
Compliance validation and diagnosis of business data
constraints in business processes at runtime
n Corr
E-m

gasca@u
jmperez

URL
http://w
http://w
María Teresa Gómez-López a,n, Rafael M. Gasca a, José Miguel Pérez-Álvarez b
a Department of Languages and Computer Systems, University of Seville, Spain
b Intelliment Security, Spain
Bus
time
stor
whe

a company. To improve and automate the validation and diagnosis of compliance rules

base
prop
vali
the
the
pote
Keywords:
Business processes validation and diagnosis
Business data constraints
Persistence data
Constraint programming
Data
proc
Con
info

esponding author.
ail addresses: maytegomez@us.es (M.T. Góm
s.es (R.M. Gasca),
@intellimentsec.com (J.M. Pérez-Álvarez).
S: http://www.lsi.us.es/�mayte (M.T. Gómez
ww.lsi.us.es/�gasca (R.M. Gasca),
ww.intellimentsec.com/ (J.M. Pérez-Álvarez
a b s t r a c t

iness processes involve data that can be modified and updated by various activities at any
. The data involved in a business process can be associated with flow elements or data
ed. These data must satisfy the business compliance rules associated with the process,
re business compliance rules are policies or statements that govern the behaviour of

d on the description of data semantics (called Business Data Constraints), we
ose a framework where dataflow variables and stored data are analyzed. The

dation and diagnosis process is automated using Constraint Program-ming, to permit
detection and identification of possibly unsatisfiable Business Data Constraints, even if
data involved in these constraints are not all instantiated. This implies that the
ntial errors can be determined in advance. Furthermore, a language to describe Business
 Constraints is proposed, for the improvement of user-oriented aspects of the business
ess description. This language allows a business expert to write Business Data
straints that will be automatically validated in run-time, without the support of an
rmation technology expert.
1. Introduction

A business process consists of a set of activities that are
performed in coordination within an organizational and
technical environment [53]. The basic idea of Business
Process Models (BPMs) is the explicit representation of
business processes with their activities and of the execution
constraints between activities. The description of the model
is often insufficient to fully describe the behaviour of the
process, and hence business compliance rules are added to
ez-López),

-López),

).
improve the capacity of process description. Many studies
propose different taxonomies to classify business compliance
rules [8,21,40,44]. Business compliance rules can be under-
stood as conforming to a rule such as a specification, a policy
or a standardized procedure that represent a natural step
towards the inclusion of semantic requirements between
business functionality and data. This paper focuses on the
use of Business Compliance Rules [4] to describe the data
semantics of a business process for the representation of the
relations between data values: these we have named Busi-
ness Data Constraints (henceforth referred to as BDCs). These
Business Data Constraints are understood as a subset of
business compliance rules which represent the semantic
relation between the data of a business process instance. In
this paper we assume that the BDCs specification is correct,
but they can be inconsistent because the introduced data are
incorrect.

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.07.007
http://dx.doi.org/10.1016/j.is.2014.07.007
http://dx.doi.org/10.1016/j.is.2014.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.007&domain=pdf
mailto:maytegomez@us.es
mailto:gasca@us.es
mailto:jmperez@intellimentsec.com
http://www.lsi.us.es/~mayte
http://www.lsi.us.es/~mayte
http://www.lsi.us.es/~gasca
http://www.lsi.us.es/~gasca
http://www.intellimentsec.com/
http://dx.doi.org/10.1016/j.is.2014.07.007

An example of the use of BDCs is to represent that the sale
price of a product is the price of the product multiplied by a
percentage of tax that has to be paid to the government. The
price of the product is greater than or equal to the production
cost plus the percentage gain. The price of the product can
change depending on special discounts, but can never be less
than the production cost. The values of production cost, price,
tax, etc. are introduced by hand into the system by different
employees in the company, from different departments, at
different moments, and for several products. All these man-
ners to introduce data can cause the introduction of incorrect
values that do not follow the policies of the company.

To validate the correctness of the data, it is necessary to
include the Business Data Constraints in the description of
a business process model, since none of the activities of a
process can work correctly using incorrect data. Incorrect
data can be produced by other activities or introduced by
users in human tasks. It is also necessary to take into
account that the information handled in a business process
tends to be extensive, since organizations currently need
to manage a great deal of data; data that are normally
stored on a relational database. Therefore, the data
involved in a business process and in the BDCs can form
part of the dataflow (depending on the instance), and can
be stored on a database (persistence layer).

Although certain papers have analyzed dataflow valida-
tion, to the best of our knowledge there are no proposals for
the validation of the semantics of dataflow and stored data in
terms of their values. To validate the BDCs in accordance with
a relational database, we propose a model-based validation
and diagnosis methodology. This methodology is used to
ascertain whether the behaviour of a system is correct, and
to identify the violated BDCs for the data involved. This
identification is carried out by comparing the expected
behaviour represented by BDCs (the model), with the
observed values of the variables (the observational model).
Based on these principles, the contributions of this paper are:
�
 Enlargement of the business process model for the valida-
tion and diagnosis for the compliance of BDCs. This
implies describing the business process model, defining
the BDCs and determining the activities where the
validation is necessary, and including the relational
database layer. To enable the business expert to per-
form these actions, we have developed a framework
where all these steps can be fulfilled. In a preliminary
study [17], the necessity to validate and diagnose the
stored data by means of the compliance of rules was
detected. In the current paper, we have included
various and more complex relations between the tables
of the database, and an analysis of the Referential
Integrity as a graph, to perform the automatic creation
of the joined tables and the data involved.
�
 Description of BDCs. To describe the BDCs, we have
developed a language as a way to represent the correct
values of the involved data objects in a process. This
language allows the business expert to represent cor-
rect data semantics for dataflow and stored data. The
BDCs can be defined as either an invariant of the
process, and therefore associated to the whole process,
or as a contract (pre or post-condition) for an activity or
a set of activities. We propose an algorithm to extract
only the data involved in the evaluation at runtime, to
determine the clustering of BDCs, thereby minimizing
the evaluation time.
�
 Early identification of non-compliance of BDCs in run-
time. Since not all the BDCs have to be analyzed in the
whole business process [36], for each instance and
activity it is necessary to obtain the dataflow and tuples
of the stored data involved in the process instance.
These form the observational model for the described
model in design time. Once the tuples involved in the
instances are known, we propose using the Constraint
Programming paradigm, to automate the validation and
diagnosis process, since the use of Constraint Program-
ming brings the advantage of an early identification of
non-compliance in BDCs (even before all the values are
instantiated). To the best of our knowledge, no com-
mercial tool to date has included the capacity to
evaluate the correctness of the data before all the data
is known. However, our implementation incorporates
the algorithms to this effect in a commercial BPMS.

This paper is organized as follows: Section 2 presents
the most interesting aspects related to BDCs and the
orientation towards Constraint Programming. Section 3
gives an example of a real business process where BDCs
are necessary. Section 4 sets out the proposed business
model by means of a framework that includes the database
to store the BDCs, and the relational database with the
information of the business process instances. Section 5
presents the validation and diagnosis algorithm to be
executed to find out the unsatisfiable BDCs. The applica-
tion to include the BDCs and the connector that relates the
process and the validation algorithm are presented in
Section 6. Section 7 presents an analysis of related work
that exists in the area. Finally, conclusions and future work
are presented.
2. Representation and treatment of business data
constraints

Although no standard meaning of ‘Business Compliance
Rules’ exists, a business compliance rule is generally
understood as which conforms to a rule such as a speci-
fication, a policy or a standardized procedure. The majority
of studies in this area address business compliance rules as
the representation of a relative order between the various
activities executed in a process [23].

Several language constructs can be used to design busi-
ness compliance rules. Current business rule engines are
based on the use of IF–THEN rules or their derived exten-
sions of ECA rules (event-condition-action) or ECAA rules
(event-condition-action-alternative). Some examples of the
current rule engines are Drools, Fair Isaac Blaze Advisor, ILOG
JRules and Jess. Another possibility is the Business Process
Compliance Language (BPCL) [54], which defines inclusion,
precedence, and existence conditions for business rules by
means of Object Constraint Language (OCL) expressions,
which specify correctness and compliance checks. That
version of BPCL was improved in [4] to develop a semantic

approach to business rule management that allows for
intuitive modelling and analysis of business process compli-
ance. Unfortunately, these proposals are not based on the
treatment of data values (dataflow and stored data), hence
the correctness of data at run time cannot be validated with
unknown values and combined with diagnosis processes. For
this reason, a new business process compliance methodology
to describe, validate and diagnose the correctness of the data
semantics is necessary. According to [22,15], successful
business process compliance implementation requires an
integrated approach, reflecting the entire BPM lifecycle;
should support compliance verification beyond simple con-
trol flow aspects; needs an intuitive graphical notation for
compliance requirements that is also comprehensible for
non-experts, and should support the application of semantic
technologies for the definition, implementation and execu-
tion of automated compliance verification.

