the ontological constraints for each type of dependency, given an actor ai

the above can be restated more formally as follows:

If ai  Comm.depender  dependers=Comm.depender, dependees=Comm.dependees,

Tag=“Committed”

If ai  Critic.depender  dependers=Critic.depender, dependees=Critic.dependees, Tag=“Critical”

If ai  Open.depender dependers=Open.depender, dependees=Open.dependees, Tag=“Open”

Ontological constraints for a given dependency are defined by incoming and out-

going triplets, where a triplet specifies the task and resource of a specific actor (in

the case of resource dependencies), or the task and goal of a specific actor (in the

case of goal or task dependencies). Therefore the ontological constraint for a re-

source dependency is as follows:

 ai  dependers, ti  ai.tasks, r1  ti.resources, Incoming r (ai , ti, r1)   aj  ai , aj 

dependees, tj  aj.tasks, such that outgoingr (aj , tj, r1) and message_to_user = Tag

12

We assume (as above constraint implies) that an actor sometimes may depend on

another actor for a resource that it can produce by itself. Therefore the ontological

constraint for a goal dependency is as follows:

 ai  dependers, ti  ai.tasks, g1  ai.goals, Incoming g (ai , ti, g1)   aj  ai , aj 

dependees, tj  aj.tasks, such that outgoingg (aj , tj, g1) and message_to_user = Tag

Finally, the ontological constraint for a task dependency is as follows:

 ai  dependers, gi  ai.goals, t1  ai.tasks, Incoming t (ai , gi, t1)   aj  ai , aj  de-

pendees, gj  aj.goals, such that outgoingt (aj , gj, t1) and message_to_user = Tag

The i* Strategic Rational model specifies means-end relationships whereby a goal

pursued by an actor can be achieved either by sub-goals or by performing tasks.

Such a specification yields the following ontological constraint:

Actor m.Gi  Λm
j=1 Actor m.Taski

Where Λm
j=1 means the conjunction of entities indexed starting at 1 and finishing

at m.

The i* Strategic Rational model also states that the tasks performed by an actor

can be decomposed into multiple goals or tasks. Such a specification yields the

following ontological constraint:

Actor m.Taski  Λm
k=1 Actor m.Taskk V Λs

j=1 Actor m.Goalsj

i* SR models also often describe soft goals (that can be contributed to- rather than

completed-by actors), and that these can be fulfilled through some tasks. As we do

not use fuzzy logic, soft-goals are also covered by the two previous ontological

constraints.

3.1.3. Implemented i* ontology model

The i* ontology model has been designed and implemented using the second ver-

sion of the Web Ontology Language, OWL 2 [30].

The implemented model has the following elements.

SD Diagram:

Classes:

 Dependency element

- Actor

o Agent

o Role

o Position

o Dependee (Equivalent class)

o Depender (Equivalent class)

- Dependum

 13

o Goal

o Soft goal

o Task

o Resource

- Belief

 Dependency relation ***

o ResourceDependency

o TaskDependency

o GoalDependency

o SoftGoalDependency

*** (The above Dependency relation hierarchy have been developed because in

the original i* model (not based on ontologies) there are four different ternary re-

lationships;

- ResourceDependency (Two actors and a resource)

- TaskDependency (Two actors and a task)

- GoalDependency (Two actors and a goal)

- SoftGoalDependency (Two actors and a soft goal)

OWL only permits binary relationships so N-ary relationships have to be de-

fined by using an intermediate class that permits to create an individual to repre-

sent the relation instance with links to all participants. For this the previous class

hierarchy has been defined. Besides the following binary relationships and attrib-

utes have to be also defined:

- Binary relationships:

o dependency

 DependencyRelation hasDependee Actor

 DependencyRelation hasDepender Actor

 DependencyRelation hasDependumObject Dependum

 hasDependencyLink (is a property chain “isDepen-

deeOf o hasDepender”)

o inverseDependency (these are the inverse relationships of the

above ones. Here the Domain and range have not been defined

because they are inferred by the inverse properties)

 isDependeeOf

 isDependencyLinkOf

 isDependerOf

 isDependumObjectOf

- Attributes:

o dependencyStrength {commited, critical, open}

SR Diagram:

Binary Relationships (object properties hierarchies):

- Actor belongsToActorBoundary (Goal OR Resource OR Task)

- decomposition

o Task isdecomposedInto (Goal OR Task OR Resource OR Soft-

Goal)

14

- Task meansEnd Goal

o alternative

- (SoftGoal OR Task) contributes SoftGoal

o break

o hurt

o some-

o unknown

o some+

o help

o make

o and

o or

o equal

- Actor isAssociatedWith Actor)

o isA

o ins

o Agent plays Role

o Agent occupies Position

o Position covers Role

o isPartOf

3.2. Stage 2: Consistency check and early requirements refinement

We used OWL 2-DL, based on Description Logics (DL). Its formal model sup-

ports a number of important automatic DL inference services. These can be pro-

vided by DL reasoners including HermiT, Pellet2, Fact++ or Racer [31] and are as

follows:

 Consistency checking to ensure that an ontology does not contain contra-

dictory facts.

