
An evaluation of the run-time and task-based performance
of event detection techniques for Twitter

Andreas Weiler n, Michael Grossniklaus, Marc H. Scholl
Department of Computer and Information Science, University of Konstanz, Germany

Keywords:
Event detection
Performance evaluation
Twitter social media data stream

a b s t r a c t

Twitter's increasing popularity as a source of up to date news and information about
current events has spawned a body of research on event detection techniques for social
media data streams. Although all proposed approaches provide some evidence as to the
quality of the detected events, none relate this task based performance to their run time
performance in terms of processing speed, data throughput, or memory usage. In parti
cular, neither a quantitative nor a comparative evaluation of these aspects has been
performed to date. In this article, we study the run time and task based performance of
several state of the art event detection techniques for Twitter. In order to reproducibly
compare run time performance, our approach is based on a general purpose data stream
management system, whereas task based performance is automatically assessed based on
a series of novel measures.

1. Introduction

With 271 million monthly active users1 that produce
over 500 million tweets per day,2 Twitter is the most
popular and fastest growing microblogging service.
Microblogging is a form of social media that enables users
to broadcast short messages, links, and audiovisual con
tent. In the case of Twitter, these so called tweets can
contain 140 characters3 and are posted to a network of
followers as well as to a user's public timeline. The brevity
of tweets makes them an ideal mobile communication

medium and Twitter is therefore increasingly used as an
information source for current events as they unfold. For
example, Twitter data has been used to detect earthquakes
[41], to track epidemics [16], or to monitor elections [51].

In this context, an event is defined as a real world
occurrence that takes place in a certain geographical
location and over a certain time period [5]. For traditional
media such as newspaper archives and news websites, the
problem of event detection has been addressed by
research from the area of Topic Detection and Tracking
(TDT). However, topic detection in Twitter data streams
introduces new challenges. First, Twitter “documents” are
much shorter than traditional news articles and therefore
harder to classify. Second, tweets are not redacted and
thus contain a substantial amount of spam, typos, slang,
etc. Finally, the rate at which tweets are produced is very
bursty and continually increases as more people adopt
Twitter every day.

Several techniques for event detection in Twitter have
been proposed. However, most of these approaches suffer
from two major shortcomings. First, they tend to focus
exclusively on the information extraction aspect and

n Corresponding author.
E-mail addresses: Andreas.Weiler@uni-konstanz.de (A. Weiler),

Michael.Grossniklaus@uni-konstanz.de (M. Grossniklaus),
Marc.Scholl@uni-konstanz.de (M.H. Scholl).

1 http://www.statista.com/study/9920/twitter-statista-dossier/
(August 18, 2015).

2 http://www.sec.gov/Archives/edgar/data/1418091/
000119312513390321/d564001ds1.htm (August 18, 2015).

3 In August 2015, Twitter lifted this restriction for direct messages,
but not for general tweets: http://blog.twitter.com/2015/removing-the-
140-character-limit-from-direct-messages (August 18, 2015).

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-326718

Erschienen in: Information Systems ; 62 (2016). - S. 207-219
https://dx.doi.org/10.1016/j.is.2016.01.003

often ignore the streaming nature of the input. As a con
sequence, they make unrealistic assumptions, which limit
their practical value. Examples of such assumptions
include buffering entire months of Twitter data before
processing it or fixing a complex set of parameters at
design time using sample data. Second, very few authors
have evaluated their technique quantitatively or com
paratively. While most provide some qualitative evidence
demonstrating their task based performance, very few
consider run time performance. Therefore, little or no
research to date has measured the computing cost of the
same result quality for different approaches. We argue that
understanding this trade off is particularly important in a
streaming setting, where processing needs to happen in
real time.

In this article, we present a method to evaluate the run
time and the task based performance of current and future
event detection techniques. In order to measure compar
able run time performance numbers, we propose to
“standardize” event detection techniques by implementing
them based on a single data stream management system.
Additionally, we developed several scalable measures to
assess the task based performance of event detection
techniques automatically, i.e., without painstakingly
crafting a gold standard manually. The specific contribu
tions of this article are as follows.

1. Streaming implementations of state of the art event
detection techniques for Twitter that are consistent
with respect to each other.

2. Detailed study of the task based and run time perfor
mance of well known event detection techniques.

3. Platform based approach that will enable further sys
tematic performance studies for novel event detection
techniques in the future.

This article is an extended presentation of Weiler et al.
[49]. In comparison to the conference version, it features
two additional contributions. First, this article provides a
much more detailed survey of the state of the art in event
detection techniques for Twitter data streams. Since we
analyze several recent approaches that have not yet been
discussed in other surveys, this article closes a gap to these
surveys with respect to open domain event detection
techniques. Second, this article studies the run time and
task based performance of event detection techniques
more in depth by applying extra measures. In terms of
run time performance, we additionally examine the run
time performance on a second hardware setting and also
the memory requirements of each technique, whereas in
terms of task based performance, we analyze how many
repeated as well as common events are detected by the
techniques.

The remainder of this article is structured as follows.
Section 2 presents our survey of the state of the art in
open domain event detection for Twitter data streams. In
Section 3, we give a brief overview of Niagarino, the data
stream management system that we used as an imple
mentation platform. Section 4 describes the selected event
detection techniques and their streaming implementations
using Niagarino. Section 5 discusses the results of the

evaluation that we performed in order to study the
selected task based and run time performance of these
event detection techniques. Finally, concluding remarks
are given in Section 6.

2. Background

In recent years, a lot of research has been conducted in
the area of event detection and tracking techniques for
Twitter. Consequently, a number of surveys exist that
document the current state of the art. For example, Survey
1 by Nurwidyantoro and Winarko [36] summarizes eleven
techniques to detect disaster, traffic, outbreak, and news
events. Survey 2 by Madani et al. [28] presents 13 tech
niques that each address one of the four challenges of
health epidemics identification, natural events detection,
trending topics detection, and sentiment analysis. A more
general survey with a wide variety of research topics
related to sense making in social media data is Survey 3 by
Bontcheva and Rout [12]. The work defines five key
research questions user, network, and behavior modeling
as well as intelligent and semantic based information
access. The part about semantic based information access
also includes an overview about event detection techni
ques in social media data streams. They classify event
detection methods into three categories: clustering based,
model based, and those based on signal processing. Fur
thermore, an overview about techniques for “sub events”
detection is presented. Finally, the most extensive survey
to date is Survey 4 by Farzindar and Khreich [17] with a
listing of 16 different techniques categorized by their
detection methods, tasks, event types, application
domains, and evaluation metrics.

Since the work presented in this paper targets approaches
that support the detection of general (unknown) events [5],
we will focus our survey on open domain event detection
techniques that share this goal. To the best of our knowledge,
Table 1 lists all existing approaches that fall into this category
in ascending order of their year of publication. The table also
summarizes what technique approaches to use to detect
events. Finally, the last column indicates in which of the
above mentioned surveys each approach is included. The four
surveys are referred to by using the number assigned to them
in the previous paragraph.