In order to cover all these characteristics, and to include
the relation between data values in the process, we
propose that BDCs be presented as Numerical Constraints,
as detailed in the following section.
2.1. Grammar of business compliance rules

In order to express the BDCs, we propose the use of
Numerical Constraints over Natural, Integer and Float
domains in the following grammar. This is an adaptation
of that proposed in [19], in addition relational database
attributes have been added:
BusinessComplianceRules≔IDENTIFIER ’’’ Constraint

Constraint ≔ Atomic_Constraint BOOL_OP Constraint

jAtomic_Constraint j ’NOT’Constraintj’-’Constraint
BOOL_OP ≔ ’AND’j ’OR’
Atomic_Constraint ≔ function PREDICATE function

function ≔ Variable FUNCTION_SYMBOL function

jVariablejConstant
Variable ≔ Table’ � ’AttributejAttributejDataFlowVariablejConstant
PREDICATE ≔ ’¼ ’j’o ’j’r ’j’4 ’j’Z ’

FUNCTION_SYMBOL ≔ ’þ ’j’� ’j’n’j’=’
In general, a BDC is formed by a Boolean combination of
numerical constraints. These numerical constraints can be
specified by means of operators of comparison, attributes
of databases, dataflow variables, and constants. This gram-
mar provides the capacity of expressiveness of the BDCs,
since BDCs constitute the formal representation of the
relations between the items of data that form the business
process. The limitations of use of the proposal appear
when the constraints cannot be represented by numerical
relations, data type, or by the operators included in this
proposal, such as, when a relation between two variables
is described by means of a trigonometric function. The
limitation of the data domain and the operations that can
be used are established by the solver employed in the
Constraint Programming Problem, as explained in Section
5.3. Every commercial solver has the capacity to include
the elements of our grammar, thereby making it possible
to cover a significant number of problems.

The use of Constraints enables Integrity Rules, Deriva-
tion Rules, Reaction Rules and Production Rules to be
represented. The rule can be of different types, depending
on the instantiated and known variables. For example, for
the constraint hardwareCostþsoftwareCost¼totalCost:
�
 If hardwareCost, softwareCost and totalCost are known:
The constraint represents an Integrity Business Rule.
�
 If hardwareCost and softwareCost are known: The
constraint represents a Production Business Rule.
�
 If hardwareCost and totalCost are known: The con-
straint represents a Derivation or Reaction Business
Rule, whereby softwareCost can be obtained.
The use of constraints permits the same business compli-
ance rules to be reused, thereby avoiding the necessity of
rewriting these rules in various locations of the process
and for different uses. By using constraints and depending
on the instantiation of the variables, it is possible to
evaluate a tuple of values even when some values remain
uninstantiated (stored in the database or introduced in the
dataflow), which is equivalent to saying that the value of
the variable is null. Hence, it enables the early detection
and determination of errors, before all the values involved
in the constraints are instantiated.

The use of ‘-’ can help us to describe the if…then
form, with the difference that ‘-’ provides more informa-
tion. For example, if A is unknown but B is true, we can
assume that (A ‘-’ B) is correct, since A ‘-’ B is equivalent
to :A3B, and therefore the possible values that satisfy B
can be included in the analysis of correctness before A is
instantiated. However, no deduction can be made on
whether the {if A then B} structure is used.

It is therefore possible to validate BDCs that are not
explicitly represented. For example, if the summation of
hardware cost, software cost and human cost is equal to
the total cost of the project, then the human cost is less
than or equal to 10% of the software cost; and whether the
summation of these three values is smaller than the total
cost, then the human cost has to be less than or equal to
15% of the hardware cost. These BDCs can be expressed
with the constraint: ðhardCostþsoftCostþhumanCost ¼
totalCost4humanCostrhardCostn0:10Þ3ðhardCostþ
softCostþhumanCostototalCost4humanCostrhardCostn
0:15Þ where hardCost[1‥100], softCost[1‥150], humanCost
[1‥100], totalCost[5‥250] for the Float domain.

By using numerical constraints to represent BDCs, it is
possible to infer other business rules, for example:
�
 hardCostrtotalCost, softCostrtotalCost, humanCostr
totalCost,
�
 humanCostrtotalCostn0:10,

�
 if hardCost¼10 then totalCost½12‥161�4human Cost¼ 1.

3. Using business data constraints in business
processes: a motivating example

In order to preserve the high data quality in business
processes, a validation analysis is necessary. It is especially
important in systems where there is a high degree of inter-
changed data, being necessary to maintain aspects such as
soundness, completeness and correctness, according to the
business goals. Through suitable checks, non-compliances due

to poor data quality problems can be detected and deter-
mined. The business processes where the data validation is
more necessary are those that have a high level of human
interaction, since humans can introduce intermittent faults in
the system. The intermittence of the faults makes the detec-
tion and the diagnosis difficult, since an inconsistence
detected while an activity is being executed, does not imply
a malfunction in the activity or that this activity will fail in the
future. Some typical examples where intermittent faults can
be found are (i) Financial applications, where several data are
introduced by hand in application forms; (ii) Medical applica-
tions that use data introduced by different types of medical
staff and places, for example about blood test results, or
Electronic equipments, which produce an important quantity
of data, that can produce loose or corroded wire wrap, cracked
solder joint or broken wire.

In this paper we have used an example of a real
financial economic application to motivate the use of
BDCs. The activities of the company are oriented towards
negotiating collaborative projects between private compa-
nies and research groups as represented in Fig. 1. In the
model, each task controls a state of the projects, where
research groups, public and private companies work
together. First of all, the R&D project is registered in the
application, which including all the research groups,
companies and the percentage of participation in each
case. Depending on the project quality, it can be rejected
or passed to the technical analysis, where the final
quantity assigned to the project is in function of the
external and internal evaluation of it. Derived from the
accepted contract, various modifications can be included
as addenda and contracts. When the project has finished,
independent auditors or a branch auditor can be selected
to evaluate the project. While the auditing is being
executed, the economic justification is carried out. Finally,
Fill in
project

application

Add
research
groups

Add
companies

Request
quantity for

research group

Request
quantity for
companies

Execute
External

Evaluation

Execute
Internal

Evaluation

Issue
Resolution

Estimate
resolution

Register
modifications

Add
Addenda

 Make
final

resolution

Carry out
external
auditing

Carry out
economic
justification

Recover
and

payment

O

Fig. 1. Example of a real
the activities related to the economic department are
done: recover and payment, issue bills, etc.

All these tasks are carried out for a total of 25 employ-
ees belonging to 6 departments, which modify the stored
information for more than 300 projects. Each employee is
responsible for some activities of the process, between 5
and 20 R&D projects, depending on the department that
they belong, and the month of the year. The persistence
layer that supports this business process is formed by a
database with 86 tables, 900 attributes within these tables,
more than 112,200,000 tuples, 224 triggers and 107
integrity constraints. This implies that each employee can
introduce an average of 200 data per project, during the 4
years that a project can take. The high quantity of
introduced information, the number of people involved
in each project, and the long duration of each instance
execution produce a high degree of errors introduced in
the database, which are detected too late. Summarizing, in
these projects, an important work package was the valida-
tion of the input data of the users taking into account 270
Business Data Constraints with 435 variables involved. The
use of BDCs facilitates enormously the consistency of the
data in the information management. To introduce and
maintain all the BDCs is a task for several employees who
are business experts but not information technology
experts, and hence it is necessary to introduce the BDCs
into the system in a straightforward way. The BDCs are not
described in a global way, since each task modifies certain
data from a relational database and it is necessary to
evaluate certain BDCs. Some examples of BDCs for some
activities are presented below:

R

v

bu
Execute application end:

project.idProject¼ idProject//here the dataflow variable idProject
//is used since in each instance only one project is modified

hardwareCost þ softwareCost þ humanCost¼totalCost
Execute
Final

application

Make technical
checking

Approved
Project?

Accept
contract

Add
Addenda

Add
Contracts

Monitoring

Refund

Issue
oyalty
bills

Issue
erhead
bills

Add
auditor

Add
branch

siness process [18].

softwareCostohumanCost
humanCosto2nhardwareCost

Accept contract:
project.idProject¼ idProject
totalCost þ incentivePerYear¼potentialIncentive
4nsoftwareCosto ¼ potentialIncentive

Recover and payment:
project.idProject¼ idProject
incentivePerCompanyþhumanCost4potentialIncentive
incentivePerCompanyZhardwareCostþ incentivePerYear
3nsoftwareCost4 incentivePerCompany
reducedQuantityrmaxReducedQuantity
reducedQuantityZminReducedQuantity
Since for each instance only one project is modified, the
BDC: {project.idProject¼ idProject} could be described as an
invariant of the whole process.

4. Extending the business process model for validation
and diagnosis of business data constraints

In order to validate the BDCs, we are inspired by model-
based diagnosis [12]. Model-based diagnosis consists of an
analysis of the correctness of observations of a system
(Observational Model) with the model of the system.
The model of the business processes that we propose is
formed by:
�
 A Business Process Model [53] formed by a set of
activities, a set of control flow gateways (AND, OR,
XOR) that describes the relationship between the
activities, and a set of Data Objects that flows in the
business process.
�
 A Relational Database whose data are involved in the
business process model.
�
 The BDCs used in the validation of the compliance of
the process that can involve data objects from the
process or from the relational database. The domain
of the variables of the Dataflow is defined by the
designer in the business process model, and the
domain of the stored variables is obtained from the
database model. Each BDC can be associated with one
activity, a set of activities or to the whole business
process.
To perform the model-based validation and diagnosis
of BDCs following the previous definitions, we propose a
framework based on an extension of the classic Process
Process Layer

Presentation
Layer

Application Layer

Fig. 2. Framework for ru
Aware Information System (PAIS) framework [51]. A PAIS
architecture [34] can be viewed as a 4-tier system, where
from top to bottom the layers are Presentation Layer,
Process Layer, Application Layer, and Persistency Layer.
As a fundamental characteristic, PAIS provides the means
to separate process logic from application code. In this
paper, we have used the modification of the PAIS frame-
work presented in [18] that adds a new layer for the
validation of the BDCs (Audit Layer), as is shown in Fig. 2.
This framework also modifies the location of the classic
persistence layer that was originally accessible only from
the Application Layer, and is now also accessible from the
Audit Layer to facilitate database validation. The Audit
layer is used from the Process layer, and depends on the
business state or activity and the dataflow instances at
each moment. To validate the BDCs, the relational model
(Section 4.1) and the database where the BDCs are stored
(Section 4.2) have to be analyzed. The dataflow and
relational database function are the observational model,
and BDCs are the model that must be satisfied.
4.1. Relational database model

Business processes can read and update data from
databases. Therefore, data (the stored representation of
facts in databases) is a fundamental component of informa-
tion technology and business process management [49].