 Concept satisfiability to check whether it is possible for a class to have

instances. If a class is unsatisfiable, then defining an instance of the class

will cause the ontology to be inconsistent.

 Classification service to compute subclass relations between every named

class, to create the complete class hierarchy. The class hierarchy can then

be used to answer queries such as getting all subclasses or only direct

subclasses of a given class.

 Realization checking to find the most specific classes to which individu-

als belong. These realization checks for individuals will enable compu-

ting their direct types.

An OWL ontology is a collection of domain axioms that must be satisfied. They

have to be logically correct for all types of domain parameters. The axioms not

only include classes and their properties, but also restrictions on the relations be-

tween various classes. An OWL ontology may also contain a set of domain in-

stances (aka individuals; akin to objects to classes) and descriptions of the in-

stances. We use the HermitT reasoning engine (http://hermit-reasoner.com/) to

http://hermit-reasoner.com/

 15

ensure the consistency of i* ontology models. This ensures correct knowledge in-

ference from the ontology applying corresponding axioms and restrictions. The re-

strictions are also used to check the consistency of the individuals and their de-

scriptions, which must satisfy any restrictions applying to all classes to which they

belong. Moreover, the collection of restrictions defined for the classes can be used

by the reasoner for the automatic classification of individuals. Some axioms have

been defined in the i* ontology to enable a reasoner to automatically check for the

consistency of a model. For example, the Task Decomposition relation named

“decomposedInto” in the ontology has been defined as an object property. For an

object property in an OWL ontology, one can define one or many rdfs (RDF

Schema based) domain axioms that assert that the subjects of such property state-

ments must belong to the class extension of the indicated class description. One

can also define one or many rdfs:range axioms that assert the values of this prop-

erty must belong to the class extension of the class description.

The decomposedInto object property is defined as the relation between the class

Task and the classes Task and Goal. Complex tasks can be decomposed into

smaller tasks or goals. The relevant rdfs:domain axiom is formed by the class Task

and the rdfs:range is defined as {Task OR Goal}. In Figure 6 (a), possible incon-

sistencies related to the axiom of the decomposedInto property are shown. The on-

ly valid domain element for the decomposedInto property is the class Task. Since

the classes Task, Resource, Goal and Softgoal are disjoint, it is not possible that

there exist in the model decomposedInto relationships with a Resource, Goal or

Softgoal as the domain of this relationship. This is also true for the range of this

relation, which is formed by the union of the classes Task and Goal. Therefore, it

is not possible that the class Resource appears as the range of this kind of relation-

ship (see Figure 6 b).

Task

Resource

Task

Goal

Task

Softgoal

T1

T2
SG1 G1

T3

a)

b)

LEGEND

Inconsistent Task

Decomposition

Relation

Consistent Task

Decomposition

Relation

Task

Goal

Resource

Soft Goal

c)

ResourceTask

Figure 6. Example of inconsistencies in the Task Decomposition relation named

decomposedInto: (a) Inconsistencies related to the rdfs:domain axiom; (b) incon-
sistency related to the rdfs:range axiom; (c) inconsistencies related to properties
axioms.

Other kind of restrictions (a.k.a. property axioms) that can be applied to object

properties in OWL2 are the following: functional, inverse functional, transitive,

16

symmetric, asymmetric, reflexive and irreflexive. For the example, the object

property decomposedInto holds both transitive and asymmetric properties, so it is

not possible to have a cycle inside a model using the decomposedInto relationship.

For example, in Figure 6 (c) there exists a cycle between the tasks T1, T2 and T3

that is inconsistent and would be detected by the system. The consistency check-

ing stage ensures that the knowledge inferred from the ontology is correct by ap-

plying the corresponding axioms. If any inconsistency is detected, then the user

needs to resolve this inconsistency in the i* model.

Case study check of consistency

We applied the i* ontology model to look for an inconsistencies in a call manage-

ment system intended for implementation using a multi-agent system [32, 33].

They proposed a real-time system where relationship managers perform sales and

the system adjusts the call flow rate to each relationship manager according to

specific criteria. A distributed intelligent system is intended to provide assistance

to relationship managers in serving customers (or potential customers) to ensure

the best match between relationship managers and customers to provide improved

call routing and dynamic call flow control for both inbound and outbound calls.