As shown in Table 1, many approaches use similar
techniques, but with individual modifications or exten
sions. For example, several approaches are based on sta
tistical models that are defined to detect bursty behavior
of single terms or pairs of terms. Most of these approaches
analyze the Document Frequency (DF) or the Inverse
Document Frequency (IDF) [43] of terms over time. While
this technique is very common, the precise definition of
what is considered to be a “burst” varies significantly
among approaches. Another degree of variation is the level
of sophistication present in existing approaches, which
ranges from wavelet analysis to simple threshold based
decisions. Some approaches additionally include spatial
information in the analysis and present event detection
techniques that are specific to a local area. Finally, several
approaches can be summarized as using term clustering

208

techniques as they focus on the similarity of tweets by
computing different types of clusters over time.

In the following, we will only present approaches that
have not yet been covered by an other survey. Moreover,
the approaches of Weng and Lee [51], Cordeiro [15], and
Weiler et al. [47] will be described in detail in Section 4 as
they form the basis of our evaluation.

The enBlogue [6] approach uses a tumbling4 window
model over the time dimension to compute statistics
about tags and pairs of tags. Based on these statistics,
unusual shifts in correlations are identified, which are
assumed to be caused by real world events most of the
times. The intensity of these shifts is used to measure the

degree of their unpredictability. This measure is then used
to rank the tag pairs that express emergent events.

Ritter et al. [40] describe an approach for open domain
event detection, which is based on latent variable models.
Their technique first discovers event types by matching
the data and then uses these types to classify and aggre
gate events. The aggregated events are then mapped to a
calendar view that shows the top five events per day in
terms of the event entity, event phrase, and event type.
However, the authors do not discuss how to apply this
approach directly to the streaming data.

A clustering technique that uses a novel similarity score
is presented by Aggarwal and Subbian [3]. Instead of
applying content only similarity measures, this technique
uses a similarity score, which is based on the graph
structure of Twitter. These clusters are monitored over
time and the growth rate of clusters is used as an indicator
for events. Finally, bursty clusters are marked as events.
Zimmermann et al. [54] also propose a technique to detect
“bursts”. They apply a text stream clustering method that
detects, tracks and updates global and local bursts of news
in a two level topic hierarchy. However, they use the term
“local” not as geographic property, but rather as a burst,
which occurs in a previously detected global burst.
Therefore, they are able to build a hierarchy between the
relationships of global and local bursts.

Nishida et al. [35] introduce a model for topic classifi
cation that identifies changes of statistical properties
within tweet streams on a word basis. The model switches
between two probability estimates based on full and
recent data for each word when detecting changes in word
probability. This switching enables the model to achieve
both accurate learning of stationary words and quick
responses to bursty words. These bursty words can then
be detected as events.

The “SocialSensor”5 project that was conducted from
2011 until 2014 and was funded by the European Union led
to a large number of publications in the research area of
social media data processing and analysis. As one of the
outcomes of this project, Aiello et al. [4] compare six topic
detection methods that can also be used to detect events.
Consequently, their comparison uses different Twitter data
sets that are related to major events. The first technique
uses document pivot topic detection with Locality
Sensitive Hashing (LSH) [20] indexing, which is closely
related to the technique proposed by Petrović et al. [39].
The remaining techniques are all graph based feature
pivot topic detection that use the SCAN algorithm, the
standard Latent Dirichlet Allocation (LDA) [11] technique,
(soft) frequent pattern mining, as well as BNgram. As a
conclusion, they find that standard natural language pro
cessing techniques perform well on very focused topics,
but novel techniques designed to mine the temporal dis
tribution of concepts are needed. Hereby, BNgram that is
based on n grams co occurrence and df idft topic ranking,
consistently achieves the best performance across all set
tings. Martin et al. [31] describe another approach that was
developed in the context of the SocialSensor project. They

Table 1
Summarization of open domain event detection techniques for Twitter.

Reference Technique Survey(s)

Cheong and Lee [14] Statistical model 2
Sankaranarayanan et al. [42] Online clustering 4

Benhardus [10] Statistical model 2
Cataldi et al. [13] Temporal and social

model
2

Lee and Sumiya [23] Statistical model 4
Mathioudakis and Koudas

[32]
Statistical model 2

Naaman et al. [34] Statistical model 2
Petrović et al. [39] Locality-sensitive hashing 1, 3, 4

Becker et al. [9] Online clustering, SVM 3, 4
Lee et al. [22] Spatiotemporal model –

Long et al. [27] Hierarchical divisive
clustering

4

Marcus et al. [30] Statistical model 3
Weng and Lee [51] Discrete wavelet analysis 1, 4

Aggarwal and Subbian [3] Clustering –

Alvanaki et al. [6] Statistical model –

Cordeiro [15] Continuous wavelet
analysis

4

Ishikawa et al. [21] Clustering and burst
detection

1

Li et al. [24] Statistical model 1
Nishida et al. [35] Classification model –

Osborne et al. [37] Temporal model 1
Ritter et al. [40] Latent variable model –

Zimmermann et al. [54] Clustering –

Aiello et al. [4] Statistical model,
clustering

–

Bahir and Peled [8] Filtering –

Martin et al. [31] Statistical model –

Parikh and Karlapalem [38] Hierarchical clustering –

Walther and Kaisser [46] Spatiotemporal model –

Weiler et al. [50] Spatiotemporal model –

Guille and Favre [18] Temporal and social
model

–

Ifrim et al. [19] Filtering, clustering –

Weiler et al. [47] Statistical model –

Zhou and Chen [53] Graphical model –

Meladianos et al. [33] Graph model –

Thapen et al. [44] Bio-surveillance
algorithms

–

4 In their paper, the authors describe it as a sliding window, but only
specify the size of the window and not the range of the slide. Personal
communication with one of the authors confirmed that indeed a tum-
bling window is used. 5 http://www.socialsensor.eu (August 18, 2015).

209

introduce a time dependent variant of the standard tf idf
technique, which they use to detect events by grouping
bursty phases together that often occur in the same set of
tweets.

Bahir and Peled [8] discuss techniques to detect events
through a set of adequate spatial, temporal, and textual
filters. They show that major events may have detectable
“abnormal” impact on geo social network activities, which
allow them to be detected and tracked in real time. ET [38]
is an efficient and scalable system to detect events from
tweets. The system consists of three key components: an
extraction scheme for keywords that represent events, an
efficient storage mechanism to store their appearance
patterns, and a hierarchical clustering technique based on
the common co occurring features of keywords. Events are
then determined through the hierarchical clustering pro
cess. A novel algorithm for geo spatial event detection is
described by Walther and Kaisser [46]. In a first step, all
tweets in the stream within a given geographic region are
monitored and places that show a high amount of activity
are identified. In a second step, the resulting spatio
temporal clusters of tweets are analyzed with a machine
learning component in order to detect an event. This
approach is closely related to our own LLH technique [50]
that uses a combined log likelihood ratio approach for the
geographic and time dimension of Twitter data in pre
defined areas in order to detect events. Another approach
that is closely related to LLH is presented by Lee et al. [22].
They propose an event detection technique for local areas,
which clusters tweets in real time using the incremental
DBSCAN algorithm. Finally, the location of each cluster is
identified by analyzing the users' timezones.