Business data is directly used in business operations
and would be used even in the absence of computerized
systems. The data model and the database are not the
same thing, and the data model cannot simply be derived
from the database by automated reverse engineering
something that is often postulated as a solution where
no data model exists. For instance, the database contains
physical column names, but the BDCs will inevitably need
the names of these columns and dataflow variables. There-
fore, to combine both types of information, the relational
database structure has to be known, and included in the
validation process.

A Relational Database is a collection of predicates over a
finite set of predicate variables described by means of a set
of relations. A relation R is a data structure which consists
of a heading and an unordered set of tuples which share
the same type, where A1, A2, …, An are attributes of the
domains D1, D2, …, Dn. The set {A1:D1, A2:D2, …, An:Dn} is a
Audit Layer

RDB

CSP Solver

Persistence
Layer

n-time auditing [18].

Project
ProjectPer

Year

ProjectPer
Year

&Company

Company

Reduction

Fig. 5. Graph to represent the referential integrity of the relat-
ional model.

M.T. Gómez-López et al. / Information Systems 48 (2015) 26–43 31
relational-schema. A relation R defined over a relational-
schema S is a set of assignments for each attribute for each
domain. Therefore, the relation R is a set of n-tuples:

fA1: d1;A2:d2;…;An: dng where d1AD1;d2AD2;…; dnADn:

Some of the attributes of a relation can be described as
Primary Key Attributes which means that “two tuples of a
relation cannot have the same values for their primary key
attributes”. The relation between two tables is described
by a referential integrity. Two tables can be related by
means of their Primary and Foreign Key Attributes,
described in the literature as the relational model. Refer-
ential integrity is a database concept which ensures that
relationships between tables remain consistent. When one
table has a foreign key to another table, the concept of
referential integrity states that you may not add a record
to the table that contains the foreign key unless there is a
corresponding record added to the linked table.

For the example of Section 3, a fragment of the
relational model is shown in Fig. 3, where the information
from each Project is related to each year in ProjectPerYear.
At the same time, for each project and year, a set of
Companies are involved by means of ProjectPer-
Year&Company. Depending on the Project, Year, and Com-
pany, a type of tax reduction is applied, limited by the
table Reduction. An example of the values of the tuples for
the relational database in a moment of one of the
instances is presented in Fig. 4.
Fig. 3. Relational model

idProject
hard
Cost

soft
Cost

human
Cost

total
Cost

223
224
225
...

2000
2000
1948

...

2250
1000
2000

...

3000
3000
3000

...

null
6000
6948

...

Project

idProject year
incentive
PerYear

potential
Incentive

223
223
224
...

2009
2010
2008

...

1000
5500
1800

...

null
7000
7948

...

ProjectPerYear

idProject year

223
223
223
224

2009
2010
2009
2010

225 2008
... ...

idCompany nam

501
1040

21
...

H&Z
B&C
T&H

...

Compa

Fig. 4. Example of tables of
4.1.1. Representing the referential integrity as a graph
To extract the referential integrity between the tables,

we propose to represent it by means of a graph. This graph
represents all the tables and their relations by means of
primary and foreign key references. To build the graph, the
transformations are (i) for each table in the model, a node
is created on the graph; for each relation between tables, a
directed edge has to be created between the correspond-
ing nodes on the graph, and (iii) the direction of the edge
has to be, from the node of the table with the foreign key
to the node of the table with the primary key. For the
example of Fig. 3, the created graph is shown in Fig. 5.
4.2. Database of business data constraints

When a great deal of compliance rules has to be
handled, the use of a database to store and manage these
for the example.

idCompany
incentivePer

Company
501
501
1040

21

null
null

5000
6800

ProjectPerYear&Company

225 4504
... ...

reduced
Quantity

...

15%
null
12%
8%

11%

e address

5th Av
2th Av
6th Av

...

ny

idReduction

...

1
1

null
3
4

idReduction minReduced
Quantity

1
2
3
...

5%
6%
5%
...

Reduction
maxReduced

Quantity
15%
20%
12%

...

the relational database.

rules is a mandatory decision, especially when not all the
compliance rules are established for the whole business
process, and an indexation between activities and BDCs
has to be defined. However, BDCs cannot be stored in a
classic relational database, since storing a BDC also implies
storing all the details related to its variables, domains, and
data persistence relationships. The difficulty in storing
BDCs is due to the problem of how to store numerical
constraints that are not of a type supported by commercial
databases. To manage Constraints, we propose the use of
Constraint Database Management Systems (CDBMS) as
explained in [27]. That proposal is based on an envelope
over a database management system to manage Con-
straints as a classic type. This solution shields the user
from unnecessary details on how the BDCs are stored and
queried, how the three auxiliary tables (Constraints, Vari-
ables and Constraints/Variables) relate each constraint with
its variables (Fig. 6). The table Variables stores the names of
the variables, their identification and their type (Integer,
Natural, or Float). In this paper, we enlarge the Constraint
Database proposed in [27] to also include BDCs, where two
new fields have been included in the table Variables
(Table and Field) to keep the relation between metadata
and the persistence data layer. This design enables the
persistence layer design to be changed by only modifying
the value in this table. These tables (Fig. 6) make it
unnecessary to study all the constraints, when only the
constraints with a set of variables need to be analyzed, for
example to ascertain the BDCs related to the variable
incentivePerYear, thereby reducing the evaluation time, as
studied in [28].

Once how to store the BDCs is known, the next
question is how each BDC is related to each activity.
Fig. 7 represents the relations necessary to describe that
a Process possesses a set of Dataflow variables, available for
the Activity that formed this set. Each BusinessDataCon-
straint can be associated with a set of activities or to the
whole process, while each Activity can have different
associated BDCs. These associations are established in the
table Activity/BDC.
Constraints
 (pk)idConstraint: int
 constraint: Object
 label: String

1..n

 1..1

Business Data
Constraints

 (pk)idBDC: int
1..1

 1..1

Fig. 6. Tables to store busines

Activity

 (pk) idBR: int
 (pk) idActivity

Business Data Constraint

 (pk) idBDC: int
0..n

 1..1

Business Pr

 (pk) IdProcess:
 name: String
 bpmn2.0: XML
 RDB: connectio0..n

 0..1

Fig. 7. Tables to relate
5. Steps for the validation and diagnosis of business data
constraints

Once all the parts that describe a business process
model have been described, the validation and diagnosis
process can be executed for each instance. As mentioned
earlier, model-based validation can be performed in var-
ious activities to detect any inconsistency as early as
possible. Therefore, during the execution of an instance,
when an activity implies model-based validation, the
model and the observational model have to be obtained.
Hence, for each instance when an activity is audited, the
following steps (depicted in Fig. 8) must be executed:
1.
Co
 (pk
 (pk
 ra
 ra

s da

/BD

: in

oce

 int

n d

BDC
Obtain the BDCs related to the activity where the
validation is being executed. This is a simple and
efficient task thanks to the use of Constraint Databases
as was explained in Section 4.2.
2.
 By using the obtained BDCs, the instance of dataflow
variables, and the referential integrity graph, the tuples
that represent the observational model are obtained, as
detailed in Sections 5.1 and 5.2.
3.
 Instantiate the process model with the observational
model, to discover the compliance of the BDCs. Since
our proposal is based on representing the BDCs through
numerical constraint, the evaluation of the compliance
will be carried out by means of Constraint Satisfaction
Problems (Sections 5.3 and 5.4).

5.1. Obtaining the observational model

In order to ascertain the tables and the tuples involved
in the validation, we follow some of the ideas analyzed in
[35], which are based on the referential integrity between
tables. Before going into detail, it is necessary to explain
and formalize why and how data stored in different tables
is related in the validation and diagnosis process. These
relations are derived from how the functional dependency
is described by means of primary and foreign keys, keep-
ing the relation between the tables.
nstraints/Variables
)idConstraint: int
)idVariable: int
nge_Inf: number
nge_Sup: number

Variables
 (pk)idVariable: int
 name: String
 type: String
 table: String
 field: String

1..1

 1..n

ta constraints [17].

Activity

 (pk) idActivity: int
 name: String

C

t

1..1

 0..n

ss

etails

DataFlowVar
 (pk) idVariable: int
 name: String
 type: String

1..1 0..n

1..1

 1..n

s and activities.

Data Flow
Business Data

Constraint
Database

Business Data
Constraints

Joined
Table

1

2

3...

Graph

CSPs

Fig. 8. Steps to validate the business data constraints.
Definition 1 (Functional dependency). A set of variables Y
functionally depends on another set of variables X, repre-
sented by X-Y , if, for a known and single value of X, there
is also a known and single value of Y. In our example, for
an IdProject value, only a single value of hardwareCost is
possible, and hence idProject - hardwareCost.

Definition 2 (Functional dependency graph). This is a
graph that represents the semantic context observed for a
problem, where the nodes are the attributes of the relations
and the edges represent the functional dependency.