The proposed system is intended to be used as a skill matcher between end-

customers and relationship managers based on their profiles which include charac-

teristics such as age, sex, culture, language proficiency, experience and product

knowledge.. This makes relationship managers more convincing to the customer

and increases the chance of achieving a sale. In targeting potential buyers with

outbound calls, the system dials numbers automatically according to a customer

target list previously loaded. The system retrieves the customer’s details from the

database, displays the details and provides the relationship manager with a script

to use and guidelines to help in providing the service to the customer. For out-

bound calls, the systems is intended to create a specific calling target list for each

relationship manager and product based on his/her skills and profile.

The system will have the initial profiles for each relationship manager which

will be dynamically adjusted according to a relationship manager’s performance.

The system will assess human interactions and continually evaluate the relation-

ship manager’s skills and the match with an end-customer as the sale/call pro-

gresses (in real-time). It will recreate the relationship manager’s calling target lists

based on the latest skill/profile evaluation.

For Inbound calls, customers dial a number reaching the call management sys-

tem which has its own private automatic branch exchange. A call routing and dis-

tribution routine will be implemented that minimises inbound call costs by reduc-

ing per-call handling time. A skill score is calculated based on the relationship

manager’s previous call duration and profile. A score from 1-10 based on the like-

lihood to purchase the product is given to a customer according to some preloaded

criteria. Customers with the highest scores are served first. Skills based routing di-

rects calls to relationship managers based on skill levels and best match. The

 17

schedule of dialing end-customers and the estimated call duration vary according

to a relationship manager’s skill level and previous performance. In the proposed

MAS system, this skill level will be automatically calculated by the agent system

and matched to the skill level of the end-customer. Variance in skill level can be

equalised using collaboration.

Inbound customers can be directed to an Interactive Voice Response unit

prompting them for options, and may even ask for call reasons in a few words and

then redirect the call to an Automatic Call Distributor routing the call to the first

available appropriate relationship manager. Customers may hang up when they

suffer from a long wait time. Call centres that use toll-free services pay out-of-

pocket for the time their customers spend waiting. This time can be reduced by

providing customers with more automated services that serve them without the

need to talk to a human relationship manager. Call recording and automatic analy-

sis for various cues on effectiveness of relationship manager will be incorporated

in the system.

Figure 7. Call management system SD diagram

The Strategic Dependence model (SD), Figure 6, is based on that presented in

[33]. A number of inconsistencies were identified which has resulted in an im-

proved i* model for the system. It also demonstrates the power of our proposed

technique in helping to improve the i* requirements models.

Issues identified in the SD diagram:

18

 Provide Product Service –an inconsistency because the range of the de-

pendency relation is not an Actor (is a Goal);

 Monitor Performance – an inconsistency because the domain of the de-

pendency relation is not an Actor (is also a Goal);

 Generate Profile - an inconsistency because this dependency relationship

has two dependers and no dependee; and

 Generate Customer Matrix - an inconsistency because the dependency re-

lationship has 2 dependees and one depender. Each relationship must

have only one dependee.

The preceding analysis has highlighted a number of consistency errors in the SD

diagram. A similar analysis of the associated Strategic Rationale model (SR), not

shown, also identified a number of other errors. This analysis can then be used by

the requirements analyst to modify the i* model before again performing stages 1

and 2 from our proposed approach to check the modified i* model for consistency.

3.3 Stage 3: Identify set of relevant ontologies

In Stage 3, the i* retrieval ontology is used to search the repository and the closest

domain ontologies are returned. This is the primary purpose of the retrieval ontol-

ogy (hence the naming). The content of the retrieval ontology can deviate slightly

from the requirement models and it would remain usable to index the repository to

retrieve related ontologies to support the development. As such, the generation of

a retrieval ontology can be served with a mapping that is less than 100 percent ac-

curate. That is, a mapping that skips some of the content of the requirement mod-

els may indeed still generate a retrieval ontology that can identify relevant ontolo-

gies from the repository. In fact, our i* mapping overlooks less formal features of

i* (such as the type of goals: hard versus soft). The more formal the source re-

quirement models, the more accurate the mapping becomes. However, whilst an

accurate mapping can better support Stage 2, a high level of accuracy is not essen-

tial for Stage 3.

 19

Figure 8. System architecture

To demonstrate this process, we implemented a system composed of three main

components: the matchmaker, the persistence manager and the query handler

(Figure 8). The system receives an i* retrieval ontology and returns the most rele-

vant domain ontologies from the ontology repository. The input i* retrieval ontol-

ogy is a formalized representation of the early requirements expressed in i*. The

system retrieves those ontologies with the greatest number of elements in common

with the input retrieval ontology using heuristics to evaluate semantic similarities

between the i* retrieval ontology and the domain ontologies in the repository.