Guille and Favre [18] propose Mention Anomaly Based
Event Detection (MABED). The novel aspect of MABED is to
leverage the frequency of dynamic links (i.e., mentions),
which are contained in tweets, in order to detect impor
tant events and to estimate the magnitude of their impact
over the crowd. Ifrim et al. [19] present a technique that
uses aggressive filtering of tweets based on their length
and structure. This approach is combined with hierarchical
clustering of tweets and ranking of the resulting clusters.
The highest ranked clusters are then detected as events.
Zhou and Chen [53] propose a graphical model called
Location Time constrained Topic (LTT), which captures the
content, time, and location of tweets. Using LLT, a tweet
can be represented as a probability distribution over a set
of topics by inference. The similarity between two mes
sages is measured as the distance between their distribu
tions. Finally, events are detected by performing efficient
similarity joins.

The most recent research works that we are aware of
are presented by Meladianos et al. [33] and Thapen et al.
[44]. The first one deals with the topic of sub event
detection. They use a technique that models a sequence
of successive tweets in a short time interval as a weighted
graph of words. Based on this graph sub events are iden
tified using the concept of graph degeneracy and included
in an event. The second technique adapts existing bio
surveillance algorithms in order to detect localized spikes
in Twitter activity that correspond to real events with a
high level of confidence.

3. Niagarino overview

In order to realize streaming implementations of state
of the art event detection techniques for Twitter, we use
Niagarino,6 a data stream management system that is
developed and maintained by our research group. The
main purpose of Niagarino is to serve as an easy to use
and extensible research platform for streaming applica
tions such as the one presented in this article. The con
cepts embodied by Niagarino can be traced back to a series
of pioneering data stream management systems, such as
Aurora [2], Borealis [1], and STREAM/CQL [7]. In particular,
Niagarino is an offshoot of NiagaraST [26], with which it
shares the most common ground. In this section, we
briefly summarize the parts of Niagarino that are relevant
for this article.

In Niagarino, a query is represented as a directed
acyclic graph Q ¼ ðO; SÞ, where O is the set of operators
used in the query and S is the set of streams used to
connect the operators. The Niagarino data model is based
on relational tuples that follow the first normal form, i.e.,
have no nesting. Two types of tuples can be distinguished,
data and metadata tuples. Data tuples are strongly typed
and have a schema that defines the domains of all attri
butes. All data tuples in a stream share the same schema,
which corresponds to the output schema of the operator
that generates the tuples and must comply with the input
schema of the operator that consumes the tuples. In con
trast, metadata tuples, so called messages, are untyped
and typically self describing. Therefore, different messages
can travel in the same stream. Messages are primarily used
to transmit data and operator statistics in order to coor
dinate the operators in a query. Each stream is bidirec
tional consisting of a forward and a backward direction.
While data tuples can only travel forward, messages can
travel in both directions.

Based on its relational data model, Niagarino imple
ments a series of operators. The selection (σ) and projec
tion (π) operator work exactly the same as their counter
parts in relational databases. Other tuple based operators
include the derive (f) and the unnest (μ) operator. The
derive operator applies a (user defined) function to a sin
gle tuple and appends the result value to the tuple. The
unnest operator splits a “nested” attribute value and emits
a tuple for each new value. A typical use case for the
unnest operator is to split a string and to produce a tuple
for each term it contains. Apart from these general
operators, Niagarino provides a number of stream specific
operators that can be used to segment the unbounded
stream for processing. Apart from the well known time
and tuple based window operators (ω) that can be tum
bling or sliding [25], Niagarino also implements data
driven windows, so called frames [29]. Stream segments
form the input for join (⋈) and aggregation (Σ) operators.
As with derive operators, Niagarino also supports user
defined aggregation functions. Niagarino operators can be
partitioned into three groups. The operators described

6 http://www.informatik.uni-konstanz.de/grossniklaus/software/
niagarino/

210

scan tuples
T1(a1, a2, ...), T 2, •••

T0 (8term) is
(!stopword &&

!noiseword}

211

Fig. 1. Niagarino query plans of the five selected event detection techniques.

above are general operators, whereas source operators
read input streams and sink operators output results. Each
query can have multiple source and sink operators. This
classification is similar to the notion of spouts and bolts
used in Twitter's data stream management system Storm
[45[.

Niagarino is implemented in java 8 and relies heavily
on its new language features. In particular, anonymous
functions (A expressions) are used in several operators in
order to support lightweight extensibility with user
defined functionality. The current implementation runs
every operator in its own thread. Operator threads are
scheduled implicitly using fixed size input/output buffers
that block upon underflow or overflow as well as explicitly
through backward messages.

4. Event detection techniques

We focus on techniques with the specific task of first
story detection, i.e., the detection of general (unknown)
events, which is defined as a subtask of IDT [5]. In this
section, we briefly describe the five state of the art tech
niques that we selected for our study in terms of their
functionality and the parameters used. Fig. 1 illustrates
these techniques by means of Niagarino query plans that
use the operators described in the previous section. As can
be seen in the figure, all of these techniques use the same
pre processing steps before the streaming tuples enter the
actual event detection phase. The pre processing selects all
tweets that are non retweets and in English. Addit ionally,

each tuple is enriched with the derived distinct terms of
the tweet that are not contained in a standard English
stop word list or can be considered noise (e.g., less than
three characters, unknown characters, repetition of the
same pattern, or terms without vowels).

The TopN algorithm assigns each individual term a
single value based on the Inverse Document Frequency
(IDF) over an entire time window. All values are then
sorted and the top n terms are reported as events together
with their top m most frequently co occurring terms,
which are also obtained by using the IDF measure.

The Latent Dirichlet Allocation (LDA) is a hierarchical
Bayesian model that explains the variation in a set of
documents in terms of a set of n latent "topics", i.e., dis
tributions over the vocabulary. Since LOA is normally used
for topic modeling, we equate a topic to an event. For each
time window, LOA extracts n events that are described by
m terms. The parameter i defines the number of iterations
performed in the modeling phase, where a higher value
typically increases the quality of the detected events. To
perform the LOA, we use Mallet,7 an existing java library.

Our own Shifty [47] technique calculates a measure that
is based on the shifts of IDF values of single terms in pairs
of successive sliding windows of a pre defined size. First,
the IDF value of each term in a single window (with size
S;npur) is continuously computed and compared to the
average IDF value of all terms within that window. Terms
with an IDF value above the average are filtered out. The

7 http://mallet cs.umass.edu (August 18, 2015).

next step builds a window with size s1 that slides with
range r1 in order to calculate the shift from one window to
the next. In this step, the shift value is again checked
against the average shift of all terms and only terms with a
shift above the average are retained. In the last step, a new
sliding window with size s2 that slides with range r2 is
created. The total shift value is computed as the sum of all
shift values of the sub windows of this window. If this
total shift value is greater than the pre defined threshold
Ω, the term is detected as event and reported together
with its top 4 co occurring terms.

