
Upscaledb: Efficient Integer-Key Compression in a Key-Value Store using
SIMD Instructions

Daniel Lemirea,∗, Christoph Ruppb

aLICEF Research Center, TELUQ University of Quebec, Canada
bUpscaledb, Munich, Germany

Abstract

Compression can sometimes improve performance by making more of the data available to the processors faster.
We consider the compression of integer keys in a B+-tree index. For this purpose, systems such as IBM DB2 use
variable-byte compression over differentially coded keys. We revisit this problem with various compression alter-
natives such as Google’s VarIntGB, Binary Packing and Frame-of-Reference. In all cases, we describe algorithms
that can operate directly on compressed data. Many of our alternatives exploit the single-instruction-multiple-data
(SIMD) instructions supported by modern CPUs. We evaluate our techniques in a database environment provided by
Upscaledb, a production-quality key-value database. Our best techniques are SIMD accelerated: they simultaneously
reduce memory usage while improving single-threaded speeds. In particular, a differentially coded SIMD binary-
packing techniques (BP128) can offer a superior query speed (e.g., 40 % better than an uncompressed database) while
providing the best compression (e.g., by a factor of ten). For analytic workloads, our fast compression techniques
offer compelling benefits. Our software is available as open source.

Keywords: B+-tree, Data Compression, Vectorization, Key-Value Stores

1. Introduction

The B-tree and its variations (such as the B+-tree)
have been ubiquitous in computing since the 1970s [2].
Almost all relational database engines use data struc-
tures resembling the B-tree. Moreover, many applica-
tions rely on an embedded database to store key-value
pairs in B-trees. There are many popular choices today
including Berkeley DB [28], Kyoto Cabinet and Up-
scaledb.

Compressing B-trees can help reduce storage and it
may even accelerate some queries by easing the data
transfer bottleneck. Indeed, many operations in modern
databases leave the CPU idle, waiting for data to arrive
either from RAM or from the disk. Applications where
updates are infrequent and queries have low selectivity
(i.e., analytic workloads) are especially likely to benefit
from compression.

Short fixed-length keys are well suited for advanced
optimization. Of particular interest is the case where

∗Corresponding author. Tel.: 00+1+514 843-2015 #2835; fax:
00+1+800 665-4333.

Email addresses: lemire@gmail.com (Daniel Lemire),
chris@crupp.de (Christoph Rupp)

keys are integer values (e.g., 32-bit integers). They are
relevant when the key is an identifier (e.g., IP address,
user ID, row ID and so forth).

To get substantial performance benefits out of com-
pression, we must ensure that decompression is fast
enough. For this purpose, IBM DB2 uses variable-
byte compression and differential coding [3]. In a
differential-coding model, instead of storing the integer
keys themselves (x1, x2, . . .), we store the successive dif-
ferences (x1 − 0, x2 − x1, x3 − x2, . . .). These differences
are typically small when the values are maintained in
sorted order. Small integers can be compressed quickly
(see § 2). The compression technique used by IBM DB2
is well established, fast and it provides reasonable com-
pression ratios.

However, there is a wide range of integer compres-
sion techniques, and many of them have been modi-
fied to fully benefit from modern processors. For ex-
ample, commodity processors (e.g., ARM, POWER, In-
tel, AMD) provide instructions operating on wide 128-
bit registers (called XMM registers on Intel platforms).
These wide registers can be used to operate on many
values at once (e.g., four 32-bit integers). So we can
add or subtract four pairs of 32-bit integers using a sin-

Preprint submitted to Information Systems January 9, 2017



gle instruction. We qualify these instructions as being
single-instruction-multiple-data (SIMD). They are help-
ful when compressing arrays of integer values [21, 43].

Can optimized compression techniques accelerate a
key-value database system? To find out, we imple-
mented a set of state-of-the-art compression techniques
in an established open-source embedded database en-
gine (Upscaledb) based on a B+-tree. We also imple-
mented accompanying algorithms over compressed data
to support common operations. We provide an experi-
mental comparison. To our knowledge, such a compar-
ison has never been attempted, especially not one that
includes SIMD-accelerated schemes.

Unsurprisingly, we show that we can compress the
keys of the B+-tree to a tenth of the original size. This
ensures that more data can be stored in RAM. More-
over, our results indicate that compression improves
real-world performance and that the gains can be sub-
stantial (e.g., 40 %). However, we find that only our
fastest schemes, those based on SIMD instructions, ac-
celerate B+-tree performance reliably. Our work con-
firms earlier findings stressing the benefits of design-
ing compression algorithms to leverage SIMD instruc-
tions [22, 43].

2. Codecs

We are interested in compressing 32-bit unsigned in-
tegers. For most of our compression algorithms, in-
tegers are differentially coded prior to compression so
that most of them are small. That is, starting from an
array of integers x1, x2, . . ., we compress the integers
x1, x2 − x1, x3 − x2, . . . There are many suitable integer-
compression schemes: we selected some likely to offer
good performance.

For recent reviews on the topic, see Lemire and
Boytsov [21] or Zhao et al. [43].

Differential coding. During decoding, given the differ-
ences δ1 = x1, δ2 = x2 − x1, δ3 = x3 − x2, . . ., we need
to reconstruct x1, x2, x3, . . . This operation requires the
computation of a prefix sum (δ1, δ1 +δ2, δ1 +δ2 +δ3, . . .).
To avoid unnecessary data operations, we integrate the
decompression and the prefix sum computation. That
is, we output the decoded values all at once: we do not
first output the difference δ1, δ2, δ3, . . . and then the re-
constructed decoded values. For SIMD-based schemes,
the computation of the prefix sum can be vectorized as
follows. We process the data in registers of four 32-bit
integers (which call vectors).

1. Shift the vector by two integers
(δi, δi+1, δi+2, δi+3)→ (0, 0, δi, δi+1).

2. Add the original delta vector with the shifted ver-
sion (δi, δi+1, δi + δi+2, δi+1 + δi+3).

3. Shift the vector by one integer (δi, δi+1, δi +

δi+2, δi+1 + δi+3)→ (0, δi, δi+1, δi + δi+2).
4. Add the previous vector with the shifted version

(δi, δi + δi+1, δi + δi+1 + δi+2, δi + δi+1 + δi+2 + δi+3).

This vectorized approach can be much more efficient
than a naive scalar implementation [22].

Core functions. Beside compression and decompres-
sion, all our schemes need to support at least three core
functions:

• In a selection, we seek the ith integer. While we
can always fully decompress all the integers and
seek the result in the uncompressed array, we can
typically do much better with a specialized func-
tion that avoids unnecessary data manipulation—
ideally accessing only the necessary data and
avoiding committing to memory intermediate reg-
ister values.

• We assume that the integers are stored in sorted or-
der, and we want to seek the location of the first
value greater or equal to a given target, and to re-
trieve this value. Again, though we can implement
this function by fully decompressing the data, we
can often do much better by avoiding a full decom-
pression.

• We also need to implement an in-order insertion.
That is, under the assumption that the values are in
sorted order, we need to be able to add one more
value, while maintaining the result in sorted order.

In all three cases, we are targeting relatively small com-
pressed blocks (e.g., 256 integers). In instances where
there are many more integers, a search might rely on
auxiliary data structures. In our case, the B+-tree itself
provides the indexing so that all the compressed data
can be assumed to fit CPU cache.