The three components of the prototype are the following:

 Persistence manager: This module interfaces to the repository to retrieve

related domain ontologies, making use of the Sesame RDF repository [34]. We

choose Sesame in favor of the commonly used Jena Framework [35] as it is more

scalable. It is possible to issue SPARQL queries to the repository without having

to load the ontologies into memory (another drawback of Jena).

 Matchmaker: This module assesses the similarity of each ontology to the i*

retrieval ontology by making use of the query handler. The input to this module is

the i* retrieval ontology corresponding to the system’s early requirements. The

output is the set of domain ontologies that exceed a given threshold of similarity.

Query handler: This module evaluates the similarity between the i* retrieval

ontology and those in the repository. The system gathers the names available with-

in the information concerning each individual in the i* retrieval ontology and

compares them with the contents of the domain ontologies. Each domain ontology

obtains a score that is determined by the number of occurrences and linguistic

similarity of the i* retrieval ontology instances names in the domain ontology un-

der consideration. In OWL ontologies four main ontological elements can be dis-

tinguished: Classes, DataTypeProperties, ObjectProperties and Individuals. As

such, ssimilarity can be based one or an combination of these ontological elements

using a weighted sum of the similarities between the i* retrieval ontology and

each list of the ontological elements of the domain ontology. For an iStar input i*

20

retrieval ontology, and an O domain ontology form the repository, we define the

similarity between iStar and O as follows:

),(*),(*

),(*),(*),(

43

21

OiStarsimIndOiStarsimDP

OiStarsimOPOiStarsimClassesOiStarsim









where 0i

4 Approach Validation

The example used in our initial validation is based on [18]. It describes a comput-

er-based meeting scheduler that determines a meeting date and location to suit the

largest number possible of potential participants. The scheduler requests from po-

tential participants their availability for a date range based on their personal agen-

das and mediates an agreement for an acceptable meeting date.

The Strategic Dependence model (SD) shown in Figure 8 models the meeting

scheduling process in terms of intentional relationships among stakeholders. This

allows for an analysis of opportunity and vulnerability. In this example there are

four agents, three goal dependencies, two task dependencies, two resource de-

pendencies and one soft-goal dependency (see Figure 9). The Strategic Rationale

(SR) (Figure 10) provides a more detailed level of modeling by looking “inside”

actors to model internal intentional relationships. Intentional elements (goals,

tasks, resources, and soft-goals) appear in the SR model not only as external de-

pendencies, but also as internal elements linked by means-ends relationships and

task-decompositions.

 21

Figure 9. SD model for a computer-supported meeting scheduler of Yu, 1997.

We now apply our proposed approach to the meeting scheduler example.

Stage 1: Develop i* retrieval ontology

The i* early requirement models for the meeting scheduler scenario are translated

into an ontology as described in Section 3.1. The i* ontology scheme (Section 3.1)

is used to create a set of instances representing the information in the early re-

quirement models. This i* retrieval ontology will be used for retrieval of relevant

domain ontologies. In Figure 11, a portion of the resultant retrieval ontology cor-

responding to the early requirements of the meeting scheduler is depicted. Three

actors are involved in the scenario: the ‘Meeting Initiator’, the ‘Meeting Partici-

pant’ and the ‘Important Participant’. A total of 7 dependency relations have been

identified among goal, resource, task and soft-goal dependencies. Each dependen-

cy relation has both incoming and outgoing restrictions. Three dependum objects

are also considered: ‘ip’, ‘p’ and ‘m’, closely related to the actors identified. The

ontology also includes 10 different tasks, 4 resources and 11 goals (4 hard goals

and 7 soft-goals).

Stage 2: Perform consistency check and refine requirements model(s)

The consistency of the i* retrieval ontology was validated using the HermiT rea-

soner and no inconsistencies were found in the corresponding requirement models.

As a result no refinements were necessary to the requirements models.

22

Figure 10. SR model for a meeting scheduler configuration [18].

Stage 3: Compare domain ontologies with the (i*) retrieval ontology

To validate our ontology identification platform investigating how it would per-

form for the meeting schedule case, we use a repository consisting of a set of ten

random, non-related domain ontologies. The chosen ontologies vary in both size

and nature of their contents. A brief description of the ontologies employed in the

benchmark is presented in Table 2. Using the i* ontology of the meeting scheduler

[18] as input, our tool evaluates the similarity with each of the ontologies available

in the repository. The results of the experiments are shown in Table 3.

Table 3 shows the similarity score between the i* retrieval ontology and the

domain ontologies in the repository. It identifies the following ontologies as most

relevant: Meeting.owl, Agenda.owl and Event.owl. These would also intuitively

appear to be the most relevant as the application to be developed is a meeting

scheduler.