The first step of the Event Detection with Clustering of
Wavelet based Signals (EDCoW) [51] algorithm is to parti
tion the stream into intervals of s seconds and to build DF
IDF signals for each distinct term in the interval. These
signals are further analyzed using discrete wavelet analysis
that builds a second signal for the individual terms. Each
data point of this second signal summarizes a sequence of
values from the first signal with length Δ. The next step
then filters out trivial terms by checking the corresponding
signal auto correlations against a threshold γ. The
remaining terms are then clustered to form events with a
modularity based graph partitioning technique. Insignif
icant events are filtered out using a threshold parameter ϵ.
Since this approach detects events with a minimum of two
terms, we introduced an additional enrichment step that
adds the top co occurring terms to obtain events with at
least five terms.

The Wavelet Analysis Topic Inference Summarization
(WATIS) [15] algorithm also partitions the stream into
intervals of s seconds and builds DF IDF signals for each
distinct term. Due to the noisy nature of the Twitter data
stream, signals are then processed by applying the adap
tive Kolmogorov Zurbenko filter (KZA) [52], a low pass
filter that smoothens the signal by calculating a moving
average with ikz iterations over n intervals. It then uses
continuous wavelet transformation to construct a time/
frequency representation of the signal and two wavelet
analyses, the tree map of the continuous wavelet extrema
and the local maxima detection, to detect abrupt increase
in the frequency of a term. To enrich events with more
information, the previously mentioned LDA algorithm
(with ilda iterations) is used to finally report events that
consist of five terms each.

5. Evaluation

The evaluation of event detection techniques is itself a
challenging task. Determining an F1 score in terms of
precision and recall would require a ground truth (gold
standard) to which the detected events can be compared.
Due to lack of such a ground truth for the Twitter data
stream, some existing approaches have been evaluated
using a manually created ground truth or based on user
studies, if at all. Since both of these methods are very time
consuming and do not scale, we have experimented with a
number of measures that can be applied automatically. In
this section, we discuss the motivation behind these
measures and present detailed results that were obtained
by using them.

5.1. Measures

In order to evaluate different techniques automatically,
we define the following main measures (some with sub
measures) that are used for the individual ratings.

Run time performance: Run time performance is mea
sured as the number of tweets per second that a technique
is able to process (throughput).

Memory usage: This measure captures how much space
is required by each technique. Since all techniques process
a stream of data, i.e., processing never stops, we are
interested to study how memory usage evolves over time
and how it is bounded.

Precision (search engine): The first precision measure is
defined as the percentage of events that can be verified
with the use of a search engine (e.g., www.google.com).
For each detected event, the search engine is queried using
the five event terms and a specific date range. A rating
between 1 and 10 (GoogleN) is computed by checking how
many of the first ten result hits point to a news website.
News websites are identified based on a whitelist of
domain names containing sites such as CNN, CBS, Reuters,
NYTimes, and the Guardian. Based on this measure,
detected events can be rated with respect to their news
worthiness on or at least one day after the detection date.

Precision (DBPedia): The second precision measure is
calculated using the DBPedia8 data set, which contains the
abstracts (long versions) from all Wikipedia articles. In
order to query the roughly four million English abstract,
the native XML database BaseX9 is used. For each detected
event, the number of matching abstracts in DBPedia is
computed using XQuery Full Text. We have defined three
sub measures. DBPedia5 is the precision using all five
event terms, DBPedia4S only uses the top four event terms,
and DBPedia4A queries DBPedia with all subsets of car
dinality four. For the first two measures, an abstract is
considered a match to an event if it contains all terms that
were used in the query. For the third measure, an abstract
matches if it contains all terms of one of the combinations.

Recall: In order to compute the recall, Bloomberg10 was
crawled as their archive maintains a list of the most
important news articles for each day. Crawling individual
days leads to an average of about 200 events per day. Each
crawled news item is then tokenized and cleaned by the
same processes as the tweets. As a consequence, the short
description of each news item by a series of terms can be
very similar to the one obtained from the tweets. In order
to calculate the similarity between detected events and a
news item, eventSimðe1; e2Þ is used, which is based on the
Levenshtein distance.

levSimðt1; t2Þ ¼ 1:0 levðt1; t2Þ=maxðfjt1j; jt2jgÞ ð1Þ

termSimðt1; t2Þ ¼
0 levSimðt1; t2ÞominTermSim

1 otherwise

�
ð2Þ

8 http://dbpedia.org (August 18, 2015).
9 http://basex.org (August 18, 2015).
10 http://www.bloomberg.com/archive/news/ (August 18, 2015).

212

a
3500000

3000000

2500000

2000000

1500000

1000000

500000

0

c

ll.lt, 1 .U 2014 • Fl\. t Al4J 1014 D Mon. 1 Sep 2014 0 Wed. 1

Total tweets per hour.

3500000 ..---------------------:-:-1
• Tut, 1 JIA2014 • Ft1.1 Aug 2014 0 Mon, 1 Sep 2014 0 Wod, 1 Oct 2014

3000000

2500000

2000000

1500000

English non-retweet tweets per hour.

b
3500000

3000000

2500000

2000000

1500000

1000000

500000

0

d

• lW. 1 .U 2014 • Ff\ 1 N.tg 2014 D Mon. 1 Sep 2014 C Wed. 1 Ott 2014

Non-rctweet tweets per hour.

200000 ~-----------------,
• Tut. 1 N20 14 • Fr1.1 Aug2Q-14 C Mon,1 Sep2014 0 Wed, 1 Oct 2014

Distinct terms per hour.

213

Fig. 2. Statistics of the Twitter data set.

eventSim(e1 , e2)=~ E termSim(e,[t;1e2 [t1]) (3)
I 0.} 0

The motivation behind eventSim(e~oe2) is to compensate
for misspellings or alternate spellings of terms as well as
for different term sets describing similar events. An event
is represented as an alphabetically sorted list of terms
e =[to, ... , tn). Each term t, e e, is compared to each term
t2 e e2 using the levSim(t,t2). whk h is the Levenshtein
distance normalized to the range [0 ... 1]. lfthe similarity of
a term of e1 to a term of e2 is above the threshold min
TennSim, this combination is mari<ed as hit and the algo
rithm continues with the next term of e,. Finally,
eventSim(e1, e2) aggregates the number of hits and nor
malizes it with the number of terms.

In an effort to obtain a reasonable amount of hits, the
parameters of this formula are set rather low. The para
meter minTennSim is set to 0.7 and the overall limit for
eventSim is set to 0.2. Two sub measures are defined for
the recall. Bloom1D calculates the recall just for the given
date, whereas Bloom2D also includes the following day.

Duplicate Event Detection Rate (DEDR): This measure is
also based on the event similarity defined above in order
to calculate the pairwise similarity of all events for one
single technique and data set Two sub measures have
been defined For ADEDR (almost duplicate event detection
rate) the parameter minTennSim is set to 0.8 and the limit
for eventSim is set to 0.5, whereas for FDEDR (full duplicate
event detection rate) the minTermSim stays the same but
the limit for eventSim is set to 0.9.