Delete stability. All our schemes, except for binary
packing (BP128), satisfy a property that we call delete
stability: the removal of a value may not increase the
storage requirement. It was called the “Delete Safe
Property” by Bhattacharjee et al. [3] in the context of
IBM DB2 where it is required as a design principle.
Without this property, we may get the possibly unex-
pected effect that removing a key increases the stor-
age requirement. To see why delete stability should
not be taken from granted, consider the list of inte-
gers {1, 2, 3, 4, . . .}. Their successive differences are

2



Table 1: VByte compression of various integer values. The most sig-
nificant bit of each byte is in bold.

integer VByte

1 00000001
2 00000010

128 10000000, 00000001
256 10000000, 00000010

32768 10000000, 10000000, 00000010

{1, 1, 1, 1, . . .}. However, suppose that we delete the sec-
ond value, getting {1, 3, 4, . . .}, then the successive dif-
ferences contain a larger value (2): {1, 2, 1, 1, . . .}. Be-
cause the differences contain a larger value, they might
be less compressible—depending on the compression
algorithm used.

2.1. VByte

VByte [4, 6, 34, 37, 41] is one of the most popular
and established integer compression techniques. It is
also known as variable-byte, var-byte, varint and escap-
ing. We find it in common interchange formats (such as
Google’s Protocol Buffer) as well as in search engines
(such as Apache Lucene). Starting from the least sig-
nificant bits, we write non-negative integers using seven
bits in each byte, with the most significant bit of each
byte set to 0 (for the last byte of an integer), or to 1.
Integers in [0, 27) are coded using a single byte, inte-
gers in [27, 214) are coded using two bytes and so on.
See Table 1 for examples. There are many inconse-
quential variations on this format, e.g., we could use the
value 1 to indicate the last byte of an integer instead of
the value 0.

For large 32-bit input values (> 228), VByte is ineffi-
cient because it requires more storage (5 bytes) than the
uncompressed value (4 bytes). However, such a prob-
lem is uncommon if we use differential coding on sorted
inputs.

Our VByte implementation uses standard C code.
VByte decoding can be fast when most integers fit in
a single byte. One can then decode over a billion inte-
gers per second on commodity superscalar desktop pro-
cessors. However the performance can be lower when
integers fit in various numbers of bytes, as the cost of
branch mispredictions increases. Indeed, the decode
function requires frequent CPU branches when check-
ing the continuation bits and there are data dependen-
cies when decoding a value. In the worst case, the
CPU needs to process bytes sequentially. Several other
schemes were created to overcome this limitation, two

of them were included in our tests: Masked VByte [31]
and VarIntGB [12].

Implementing a fast select or fast (sequential) search
over VByte—without first decompressing all integers—
is relatively straightforward. Moreover, VByte can sup-
port fast insertions. That is, suppose that we want to
insert value a that would first between values xi and
xi+1. There is no need to change any of the bytes cor-
responding to the values x1, . . . , xi. After these bytes,
the data corresponding to xi+1 − xi must be updated so
that we can store the bytes corresponding to a − xi and
xi+1 − a. Meanwhile, all the bytes corresponding to the
values xi+2, xi+3, . . . do not need to be modified, so that
they can be merely moved in memory. This observa-
tion is not novel: Büttcher and Clarke remark that we
can often merge two variable-byte stream without hav-
ing to recompress them [7]. This makes VByte conve-
nient from an engineering point of view.

To summarize, VByte’s strength is its simplicity and
convenience. It can be implemented in just a few lines
of code. Copying and splitting encoded sequences do
not require a re-encoding of the data which enables fast
operations on compressed values, i.e., to insert or delete
values.

2.2. VarIntGB

VarIntGB [12] was engineered by Google to alleviate
the performance problems that VByte was causing. The
main insight is that instead of encoding and decoding
integers one at a time, we can encode and decode blocks
of 4 integers instead.

In VarIntGB, we use dlog28 (x + 1)e continuous bytes
to store an integer x. That is, if x is in [0, 28), we use
one byte, if x is in [28, 216), we use two bytes, and
so forth. Given four integers, x1, x2, x3, x4, we first
compute the array of byte widths M = dlog28 (x1 +

1)e, dlog28 (x2 + 1)e, dlog28 (x3 + 1)e, dlog28 (x4 + 1)e. This
array is made of four integers in {1, 2, 3, 4}. We can store
each of these values using 2 bits. Thus, the array M can
be stored in a single byte (8 bits). The VarIntGB for-
mat encodes each block of four integers using one byte
for the array M, and then M1 + M2 + M3 + M3 bytes to
represent the data corresponding to integers x1, x2, x3, x4
respectively. See Fig. 1. In practice, if the number of in-
tegers is not divisible by four, we may end with a partial
block.

When decoding VarIntGB data, we first examine the
byte M, and extract its four components. The inte-
gers x1, x2, x3, x4 are then decoded from the following
M1 + M2 + M3 + M3 bytes. Unlike VByte, the decod-
ing of VarIntGB requires a fixed number of operations

3



Figure 1: Encoded bytes corresponding to integer values
1024, 12, 10, 512 using VarIntGB. The result occupies seven bytes.

01—00—00—01 0x0004 0xc 0xa 0x0200

per encoded integer in our implementation. Thus, Var-
IntGB can be expected to offer a better performance
than VByte over poorly compressible data. Moreover,
we can address the important case where all four inte-
gers are stored using a single byte, and decode the four
integers quickly, thus achieving a superior performance
for highly compressible data.

Like VByte, implementing a fast select or a fast se-
quential search over VarIntGB is straightforward. How-
ever, a fast insertion is more difficult. If we find that the
values must be inserted at index i, then we can certainly
avoid rewriting the first di/4e values. However, recod-
ing remaining values in-place following the insertion of
a single new value is both technically cumbersome and
relatively slow. We found it more appropriate to decom-
press the remaining values, and then recompress them
with the new value added.

2.3. Masked VByte

Our VByte decoder algorithmically processes one in-
put byte at a time. Though VarIntGB accelerates the
processing by changing the format, it might also be pos-
sible to accelerate VByte itself by designing a SIMD-
based decoder. Indeed, the VByte format might be oth-
erwise convenient, if only because it is a well-known
and time-tested format. Stepanov et al. [34] tested such
a SIMD-based decoder but got only modest gains (less
than 25 %). However, Plaisance et al. [31] showed for
the first time that it is possible to multiply VByte de-
coding speed by using SIMD instructions in a decoder
called Masked VByte.

The Masked VByte approach first gathers the most
significant bits of an array of consecutive bytes. A sin-
gle instruction (pmovmskb) can serve for this purpose on
Intel processors. To illustrate the approach, suppose we
code the integers 128, 386, 16, 32 using VByte. The re-
sult will be six compressed bytes: 10000000, 00000001,
10000010, 00000011, 00010000, and 00100000. We
can gather the control bits (1,0,1,0,0,0 in this case) us-
ing the pmovmskb instruction. We can then use another
instruction (pshufb) that permutes the bytes of a regis-
ter in a desired way (that may be specified using a con-
trol mask) in as little as one cycle. Finally, we need to
mask or shift the bytes to arrive at the decoded integers.
The exact algorithm and its implementation is technical

and requires many steps, so we refer the reader to the
original work for details [31].

The Masked VByte can be three times faster than
a conventional VByte decoder when the data is suffi-
ciently compressible. Masked VByte also benefits from
an integrated SIMD-accelerated differential coding.

We implemented accelerated select and sequential
search functions that are similar to the VByte functions.
Selection is SIMD-accelerated: we decode in registers
the first 4di/4e values and return the value at the proper
index. Sequential search is handled similarly. For the
insertion, we use the same function as for VByte: this is
possible because the underlying data format is identical.