 23

Actor_pursue_Goal

Subclass

Instance of

Individual

Relationship

Class

ObjectProperty

Individual

ACTOR

DEPENDEE DEPENDER

Actor_perform_Task

Goal_requires_Task

Important

Participant
Meeting

Initiator

Meeting

Participant

ONTOLOGICAL CATEGORY

GOAL RESOURCE
Class

TASK

HARD GOAL SOFT GOAL

Attend Meeting

Agreeable

...

Convenient

Quality

...

Agreement

Exclusion Dates

...

Find Agreeable Date

Attend

Meeting
...

pursue

requires
perform

Figure 11. Excerpt of the meeting scheduler i* retrieval ontology

It might be expected that the Otasks.owl ontology would show a higher similar-

ity score. However we have adopted a lexical-based similarity function which uses

the Levenstein distance between the names of the ontological elements. This will

favour ontologies of a similar size (e.g. Meeting.owl, Agenda.owl and Event.owl)

over ontologies that are very different in size (Otasks.owl) even though there

might be a similar coverage of elements in the i* retrieval ontology. However a

much larger ontology to the i* ontology means that there will be many unneces-

sary elements which is not ideal when an ontology of a similar size is available

that has a good similarity score.

Ontology Scope Metrics

Agenda Meeting agenda ontology 8 classes, 3 object properties, 11

datatype properties and 32 restrictions

Cyc OpenCyc is the open source version of the

Cyc technology, the world's largest and

most complete general knowledge base and

commonsense reasoning engine

2948 classes, 1243 object properties,

2 datatype properties and 7573 indi-

viduals

e-commerce Elements concerning commercial transac-

tions

20 classes, 7 object properties, 7

datatype properties and 7 restrictions

Event This ontology describes concepts for model-

ing events in an intelligent meeting room

environment.

12 classes, 28 object properties and 2

datatype properties

Meeting SOUPA Meeting ontology that models a

meeting agenda

9 classes, 5 object properties and 4

datatype properties

Otasks It represents information about events that

take place in an office

524 classes, 67 object properties and

148 datatype properties

24

Pizza An example ontology that contains infor-

mation regarding the elaboration of pizza

99 classes, 10 object properties, 4

datatype properties and 5 individuals

Portal The ontology represents the knowledge used

in the CS AKTive Portal testbed: people,

projects, publications, geographical data,

etc.

169 classes, 108 object properties, 29

datatype properties and 75 individuals

Recruitment An ontology for the employment domain

describing applicants’ profiles and employ-

ers’ offers

69 classes, 14 object properties, 50

datatype properties and 5 individuals

Travel An example ontology for tutorial purposes

about tourism related issues.

30 classes, 15 object properties, 25

datatype properties and 50 individuals

Table 2. Description of the ontologies in the repository.

Concepts from these three ontologies (Meeting.owl, Agenda.owl and Event.owl)

will be relevant for the analysis and development of the system. The scores of

these ontologies are far from the next ontology in all cases. As similarity measures

based on different elements (ie. properties, datatypes, instances and hybrid) are

used, they remain the top three ontologies (with the exception of the instances

based similarity metric).

Ontologies

Classes

based

similarity

0

0

0

1

4

3

2

1

















Properties

based

similarity

0

0

1

0

4

3

2

1

















Datatypes

based

similarity

0

1

0

0

4

3

2

1

















Instances

based

similarity

1

0

0

0

4

3

2

1

















Hybrid

weighted

similarity

1,0

1,0

2,0

6,0

4

3

2

1

















Agenda.owl 0.442 0.241 0.423 0.000 0.356

Cyc.owl 0.003 0.003 0.001 0.003 0.003

e-commerce.owl 0.207 0.137 0.00 0.00 0 0.151

Event.owl 0.437 0.438 0.163 0.000 0.366

Meeting.owl 0.501 0.454 0.284 0.000 0.420

Otasks.owl 0.047 0.035 0.027 0.000 0.038

Pizza.owl 0.185 0.161 0.070 0.141 0.165

Portal.owl 0.076 0.076 0.027 0.065 0.070

Recruitment.owl 0.168 0.129 0.127 0.000 0.140

Travel.owl 0.094 0.082 0.040 0.098 0.086

Table 3. Results of the experiments with the various similarity measures.

When only instances are taken into account (Column 5), the results become

spurious and unreliable due to false positives since the majority of the ontologies

 25

do not have Instances. For example, the best score is obtained by pizza.owl, which

is not even related to the domain of the application. Datatypes are also often omit-

ted by ontology developers, so we created a hybrid measure which gives most

weight to similarity in classes, then properties and least to instances and datatypes

(Column 6). This helps to overcome variations in how well-developed are the

components of the various ontologies in the repository. To numerically represent

this ordering, we employ a heuristic where the weight assigned to the object prop-

erties is twice than that of datatypes and individuals. Classes can be considered the

most relevant elements in ontologies since they are necessary to represent the

range and domain of object properties. To strongly favour classes over properties,

we give their weight three times the weight of properties. This incorporates the

four similarity factors and, as shown in column 6, this produces the most reliable

results. Not only does it correctly identify the top three ontologies, it also clearly

separates them from the other ontologies as the gap widens. The top three numbers

are quite close but the fourth becomes much smaller.