In order to prevent any potential anomalies in rela-
tional models (such as manipulation, inserting, updating
and deleting), the various Normal Forms proposed by Codd
[11] present a way to divide the many attributes of the
functional dependency graph into a number of tables,
although they remain functionally and semantically con-
nected. This functional dependency is maintained by
means of the referential integrity (primary and foreign
keys). Therefore, when attributes of various tables are
involved in a BDC, this functional dependency has to be
recovered.

The intensive representation of a relation R is the triple:

〈fA1;…;Ang; PK¼ fpk1;…;pkig; FK¼ ffk1ðRkÞ;…; fkjðRmÞg〉

where {A1, …, An} are the attributes of R, fpk1;…;pkigD
fA1;…;Ang are the primary keys, and ffk1ðRkÞ;…;

fkjðRmÞgDfA1;…;Ang are the foreign keys, and where Rk,
…, Rm are relations that have referential integrity with the
relation R.

If t1 and t2 are the extensive representations of the
relations R1 and R2 respectively, and

t1 ¼ fa1;…; ai;…; angwhere ai ¼ fkðR2Þ and t2 ¼ fa01;…;

a0i;…; a0ngwhere a01 ¼ pk
Then t1 and t2 are semantically and functionally related,

and could be in the same relation. To join these related
attributes in a single tuple, the following operation can be
used:

t1⋈t1:fk ¼ t2:pkt2 which for the example becomes t1⋈t1:ai ¼

t2:a01 t2
The join operation (⋈) obtains a new relation where the
tuples of t1 are concatenated horizontally with the tuples
of t2 whose primary key is equal to the foreign key of t1.

Therefore, two items of data in different tables can be
related by means of a functional dependency, which can be
recovered if they are involved in the same BDC. Therefore,
the steps to obtain the observational model are:
1.
 Obtain the independent-variable clusters. To reduce the
complexity of the diagnosis process, we propose to
determine the clusters of sets of BDCs with indepen-
dent variables between them, and hence only the data
involved with the BDCs in each moment is obtained.
An independent-variable cluster is a set of BDCs
whose variables are not involved directly or indirectly
in another independent-variable cluster, formally
expressed as:
Definition: Cluster of BDCs with Independent Variables. Let
BC represent all the BDCs of a process, let B be a set of
BDCs where BDBC, and let V(B) be the set of variables
involved in B, then B is a Cluster of BDCs with Indepen-
dent Variables iff VðBÞ \ VðBC �BÞ ¼∅, and B is
minimal, which implies that ∄=B0 � BjB0 is a Cluster of
BDCs with Independent Variables. The following steps
will be executed for each independent-variable cluster in
an independent way, since the data remains unrelated
between each cluster. In our example: {incentive
PerCompanyþhumanCost4potentialIncentive;
incentivePerCompanyZhardwareCostþ incentive
PerYear; 3nsoftwareCost4 incentivePerCompany} and
{reducedQuantityrmaxReducedQuantity; reduced
QuantityZ minReducedQuantity}.
2.
 Obtain the tables that contain any of the attributes
involved in the BDCs. These tables are the objective of
our validation and diagnosis process, since their attri-
butes have the observational model. For example, for
the BDC fsoftwareCost4 incentivePerCompanyg,
softwareCost and incentivePerCompany belong to the
tables ProjectPerYear&Company and Project.
3.
 Obtain all the related tables. Sometimes, the tables
obtained in the previous step are not the only tables
involved in the process. In the previous example, since

the tables (Project and ProjectPerYear&Company) have
no primary–foreign direct relation, it is necessary to
determine the relation, in this case by means of the
Table ProjectPerYear. Therefore, tables not involved in
the BDCs sometimes appear in the validation process.
With the tables obtained in the second step and by
using the referential integrity graph, it is necessary to
find the minimum spanning tree to include all the
tables involved. For the example of the tables in Fig. 3,
the minimum spanning trees for each independent-
variable cluster are shown in Fig. 9.
4.
 Build a relation with the involved data. Once the
minimum spanning trees are known, an expression
for each tree is built to obtain all the necessary data
stored for the BDCs validation. Each expression is a
query which performs a join operation for all the
tables involved, by following the relations in the
calculated minimum spanning tree, thereby recover-
ing all the fields from those tables. The form of the
expression represented by relational algebra is:
Let t1, …, tn be the tables included in the minimum spanning tree
Let BDCs_Dataflow be the BDCs where dataflow variables are

involved
Join_Table ¼ σBDCs� Dataflowð…⋈ðti⋈ti:fk ¼ tj:pktjÞ⋈…Þ

where all the tables in {t1, …, tn} participate in the join
conjunction (step 3), and the relation ti ⋈ti:fk ¼ tj:pk tj exists if
there is an edge from tj to ti in the graph. The selection
operator (σ) is included to obtain only the tuples involved
in this instantiation, which implies the selection in terms
of the instance values of the dataflow variables. This
selection is feasible since it remains unnecessary to vali-
date the correctness of any data that is not being modified
in the instance, thereby reducing the computational cost.
For one of the clusters of the BDCs of the activity “Recover
and payment” in Section 3, and for the value of the
dataflow variable idProject equal to 223, the expression
would be σproject:idProject ¼ 223 ((ProjectPerYear&Company ⋈…
Project ProjectPer
Year

ProjectPe
Year

&Compan

{incentivePerCompany+humanCost > potentialIncentive
incentivePerCompany >= hardwareCost+incentivePerYea

3*softwareCost > incentivePerCompany}

Fig. 9. Graph to represent the referentia

idProject year idCompany

223
223
223

2009
2010
2009

501
501
1040

Joined T
hard
Cost

soft
Cost

huma
Cos

2000 2250 3000
2000
2000

2250
2250

3000
3000

Fig. 10. Relation with the tuples involved
projectPerYear) ⋈… Project), where all the join relations
are in terms of the primary and foreign keys.

The relational algebra expression can be easily trans-
formed into an SQL sentence, which could be evaluated
for any relational database. For the example of the tables
in Fig. 4, the result of this query is shown in Fig. 10. Each
tuple represents an observational model that will be
evaluated to ascertain the correctness of each BDC. At
this point, additional consideration is required related to
the various null values that appear. If we analyze the
relation depicted in Fig. 10, where the non-instantiated
values are represented with the value null, the values of
the tuples can be related although they represent differ-
ent observational models. For example, in the column
called potentialIncentive, there are two null values, but in
fact they represent the same value from the attribute
potentialIncentive from the Table projectPerYear, for the
primary keys {idProject: 223; year: 2009}. On the other
hand, the two null values for the attribute incentivePer-
Company represent different values since both come from
the attribute incentivePerCompany of the Table projectPer-
YearCompany, but with different primary keys, {idProject:
223; year: 2009; idCompany: 501} and {idProject: 223;
year: 2010; idCompany: 501} respectively. Therefore, the
problem of extending the functional dependency remains
for a later analysis of the possible values of null attributes,
since it is unknown whether the values of the different
tuples come from the same field. For this reason, it is
necessary to “maintain” the relation before and after the
tuples are joined to validate the correctness of BDCs. We
propose the creation of a set of temporal tables where the
name of the attributes concatenated to a sequence
identifier are included as labels to the relations, thereby
obtaining tables such as that shown in Fig. 11 for the table
projectPerYear&Company in this example. The join rela-
tion that will be obtained is shown in Fig. 12, where the
several values of null can be differentiated since they are
associated with a label.
r

y

ProjectPer
Year

&Company
Reduction

;
r; {reducedQuantity <= maxReducedQuantity;

reducedQuantity >= minReducedQuantity}

l integrity of the relational model.

incentive
PerCompany

null
null

5000

able
n
t

total
Cost
7250

incentive
PerYear

1000
5500
1000

potential
Incentive
null
7000
null

7250
7250

in terms of the referential integrity.

idProject year idCompany incentivePerCompany
223
223
223
224

2009
2010
2009
2010

501
501
1040

21

null
null

5000
6800

NamedProjectPerCompany

225 2008 225 4504
...

reducedQuantity

...

15%
null

12%
8%

11%

nameReducedQuantity

...

“ReducedQuantity1”

namesIncPerCompany

“IncPerCompany1”

...

“IncPerCompany2”
“IncPerCompany3”
“IncPerCompany4”
“IncPerCompany5”

“ReducedQuantity2”
“ReducedQuantity3”
“ReducedQuantity4”
“ReducedQuantity5”

Fig. 11. Table ProjectPerYearCompany with labels.

idProject year idCompany
incentive

PerCompany
223
223
223

2009
2010
2009

501
501

1040

null
null
5000

Joined Table with Names

...
name

totalCost
...

potential
Incentive
null

7000
null

...
...

total
Cost
7250
7250
7250

“totalCost1"
“totalCost1"

...

...

...

name
PotlIncetive
“PotIncentive1"

“PotIncentive1"
“PotIncentive2"

name
IncPerCompany

“IncPerCompany1”
“IncPerCompany2”
“IncPerCompany3”

...

...

...
...

“totalCost1"

...