2.4. Binary Packing (BP128)
The binary representation of an unsigned integer x

has all but the less significant dlog2(x + 1)e bits equal to
zero. Given an array of integers x1, x2, . . ., if m is the
maximum value (m = max x1, x2, . . .), then we can store
all integers using dlog2(m + 1)e bits per integer. Effec-
tively, we can truncate the leading zeros. Binary pack-
ing is a compression technique that exploits this idea.
We regroup all integers in blocks of, say, 128 integers.
We find b = dlog2(m + 1)e and store it using as little as a
byte, and then we write out the 128 integers using b bits
per integer, packing them tightly so that 128b bits are
used in total.

Like with VarIntGB, if the number of integers is not
divisible by 128 integers, we may end with a partial
block. For simplicity, we may pad the input with ze-
ros so that the number of integers is divisible by 128.

Lemire et al. [22] describe an optimized SIMD-
accelerated version of binary packing, henceforth
BP128, where blocks of 128 integers are used. Differ-
ential coding is integrated in the unpacking routines.

We implemented fast functions to select just a single
value, that is, if the ith value is sought, only the first
4di/4e values are decoded (in registers) and the desired
value is returned.

We implemented a similar sequential search function.
Insertions require decoding the entire array, editing the
uncompressed data and recompressing.

2.5. Frame of Reference
Though all compression techniques presented so far

rely on differential coding, there are other alternatives.
Indeed, differential coding has the downside that it is
relatively difficult to random skip values: without aux-
iliary data structures, one must decode integers starting
from the beginning. In particular, it might be difficult to
use a fast search technique, like binary search, directly
on the compressed data.

4



One convenient compression alternative that offers
good compression as well as fast random access is
Frame-Of-Reference (FOR) [13]. In FOR, arrays of val-
ues are partitioned into blocks (e.g., of 32 integers). We
code the minimal value of the block, and then all values
are written in reference to this minimum. For exam-
ple, the block of values {500, 521, 531, 574} would be
written as {21, 31, 74}. To decode these values, all we
need is the minimum (500), and then we can compute
the sums {500, 21 + 500, 31 + 500, 74 + 500}. When
the arrays are sorted, as in our application, the minimal
value is always the first one. Thus, starting from the ar-
ray of sorted values x1, x2, x3, . . . , xn, we pack the array
x1 − x1, x2 − x1, x3 − x1, . . . , xn − x1 of transformed in-
tegers using dlog2(xn − x1 + 1)e bits per integer, packing
and unpacking them quickly, as in binary packing. In
our implementation, we use blocks that are multiples of
32 integers for the scalar version (henceforth FOR) and
multiple of 128 integers for the SIMD-accelerated ver-
sion (henceforth SIMD FOR). When the number of in-
put integers is not divisible by the block size, we create
a partial block, packing only the necessary x integers, to
maximize the compression ratio.

One can select the ith value in a block in constant time
(irrespective of the block size). If the values are sorted,
searching for a value can be done in logarithmic time
using binary search. Inserting a new value can be done
by uncompressing the block, inserting the value in the
uncompressed data and then recompressing it.

3. Database Compression in Upscaledb

Upscaledb is an embedded key-value database engine
implemented in C++. It is used for a variety of tasks like
caching web crawler data, gathering and pre-processing
sensor input and network events, storing the metadata
of backup software or just as a general data store for
mobile and desktop applications.

Upscaledb’s functionality is similar to other key-
value database engines like Berkeley DB, but different
in its implementation. Instead of using type-less byte ar-
rays as keys, Upscaledb is aware of the key type. It can
therefore optimize the underlying data structures and al-
gorithms for the type.

The key type is specified by the user when cre-
ating a database. Among the supported types are
32-bit integers, 64-bit integers, variable-length binary
data and fixed-length binary data. This configura-
tion parametrizes C++ template classes for lower-level
structures and algorithms.

Upscaledb uses a B+-tree [10] structure to store the
database indices. A B+-tree is similar to a conven-

Figure 2: Memory layout of a B+-tree node

Figure 3: The KeyList storing a sorted, non-consecutive sequence of
fixed-length integer keys

tional B-tree. It is an associative map that stores keys
and values in sorted order and supports logarithmic-time
search, insertion and deletion operations. However, the
B+-tree stores values aligned with the leaf nodes. More-
over, the leaf nodes form a linked list for fast traversal.

B+-trees are a common data structure. Indeed, B+-
trees are also used by other key-value stores like Berke-
ley DB and Tokyo Cabinet, as well as many other
database engines such as Oracle and SAP HANA.

Upscaledb’s B+-tree node (also called a page) stores
keys and values separately from each other. The actual
in-memory layout is described in Fig. 2. Each node has
a header structure of 32 bytes containing flags, a key
counter, pointers to the left and right siblings and to the
child node. This header is followed by the KeyList

(where we store the key data) and the RecordList

(where we store the value’s data). Their layout depends
on the index configuration and data types.

The RecordList of an internal node stores 64-bit
pointers to child nodes, whereas the RecordList of
a leaf node stores values or 64-bit pointers to external
blobs if the values are too large.

Fixed-length keys (Fig. 3) are always stored sequen-
tially and without overhead. They are implemented as
plain C arrays of the key type, i.e., uint32 t keys[]

for a database of 32-bit integers. Variable-length keys
(Fig. 4) use a small in-node index to manage the keys.
Long keys are stored in separate blobs; the B+-tree node
then points to this blob.

The Upscaledb in-memory representation of fixed-
length keys eases the application of compression. The
keys are already stored in sorted order, therefore apply-
ing differential encoding does not require a change in
the memory layout. Since keys are stored sequentially
in memory, SIMD instructions can be used efficiently if
needed.

3.1. Insertion and Deletion
In a conventional B+-tree, non-root, non-leaf nodes

can accommodate between b and 2b keys. Leaf nodes

5



Figure 4: The KeyList storing variable-length keys

accommodate between b and 2b−1 keys. Nodes are split
or merged following insertions and deletions to remain
in these ranges. (See Appendix A for details.)

Upscaledb differs from a conventional B+-tree in two
significant ways. Firstly, the capacity of nodes is de-
fined in terms of storage space, and not as a number
of keys. Secondly, the nodes are balanced locally: the
result of an insertion or deletion does not immediately
propagate back to the root of the tree. We review these
two differences in more details in the rest of this section.

Capacity as storage space Instead of defining capac-
ity as the number of keys that a node may include,
Upscaledb fixes the maximal space usage of a node
(16 kB by default). This space is used to store both
keys and values. Unlike conventional B+-trees
that forbid nodes from being less than half full,
Upscaledb only considers merging nodes that are
nearly empty, i.e., nodes that have less than 4 keys.

Leaf nodes use compression, and the maximal
number of keys that can be stored depends on the
compressibility of the data. The size of the value
entries has also an impact, since they both share
the same space.

When inserting a new key in a node with com-
pressed keys, it might be necessary to attempt the
insertion to determine how many bytes the new
node would use. Only then might we determine
that the node is full and needs to be split.

Upscaledb follows this approach. If a key can-
not be stored in the current space allocated to the
KeyList then it tries to reorganize the node (e.g.,
by growing the KeyList at the expense of the
RecordList, if possible). As a last resort, the
node is split and the insert operation is done in one
of the new nodes.

As mentioned in § 2, the binary packing schemes
violate the principle of “delete stability”. A
BP128-encoded block can grow if an integer is
deleted from the block. This can lead to cases
where deleting a key from a B+-tree leaf causes an

overflow and triggers a node split. To our knowl-
edge, Upscaledb is unique among B+-tree imple-
mentations in that it can split nodes when deleting
keys. Such an ability allows us to use BP128 as a
codec.