Repeated Event Detection Rate (REDR): This measure is
derived from the DEDR measure and reflects the rate of

repeatedly detected events per technique. In order to
evaluate the results of the studied event detection tech
niques, we use a number of different data sets (d. Section
5.2). Therefore, it is possible that a technique reports the
same events for each of these data sets. Since the points in
time at w hk h our data sets were captured from the
Twitter data stream are spaced one month apart, it is likely
that these repeated events are artifacts of the technique.
However, apart from measuring the percentage of
repeating events for a series of single evaluations, this
measure can also be used to evaluate how many of the
"hit" events are detected repeatedly.

Common Event Detection Rate (CEDR): This measure is
also derived from the DEDR measure and captures the
percentage of events that are detected in common by pairs
of techniques. With this measure. we can therefore study
which techniques have a lot of commonly detected events.
Furthermore, it is possible to derive whkh techniques
detected the same "hit" events.

52. Data sets

The data sets used in the study presented in this artide
ronsist of 10% of the public live stream of Twitter for four
days. Using the Twitter Streaming API11 with the so called
"Gardenhose" access level, which is a randomly sampled
sub stream, we collected data for the first day of july,
August, September, and October. Fig. 2 provides statistics
of the initial data set as well as for the processing steps

11 https:/fdev.rwitter.com (August 18, 2015}

that are common to all techniques (cf. Fig. 1). Fig. 2a pre
sents the total number of tweets for the chosen days
grouped by the hour (given in GMTþ1). As can be seen, the
rate of tweets follows a regular daily pattern. On average,
the incoming stream contains 2.3 million tweets/hour or
35,000 tweets/minute. Fig. 2b shows the hourly tweet
volumes after filtering out retweets at an average of
1.6 million tweets/hour. After the next step, shown in
Fig. 2c, the data sets are further reduced to an average of
500,000 tweets/hour by filtering out tweets that are not in
English. Finally, Fig. 2d shows an average of 120,000 dis
tinct terms/hour that have been derived from all English
tweets.

5.3. Experimental setup

In order to be able to compare the results of the five
chosen techniques in a fair way, they have to be aligned in
terms of the rate and number of events detected. The rate
can be controlled by setting the time window on which a
technique is performed. Since we are interested in (near)
real time event detection, a window of one hour was used.
Note that Shifty is the only true streaming algorithm that
reports results continuously, whereas all other techniques
only produce results after each hour. The number of events
that are detected can be controlled by setting the specific
parameters of each technique. Given that our recall mea
sure assumes an average of 200 events per day and com
pensating for events that are detected multiple times, we
aim for about 350 events per day. The parameter settings
used are described below, whereas the actual number of
detected events per day and technique are shown in
Table 2.

TopN: Per hour, the top n¼15 events are reported
together with m¼5 co occurring terms to obtain
a total of 360 events per day

LDA: LDA is set to perform i¼500 iterations and to
report 15 events, described by m¼5 terms each,
per hour, yielding again a total of 360 events
per day.

Shifty: The IDF value is calculated over 1 min intervals.
The size of the window used to compute the IDF
shift is s1 ¼ 2 min. The size of the window that
aggregates and filters the IDF shift is s2 ¼ 4 min.
Both windows slide by range r1 ¼ r2 ¼ 1 min. By
setting the threshold Ω¼ 0:35, we obtain all

terms with a minute by minute IDF value that
increases more than 35% over four minutes.

EDCoW: The size of the initial intervals is set to s¼10 s
and the number of intervals that are combined
by the wavelet analysis to Δ¼ 32, yielding a total
window size per value of 320 s. The other para
meters are set to the same values as in the ori
ginal paper (γ ¼ 1 and ϵ¼ 0:2). As the original
paper fails to mention the wavelet type that was
used, we experimented with several types. The
results reported in this article are based on the
Discrete Meyer wavelet, which showed the best
performance.

WATIS: The length of initial intervals is set to s¼85 s. For
the KZ/KZA analysis, n¼5 intervals and ikz ¼ 5
iterations are used, yielding a total window size
of 425 s. LDA is set to perform ilda ¼ 500 itera
tions and report a description with five terms per
detected event.

5.4. Results

In the following, we present the results of our evalua
tion of event detection techniques in terms of run time
and task based performance. Rather than discussing all
results that we have obtained, we focus on the most sig
nificant measures and outcomes. While we do not claim
that our measures are absolute, it should be noted that
these results support relative conclusions.

5.4.1. Run time performance
Run time performance was measured in two different

settings. The first setting (M1) consisted of Oracle Java
1.8.0_25 (64 bit) on server grade hardware with 2 Intel
Xeon E5345s processors at 2.33 GHz with 4 cores each and
24 GB of main memory. The second setting (M2) consisted
of Oracle Java 1.8.0_40 (64 bit) on server grade hardware
with 1 Intel Xeon E5 processors at 3.5 GHz with 6 cores
and 64 GB of main memory. Regardless of the physical
memory, the Xmx24G flag of the Java Virtual Machine
(JVM) was used in both settings to limit the maximum
memory to 24 GB. The corresponding results for all tech
niques in terms of throughput (tweets/second) are given in
Fig. 3. The error bars denote the variance of run time
performance across the four data sets, which is mostly
very stable. Taking into account the average rate of 35,000
tweets/minute (583 tweets/second), we can derive that all
techniques are able to process the 10% stream in real time
in both settings. However, taking a 100% stream
(�5830 tweets/second) into account, both LDA500 and
WATIS would be too slow to process the stream in real
time in the M1 setting. For both of these event detection
techniques, the number of LDA iterations could be
reduced, i.e., trading off result quality for performance.
Finally, we point out that our experimental setup is
stacked against our own technique, Shifty. In contrast to
the other approaches that can only process tweets at the
end of each one hour window, Shifty processes tweets
continuously and can therefore amortize its processing
cost over the one hour window. Furthermore, we note that

Table 2
Average number of detected events per techniques and dataset.

Dataset

Jul1 Aug1 Sep1 Oct1 AVG

Technique
Top15 360 360 360 360 360
LDA500 360 360 360 360 360
Shifty 327 316 354 402 350
EDCoW 353 375 396 409 383
WATIS 270 261 287 276 273

214

the run time performance of all techniques scales by the
same factor ð � 3�Þ when running them in setting Mach2.
Therefore, we can reason that the performance difference
between the techniques is always the same, no matter
what hardware setting it is used.

5.4.2. Memory usage
Apart from the run time performance, the amount of

memory required by each technique to process the data is
another important factor. In order to compare memory
usage fairly, we measured the memory consumption at a
fixed number of measurement points. We first recorded

the total run time needed by a technique to process all
four datasets. Based on this total run time, we then
derived the intervals at which memory usage has to be
measured in order to obtain a total of 100 measurements.
Before each measurement was taken, the garbage collector
of the JVM was invoked to ensure better reproducibility of
the results. All measurements reported in this article were
recorded using the M2 setting. Fig. 4 plots the amount of
used memory in megabytes at each of the 100 measure
ment points. As expected, the TopN technique requires the
least memory. The memory usage of LDA is similarly low at
the beginning of the computation, but steadily increases
over time. Since our implementation relies on a third
party library to perform the Latent Dirichlet Allocation, we
are not able to explain this increasing memory usage. Both
EDCoW and WATIS require substantially more memory
with a usage that fluctuates between 1 GB and 1.8 GB. In
contrast, Shifty requires constant memory of about 1 GB.
Again, this result is not unexpected as Shifty is the only
truly streaming algorithm that we study in this article.