Fig. 12. Joined relation with labelled tuples.

idProject year idCompany

223
223
223

2009
2010
2009

501
501

1040

Left Joined Table with Names

...

minReduced
Quantity

5%
5%
null

15%
15%
null

name
minRedQ

name
maxRedQ

“minR1"
“minR2"
“minR3"

“maxR1"
“maxR2"
“maxR3"

maxReduced
Quantity

reduced
Quantity

15%
null
12%

nameReducedQuantity

“ReducedQuantity1”
“ReducedQuantity2”
“ReducedQuantity3”

Fig. 13. Relation with labelled tuples involved in terms of the referential integrity.
5.2. Obtaining the observational model with null
foreign keys

There is another problem derived from the case where
any attribute is null. It is when a foreign key attribute is null.
The referential integrity assures that if a foreign key has a
value, it has to be one of the possible primary keys of the
table referenced, but it is possible that the value is null. In
this case, the values concatenated with the tuple to obtain
the new relation should be null, since they are unknown at
this moment of the evaluation. Then, to concatenate the
tuples with null foreign keys with a null tuple, we propose a
modification of the previous sentence using left join opera-
tor (�⋈) instead of join operator. R �⋈R:fk ¼ S:pk S returns a
new relation with all the tuples of R concatenated horizon-
tally with the tuple of S with which primary keys are equal
to the foreign keys of a tuple in R, or concatenated with a
full null tuple if the foreign key is null.
Let t1, …, tn be the tables included in the minimum spanning tree
Let BDCs_Dataflow be the BDCs where dataflow variables are

involved
Join_Table ¼ σBDCs� Dataflowð…�⋈ðti�⋈tj:fk ¼ ti:pktjÞ�⋈…Þ

For example, we could consider the tuple of table Project-
PerYear&Company, where the attribute idReduction is null in
the tuple whose primary keys are {idProject: 223; year: 2009;
idCompany: 1040} (Fig. 4), and the obtained tuples would
therefore be those shown in Fig. 13 by the sentence:

σproject:idProject ¼ 223ððProjectPerYear&Company�⋈ProjectPerYearÞ

�⋈ProjectÞ
where all the join relations are in terms of the primary and
foreign keys.

Once the involved data and BDCs are known, the
question becomes how they can be combined to discover
the unsatisfiable BDCs. We propose the use of Constraint
Programming, since the definition of BDCs is very close to
the definition of the logic and arithmetic constraint and, as
mentioned earlier, it would be possible to analyze the
possible values of the unknown variables (null variables)
that appear in different BDCs. In the following section, the
concepts necessary for the understanding of Constraint
Programming paradigm are introduced.

5.3. Automating the run-time validation and diagnosis
of BDCs in business processes

In order to ascertain whether the BDCs represented by
Numerical Constraints are satisfied by the data related to
the instance, we propose the use of Constraint Satisfaction
Problems (CSPs). The CSPs represent a reasoning metho-
dology consisting of the representation of a problem by
means of variables, domains and constraints. Formally, it is
defined as a triple 〈X;D;C〉 where X ¼ fx1; x2;…; xng is a
finite set of variables, D¼ fdðx1Þ; ðx2Þ;…; dðxnÞg is a set of
domains of the values of the variables, and C ¼ fC1;

C2;…;Cmg is a set of constraints. A constraint Ci ¼ ðVi;RiÞ
specifies the possible values of the variables in V that
simultaneously satisfy R. To solve a CSP, a combination of
search and consistency techniques is commonly used [14].
The consistency techniques remove inconsistent values
from the domains of the variables during or before
the search. Several local consistency and optimization

techniques have been proposed as ways of improving the
efficiency of search algorithms.

For a model-based validation process, we could model a
CSP where:
�
 X is formed by all the null variables of the join table and
by the dataflow variables that are not instantiated.
�
 D is defined for each variable depending on the type of
the attributes for relational data, and the type of the
dataflow variables.
�
 C is the set of BDCs involved with the activity that is
evaluated in each instance whose relation is described
in the table Activity/BDC (Fig. 7).
If there is a tuple of values for the variables X in the
domain D, where all the BDCs of C are satisfiable, then the
CSP solver will return a tuple with the possible values of X,
and we can infer that the BDCs are satisfiable in this
activity. The problem arises when there is no tuple of
values for which the set C is satisfiable, and hence we
would have no information about the possible BDCs that
could be failing, only that the BDCs are unsatisfiable for the
data involved in the instance. We propose determining the
non-compliance subset of the BDCs by maximizing the
number of BDCs that are satisfiable, since it is possible that
not all the BDCs are satisfiable for one instance. In order to
understand how we can model the CSP to determine this
subset, two notions have to be introduced: Reified Con-
straints and Constraint Optimization Problems.

A reified constraint consists of a constraint associated
with a Boolean variable which denotes its truth value. We
will associate a Boolean variable to each BDC, for example
fBoolean ci ¼ ðreducedQuantityrmaxReducedQuantityÞg.

This way of modelling the problems enables the vari-
able ci and {reducedQuantityrmaxReducedQuantity}
to be unsatisfiable (false), and therefore the constraint
{ci ¼ ðreducedQuantityrmaxReducedQuantityÞ} will be
satisfiable (be true). However, the objective is to maximize
the number of ci variables that are true, and therefore an
objective function is necessary. When an objective function
f has to be optimized (maximized or minimized), then a
Constraint Optimization Problem (COP) is used, which is a
CSP with an objective function f. The maximal Constraint
Satisfaction Problem (Max-CSP) consists of determining a
total assignment which satisfies the maximum number of
constraints. Max-CSP is an NP-hard problem and is gener-
ally more difficult to solve than the CSP problem. The basic
method for solving this problem was designed by Freuder
and Wallace [50]. Max-CSPs have already been used in
model-based diagnosis [7], whereby alternative algorithms
have also been proposed to improve the algorithmic deter-
mination of all minimal unsatisfiable subsets which use
notions of independence of constraints and incremental
constraint solvers [13] and structural analysis [16].

By using the constraint programming paradigm, it is
unnecessary to wait until all the variables are instantiated
to determine whether the BDCs are satisfied or not. We
have also decided to use constraint programming since its
advantages include: It is a very mature area that has been
applied to very different problems related to optimization,
and with high level of complexity; it uses propagation
techniques to reduce the search space in an efficient way;
there are numerous tools and algorithms to model and
solve problems; it permits an easy definition of the BDCs
using a wide range of constraints, such as implication
constraints, disjunctive constraints, reified constraints,
global constraints, and channelling constraints.
5.4. Improving the validation and diagnosis of the BDCs
using clusters

Once the business process model, BDCs, dataflow vari-
ables, and the tuples of the stored data are known, the
next question becomes how to combine all this informa-
tion to determine the maximum set of BDCs that are
satisfied. Since there are variables shared between the
various tuples, and there are also different BDCs that
involve the same variables, it is necessary to include in
the same Max-CSP all the BDCs related by means of the
variables in the database. Thereby the BDCs and variables
will be involved in the same search for solutions. It would
be possible to include all the BDCs and tuples in the same
CSP, but it is desirable to create the Max-CSPs only
with the variables and the related BDCs between them,
to reduce the search area. This implies using the
independent-variable clusters explained above. As we
have mentioned, there are two independent-variable clus-
ters in our example: fincentivePerCompanyþhuman
Cost4potentialIncentive; incentivePerCompanyZ
hardwareCostþ incentivePerYear;3nsoftwareCost4
incentivePerCompanyg and freducedQuantityrmax
ReducedQuantity; reducedQuantityZminReduced
Quantityg.

The breakdown of the problem into smaller ones,
drastically reduces the number of possible combinations
of BDCs in the determination of the minimum satisfiable
BDCs. The worst case of combinations for n BDCs becomes
2n, but if we determine the independent-variable clusters,
the complexity of the combination is 2m1 þ2m2 þ⋯þ2mk ,
where m1þm2þ⋯þmk ¼ n and 2m1 þ2m2 þ⋯þ2mk≪2n.
For the previous example, this will be: 23þ22o25.

Since each independent-variable cluster has no relation
with the remaining clusters, an independent Max-CSP can
be created and solved for each cluster. Each Max-CSP for
any variable-independent cluster has the form:
type NullVar1, …, NullVarn// the type depends on the attribute type
Boolean BDCs11, …, BDCs1n
⋮
Boolean BDCsm 1, …, BDCsmn

Integer varMaximize
BDCs11¼(Business_Rule1 instantiated with the values of the tuple

1)
⋮
BDCs1n¼(Business_Rule1 instantiated with the values of the tuple

n)
⋮
BDCsm 1¼(Business_Rulem instantiated with the values of the tuple

1)
⋮
BDCsmn¼(Business_Rulem instantiated with the values of the tuple

n)
varMaximize¼ BDCs11þ⋯þBDCs1nþ⋯þBDCsm1þ⋯þBDCsmn

maximize(varMaximize)

If any foreign key of the join table is null, then for each
BDCij that has a relation with the attributes of a table that
is not related, a constraint with the following form will be
included:

ðname_variable1 ¼ value1;14…4name_variablen
¼ value1;nÞ3…3ðname_variable1
¼ valuem;14…4name_variablen
¼ valuem;nÞ

where n is the number of attributes of the table referenced
by means of referential integrity (Foreign and Primary
keys) with a null value for the foreign key attribute, and
where m is the number of tuples of the table referenced by
means of referential integrity.