In a B+-tree, most nodes are leaf nodes: there
would be little storage gain in compressing non-
leaf nodes. For example, to store 20 million keys,
we might use 4 non-leaf nodes and 2500 leaf
nodes. Consequently, in Upscaledb, only leaf
nodes use compression. Thus, deleting a key from
a non-leaf node cannot lead to this node being split.
IBM DB2 also compresses only leaf nodes [3], for
the same reason.

Local balancing When inserting a new key, conven-
tional B+-tree implementations usually first go
down the tree to find the right node, and then po-
tentially split the nodes from the bottom up. More-
over, when deleting a key, underfilled nodes are
balanced. Splits and balancing operations can re-
quire modifications in the B+-tree which are prop-
agated all the way up to the root level.

Upscaledb’s implementation is different as it is bal-
ancing is only performed locally. It follows Guibas
and Sedgewick [15] and examines nodes while de-
scending the tree from the root. Nodes that cannot
accommodate a new key are split and underfilled
nodes are merged—without propagating changes
above the parent. This local balancing may im-
prove query latency.

This localized approach works because any par-
ent node is guaranteed to have space for one more
key—irrespective of the value of the new key.
Hence, when we split the current node, there is no
need to immediately split the parent to make room
for one more key. There are two minor inconve-
niences to this localized approach: it can happen
that nodes are split although the split is not imme-
diately required. The other inconvenience is that
empty nodes are not pruned if their removal would
cause global updates in the B+-tree, since we want
to restrict our updates to a local scope only. How-
ever, this waste only happens in rare situations, and
these empty nodes represent only a small fraction
of the total storage.

When descending the B+-tree toward the leaf
node, the insert and delete algorithms are identi-
cal in their implementation. Only when the leaf
is reached, do the algorithms diverge and perform
their specific action to either insert or delete a key.

6



If the operation aborts because a node split is re-
quired then the node is split, the parent node and
the siblings are updated—without propagating the
changes further. This is the case even for deletion
operations, where some compression codecs might
actually require more space when keys are deleted.

3.2. Integrating Compression

Upscaledb implements the typical operations of key-
value databases like inserting or overwriting keys, delet-
ing keys and looking up keys. In addition, bi-directional
cursors can iterate over the keys. When there is no com-
pression, many of these operations follow the same pat-
tern: binary search is used to find the position of the
(new) key in the node; then the operation is executed
at the specified position. This works well because we
have very fast random access over uncompressed arrays
of keys. With integer compression, more care is needed.

To improve performance, the compressed integers are
split in blocks. Therefore, we have the following hier-
archy: each leaf node contains a KeyList which may
contain several blocks. The block size depends on the
codec. BP128 stores up to 128 integers per block, all
other codecs store up to 256 integers by default. We ar-
rived at these block sizes through empirical evaluation
(see § 4.3.2).

Each block is described by a small index structure
at the beginning of the KeyList, containing the offset
of the block in bytes relative to the beginning of the
KeyList, the number of keys in the block, and the size
of the block in bytes (or, in case of BP128, the number
of bits required for encoding).

Also, each block stores the start value of the encoded
integers. This value serves as the starting value when
decoding the differentially coded values in the block and
it is used to locate the block of a given key. Blocks can
grow, but as soon as they reach a limit they are split.

Blocks are stored sequentially within the KeyList.
Following insertions and deletions, blocks can contain
various numbers of keys. It is even possible for a block
to become empty (to become a gap). However, the
space used by a block is not necessarily reclaimed ea-
gerly as its content is reduced.

If the B+-tree node overflows, it is split. Since this is
an expensive operation, several attempts are made to op-
timize the node’s layout and save space, to delay the ac-
tual split. Blocks are reorganized and gaps are removed.
Also, the space which is assigned to the RecordList

can be reduced, and assigned to the KeyList, and vice
versa.

From the following list, each integer codec has to
support the compress and decompress functions. The
other functions are not mandatory.

• Compress — Compresses a block of integers to a
provided memory location.

uint32_t compress_block(Index *

index , const uint32_t *in,

uint32_t *out);

The compress function returns the number of
bytes required to compress the data.

• Decompress — Decompresses a block of com-
pressed integers to a buffer.

void decompress_block(Index *index ,

const uint32_t *in , uint32_t *

out);

• Insert — Inserts a new key in a compressed block.
Except for BP128, FOR and SIMD FOR, all
codecs provide such a custom insert function: see
§ 3.3 for details. BP128, FOR and SIMD FOR de-
code the block, modify the decompressed data and
re-encode the block.

bool insert(Index *index , uint32_t

*in, uint32_t key , uint32_t *

pslot);

The insert functions returns false if the key already
exists. It also returns the position of the new key
in the KeyList. This position (the “slot”) is then
required to insert the corresponding value into the
RecordList. It is assumed that the block has
enough free space to insert another key. Growing
or splitting the block is handled by the caller.

If possible, the insert function implements a fast
code path to append a new key at the end. See
§ 3.4 for details.

• Find — Performs a lower bound find for a key, re-
turns the location of the first value at least as large
as the specified key value. This function is used to
search for a key.

int find_lower_bound(Index *index ,

const uint32_t *in , uint32_t key

, uint32_t *presult);

• Delete — Deletes a key. Only implemented by the
VByte and Masked VByte codecs. Other codecs
decode the block, modify the decompressed data
and re-encode the block.

7



Figure 5: A KeyList before (top) and after (bottom) the vacuumize-
operation. Fragmentation occurs when empty blocks are deleted.
Blocks will have unused space if keys are deleted from a block.

template <typename GrowHandler >

void del(Index *index , uint32_t *in

, int slot ,

GrowHandler *handler);

The codecs do not necessarily have “delete stabil-
ity” (see § 2) and can require more space after a key
is deleted. The GrowHandler template parameter
is used to signal such circumstances to the caller.
It can assign more space to the current block or re-
quest a B+-tree node split.

• Vacuumize — Reorganizes all blocks, trying to re-
duce gaps and space to avoid B+-tree node splits.

void vacuumize ();

When “vacuumizing” a KeyList (see Fig. 5), the
BP128, FOR and SIMD FOR codecs decode all
blocks into temporary memory and re-encodes
them into new (usually fewer, densely packed)
blocks. The other codecs just move the blocks to
remove any gaps between the blocks.

3.3. Fast In-place Updates
We can shift an array of bytes in memory by a byte

offset at high speed. The C language offers the memmove
function for this purpose, and it is highly optimized—to
the point of being limited by the memory throughput.
Thus, it is efficient to modify byte-oriented formats in-
place (e.g., VByte and VarIntGB). However, we are not
aware of any similarly fast function (within a factor of
four) to shift an array of bytes by a bit offset that is not
divisible by eight. Thus, inserting a value that occu-
pies a number of bits non-divisible by eight in a packed
array is likely to be a relatively slow operation. This
makes BP128, FOR and SIMD FOR data streams more
difficult to update in-place.

In our implementation, VByte, VarIntGB, and
Masked VByte perform all update operations directly

on compressed data. BP128, FOR and SIMD FOR still
require a decode-modify-encode loop for updates.