5. Conclusion, Limitations and Future Work

Ontologies can play a central role in information systems extensibility, interopera-

bility and reuse. For instance they can provide domain knowledge to requirement

engineers as well as reusable software components for web applications or intelli-

gent agents’ developers. Figure 12 shows our approach and its support for the co-

evolution between the domain ontology model(s) and the requirements models.

This is an iterative process with the ontology models suggesting possible short-

comings in the requirements models and visa versa. Any inconsistencies noted in

the requirements models should cause another round of requirements identifica-

tion. In addition, any incompleteness of the domain ontology can trigger further

domain expert advice by the requirement engineers. The complete system devel-

opment may require appropriate ontological mappings. Reusable components may

not necessarily have the required degree of domain richness and the ontology used

may need to be adapted or refined. Ontology mapping may also be required to en-

sure that all components have their knowledge requirement(s) available in an ap-

propriate format. Ontology mapping may also lead to further analysis and identifi-

cation of reusable components.

26

Domain Ontology

Intermediate

Retrieval

Ontology

Requirements

Valid
atio

n& e
xte

nsio
n

Req
uire

m
en

ts
 id

en
tif

ic
at

io
n

C
onsistency check&

 refinem
ent

R
equirem

ents m
apping

Identify domain ontologies

5.1 Summary and discussion

Our approach is the first vital stage to ensure ontologies are usable within the IS

development- that of identifying relevant ontologies for a particular application

domain. Our approach uses the early system requirements as the key to access a

repository of reusable ontologies. It also identifies any inconsistencies in the re-

quirements models, thus helping the requirements engineer in his/her refinement.

However, the extent to which the mapping supports the detection of inconsisten-

cies will depend on the degree of formalism used in the requirement models. In-

consistency detection also occurs using the ontologies retrieved from the reposito-

ry. Where the requirement models are less formal, the bigger the role of the

retrieved ontologies in consistency checking. The framework is applicable to any

requirement models. A mapping process will always be feasible to support the

framework. As for the current version of the mapping (from i*), this version is ap-

plicable to any goal oriented requirement models. These are commonly used mod-

els in most of agent oriented oriented methodologies. Indeed, the work in [36]

shows that these models are used in more than 80 percent of agent oriented meth-

odologies.This paper details and validates the approach. We set up an actual

workbench to tune a retrieval algorithm which combines the four structural com-

ponents of an ontology: classes, properties of its classes, datatypes and instances.

Our experimental workbench highlighted that classes are the most relevant com-

ponent in identifying the most appropriate ontology, followed by properties then

datatypes and instances. A hybrid similarity function provided correct identifica-

tion and ranking of the top three ontologies for our development domain.

Our approach is very robust in identifying the most relevant ontologies. Ro-

bustness is based on tolerance of imprecision during each of the three stages in the

approach. In the conversion of the early requirements, not all details are required

Figure 12. Co-evolution of early requirements and domain ontology incorporating
our proposed framework

 27

to formulate a coherent retrieval ontology. In other words, a retrieval ontology can

be acquired even before the requirement analysis is completed. For example, we

did not need to distinguish between soft and hard goals in the synthesis of the re-

trieval ontology. Nor did we need to use the type of dependencies in the i* re-

quirement models. As precision and completeness are not required, the mapping

can be generalised to any requirement models for the purpose of generating the re-

trieval ontology. However, the secondary purpose of the retrieval ontology illus-

trated, detecting inconsistencies, is better served when the requirement models are

more formal. This secondary purpose is also targeted by the whole framework.

That is the retrieved ontologies from the repository can also serve this purpose. In

the actual retrieval stage, all structural components of the retrieval ontology are

used and therefore incompleteness of any of the ontologies in the repository or the

retrieval ontology itself is tolerated. Syntactic similarity functions between indi-

vidual components also seem to suffice, as indicated by our experiment. Finally,

as multiple relevant ontologies can be retrieved (depending on the richness of the

repository), these can be merged and they can compensate for any inadequacies in

any of the ontologies retrieved. Our work is yet to provide any specific guidelines

on how to integrate the retrieved ontologies and it is not clear that they actually

need to be integrated. For instance, an IS developer may use multiple ontologies to

enhance the system analyses without the need to merge ontologies. However, to

use ontologies at runtime may require further processing which might entail merg-

ing and/or extension of the retrieved ontologies.