The Max-CSP created for the cluster fincentive
PerCompanyþhumanCost4potentialIncentive; incentive
PerCompanyZhardwareCostþ incentivePerYear;3 nsoft
wareCost4 incentivePerCompanyg presented above, with
the data presented in Fig. 12 is:

Float potIncentive1, incPerCompany1, incPerCompany2
Boolean BDC11, BDC12, BDC13

Boolean BDC21, BDC22, BDC23

Boolean BDC31, BDC32, BDC33

Integer varMaximize
//incentivePerCompanyþhumanCost4potentialIncentive
BDC11 ¼ ðIncPerCompany1þ30004potIncentive1ðÞ
BDC12 ¼ ðIncPerCompany2þ300047000Þ
BDC13 ¼ ð5000þ30004potIncentive1Þ
// incentivePerCompanyZhardCostþ incentivePerYear
BDC21 ¼ ðIncPerCompany1Z2000þ1000Þ
BDC22 ¼ ðIncPerCompany2Z2000þ5500Þ
BDC23 ¼ ð5000Z2000þ1000Þ
//3nsoftCost4 incentivePerCompany
BDC31 ¼ ð3n22504 IncPerCompany1Þ
BDC32 ¼ ð3n22504 IncPerCompany2Þ
BDC33 ¼ ð3n225045000Þ
varMaximize¼BDC11þ BDC12 þ BDC13 þ BDC21

þ BDC22 þ BDC23 þ BDC31 þ BDC32 þ BDC33;
maximize(varMaximize)
Model-based diagnosis is based on the parsimony
principle [41]. It states that among competing hypotheses,
the one with the fewest assumptions should be selected.
For this reason we use Max-CSP which determines the
minimum set of BDCs that cannot be satisfied. For the
example, the Max-CSP finds that the minimum set of
unsatisfied BDCs is {BDC22}. The obtained BDCs from
the Max-CSP involve a set of data, for the example if
{BDC22} is incorrect, it does not mean that the constraint
incentivePerCompanyrhardCostþincentive PerYear

was incorrect, it means that some data related in the rule
are incorrect producing an inconsistence in {BDC22}.

It is also worth showing the Max-CSP created for the
cluster freducedQuantityrmaxReducedQuantity; reduced
QuantityZmixReducedQuantityg with the data presented
in Fig. 13, since it includes foreign keys with null values:
Float reducedQuantity2, reducedQuantity3, minReducedQuantity3,
maxReducedQuantity3
Boolean BDC41, BDC42, BDC43

Boolean BDC51, BDC52, BDC53

Integer varMaximize
//reducedQuantityZminReducedQuantity
BDC41 ¼ ð15Z5Þ
BDC42 ¼ ðreduceQuantity2Z5Þ
BDC43 ¼ ðreduceQuantity4ZminReducedQuantity4Þ
//reducedQuantityrmaxReducedQuantity
BDC51 ¼ ð15r5Þ
BDC52 ¼ ðreduceQuantity2r15Þ
BDC53 ¼ ðreduceQuantity3rmaxReducedQuantity3Þ
(ðminReducedQuantity3¼ 54maxReducedQuantity3¼ 15Þ3
ðminReducedQuantity3¼ 64maxReducedQuantity3¼ 20Þ3
ðminReducedQuantity3¼ 54maxReducedQuantity3¼ 12Þ3…)
varMaximize¼BDC41 þ BDC42 þ BDC43 þ BDC51 þ BDC52 þ

BDC53;
maximize(varMaximize)

The constraint fðminReducedQuantity 4¼ 64max
Reduced Quantity4¼ 20Þ 3ðminReducedQuantity 4¼ 54
maxReducedQuantity4¼ 12Þ3…g is not included in the
maximization objective since it is not a Business Data
Constraint itself that can be correct or incorrect. It is a
constraint derived from the referential integrity used to
restrict the possible values.
5.5. Evaluation complexity of Max-CSPs

Since the evaluation of the BDCs has been mapped onto
a CSP, the validation time of the BDCs is linked to the
complexity of the resolution of the CSP. This has been
analyzed in great depth over recent decades [9], and
depends on two parameters: the width of the graph and
the order parameter. On one hand, the width of the graph
represents the relation between the constraints, where the
tractability in CSPs is due to the structure of the constraint
network, where the tree-structured CSPs have poly-
nomial complexity (linear with respect to the number of
variables, and quadratic with respect to the cardinal of the
domain of the variables). On the other hand, the order
parameter, defined as the ratio of the number of forbidden
tuples to the total number of possible combinations,
determines the partition of the problems space into
under-constrained, over-constrained and just-constrained
problems. In the first two cases, the problems are scalable,
but in just-constrained problems, a significant increase of
solving cost could occur and the scalability would not be
possible [61].

For these reasons, no affirmation about the efficiency or
scalability in a generic way can be given by our proposal,
since our framework permits any type or number of BDCs
defined with numerical variables, and therefore the eva-
luation time will depend on the specific problem. Depend-
ing on the number of BDCs associated with each activity
and the number of tuples, the Max-CSP will have more or
less reified constraints and variables. The number of reified
constraints, and therefore the number of variables that
influence the variable to maximize is the number of BDCs of
each independent-variable cluster multiplied by the number
of tuples. However, whenever there is an incorrect BDC, the
CSP created to validate the BDCs is over-constrained, and
therefore is easy to solve.

In order to reduce the complexity and allowed the
scalability of the problems, we propose:
�
 Include the detection of clusters to break the problem
into smaller problems. Although there exist search
strategies in the literature to find the clusters to

Fig. 14. Creating connector. Assignation of the connector the activity where the validation process is executed.
improve the CSP resolution [59,60], to the best of our
knowledge they are not included in commercial tools,
such as in Choco [38]. In addition, independent resolu-
tion of the clusters also helps to present the result of
the validation. For example, if there are two clusters
whose Max-CSPs determine that, for cluster 1, the
BDCs that can fail are (BDC13BDC2 3BDC3), and, for
cluster 2, the possible incorrect BDCs are (BDC63BDC7

3BDC8). If the BDCs of both clusters are included in the
same Max-CSP, then the shown possibilities will be
ðBDC14BDC6Þ3 ðBDC14BDC7Þ3 ðBDC14BDC8Þ3…3
ðBDC34BDC6Þ3 ðBDC34BDC7Þ3 ðBDC34BDC8Þ.
By implementing this cluster detection into our pro-
cess, we enable the complexity to be drastically
reduced, since the analysis of possible combinations is
avoided, and the solution of the validation is more
understandable than if all the possibilities were
presented.
�
 Extract only the data involved in the instance from the
relational database, thereby building simpler problems
that are easier to solve. If it is only the data related to
the instance (with the primary key idProject for the
example) that can be modified, then they are the only
data that participate in the validation process.
�
 Enable outsourcing of the validation process, since
audit and business process layers can be executed in
separate machines, as is recommended in rule evalua-
tors, such as IBM in Drools [39].
6. Computational application for validation
and diagnosis of BDCs

In order to make our proposal easy to utilize, two
aspects must be considered: (1) ease of use for the process
designer that has to model the business process and the
BDCs, and (2) ease of adaptation for a process that already
exists. In order to integrate our proposal into different
types of applications and problems, we have implemented
the audit layer engine in an independent application with
an interface that can be used from any activity of any
business process. Commercial tools permit a friendly
interface to aid in the design of the business process
model, but they lack the capacity to include data from
the persistent layer and to evaluate the data even when
some values remain uninstantiated. For this reason, we
propose the implementation of the described framework
by using a commercial tool where the module to create the
BDCs, and the validation and diagnosis of data are
included. To facilitate the creation of BDCs and the valida-
tion of the process, we have implemented an application
and connectors that complement the framework pre-
sented in Section 4 with a set of technologies that could
be replaced by other technologies. In order to show the
steps for the configuration and use of our application, a
video is available on http://www.lsi.us.es/quivir/mayte/
validation.html. The steps for the design and execution of
the validation and diagnosis process include:

http://www.lsi.us.es/quivir/mayte/validation.html
http://www.lsi.us.es/quivir/mayte/validation.html

Fig. 15. Creating connector. Defining the dataflow variables that are involved in each validation.
1.
 Modelling the business process. The process can be
modelled in any Business Process Management System,
such as IntalioTM, ActivitiTM, and Bonita Open Solu-
tionTM. We have used Bonita Open SolutionTM since it
is an open-code application with a free distribution,
commonly used in the private company sector.
2.
 Locating the validations points. Once the process is
modelled, the designer must decide for which activities
validation is desirable. If an activity participates in the
BDCs validation, a connector must link the activity with
the program that executes the validation. We have
implemented a connector (Fig. 14), where the valida-
tion process can be executed at various instants of the
execution. The connector, called “Business Data Process
Validation”, sends the dataflow values in run-time to
the software that executes the steps explained in
Section 5. Fig. 15 represents the part of the connector
where the designer needs to define the dataflow
variables involved in the activity. Once the minimal
unsatisfiable set of BDCs is known, the connector
returns the information about each variable to inform
the user (Fig. 16).
3.
 Creating the BDCs. Once the process model is defined, it
is necessary to create the BDCs and associated them to
each activity. In order to store the BDCs and the rela-
tion between activities and BDCs, a CDB is used. The
validation and diagnosis of the process uses the data-
flow values obtained in run-time and the data obtained
from the relational database, which is also included in
this application. To this end, the implemented applica-
tion facilitates the creation of BDCs for a relational
model, since the application is configured with the
information about the relational database and the XML
of the process. When the XML of a process is analyzed,
the tables Business Process, Activities and DataflowVar
shown in Fig. 7 are automatically filled, since the XML
of the process holds all this information. It is then
possible to create and/or assign BDCs to the various
activities. To provide a simple way for the business
expert to add BDCs, the interface (shown in Fig. 17)
permits many views of the relational database (UML,
Relational Database or a textual description). These
views help the designer to know the information stored
in the tables of the relational database and the relation
between them. Also it is possible to assign created BDCs
to an activity (Fig. 18).
4.
 Instantiating the Business Process Model. Once all the
parts of the process model have been defined, the
execution process can be performed. When an instance
arrives at an activity with a Business Data Process
connector, the dataflow values of the instance and the
identifier of the activity are sent to the software that

Fig. 16. Creating connector. Assignation of the diagnosis output (the minimal of unsatisfiable BDCs).