3.4. Fast Append Functions

A common database index operation is to insert new
keys at the end, i.e., for time-series data where the key is
a chronologically incremented timestamp. Appending
integers to an array of differentially-coded compressed
integers could be slow if we had to first decode the last
value (by summing up the differences). To improve per-
formance, the block descriptor stores the value of the
last integer. With this cached value, it is trivial to decide
whether a new key is appended at the end or inserted in
the middle. If it is appended, then its delta value can be
calculated by subtracting the (previously) highest block
value from the new value. This optimization improved
performance by up to about 30 % for the insertion of
sequentially ordered keys. Adding 32 extra bits to the
descriptor does not degrade the compression ratios by
a significant degree when dozens or even hundreds of
keys are stored in a block.

All codecs support fast append functions that avoid
first uncompressing the data at least some of the time.
For BP128, we only uncompress the block if the exist-
ing bit width is insufficient compared to the size of the
new delta to be appended. Otherwise, we modify the
compressed data directly. We proceed with FOR and
SIMD FOR similarly: if the existing bit width is suffi-
cient, we append directly in the compressed data, other-
wise we are forced to first uncompress the block.

4. Benchmarks

We first benchmark separately the various operations
that are relevant to a key-value store: decompression
speed, insertions, select and search. After benchmark-
ing the operations separately, we then report on the per-
formance in Upscaledb with realistic data.

4.1. Hardware

All our experiments are executed on an Intel Core
i7-4770 CPU (Haswell) with 32 GB memory (DDR3-
1600 with double-channel). The CPU has 4 cores of
3.40 GHz each, and 8 MB of L3 cache. Turbo Boost is
disabled on the test machine, and the processor is set to
run at its highest clock speed. The computer runs Linux
Ubuntu 14.04. We report wall-clock time.

Except for the fact that dirty B+-tree nodes in Up-
scaledb are purged in the background, all tests are
single-threaded. Our workloads are small enough to fit
in memory and input-output is not a limiting factor.

8



4.2. Microbenchmarks and Evaluation

We compare the codecs—without database interac-
tion. We compile our C++ benchmarking software us-
ing the GNU GCC 4.8.2 compiler with the -O3 flag. Our
implementation is freely available under an open-source
license.1

Given a bit width b ≤ 24, we first generate an array
of 256 integers in [0, 2b): δ1, δ2, . . .. The prefix sum is
computed (δ1, δ1 + δ2, . . .) and used as input data. The
result is a sorted list of 32-bit integers. Fig. 6 shows
the average compressed size (in bits per integer) and the
decompression speed in billions of integers per second.
We see that BP128 offers the best compression whereas
FOR and SIMD FOR offer poorer compression com-
pared to other codecs.

Regarding the decompression speed, we report the
numbers in billions of 32-bit integers decompressed per
second (Bis). See in Fig. 6b. SIMD FOR is twice as
fast as the next scheme, BP128, which is itself much
faster than most other alternatives (up to twice as fast).
VByte is the only codec that is limited by a best speed
of only about 1 billion integers per second. In con-
trast, SIMD FOR can decompress data at a rate of over
7 billions integers per second—or about two integers
decoded per clock cycle.

Fig. 7 presents various benchmarks regarding opera-
tions on compressed data.

• Instead of starting from the integers in sorted order
and compressing them, we pick the integers at ran-
dom one by one and we insert them in the VByte or
VarIntGB stream (Fig. 7a). In the naive implemen-
tation, the stream is first decompressed, we insert
the value and then recompress the stream. In the
fast version, we use our optimized function. We
see that the optimized function can be several times
faster. We also see that VByte is slightly faster than
VarIntGB in this case due to its simpler data layout.

• In Fig. 7b, we randomly select the value at one of
the indexes. We present the data in millions of op-
erations per second with a logarithmic scale. We
see that FOR and SIMD FOR are an order of mag-
nitude faster at this task because they do not rely on
differential coding. BP128 is the next fastest codec
while VByte is the slowest.

• In Fig. 7c, we benchmark the find function by
randomly seeking a value in range. In this in-
stance, all schemes but VByte are nearly as fast

1https://github.com/lemire/SIMDCompressionAndIntersection

��

��

���

���

���

���

���

���

�� ��� ��� ���

�
���
��
�
��
��
��
�
�
�

�����������������������

���
��������

�����
�����

(a) Bits per integer

��

��

��

��

��

��

��

��

��

��

���

�� ��� ��� ���

�
�
�
�
�
�
��
�
�
��
�
��
�
�
�
�
��
�
��
�

�����������������������

��������
���

��������

�������������
�����
�����

(b) Decompression speed (Bis)

Figure 6: Compression rates and decompression speed

(within a factor of two) for compressible data,
while VByte is significantly slower. VarIntGB of-
fers the best performance in this case. FOR and
SIMD-FOR differ from the other schemes in that
they use a binary search (as a sequential search
proved slower) whereas all other codecs rely on
a sequential search. If the block size was much
larger, FOR and SIMD FOR could be expected to
perform better, but we are not interested in that
case.

Overall, our results suggest that on speed and com-
pression ratios, BP128 offers good performance. If
faster random access is necessary, and the compression
ratio is not an issue, then FOR and SIMD-FOR might
be preferable.

4.3. In-database Benchmarks
Though synthetic benchmarks show that some com-

pression schemes are superior than others, we are inter-
ested in the effect of compression in an actual key-value
store. For this purpose, we compiled Upscaledb and our
benchmarking software using the GNU GCC 4.8.2 com-
piler with the -O3 flag. Upscaledb is freely available

9



��

���

����

����

����

����

����

�� ��� ��� ���

�
�
�
��
�
�
���
�
�
��
��
��
�
��
�
��
��
�
�
�
�
�
�
�
�

�����������������������

���������������
����������������

������������
�������������

(a) Time to create 256-integer array from random inserts

��

���

����

�����

�� ��� ��� ���

�
�
��
�
��
�
�
�
�
�
��
�
���
��
�
�
��
�
��
�
�
�
�
�
�
�

�����������������������

��������
���

��������

�������������
�����
�����

(b) Select speed

��

��

���

���

���

���

���

�� ��� ��� ���

�
�
�
��
�
��
�
�
�
�
��
�
���
��
�
�
��
�
��
�
�
�
�
�
�
�

�����������������������

��������
���

��������

������������
�����
�����

(c) Find speed

Figure 7: Operation timings and speeds over compressed data, for various codecs.

under an open-source license (http://upscaledb.
com). The benchmarks are executed with “ups bench”,
a benchmarking tool which is part of Upscaledb’s
sources.

We aim to study the compression of the integer keys.
For this purpose, we only stored the keys, without any
accompanying values. All our queries bear only on the
keys.

For our experiments, we use the ClusterData model
from Anh and Moffat [1]. We vary the number of keys
generated, up to a billion. When generating N keys,
we set the range of possible values to [0, 9N/8). We
insert the keys in order. We choose this data distribution
because it is a reasonable model for realistic data.

Table 2 and Fig. 8 present compression results with
various database sizes, using the default block sizes
(128 for BP128 and 256 for other codecs, see § 4.3.2).
Expectedly, the best compression is offered by BP128
which can compress the database by a factor of ten com-
pared to an uncompressed B+-tree. The compression ra-
tios offered by the other codecs are similar (compression
ratio of 2 or 3), with SIMD FOR compressing slightly
less and VByte compressing slightly better. Both VByte

Table 2: Database sizes in bytes per key, for ClusterData model (N =

20 000 000)

key format bytes per key

uncompressed 4.02
VByte/Masked VByte 1.06
VarIntGB 1.31
FOR 1.26
SIMD FOR 1.28
BP128 0.37

and Masked VByte have exactly the same compressed
output. In these tests, we see that the compression as
measured by the number of bytes used per key is nearly
constant irrespective of the database size.