5.2 Limitations and future work

The next stage of this research will provide further guidance to the IS developer in

selecting one or more ontologies from a recommended list. It will also provide

guidance on whether to use one (or more) ontology or merge ontologies. In both

cases it may be desirable to extend the resulting ontology if it is required for

runtime operations. If merging ontologies, existing work such as [37, 38] can be

used to evaluate the merging process. This will also include dynamic adjustment

of the retrieval process depending on the state of the repository and/or ensuring

that the retrieval process is multi-staged depending on the similarity of the re-

trieved ontologies.

The similarity metric adopted in Stage 3 (Identifying relevant ontologies) fa-

vours ontologies of similar size to the i* retrieval ontology as there will be fewer

unnecessary elements making understandability easier. However there is a risk

that the metric may unduly favour similar size ontologies at the expense of a much

larger ontology which provides better coverage of the i* ontology elements. Fu-

ture research will also address this issue.

We have confidence that our approach is scalable. We have demonstrated it ap-

plicability to the relatively small meeting scheduler problem. However we have

also used it to check for consistency issues in a larger problem: real-time call

management system requirements model. No scalability issues were identified in

28

applying it to the larger problem. In addition no scalability issues were evident

when applying the third stage (Identifying a set of relevant ontologies). As noted

in Section 3.3, we choose Sesame as the RDF repository due to its better scalabil-

ity. Ensuring the scalability of the proposed approach is important and will be sub-

ject to further evaluation.

References

[1] G. Stumme, A. Maedche, Ontology merging for federated ontologies on the semantic web,

Workshop on Ontologies and Information Sharing (IJCAI' 01), Seattle, USA, 2001.

[2] B. Henderson-Sellers, Bridging metamodels and ontologies in software engineering, Journal

of Systems and Software 84(2) (2011) 301-313.

[3] N. Guarino, Formal Ontology and Information Systems, Int. Conf. on Formal Ontology in

Information Systems - FOIS'98, Trento, Italy, 1998.

[4] A. A. F. Brandao, V. T. d. Silva, C. J. P. d. Lucena, Ontologies as Specification for the

Verification of Multi-Agent Systems Design, Object Oriented Programmings, Systems,

Languages and Applications Workshop (2004), California, 2004, pp.

[5] A. Lopez-Lorca, G. Beydoun, L. Sterling, T. Miller, An Ontology-Mediated Validation

Process of Software Models, 19th International Conference on Information System

Development, Prague, 2010.

[6] E. Sadrei, A. Aurum, G. Beydoun, B. Paech, A Field Study of the Requirements

Engineering Practice in Australian Software Industry, International Journal of Requirement

Engineering Springer (accepted) (2007).

[7] D. Djuric, D. Gasevic, V. Devedzi, Ontology Modelling and MDA, Journal of Object

Technology 4(1) (2005) 109-128.

[8] G. Beydoun, N. Tran, G. Low, B. Henderson-Sellers, Foundations of Ontology-Based

Methodologies for Multi-agent Systems, in: M Kolp, P Bresciani, B Henderson-Sellers, M

Winikoff (Eds)Springer-Verlag, Berlin, 2006, pp 111-123.

[9] C. Calero, F. Ruiz, M. Piattini (Eds) Ontologies in Software Engineering and Software

Technology. Springer-Verlag (2006).

[10] F. Ruiz, J. R. Hilera, Using Ontologies in Software Engineering and Technology, in: C

Calero, F Ruiz, M Piattini (Eds) Ontologies for Software Engineering and Technology.

Springer-Verlag, Berlin, 2006, pp 49-102.

[11] A. Lopez-Lorca, G. Beydoun, L. Sterling, T. Miller, Ontology-mediated Validation of

Software Models, in: J Pokorny, V Repa, K Richta, W Wojtkowski, H Linger, C Barry, M

Lang (Eds) Information Systems Development. Springer New York, 2011, pp 455-467.

[12] G. Shu, O. F. Rana, N. J. Avis, D. Chen, Ontology-based semantic matchmaking approach,

Advances in Engineering Software 38(1) (2007) 59-67.

[13] G. Shanks, E. Tansley, R. Weber, Using ontology to validate conceptual models,

Communications of the ACM 46(10) (2003) 85-89.

 29

[14] A. B. Benevides, G. Guizzardi, A Model-Based Tool for Conceptual Modeling and Domain

Ontology Engineering in OntoUML International Conference on Enterprise Information

Systems Italy, 2009.

[15] D. Okouya, L. Penserini, S. Saudrais, A. Staikopoulos, V. Dignum, S. Clarke, Designing

MAS Organisation through an integrated MDA/Ontology Approach, 1st International

Workshop on Transforming and Weaving Ontologies in Model Driven Engineering,

Tolouse, France, 2008, pp. 55-60.