Fig. 17. Application to create a business data constraint.
implements the algorithm as explained in Section 5.
This algorithm uses the BDCs related to each activity
and the dataflow values to obtain the involved data
stored in the relational database, and solve the Max-
CSPs necessary to ascertain the unsatisfiable BDCs. The
CSP solver used in our proposal is Choco [38].

7. Related works

Business Compliance rules can help to complete the
process model information, since they can be used to
validate business data. The importance of compliance data
validation has been the focus of attention of numerous
approaches, that can be classified into two types: a model-
design analysis (compliance by design), and in a runtime
analysis (runtime compliance check).

Compliance by design permits the analysis of dataflow
to detect possible errors in design time, as in [46,45]. This
analysis can be activity-centric, or artifact oriented. In the
case of activity-centric orientation, a data-flow modeling
approach tends to verify the data-flow in workflow sys-
tems. A variety of mechanisms have been developed to
prevent errors at the structural level (e.g., deadlocks,
livelocks, …) of the business process [47], even determin-
ing the degree of compliance [30], but they also have to
comply with business level rules and policies. In [5], the
activities are attributed with pre- and post-conditions that
describe the data behaviour to verify the correctness of the
model at design time. Artifact-centric orientation has been

Fig. 18. Application to assign a business data constraint to an activity.
used to support consistent specifications [55], and some
authors also include a set of operations that can be done
for data: Initialize, Approve, Update, Read, Verify, Delete,
that produce a set of anomalies: missing data, redundant
data, conflict data. In [6], the authors describe a model-
driven procedure to automatically transform an activity-
centric model into a data-centric model of a BP that solves
the limitations of other proposals: it deals with data
anomalies in the original BP model that does not include
information about the activities of the BP that are executed
in the state transitions of the data object [24]. In the
artifact-centric proposals, the authors are concerned about
how the real data changes [26], and/or who changes it, but
not about the values of the modified data for the behaviour
described by compliance data. The main difference with
our proposal is that other authors are unconcerned about
the data values, only when they are read or modified.

A runtime compliance check permits the analysis of the
instances of the business processes at runtime, and is com-
plementary to compliance by design analysis. The solutions
must enable frameworks to monitor of the systems to detect
any non-compliance as soon as possible [57,18,29]. It can also
be activity-centric oriented, or artifact-centric oriented. Most
of the proposals are activity-centric oriented, and they analyze
the compliance of the process model structure [43,31,10,58]
or are related to model checking [25,1]. Related to how to
model data-aware compliance rules, studies such as
[25,52,32,3], have defined graphical notations to represent
the relationship between data and compliance rules by means
of data conditions. In [33], “semantic constraints” and the
SeaFlows framework for enabling integrated compliance sup-
port are proposed. An approach for semantically annotating
activities with preconditions and effects that may refer to data
objects is introduced in [20], and an efficient algorithm for
compliance verification using propagation is also discussed. In
contrast to these approaches, artifact-centric proposals model
the transformation of the data-object to be validated at
instantiation time [42]. For example in [23], a preprocessing
step to enable data-aware compliance checking in an efficient
manner is presented.

Related to how the rules are integrated in a framework
to complement the business process, in [56] there is an in-
depth analysis about the integration of rules and process
modelling and the shortcomings of the existing solutions.
The framework of our work is based on [37], although we
propose a separation of the evaluation into an indepen-
dent layer that checks the compliance rules as a contract
that describes the behaviour of the activities at different
points of the business process instance, by taking into
account the compliance rules evaluated in the future. In
relation to the persistence layer and dataflow, relational
databases have been used in the business process, for
example in [48] which presents a solution where data are
audited and stored on a relational database. However, no
validation of the semantics is performed for this persis-
tence layer and the business rules. In papers such as [2],
the necessity to resolve the fault after detection is identi-
fied, unfortunately the data aspect is not included.

Summarizing, to the best of our knowledge, no solu-
tions exist that validate and diagnose at runtime the data
values of the persistence layer for the BDCs, where BDCs
describe the behaviour of the data during a business
process instance.

8. Conclusions and future work

In this paper, an innovative validation and diagnosis of
BDCs has been presented, where various BDCs are asso-
ciated with different activities in a business process. For an
efficient management of BDCs, we have used Constraint
Databases, Constraint programming and clustering analy-
sis. These decisions have given rise to a framework that

shields the user from unnecessary details on how the BDCs
are stored and validated. An important proposal of this
work is how to extract the tuples involved by analysing the
referential integrity of the relational database and how the
automatic process of BDCs validation and diagnosis is
modelled using Constraint Programming.

There are significant lines of research that can be
analyzed in further depth, such as how can the grammar
be modified to support other types of data (Set, Boolean,
String, etc.); what actions can be taken when an incon-
sistency is determined; how it would be possible to auto-
matically locate the rules in an effective way to improve the
early detection of errors; and how the diagnosis can be
modified to detect possible incorrect values.
Acknowledgement

The authors wish to thank Lesley Burridge for English
comments. This work has been partially funded by the
Junta de Andalucía by means of la Consejería de Innova-
ción, Ciencia y Empresa (P08-TIC-04095) and by the
Ministry of Science and Technology of Spain (TIN2009-
13714) and the European Regional Development Fund
(ERDF/FEDER).

References

[1] A. Awad, G. Decker, M. Weske, Efficient compliance checking using
bpmn-q and temporal logic, in: BPM, 2008, 326–341.

[2] A. Awad, S. Smirnov, M. Weske, Towards resolving compliance viola-
tions in business process models, in: Proceedings of the Second
International Workshop on Governance, Risk and Compliance—Appli-
cations in Information Systems, Amsterdam, The Netherlands, 2009.

[3] A. Awad, M. Weidlich, M. Weske, Visually specifying compliance
rules and explaining their violations for business processes, J. Vis.
Lang. Comput. 22 (1) (2011) 30–55.

[4] J. Becker, C. Ahrendt, A. Coners, B. Wei, A. Winkelmann, Modeling
and analysis of business process compliance, in: M. Nüttgens,
A. Gadatsch, K. Kautz, I. Schirmer, N. Blinn (Eds.), Governance and
Sustainability in Information Systems, vol. 366, IFIP Publications,
Springer, 2011, pp. 259–269.

[5] D. Borrego, R. Eshuis, M.T. Gómez-López, R.M. Gasca, Diagnosing
correctness of semantic workflow models, Data Knowl. Eng. 87
(2013) 167–184.

[6] C. Cabanillas, M. Resinas, A.R. Cortés, A. Awad, Automatic generation of a
data-centered view of business processes, in: CAiSE, 2011, pp. 352–366.

[7] R. Ceballos, R.M. Gasca, C.D. Valle, M. Toro, Max-csp approach for
software diagnosis, in: IBERAMIA, 2002, pp. 172–181.

[8] S. Cetin, N.I. Altintas, R. Solmaz, Business rules segregation for
dynamic process management with an aspect-oriented framework,
in: Proceedings of the 2006 International Conference on Business
Process Management Workshops, BPM'06, Springer-Verlag, Berlin,
Heidelberg, 2006, pp. 193–204.

[9] P. Cheeseman, B. Kanefsky, W.M. Taylor, Where the really hard
problems are, in: Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, vol. 1, IJCAI'91, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1991, pp. 331–337.

[10] F. Chesani, P. Mello, M. Montali, F. Riguzzi, M. Sebastianis, S. Storari,
Checking compliance of execution traces to business rules, in:
Business Process Management Workshops, 2008, pp. 134–145.

[11] E.F. Codd, Relational database: a practical foundation for productiv-
ity, Commun. ACM 25 (2) (1982) 109–117.

[12] M. Cordier, F. Lévy, J. Montmain, L. Travé-massuyés, M. Dumas, M.
Staroswiecki, P. Dague, A comparative analysis of ai and control
theory approaches to model-based diagnosis, in: Fourteenth Eur-
opean Conference on Artificial Intelligence, 2000, pp. 136–140.

[13] M.G. de la Banda, P. J. Stuckey, J. Wazny, Finding all minimal
unsatisfiable subsets, in: PPDP '03: Proceedings of the Fifth ACM
SIGPLAN International conference on Principles and Practice of
Declaritive Programming, ACM Press, 2003, pp. 32–43.
[14] R. Dechter, Constraint Processing. The Morgan Kaufmann Series in
Artificial Intelligence, Morgan Kaufmann, 2003.

[15] M. El Kharbili, S. Stein, I. Markovic, E. Pulvermüller, Towards a
framework for semantic business process compliance management,
in: The Impact of Governance, Risk, and Compliance on Information
Systems (GRCIS), CEURWorkshop Proceedings, vol. 339, Montpellier,
France, 2008 1–15.

[16] R.M. Gasca, C.D. Valle, M.T. Gómez-López, R. Ceballos, NMUS:
structural analysis for improving the derivation of all muses in
overconstrained numeric csps, in: CAEPIA, 2007, pp. 160–169.

[17] M.T. Gómez-López, R.M. Gasca, Fault diagnosis in databases for
business processes, in: Twenty-first International Workshop on
Principles of Diagnosis, 2010, pp. 10–18.

[18] M.T. Gómez-López, R.M. Gasca, Run-time monitoring and auditing
for business processes data using contraints, in: International Work-
shop on Business Process Intelligence, BPI 2010, Springer, 2010,
pp. 15–25.

[19] M.T. Gómez-López, R.M. Gasca, L. Parody, D. Borrego, Constraint-
driven approach to support input data decision-making in business
process management systems, in: Information System Development,
Springer, 2013, pp. 457–469.