4.3.1. In-database timings
Each benchmark runs three times, the median result is

reported. The difference between the median and other
timings is small (typically less than 1 %).

We execute four operations:

Look-up This benchmark opens an existing database

10



��

����

����

����

����

����

����

����

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

��������
���

��������
�������������

�����
�����

������������

(a) Relative lookups timings

�����

��

�����

�����

�����

�����

����

�����

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

��������
���

��������
�������������

�����
�����

������������

(b) Relative cursor timings

����

����

��

����

����

����

����

��

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

��������
���

��������
�������������

�����
�����

������������

(c) Relative SUM timings

��

����

��

����

��

����

��

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

��������
���

��������
�������������

�����
�����

������������

(d) Relative insert timings

Figure 9: Relative timings in Upscaledb (ClusterData).

��

����

��

����

��

����

��

����

��

����

������ ������ ������ ������ ������

�
�
��
�
��
�
��
�
�
�

���������������������������������

��������
���

��������
�������������

�����
�����

������������

Figure 8: Relative database sizes in Upscaledb (ClusterData)

and performs point-lookups of all inserted keys.
Each lookup requires a B+-tree traversal to the
leaf node. The node then performs a linear search
through the block index and locates the block
which stores the requested key. The codec then
searches the block for the key.

We implemented search functions for all codecs di-
rectly on compressed data. FOR and SIMD FOR
do not use differential compression and therefore
perform a binary search directly on the compressed
data. All other codecs use linear search because
they need to rebuild the original value during the
search.

The benchmarks show that integer compression
does not cause a significant performance hit for
lookup operations. Indeed, Fig. 9a shows that the
penalty for using compressed keys is about 50 %.
We get the best results with SIMD FOR, VarIntGB
and FOR (a penalty ranging from 20 % to 40 %)
and the worst results with VByte and BP128 (with
a penalty of up to 60 %). The good results from
VarIntGB in this case are consistent with our mi-

11



crobenchmarks (see § 4.2 and Fig. 7c). BP128 is
slightly penalized in this case because it is able
to store more keys per leaf node due to its bet-
ter compression: searching in a node containing
more keys takes longer on average, everything else
being equal. Though VByte and Masked VByte
have the same underlying format, Masked VByte
is noticeably faster though not as fast as FOR and
SIMD FOR.

Cursor This benchmark opens an existing database
and creates a cursor to traverse from the first to the
last key. To position itself on the first key, the cur-
sor traverses down the B+-tree at the left-most path
down to the leaf, then visits each leaf. Since all leaf
nodes are linked, no further traversal is required.

The cursor attaches itself to a leaf node, and stores
the current position in the leaf. When the cursor is
moved to the next key, this position is incremented.
If the last key in the leaf is reached, the cursor loads
the sibling of the leaf, attaches itself to the sibling
and resets its position to 0.

The cursor then retrieves the key at its current po-
sition. If the KeyList is uncompressed then the
key is accessed with O(1). A compressed KeyList
first traverses the list of block descriptors, accu-
mulating each block’s number of keys till it finds
the block which contains the requested key. In
our original implementation, the cursor then used
a select method to retrieve the key directly from
the compressed block. But since cursors are usu-
ally used for sequential access, and therefore fre-
quently access the same block, we decided to de-
code the block and cache the decoded values. This
causes additional latency when a block is accessed
initially, but all following accesses can be served
with high throughput. Indeed, our tests showed a
significant performance improvement compared to
the previous implementation based on select.

The final results are presented in Fig. 9b. Com-
pared to an uncompressed database, all codecs ex-
cept VByte show a penalty of less than about 8 %.
VByte does slightly worse with a penalty some-
times exceeding slightly 11 %. Again, though they
use the same underlying format, Masked VByte is
noticeably faster than VByte.

SUM This benchmark performs a “SUM” operation
on all keys. It is equivalent to a SELECT

SUM(column) operation of a SQL database, where
the specified column is an index of unique 32-
bit integer keys. For such operations, Upscaledb

does not use a cursor to traverse the B+-tree, but
performs the operation directly on the B+-tree’s
data, without copying the keys into the applica-
tion’s memory.

If compression is disabled, the KeyList stores all
keys in an array of type uint32 t[]. The “SUM”
operation sums all keys in that array. If com-
pression is enabled, the KeyList traverses each
compressed block, uncompresses it into temporary
memory (in L1 cache) and sums all keys of that
memory.

The benchmark results in Fig. 9c show the SIMD
accelerated BP128 and SIMD FOR as the clear
winners. The compressed databases are even faster
than an uncompressed database—with gains reach-
ing 40 % for BP128.

SUM performance is impacted by database size:
the bigger the database, the more compression
is beneficial, with BP128 and SIMD FOR offer-
ing the best performance. Only Masked VByte,
BP128 and SIMD FOR are superior to the uncom-
pressed database on the entire test range. VarIntGB
and FOR also help the speed for large databases
while VByte fails to catch up to the uncompressed
database in the scope of our test.

We take this query as a representative of analytic
queries where much of the data must be accessed
(the query has low selectivity). In such cases, we
expect compression to be particularly useful as it
reduces data access costs. Upscaledb supports sev-
eral such queries such as COUNT, COUNT DIS-
TINCT, COUNT IF, COUNT DISTINCT IF, AV-
ERAGE, . . .

Fig. 10 illustrates our results with a more ad-
vanced query (“AVERAGE(key) WHERE key >
MAX(keys) / 2”). It shows that such queries can
be accelerated by the fast compression offered by
SIMD FOR and BP128.

Insert This benchmark creates a new database for 32-
bit integer keys and inserts various numbers of
keys. We should expect a compressed database to
be slower for such applications, as insertions may
require complete recompression of some blocks—
in the worst case.

Fig. 9d shows that among the compressed formats,
the best insertion performance is offered by the
FOR, SIMD FOR and Masked VByte codecs, fol-
lowed by BP128 and VarIntGB. VByte is slower
than all other codecs. If one uses FOR, SIMD FOR

12



����

����

����

��

����

����

����

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

��������
�����

������������

Figure 10: Relative timings in Upscaledb for the query “AVER-
AGE(key) WHERE key > MAX(keys) / 2” over the ClusterData
dataset.

and Masked VByte, insertions in a compressed
database are only 2.5× slower than insertions in an
uncompressed database.

4.3.2. Setting the block size
Fig. 11 presents the same results for two possible

block sizes (128, 256). We experimented with a wide
range of block sizes, but only report on these two
choices for simplicity. We see that the performance with
a larger block size (256) is slightly better and the over-
all size smaller. The FOR and SIMD FOR codecs ben-
efit substantially from larger block sizes (compared to
other codecs) because they rely on a binary search to lo-
cate values in the compressed stream: the benefits of a
binary search versus a sequential search grow with the
size of the blocks. This justifies our design choice of
opting for large block sizes (256) for all but one codec.
Exceptionally, for BP128, we prefer the smaller block
size (128).

5. Related Work

There has been much research dedicated to improving
the performance of tree data structures. For example,
cache-conscious trees can reduce the number of cache
misses to improve performance [20, 24]. In particu-
lar, Lee et al. [20] propose the Cache Sensitive T-Trees
(CST-Trees).

The application of SIMD instructions to accelerate
B+-tree operations (without compression) is reviewed
by Zhou and Ross [44]. Willhalm et al. [40] describe
how to scan quickly column stores using SIMD instruc-
tions. Schlegel et al. [33] show how to accelerate K-
ary search on modern processors. Raman et al. [32] de-
scribe the IBM DB2 column store that makes extensive
use of SIMD instructions and compression.