[16] A. A. F. Brandão, V. T. d. Silva, C. J. P. d. Lucena, Observed-MAS: An Ontology-Based

Method for Analyzing Multi-Agent Systems Design Models, in: Agent-Oriented Software

Engineering VII. Springer, Berlin / Heidelberg, 2007, pp 122-139.

[17] G. Beydoun, A. K. Krishna, A. Ghose, G. C. Low, Towards Ontology-Based MAS

Methodologies: Ontology Based Early Requirements, in: C Barry, M Lang, W Wojtkowski,

G Wojtkowski, S Wrycza, J Zupancic (Eds) The Inter-Networked World: ISD Theory,

Practice, and Education. Springer-Verlag, New York, 2008, pp.

[18] E. Yu, Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering, 3rd IEEE Int. Symp. on Requirements Engineering, Washington D.C., USA,

1997, pp. 226-235.

[19] G. Schreiber, H. Akkermans, A. Anjewierden, R. d. Hoog, N. Shadbolt, W. V. d. Velde, B.

Wielinga, Knowledge Engineering And Management: The CommonKADS Methodology,

The MIT Press, London, 2001.

[20] A. L. Opdahl, B. Henderson-Sellers, F. Barbier, Ontological Analysis of Whole-Part

Relationships in OO Models, Information and Software Technology 43(6) (2001) 387-399.

[21] DARPA, DAML Ontology Library, http://www.daml.org/ontologies/, (2004), (accessed 28

June 2007).

[22] V. Cordi, V. Mascardi, M. Martelli, L. Sterling, Developing an Ontology for the Retrieval

of XML Documents: A Comparative Evaluation of Existing Methodologies, AOIS2004

@CaiSE04, 2004, pp.

[23] LIXI, LIXI: The Language of Lending, www.lixi.org.au, (2005), 2010).

[24] Q. N. N. Tran, G. Low, G. Beydoun, A methodological framework for ontology centric

oriented software engineering, Computer Systems Science and Engineering 21(2) (2006)

117-132.

[25] E. Yu, Agent Orientation as a Modelling Paradigm, Wirtschaftsinformatik 43(2) (2001)

123-132.

[26] A. Lamsweerde, A. Dardenne, F. Dubisy, The KAOS Project: Knowledge acquisition in

automated specification of software, Proceedings of the AAAI Spring Symposium Series,

Stanford University, 1991, pp.

[27] G. Wagner, Agent-Object-Relationship Modeling, Proc. of Second International

Symposium - from Agent Theory to Agent Implementation together with EMCRS 2000,

2000, pp.

[28] C. Eschenbach, W. Heydrich, Classical mereology and restricted domains, International

Journal of Human-Computer Studies 43 (1995) 723-740.

[29] G. Grau, X. Franch, N. Maiden, PRiM: An i*-based process reengineering method for

information systems specification, Information and Software Technology 50 (2008) 76-

100.

http://www.daml.org/ontologies/
http://www.lixi.org.au/

30

[30] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL2 the next

step for OWL, Web Semantics: Science, Services and Agents on the World Wide Web 6(4)

(2008) 309-322.

[31] E. Sirin, B. Parsia, Pellet: An OWL DL reasoner, Description Logic Workshop (DL 2004),

2004, pp. 212–213.

[32] A. Ashamalla, G. Beydoun, J. Yan, G. Low, Towards modelling real time constraints,

ICSOFT, Rome, INSTICC Press, Setubal, Portugal, 2012, pp. 158-164.

[33] A. Ashamalla, Beydoun, G. and Low, G.C., Agent Oriented Approach to a Call

Management System, 18th International Conference on Information Systems Development

(ISD 2009), Nanchang, China, Springer, 2009, pp. 345-356.

[34] J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A Ge-neric Architecture for Storing

and Querying RDF and RDF Schema, the First International Semantic Web Conference,

Italy, 2002.

[35] B. McBride, Jena: a semantic web toolkit, IEEE Internet Computing 6(6) (2002) 55-59.

[36] Tran, Q.N.N., Beydoun, G. and, Low, G. (2007). Design of a peer-to-peer information shar-

ing MAS using MOBMAS (ontology-centric agent oriented methodology. In Advances in

Information Systems Development, Springer pp. 63-76.

[37] H. S. Pinto, J. P. Martins, Ontology integration: how to perform the process, in International

Joint Conference on Artificial Intelligence, 2001.

[38] G. Beydoun, A. Lopez-Lorca, F. Garcia-Sanchez, R. Martinez-Béjar, How do we measure

and improve the quality of a hierarchical ontology?, Journal of Systems and Software 84

(12) (2011) 2363-2373.

https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=-PC4ZIYAAAAJ&citation_for_view=-PC4ZIYAAAAJ:R3hNpaxXUhUC
https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=-PC4ZIYAAAAJ&citation_for_view=-PC4ZIYAAAAJ:R3hNpaxXUhUC