5.4.3. Task based performance
The first measure of task based performance that we

will examine is the duplicate event detection rate. Results
obtained using both the ADEDR and FDEDR sub measures
are given in Fig. 5. In comparison to the other three
techniques, both Top15 and LDA500 detect a large number
of duplicates. This result is explained by the fact that these
techniques identify events based on the absolute fre
quency of terms, i.e., without considering changes in the
relative frequency. The ADEDR of the remaining three
techniques is relatively low in the range of 15 18%. Shifty's
FDEDR stayed consistently below 10% in all our experi
ments, whereas EDCoW and WATIS do hardly detect any
duplicates at all. Finally, the results also show that there is
little deviation in the detected number of duplicates over
the four days in our data set.

Apart from the duplicate event detection rate, we
defined two more measures, which are based on the event
similarity. First, we evaluate the ratio of repeated events
for each of the techniques. Fig. 6 shows the average
ratio of repeated events per technique, with error bars
indicating the standard deviation over all four data sets.
This measure is calculated based on the ADEDR of all
pairwise combinations of event sets that a given technique

Top15 LDA500 SHIFTY EDCoW WATIS

M1 M2

0

5000

10000

15000

20000

25000

30000

35000

Tw
ee

ts
/s

ec

Fig. 3. Average run-time performance.

0 20 40 60 80 100

0

500

1000

1500

2000

2500

M
em

or
y

(M
B

)

Top15
LDA500

Shifty
EDCoW

WATIS

Fig. 4. Memory usage.

Top15 LDA500 SHIFTY EDCoW WATIS

ADEDR
FDEDR

R
at

o

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Average duplicate rate for ADEDR and FDEDR.

Top15 LDA500 SHIFTY EDCoW WATIS

All Google1+

R
at

o

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Average ratio of repeated events for all and Google1þ events.

215

reported for the datasets, i.e., July August, July September,
July October, and August September. We can derive that
the event detection techniques produce repeated events
with a ratio of less than 20% for all events as well as for
Google1þ events. The Google1þ events is the subset of
reported results that are identified as results in the pre
cision study. In contrast to these event detection techni
ques, Top15 and LDA500 report a lot of similar events for
the different datasets: about 60% for all events and about
55% for Google1þ events.

Second, we evaluate the ratio of common events
between the different techniques. For this measure, we set
the minTermSim to 1.0 and the limit for eventSim to 0.8.
Fig. 7 shows the average ratio of common events between
the techniques for all and for Google1þ events. We can
observe that the Top15 and LDA500 techniques share a lot
of events for both types of events. In contrast to the other
techniques, they share about 25% of all events and 15% of
Google1þ events, which is more than twice as much as
the other techniques. However, the other three techniques
do not share a high number of events among themselves
either. The reason for this might be that the algorithms
used by these techniques are simply too different. Never
theless, it is possible to deduce based on these results that
the number of events that these three techniques have in
common with Top15 or LDA500 is very low, both for all and
for Google1þ events.

Apart from the duplicate, repeated, and common event
detection rates, we have also studied the task based per
formance of the selected techniques in terms of precision
and recall. Fig. 8 summarizes the precision results of all
techniques obtained with the Google1, Google2, DBPedia5,
and DBPedia4S measures. We omit results from the DBPe
dia4A as our experiments showed that they are not very
discriminating. Even though the measures we defined
yield a wide range of precision values, their relative ratio is
always the same. Since our goal is to comparatively eval
uate event detection techniques, we conclude that our
measures are sound with respect to this criterion. Again,
Top15 and LDA500 stand out with higher precision values
than the other three techniques. The reason for this result
is that our precision measures are slightly biased towards
approaches that report duplicate or repeated events.

Fig. 9 shows the recall results for the Bloom1D measure.
Bloom2D is omitted as the results are almost exactly the
same. First of all, it can be seen from the figure that the
recall of all techniques is relatively low at 10 20%. Note
that our recall measure is based on the Bloomberg news
website, which lists an average of 200 topics per day. Even
though techniques were configured to report about 1:5�
as many events, our recall measure is nevertheless ambi
tious. For example, it is difficult to imagine that enough
people will tweet about a topic such as Heathrow's cargo
statistics in order to detect it as an event. However, since

Top15 LDA500 SHIFTY EDCoW WATIS

Top15
LDA

SHIFTY
EDCoW

WATIS

R
at

o

0.0

0.1

0.2

0.3

0.4

0.5

Top15 LDA500 SHIFTY EDCoW WATIS

Top15
LDA

SHIFTY
EDCoW

WATIS

R
at

o

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 7. Average ratio of common events for all events on the left side and Google1þ events on the right side.

Top15 LDA500 SHIFTY EDCoW WATIS

Google1
Google2
DBPedia5
DBPedia4S

R
at

o

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Average precision.

Top15 LDA500 SHIFTY EDCoW WATIS

Tue, 1 Jul 2014
Fri, 1 Aug 2014
Mon, 1 Sep 2014
Wed, 1 Oct 2014

R
at

o

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9. Recall using Bloom1D.

216

we are only interested in relative measures, these low
recall figures are not a problem. Rather, we can observe
that Top15 and LDA500 generally have a lower recall than
the other three techniques. As this outcome is to be
expected due to the high duplicate event detection rate of
these techniques, we can again conclude that our measure
for recall is sound.

In order to summarize the most discriminating mea
sures presented in this article, we define three scoring
functions that can be used to compare the run time and
task based performance of event detection techniques. The
three scoring functions are defined as follows:

FScore¼ 2� precision� recall
precisionþrecall

ð4Þ

PFScore¼ ðFScore� performanceÞ ð5Þ

DPFScore¼ PFScore� ð1 DEDRÞ ð6Þ
The first score, FScore, denotes the F1 score that is cal

culated by using the value of the Google1 and Bloom1D
measures for precision and recall, respectively. Alter
natively, using DBPedia5 leads to very similar results. The
second score, PFScore, also factors in the performance rate
of the technique. Performance values are normalized to
the range ½0…1� by setting the maximum processing rate
that we measured to 1. Note that we almost get the same
normalized performance score for the techniques,
regardless of whether performance was measured on M1
or M2. Finally, the last measure, DPFScore, also includes the
duplicate event detection rate of the technique. In the
following, we have used the value of the FDEDRmeasure to
calculate DPFScore.

Based on these definitions, Fig. 10 shows the scores that
were assigned to each of the five techniques as averages
over the four days in the evaluation data set. Even though
Top15 scores relatively high in terms of precision, its FScore
is low due to a poor recall because of duplicates. As Top15
is consistently the fastest technique in our experiments, its
PFScore is equal to its FScore. The high DEDR of Top15 has a
noticeable negative effect on its DPFScore. LDA500's FScore
is relatively high, but comes at a high performance penalty,
which negatively affects both its PFScore and DPFScore.
Based on these results, we can conclude that neither Top15
nor LDA500 is suitable event detection techniques. This

result is not surprising as both of these techniques have
originally not been developed for this task.