Compression in databases has a long history [39].
Compression techniques such as run-length encoding
and differential coding are common, for example, in
column-oriented databases [35]. IBM DB2 compresses
integer keys using variable-byte compression and differ-
ential coding [3]. Graefe [14] describes the compression
opportunity when keys are consecutive.

Jin and Chung improve the CST-Trees by using FOR
compression [16]. Similarly, Kim et al. [18] propose a
SIMD-accelerated in-memory tree index (FAST) where
they use FOR. In related work, Yamamuro et al. [42]
propose the VAST-Tree: it improves upon FAST in sev-
eral ways. In particular, it offers better compression ra-
tios of the keys than FAST by using differential coding
and the PFOR compression scheme [45]. Though fast,
PFOR does not exploit SIMD instructions: Lemire and
Boytsov [21] found that SIMD-accelerated binary pack-
ing (i.e., BP128) could be 2 to 3 times faster with little
difference in the compression ratios.

Random access in differentially-coded compressed
arrays is often made possible with auxiliary data struc-
tures that allow skipping [26, 37]. However, there are
alternatives to differential coding that offer more conve-
nient random access. Claude et al. [9] propose differ-
entially encoded search trees; Teuhola [36] adapts in-
terpolative coding [25] so that it can support logarith-
mic search. Brisaboa et al. [5] modify variable-byte en-
coding to create Directly Addressable Codes (DACs)—
so that one can have access to individual coded value
in constant time using rank/select dictionaries. This
strategy is applied to other compression schemes by
Külekci [19]. There has also been much interest in vari-
ations on the Elias-Fano representation [30, 38], as it
can provide good compression and fast random access
to the encoded values. Other techniques such as wavelet
trees [27] or bitmap indexes [11, 17, 22, 23] can also be
used for similar purposes.

Our work should be applicable to other B-trees
and related data structures, i.e., Log-Structured Merge-
Trees [8, 29] (LSM).

6. Conclusion

We have shown that fast key compression could im-
prove the single-threaded performance of a key-value
store—if these compression techniques are accelerated
with SIMD instructions. One of our best performing
codec (BP128) has the property that the removal of
a key may (slightly) increase the storage requirement:
something that the IBM DB2 design team specifically
excluded. We have presented a practical B+-tree imple-

13



�����

����

�����

����

�����

����

�����

������ ������ ������ ������ ������

�
�
��
�
��
�
��
�
�
�

���������������������������������

���������
���������

������������
������������

(a) Database sizes

��

����

��

����

��

����

������ ������ ������ ������ ������

��
��
���
�
��
��
�
��
�
�
�
�
�
�
��
�
�
�
�
��
��
�

���������������������������������

���������
���������

������������
������������

(b) SUM timings

Figure 11: Experimental results for two block sizes (128, 256) over ClusterData in Upscaledb.

mentation that supports this case where the deletion of
a key may increase the storage.

We get the best performance for SIMD codecs
(BP128 and SIMD FOR). Unlike other codecs, they
show an ability to noticeably improve query perfor-
mance in all our tests (from small to large databases) on
the analytic (SUM) benchmark. Naturally, these gains
come with reduced storage usage. As we expected,
there is a downside to compression: slower insertion
operations. However, for analytic applications where
insertions are infrequent, this downside may be inconse-
quential. The choice between BP128 and SIMD FOR is
a trade-off between superior compression (BP128) and
superior random lookup speed (SIMD FOR). Indeed,
SIMD FOR has superior lookup performance because
it supports a binary search directly on the compressed
data. However, BP128 has superior compression due
to its reliance on differential coding. Our experiments
show that BP128 has better performance for low selec-
tivity queries. Our results also show that if we are to use
the standard VByte format, then a SIMD-accelerated
decoder (Masked VByte) can accelerate queries with-
out requiring any change to the database format.

Our results suggest also that it is beneficial to pro-
gram common analytic functions (e.g., SUM, COUNT,
COUNT DISTINCT, AVERAGE) so that they work di-
rectly on buffered data in CPU cache, bypassing explicit
cursor handling. Further work could quantify the bene-
fits of implementing these functions so that they operate
directly on compressed data.

The importance of SIMD instructions for perfor-
mance is likely to grow. Already, some processors sup-
port wider registers (e.g., 256 bits for recent Intel pro-
cessors using AVX2 and 512 bits for upcoming proces-
sors using AVX-512). From an engineering perspective,

it seems easier to design processors that operate on more
values during each cycle (wider processors) than pro-
cessors that run at a higher frequency. Thus it is proba-
bly wise to invest in data structures that are best able to
benefit from SIMD instructions.

The SIMD accelerated BP128 also offers the best
compression ratio, especially for dense key ranges like
auto-incremented primary keys or dense time stamps.
BP128 compresses data by an order of magnitude, re-
ducing pressure on memory resources.

We limited our work to the compression of 32-bit
integer keys. This is a common case well worth opti-
mizing. However, many of the other compression tech-
niques developed for B+-trees could be revisited in light
of the new hardware capabilities.

7. Acknowledgments

D. Lemire acknowledges support from the Natural
Sciences and Engineering Research Council of Canada
(NSERC) from grant number 26143.

8. References

[1] V. N. Anh and A. Moffat. Index compression using 64-bit words.
Softw. Pract. Exp., 40(2):131–147, 2010.

[2] R. Bayer and E. M. Mccreight. Organization and maintenance
of large ordered indexes. Acta Inf., 1(3):173–189, Sept. 1972.

[3] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross,
S. Lau, C. McArthur, Z. Toth, and R. Sherkat. Efficient index
compression in DB2 LUW. Proc. VLDB Endow., 2(2):1462–
1473, 2009.

[4] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory column
stores. In SIGMOD 2009, pages 283–296, New York, NY, USA,
2009. ACM.

[5] N. R. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing
direct access to variable-length codes. Inform. Process. Manag.,
49(1):392 – 404, 2013.

14



[6] S. Büttcher, C. Clarke, and G. Cormack. Information retrieval:
Implementing and evaluating search engines. The MIT Press,
Cambridge, Massachusetts, 2010.

[7] S. Büttcher and C. L. Clarke. Hybrid index maintenance for
contiguous inverted lists. Information Retrieval, 11(3):175–207,
2008.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. BigTable:
A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008.

[9] F. Claude, P. K. Nicholson, and D. Seco. On the compression of
search trees. Inform. Process. Manag., 50(2):272–283, 2014.

[10] D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–
137, June 1979.

[11] J. S. Culpepper and A. Moffat. Efficient set intersection for in-
verted indexing. ACM Trans. Inf. Syst., 29(1):1:1–1:25, Dec.
2010.

[12] J. Dean. Challenges in building large-scale information re-
trieval systems: invited talk. In Proceedings of the Second ACM
International Conference on Web Search and Data Mining,
WSDM ’09, pages 1–1, New York, NY, USA, 2009. ACM.
Author’s slides: http://static.googleusercontent.

com/external_content/untrusted_dlcp/research.

google.com/en/us/people/jeff/WSDM09-keynote.pdf

[Last checked Nov. 2015.].
[13] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing re-

lations and indexes. In Proceedings of the Fourteenth Interna-
tional Conference on Data Engineering, ICDE ’98, pages 370–
379, Washington, DC, USA, 1998. IEEE Computer Society.

[14] G. Graefe. Efficient columnar storage in B-trees. SIGMOD Rec.,
36(1):3–6, Mar. 2007.