[20] G. Governatori, J. Hoffmann, S.W. Sadiq, I. Weber, Detecting regula-
tory compliance for business process models through semantic
annotations, in: Business Process Management Workshops, Lecture
Notes in Business Information Processing, vol. 17, Springer, 2008,
pp. 5–17.

[21] D. Hay, K.A. Healy, J. Hall, C. Bachman, J. Breal, J. Funk, J. Healy,
D. Mcbride, R. Mckee, T. Moriarty, et al., Defining business rules.
what are they really? the business rules group, Business (2000) 4–5.

[22] M.E. Kharbili, A.K.A. de Medeiros, S. Stein, W. van der Aalst. Business
process compliance checking: current state and future challenges,
in: P. Loos, M. Nüttgens, K. Turowski, D. Werth (Eds), MobIS, Lecture
Notes in Informatics, vol. 141, 2008, pp. 107–113.

[23] D. Knuplesch, L.T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam, On
enabling data-aware compliance checking of business process
models, in: ER, 2010, pp. 332–346.

[24] J.M. Küster, K. Ryndina, H. Gall, Generation of business process
models for object life cycle compliance, in: BPM, 2007, pp. 165–181.

[25] Y. Liu, S. Müller, K. Xu, A static compliance-checking framework for
business process models, IBM Syst. J. 46 (2) (2007) 335–362.

[26] N. Lohmann, Compliance by design for artifact-centric business
processes, in: Proceedings of the Ninth International Conference
on Business Process Management, BPM'11, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 99–115.

[27] M.T. Gómez-López, R. Ceballos, R.M. Gasca, C.D. Valle, Developing a
labelled object-relational constraint database architecture for the
projection operator, Data Knowl. Eng. 68 (1) (2009) 146–172.

[28] M.T. Gómez-López, R.M. Gasca, Using constraint programming in
selection operators for constraint databases, Expert Syst. Appl. 41
(15) (2014) 6773–6785.

[29] M.T. Gómez-López, R.M. Gasca, S. Rinderle-Ma, Explaining the
incorrect temporal events during business process monitoring by
means of compliance rules and model-based diagnosis, EDOC Work-
shops 23 (2013) 163–172.

[30] R. Lu, S.W. Sadiq, G. Governatori, Compliance aware business
process design, in: Business Process Management Workshops,
2007, pp. 120–131.

[31] L.T. Ly, S. Rinderle, P. Dadam, Integration and verification of semantic
constraints in adaptive process management systems, Data Knowl.
Eng. 64 (1) (2008) 3–23.

[32] L.T. Ly, S. Rinderle-Ma, P. Dadam, Design and verification of instanti-
able compliance rule graphs in process-aware information systems,
in: CAiSE, 2010, pp. 9–23.

[33] L.T. Ly, S. Rinderle-Ma, K. Göser, P. Dadam, On enabling integrated
process compliance with semantic constraints in process manage-
ment systems, Inf. Syst. Front. (2009) 1–25.

[34] H. Ma, Process-aware information systems: bridging people and
software through process technology: Book reviews, J. Am. Soc. Inf.
Sci. Technol. 58 (3) (2007) 455–456.

[35] M.J. Maher, D. Srivastava, Chasing constrained tuple-generating
dependencies, in: ACM Symposium on Principles of Database
Systems, ACM Press, 1996, pp. 128–138.

[36] D.C. McDermid, Integrated business process management: using
state-based business rules to communicate between disparate
stakeholders, in: Business Process Management, 2003, pp. 58–71.

[37] J. Meng, Achieving dynamic inter-organizational workflow manage-
ment by integrating business processes, e-services, events, and rules
(Ph.D. thesis), Gainesville, FL, USA, 2002 (chair-Su, Stanley Y. and
Chair-Helal, Abdelsalam).

http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref3
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref4
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref4
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref4
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref4
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref4
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref5
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref5
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref5
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref11
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref11
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref21
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref21
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref21
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref25
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref25
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref27
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref28
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref29
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref31
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref33
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref34
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref34
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref34

[38] G. Rochart, N. Jussien, X. Lorca, Choco: a java constraint program-
ming library, Reference Manual. 〈http://www.emn.fr/z-info/choco-
solver/〉.

[39] P. Browne, JBoss Drools Business Rules, Ed. Packt Publishing, 2009.
[40] R.G. Ross, Business Rule Concepts: Getting to the Point of Knowl-

edge, Business Rule Solutions, LLC, 2013.
[41] Y. Peng, J.A. Reggia, Abductive Inference Models for Diagnostic

Problem-Solving, Symbolic computation, Springer-Verlag, 1990.
[42] I. Rychkova, Exploring the alloy operational semantics for case

management process modeling, in: Seventh IEEE International
Conference on Research Challenges in Information Science (RCIS),
Paris, France, 2013, pp. 345–356.

[43] S.W. Sadiq, M.E. Orlowska, W. Sadiq, Specification and validation of
process constraints for flexible workflows, Inf. Syst. 30 (5) (2005)
349–378.

[44] N. Sponsor, Business rules and business processes, Inf. Syst. J. 1 (10)
(2008) 20–24.

[45] S. Sun, L. Zhao, O. Sheng, Data flow modeling and verification in
business process management, in: Americas Conference on Infor-
mation Systems, 2004, pp. 4064–4073.

[46] S.X. Sun, J.L. Zhao, J.F. Nunamaker, O.R.L. Sheng, Formulating the
data-flow perspective for business process management, Inf. Syst.
Res. 17 (4) (2006) 374–391.

[47] N. Trcka, N. Sidorova, Data-flow anti-patterns: discovering data-flow
errors in workflows, in: CAiSE 2009. Lecture Notes in Computer
Science, vol. 5565, Springer, 2009, pp. 425–439.

[48] W. van der Aalst, K. van Hee, J.M. van der Werf, A. Kumar,
M. Verdonk, Conceptual model for online auditing, Decis. Support
Syst. 50 (3) (2011) 636–647.

[49] W. van der Aalst, A.H.M. ter Hofstede, M. Weske, Business process
management: a survey, in: Business Process Management, 2003,
pp. 1–12.

[50] R.J. Wallace, Directed arc consistency preprocessing, in: Constraint
Processing, Selected Papers, Springer-Verlag, London, UK, 1995,
pp. 121–137.
[51] B. Weber, S.W. Sadiq, M. Reichert, Beyond rigidity—dynamic process
lifecycle support, Comput. Sci. R&D 23 (2) (2009) 47–65.

[52] I. Weber, J. Hoffmann, J. Mendling, Semantic business process
validation, in: SBPM'08: Third International Workshop on Semantic
Business Process Management at ESWC'08, 2008.

[53] M. Weske, Business Process Management: Concepts, Languages,
Architectures, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

[54] R. Wörzberger, T. Kurpick, T. Heer, Checking correctness and
compliance of integrated process models, in: SYNASC, 2008,
pp. 576–583.

[55] S. Yongchareon, C. Liu, X. Zhao, A framework for behavior-consistent
specialization of artifact-centric business processes, in: Proceedings
of the Tenth International Conference on Business Process Manage-
ment, BPM'12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 285–
301.

[56] M. zur Muehlen, M. Indulska, Modeling languages for business
processes and business rules: a representational analysis, Inf. Syst.
35 (4) (2010) 379–390.

[57] F.M. Maggi, M. Montali, M. Westergaard, W. van der Aalst, monitor-
ing business constraints with linear temporal logic: an approach
based on colored automata, in: S. Rinderle-Ma, F. Toumani, K. Wolf
(Eds.), BPM 2011, Lecture Notes in Computer Science, vol. 6896,
Springer, Heidelberg, 2011, pp. 132–147.

[58] Q. He, Detecting runtime business process compliance with artifact
lifecycles. ICSOC Workshops, 2013, 426–432.

[59] P. Jégou, S. Ndojh Ndiaye, C.l. Terrioux, Computing and exploiting
tree-decompositions for solving constraint networks, in: Proceed-
ings of the Eleventh International Conference on Principles and
Practice of Constraint Programming (CP-2005), 2005. pp. 777–781.

[60] X. Li, S.L. Epstein, Learning cluster-based structure to solve con-
straint satisfaction problems, Ann. Math. Artif. Intell. 60 (2010)
91–117.

[61] A. Krzysztof, Principles of Constraint Programming, Ed. Cambridge
University Press, New York, NY, USA, 2003.

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref40
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref40
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref41
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref41
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref43
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref43
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref43
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref44
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref44
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref46
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref46
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref46
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref48
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref48
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref48
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref51
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref51
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref51
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref53
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref53
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref53
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref56
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref56
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref56
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref57
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref57
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref57
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref57
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref57
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref60
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref60
http://refhub.elsevier.com/S0306-4379(14)00130-6/sbref60

	Compliance validation and diagnosis of business data constraints in business processes at runtime
	Introduction
	Representation and treatment of business data constraints
	Grammar of business compliance rules

	Using business data constraints in business processes: a motivating example
	Extending the business process model for validation and diagnosis of business data constraints
	Relational database model
	Representing the referential integrity as a graph

	Database of business data constraints

	Steps for the validation and diagnosis of business data constraints
	Obtaining the observational model
	Obtaining the observational model with null foreign keys
	Automating the run-time validation and diagnosis of BDCs in business processes
	Improving the validation and diagnosis of the BDCs using clusters
	Evaluation complexity of Max-CSPs

	Computational application for validation and diagnosis of BDCs
	Related works
	Conclusions and future work
	Acknowledgement
	References