In contrast, the scores of Shifty, EDCoW, and WATIS are
much better. In particular, none of these techniques suffer
significantly from duplicate event detection. Shifty and
WATIS have a similar FScore, but are both negatively
affected by their performance score. However, since Shif
ty's streaming algorithm was forced to an hourly reporting
scheme for the sake of comparability, this score is still a
good result for our technique. EDCoW scores impressive
results for all scoring functions, which confirms that its
status as the most cited event detection technique is well
deserved. This work however is the first to provide com
parative and quantitative evidence for EDCoW's quality.

Finally, we note that duplicate events are not always
undesired, e.g., when tracking re occurring events or
changes in event descriptions. The need to study event
detection techniques in both settings motivates our sepa
rate definitions of FScore, PFScore, and DPFScore. Both
LDA500 and Top15 could be extended to explicitly avoid
the detection of duplicate events. However, since the other
techniques do allow for duplicates, we have chosen not to
do so in this study.

6. Conclusion

In this article, we addressed the problem of compara
tively and quantitatively studying the task based and run
time performance of state of the art event detection
techniques for Twitter. In order to do so, we have pre
sented a two pronged approach. First, we ensure com
parable run time performance results by providing
streaming implementations of all techniques based on a
data stream management system. Second, we propose
several new measures that can assess the relative task
based performance of event detection techniques. The
detailed study described in this article has shown that
these measures are sound and which of them are most
discriminating. Finally, we defined scoring functions based
on selected measures that revealed how the different
techniques relate to each other as well as where their
strengths and weaknesses lie.

As immediate future work, we plan to take advantage
of our platform based approach to study further techni
ques, e.g., enBlogue [6] and the approach of Petrović et al.
[39]. At the same time, the currently implemented tech
niques could be improved to process data continuously.
Furthermore, the influence of the pre processing on run
time and task based performance should be studied. In our
platform based approach, we can easily remove existing
operators (e.g., retweet filtering) and replace them with
new operators (e.g., part of speech tagging or named
entity recognition). Finally, a deeper evaluation of how
the different parameters of a technique influence the
trade off between run time and task based performance
could give rise to adaptive event detection techniques.

At the time of writing this article, some of these works
have already started and Weiler et al. [48] report on initial
results that confirm the outcome of the evaluation

Top15 LDA500 Shifty EDCoW WATIS

FScore
PFScore
DPFScore

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10. Average rating scores.

217

presented here based on further measures and additional
event detection techniques.

Acknowledgment

This work is supported by Grant No. GR 4497/4 of the
Deutsche Forschungsgemeinschaft (DFG). Additionally, the
authors would like to thank Christina Papavasileiou and
Harry Schilling for their contributions to the imple
mentation of WATIS and EDCoW.

References

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y.
Xing, S.B. Zdonik, The design of the borealis stream processing
engine, In: Proceedings of the International Conference on Innova-
tive Data Systems Research (CIDR), 2005, pp. 277–289.

[2] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, S. Zdonik, Aurora: a new model and
architecture for data stream management, VLDB J. 12 (2) (2003)
120–139.

[3] C.C. Aggarwal, K. Subbian, Event detection in social streams, In:
Proceedings of the SIAM International Conference on Data Mining
(SDM), 2012, pp. 624–635.

[4] L.M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos,
R. Skraba, A. Göker, I. Kompatsiaris, Sensing trending topics in
twitter, IEEE Trans. Multimedia 15 (6) (2013) 1268–1282.

[5] J. Allan, Topic Detection and Tracking: Event-based Information
Organization, Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[6] F. Alvanaki, S. Michel, K. Ramamritham, G. Weikum, See What's
enBlogue: real-time emergent topic identification in social media,
In: Proceedings of the International Conference on Extending
Database Technology (EDBT), 2012, pp. 336–347.

[7] A. Arasu, S. Babu, J. Widom, The CQL continuous query language:
semantic foundations and query execution, VLDB J. 15 (2) (2006)
121–142.

[8] E. Bahir, A. Peled, Identifying and tracking major events using geo-
social networks, Soc. Sci. Comput. Rev. 31 (4) (2013) 458–470.

[9] H. Becker, M. Naaman, L. Gravano, Beyond trending topics: real-
world event identification on twitter, In: Proceedings of the Inter-
national Conference on Weblogs and Social Media (ICWSM), 2011,
pp. 438–441.

[10] J. Benhardus, Streaming trend detection in twitter, National Science
Foundation REU for Artificial Intelligence, Natural Language Pro-
cessing and Information Retrieval, University of Colarado, Final
Report, 2010, pp. 1–7.

[11] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach.
Learn. Res. 3 (2003) 993–1022.

[12] K. Bontcheva, D. Rout, Making sense of social media streams through
semantics: a survey, Semantic Web 5 (5) (2014) 373–403.

[13] M. Cataldi, L.D. Caro, C. Schifanella, Emerging topic detection on
twitter based on temporal and social terms evaluation, In: Pro-
ceedings of the Workshop on Multimedia Data Mining (MDMKDD),
2010, pp. 4:1–4:10.

[14] M. Cheong, V. Lee, Integrating web-based intelligence retrieval and
decision-making from the twitter trends knowledge base, In: Pro-
ceedings of the Workshop on Social Web Search and Mining
(SWSM), 2009, pp. 1–8.

[15] M. Cordeiro, Twitter event detection: combining wavelet analysis
and topic inference summarization, In: Proceedings of the Doctoral
Symposium on Informatics Engineering (DSIE), 2012.

[16] A. Culotta, Towards detecting influenza epidemics by analyzing
twitter messages, In: Proceedings of the Workshop on Social Media
Analytics (SOMA), 2010, pp. 115–122.

[17] A. Farzindar, W. Khreich, A survey of techniques for event detection
in Twitter, Comput. Intell. 31 (1) (2015) 132–164.

[18] A. Guille, C. Favre, Mention-anomaly-based event detection and
tracking in twitter, In: Proceedings of the International Conference
on Advances in Social Networks Analysis and Mining (ASONAM),
2014, pp. 375–382.

[19] G. Ifrim, B. Shi, I. Brigadir, Event detection in twitter using aggressive
filtering and hierarchical tweet clustering, In: Proceedings of the
Workshop on Social News on the Web (SNOW), 2014, pp. 33–40.

[20] P. Indyk, R. Motwani, Approximate nearest neighbors: towards
removing the curse of dimensionality, In: Proceedings of the Annual
ACM Symposium on Theory of Computing (STOC), 1998, pp. 604–613.

[21] S. Ishikawa, Y. Arakawa, S. Tagashira, A. Fukuda, Hot topic detection
in local areas using Twitter and Wikipedia, In: Proceedings of the
Workshop on Complex Sciences in the Engineering of Computing
Systems (CSECS), 2012, pp. 1–5.