[15] L. J. Guibas and R. Sedgewick. A dichromatic framework for
balanced trees. In Proceedings of the 19th Annual Symposium
on Foundations of Computer Science, SFCS ’78, pages 8–21,
Washington, DC, USA, 1978. IEEE Computer Society.

[16] R. Jin and T.-S. Chung. Node compression techniques based
on Cache-Sensitive B+-Tree. In Computer and Information Sci-
ence (ICIS), 2010 IEEE/ACIS 9th International Conference on,
pages 133–138, Aug 2010.

[17] A. Kane and F. Tompa. Skewed partial bitvectors for list inter-
section. In Proceedings of the 37th annual international ACM
SIGIR conference on Research and development in information
retrieval, pages 263–272. ACM, 2014.

[18] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
Fast architecture sensitive tree search on modern cpus and gpus.
In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’10, pages 339–350,
New York, NY, USA, 2010. ACM.

[19] M. Kulekci. Enhanced variable-length codes: Improved com-
pression with efficient random access. In Data Compression
Conference (DCC), 2014, pages 362–371, March 2014.

[20] I.-h. Lee, J. Shim, S.-g. Lee, and J. Chun. CST-Trees: Cache
Sensitive T-Trees. In R. Kotagiri, P. Krishna, M. Mohania, and
E. Nantajeewarawat, editors, Advances in Databases: Concepts,
Systems and Applications, volume 4443 of Lecture Notes in
Computer Science, pages 398–409. Springer Berlin Heidelberg,
2007.

[21] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. Softw. Pract. Exp., 45(1):1–29,
2015.

[22] D. Lemire, L. Boytsov, and N. Kurz. SIMD compression and the
intersection of sorted integers. Softw. Pract. Exp., 46(6):723–
749, 2016.

[23] D. Lemire, G. Ssi-Yan-Kai, and O. Kaser. Consistently faster
and smaller compressed bitmaps with roaring. Software: Prac-

tice and Experience, 46(11):1547–1569, 2016.
[24] G. Mihaila and I. Stanoi. A tree for all seasons. In Database En-

gineering and Applications Symposium, 2006. IDEAS ’06. 10th
International, pages 3–10, Dec 2006.

[25] A. Moffat and L. Stuiver. Binary interpolative coding for effec-
tive index compression. Inform. Retrieval, 3(1):25–47, 2000.

[26] A. Moffat and J. Zobel. Self-indexing inverted files for fast text
retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[27] G. Navarro. Wavelet trees for all. Journal of Discrete Algo-
rithms, 25(0):2 – 20, 2014. 23rd Annual Symposium on Com-
binatorial Pattern Matching.

[28] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In Pro-
ceedings of the Annual Conference on USENIX Annual Techni-
cal Conference, ATEC ’99, pages 43–43, Berkeley, CA, USA,
1999. USENIX Association.

[29] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-
structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June
1996.

[30] G. Ottaviano and R. Venturini. Partitioned elias-fano indexes.
In Proceedings of the 37th International ACM SIGIR Confer-
ence on Research &#38; Development in Information Retrieval,
SIGIR ’14, pages 273–282, New York, NY, USA, 2014. ACM.

[31] J. Plaisance, N. Kurz, and D. Lemire. Vectorized VByte De-
coding. In Proceedings of the first International Symposium
on Web Algorithms, iSWAG ’15, 2015. Available from http:

//arxiv.org/abs/1503.07387.
[32] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk,

V. KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M.
Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer,
D. Sharpe, R. Sidle, A. Storm, and L. Zhang. Db2 with blu
acceleration: So much more than just a column store. Proc.
VLDB Endow., 6(11):1080–1091, Aug. 2013.

[33] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search on modern
processors. In Proceedings of the Fifth International Workshop
on Data Management on New Hardware, DaMoN ’09, pages
52–60, New York, NY, USA, 2009. ACM.

[34] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and
P. S. Oberoi. SIMD-based decoding of posting lists. In Proceed-
ings of the 20th ACM International Conference on Information
and Knowledge Management, CIKM ’11, pages 317–326, New
York, NY, USA, 2011. ACM.

[35] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik. C-store: A column-oriented
dbms. In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 553–564. VLDB En-
dowment, 2005.

[36] J. Teuhola. Interpolative coding of integer sequences supporting
log-time random access. Inform. Process. Manag., 47(5):742–
761, 2011. Managing and Mining Multilingual Documents.

[37] F. Transier and P. Sanders. Engineering basic algorithms of an
in-memory text search engine. ACM Trans. Inf. Syst., 29(1):2:1–
2:37, Dec. 2010.

[38] S. Vigna. Quasi-succinct indices. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Min-
ing, WSDM ’13, pages 83–92, New York, NY, USA, 2013.
ACM.

[39] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte.
The implementation and performance of compressed databases.
SIGMOD Rec., 29(3):55–67, Sept. 2000.

[40] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. SIMD-scan: ultra fast in-memory table scan using
on-chip vector processing units. Proc. VLDB Endow., 2(1):385–
394, Aug. 2009.

[41] H. E. Williams and J. Zobel. Compressing integers for fast file

15



access. The Computer Journal, 42(3):193–201, 1999.
[42] T. Yamamuro, M. Onizuka, T. Hitaka, and M. Yamamuro.

VAST-Tree: A vector-advanced and compressed structure for
massive data tree traversal. In Proceedings of the 15th Interna-
tional Conference on Extending Database Technology, EDBT
’12, pages 396–407, New York, NY, USA, 2012. ACM.

[43] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J.-Y. Nie, H. Yan,
and J.-R. Wen. A general SIMD-based approach to accelerat-
ing compression algorithms. ACM Trans. Inf. Syst., 33(3):15:1–
15:28, Mar. 2015.

[44] J. Zhou and K. A. Ross. Implementing database operations us-
ing SIMD instructions. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD ’02, pages 145–156, New York, NY, USA, 2002. ACM.

[45] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In Proceedings of the 22nd In-
ternational Conference on Data Engineering, ICDE ’06, pages
59–71, Washington, DC, USA, 2006. IEEE Computer Society.

Appendix A. Insertions and Deletions in B+-trees

B+-tree [10] can be considered textbook material.
Nevertheless, for completeness, we briefly review in-
sertions and deletions in B+-trees. Non-root, non-leaf
nodes can accommodate between b and 2b keys whereas
leaf nodes accommodate between b and 2b − 1 keys.
Nodes are split or merged to maintain the number of
keys in these ranges.

Insertion in a B+-tree works generally as a two-step
process: we first go down the tree to find the right node,

and then we potentially split the nodes from the bottom
up. That is, when inserting, we go down the tree to
find the leaf node where the insertion is to happen. If
the leaf can accommodate another key (its cardinality is
less than 2b−1), it is inserted and the process terminates.
When the node is already full, it is split: we divide the
node into two nodes containing b keys. One of the new
nodes contains the smallest b keys whereas the other
one contains the largest b keys. The smallest value of
the latter node is copied and added to the parent node as
a separator. If needed, the parent node is split too, and
the process recurses, possibly all the way to the root. If
the root needs to be split, then the height of the tree is
effectively increased by one.

Deletion proceeds similarly at first. We find the ap-
propriate leaf node where the key resides. If deleting
the key would leave at least b keys in the node, we pro-
ceed and the process terminates. If there are two few
values, we can examine a neighboring leaf node, having
the same parent if possible. If it has more than b keys, it
suffices to borrow one of the keys. If taken together, the
two leaf nodes have less than 2b keys, they need to be
merged. Their merger implies at least the removal of the
separator key in the parent node, and the process may
recurse up to the root, possibly decreasing the height of
the tree.

16