[22] C.-H. Lee, H.-C. Yang, T.-F. Chien, W.-S. Wen, A novel approach for
event detection by mining spatio-temporal information on micro-
blogs, In: Proceedings of the International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), 2011, pp. 254–259.

[23] R. Lee, K. Sumiya, Measuring geographical regularities of crowd
behaviors for Twitter-based geo-social event detection, In: Pro-
ceedings of the Workshop on Location Based Social Networks
(LBSN), 2010, pp. 1–10.

[24] C. Li, A. Sun, A. Datta, Twevent: segment-based event detection from
tweets, In: Proceedings of the International Conference on Infor-
mation and Knowledge Management (CIKM), 2012, pp. 155–164.

[25] J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, No pane, no gain:
efficient evaluation of sliding-window aggregates over data streams,
SIGMOD Rec. 34 (1) (2005) 39–44.

[26] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, D. Maier,
Out-of-order processing: a new architecture for high-performance
stream systems, In: PVLDB, vol. 1 (1), 2008, pp. 274–288.

[27] R. Long, H. Wang, Y. Chen, O. Jin, Y. Yu, Towards effective event
detection, tracking and summarization on microblog data, In: Pro-
ceedings of the International Conference on Web-age Information
Management (WAIM), 2011, pp. 652–663.

[28] A. Madani, O. Boussaid, D.E. Zegour, What's happening: a survey of
tweets event detection, In: Proceedings of the International Con-
ference on Communications, Computation, Networks and Technol-
ogies (INNOV), 2014, pp. 16–22.

[29] D. Maier, M. Grossniklaus, S. Moorthy, K. Tufte, Capturing episodes:
may the frame be with you, In: Proceedings of the International
Conference on Distributed Event-Based Systems (DEBS), 2012,
pp. 1–11.

[30] A. Marcus, M.S. Bernstein, O. Badar, D.R. Karger, S. Madden, R.C.
Miller, TwitInfo: aggregating and visualizing microblogs for event
exploration, In: Proceedings of the International Conference on
Human Factors in Computing Systems (SIGCHI), 2011, pp. 227–236.

[31] C. Martin, D. Corney, A. Göker, A. Macfarlane, Mining newsworthy
topics from social media, In: Proceedings of the BCS SGAI Workshop
on Social Media Analysis, 2013, pp. 35–46.

[32] M. Mathioudakis, N. Koudas, TwitterMonitor: trend detection over
the twitter stream, In: Proceedings of the International Conference
on Management of Data (SIGMOD), 2010, pp. 1155–1158.

[33] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, M. Vazir-
giannis, Degeneracy-based real-time sub-event detection in twitter
stream, In: Proceedings of the International Conference on Weblogs
and Social Media (ICWSM), 2015, pp. 248–257.

[34] M. Naaman, J. Boase, C.-H. Lai, Is it really about me? Message content
in social awareness streams, In: Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW), 2010, pp. 189–192.

[35] K. Nishida, T. Hoshide, K. Fujimura, Improving tweet stream classi-
fication by detecting changes in word probability, In: Proceedings of
the International Conference on Research and Development in
Information Retrieval (SIGIR), 2012, pp. 971–980.

[36] A. Nurwidyantoro, E. Winarko, Event detection in social media: a
survey, In: Proceedings of the International Conference on ICT for
Smart Society (ICISS), 2013, pp. 1–5.

[37] M. Osborne, S. Petrović, R. McCreadie, C. Macdonald, I. Ounis, Bieber
no more: first story detection using Twitter and Wikipedia, In:
Proceedings of the Workshop on Time-aware Information Access
(TAIA), 2012.

[38] R. Parikh, K. Karlapalem, ET: events from tweets, In: Proceedings of
the International Conference on World Wide Web (WWW) (Com-
panion Volume), 2013, pp. 613–620.

[39] S. Petrović, M. Osborne, V. Lavrenko, Streaming first story detection
with application to twitter, In: Proceedings of the Conference on the
North American Chapter of the Association for Computational Lin-
guistics (HLT), 2010, pp. 181–189.

[40] A. Ritter, Mausam, O. Etzioni, S. Clark, Open domain event extraction
from twitter, In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD), 2012, pp. 1104–1112.

[41] T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users:
real-time event detection by social sensors, In: Proceedings of the

218

International Conference on World Wide Web (WWW), 2010,
pp. 851–860.

[42] J. Sankaranarayanan, H. Samet, B.E. Teitler, M.D. Lieberman, J. Sper-
ling, TwitterStand: news in tweets, In: Proceedings of the Interna-
tional Conference on Advances in Geographic Information Systems
(SIGSPATIAL), 2009, pp. 42–51.

[43] K. Spärck Jones, A statistical interpretation of term specificity and its
application in retrieval, In: Document Retrieval Systems, Taylor
Graham Publishing, 1988, pp. 132–142.

[44] N.A. Thapen, D.S. Simmie, C. Hankin, The Early Bird Catches The
Term: Combining Twitter and News Data For Event Detection and
Situational Awareness. CoRR abs/1504.02335, 2015.

[45] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulk-
arni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D.V.
Ryaboy, Storm @Twitter, In: Proceedings of the International Con-
ference on Management of Data (SIGMOD), 2014, pp. 147–156.

[46] M. Walther, M. Kaisser, Geo-spatial event detection in the twitter
stream, In: Proceedings of the European Conference on Information
Retrieval (ECIR), 2013, pp. 356–367.

[47] A. Weiler, M. Grossniklaus, M.H. Scholl, Event identification and
tracking in social media streaming data, In: Proceedings of the EDBT
Workshop on Multimodal Social Data Management (MSDM), 2014,
pp. 282–287.

[48] A. Weiler, M. Grossniklaus, MH. Scholl, Evaluation measures for
event detection techniques on twitter data streams, In: Proceedings

of the British International Conference on Databases (BICOD), 2015,
pp. 108–119.

[49] A. Weiler, M. Grossniklaus, M.H. Scholl, Run-time and task-based
performance of event detection techniques for twitter, In: Pro-
ceedings of the International Conference on Advanced Information
Systems Engineering (CAiSE), 2015, pp. 35–49.

[50] A. Weiler, M.H. Scholl, F. Wanner, C. Rohrdantz, Event identification
for local areas using social media streaming data, In: Proceedings of
the Workshop on Databases and Social Networks (DBSocial), 2013,
pp. 1–6.

[51] J. Weng, B.-S. Lee, Event detection in twitter, In: Proceedings of the
International Conference on Weblogs and Social Media (ICWSM),
2011, pp. 401–408.

[52] W. Yang, I.G. Zurbenko, Kolmogorov–Zurbenko Filters, Wiley Inter-
discip. Rev.: Comput. Stat. 2 (3) (2010) 340–351.

[53] X. Zhou, L. Chen, Event detection over Twitter social media streams,
VLDB J. 23 (3) (2014) 381–400.

[54] M. Zimmermann, I. Ntoutsi, Z.F. Siddiqui, M. Spiliopoulou, H.-P.
Kriegel, Discovering global and local bursts in a stream of news, In:
Proceedings of the Symposium on Applied Computing (SAC), 2012,
pp. 807–812.

219

