
Detection and Removal of Infrequent Behaviour from
Event Streams of Business Processes

Sebastiaan J. van Zelsta,b,∗, Mohammadreza Fani Sanib, Alireza Ostovarc,
Raffaele Confortic, Marcello La Rosac

aFraunhofer Institute for Applied Information Technology, Sankt Augustin, Germany
bRWTH Aachen University, Aachen, Germany
cUniversity of Melbourne, Melbourne, Australia

Abstract

Process mining aims at gaining insights into business processes by analysing the

event data that is generated and recorded during process execution. The vast

majority of existing process mining techniques works offline, i.e. using static,

historical data, stored in event logs. Recently, the notion of online process

mining has emerged, in which techniques are applied on live event streams,

i.e. as the process executions unfold. Analysing event streams allows us to

gain instant insights into business processes. However, most online process

mining techniques assume the input stream to be completely free of noise and

other anomalous behavior. Hence, applying these techniques to real data leads

to results of inferior quality. In this paper, we propose an event processor

that enables us to filter out infrequent behavior from live event streams. Our

experiments show that we are able to effectively filter out events from the input

stream and, as such, improve online process mining results.

Keywords: Process mining, event streams, filtering, outlier detection, anomaly

detection.

∗Corresponding author
Email address: sebastiaan.van.zelst@fit.fraunhofer.de /

s.j.v.zelst@pads.rwth-aachen.de (Sebastiaan J. van Zelst)

Preprint submitted to Information Systems May 31, 2019

1. Introduction

Modern information systems record the execution of the business processes

they support. Common examples include order-to-cash and procure-to-pay pro-

cesses, typically tracked by ERP systems. Process mining [1] aims to turn such

event data into valuable and actionable knowledge, i.e. allowing us to identify5

and rectify process performance and/or compliance issues. Different process

mining techniques are available, including techniques for automated process dis-

covery, conformance checking and process enhancement. In process discovery,

we aim to reconstruct the underlying structure of the business process, in the

form of a process model. In conformance checking, we assess to what degree the10

recorded data aligns with a normative process model. In process enhancement,

we enhance the view we have of the process, as represented by a process model,

by incorporating performance information, data-driven decision points, etc.

Most process mining techniques are defined in an offline setting, i.e. they

work over historical data of completed process executions, e.g. over all orders15

fulfilled in the past six months, and have been proven successful in a variety of

successful case studies [2]. However, they are typically inadequate to work in

online settings, i.e. analysing live streams of events rather than historical data.

Hence, they cannot be used for operational support and monitoring, rather,

only for a-posteriori analysis. At the same time, the notion of online process20

mining provides a wealth of opportunities. For example, applying conformance

checking techniques in online settings allows us to detect compliance deviations

as soon as they occur, and potentially predict them in advance. In turn, the

corresponding insights gained are valuable in order to rectify the affected process

executions on the fly, i.e. avoiding the deviations to occur altogether.25

Recently, several process mining techniques have been designed to work in

the online setting, i.e. with the aim to analyse the events executed in the con-

text of a business process at the moment they occur. For example, these newly

developed techniques include concept drift detection [3, 4, 5], automated pro-

cess discovery [6, 7, 8], conformance checking [9, 10, 11] and predictive process30

2

monitoring [12]. These techniques directly analyse the event stream produced

by an information system, rather than the conventionally used static event logs.

However, these techniques typically assume the event stream to be free of noise

and anomalous behavior. In reality, several factors cause this assumption to

be wrong, e.g. the supporting system mistakenly triggers the execution of an35

inappropriate activity that does not belong to the process, or a system overload

results in logging errors. The existence of these anomalies in event streams easily

leads to unreliable results. For example, in drift detection, sporadic stochastic

oscillations caused by noise negatively impact drift detection accuracy [3, 5].

In this paper, we propose a general-purpose event stream filter, designed40

to detect and remove infrequent behavior from event streams. The approach

presented, relies on a time-evolving subset of behavior of the total event stream,

out of which we infer an incrementally-updated model that represents this be-

havior. In particular, we build a collection of probabilistic automata, which are

dynamically updated to filter out spurious events. Using a corresponding pro-45

totypical implementation, we evaluated accuracy and performance of the filter

by means of multiple quantitative experiments. To illustrate the applicability

of our approach w.r.t. existing online process mining techniques, we assessed

the benefits of our filter when applied prior to drift detection.

This paper extents earlier work, presented in [13], in the following dimen-50

sions. We have extended the algorithm by adding an emission delay and an au-

tomaton voting scheme, in order to more accurately detect unwanted infrequent

behavior. We have conducted a new set of large scale experiments, including

the aforementioned newly added functionality. Within these newly conducted

experiments, we have extended the amount of noise present in the input data,55

as well as the range of filtering thresholds used. Finally, we have added a

noise-oriented taxonomy of process mining behavior in the context of (online)

process mining, and highlighted what classes of the taxonomy are covered by

the proposed filter.

The remainder of this paper is structured as follows. In Section 2, we discuss60

related work. In Section 3, we present background concepts, introducing (online)

3

process mining and filtering. In Section 4, we present our approach, which we

extensively evaluate in Section 5. In Section 6, we discuss the proposed filter

and indicate what types of noise are detected by the filter, in terms of a broader

control-flow-oriented behavioral taxonomy. We conclude the paper and discuss65

several avenues for future work in Section 7.

2. Related Work

For the purpose of this paper, we primarily focus on work conducted in the

area of online process mining as well as process mining oriented noise filtering.

For an extensive overview of process mining, we refer the reader to [1]. Similarly,70

for an extensive overview of general purpose outlier detection, we refer to [14, 15].

In the area of online process mining, the majority of work concerns auto-

mated process discovery algorithms. For example, Burattin et al. [7] propose

a basic algorithm that lifts an existing offline process discovery algorithm [16]

to the online setting. Additionally, in [17], Burattin et al. propose an online75

process discovery technique for the purpose of discovering declarative models.

In [6], Hassani et al. extend [7] by proposing the use of indexed prefix-trees in

order to increase memory efficiency. Finally, in [8], van Zelst et al. extend and

generalize [6, 7] for a large body of different classes of existing process discovery

algorithms. More recently, event streams have been used for online conformance80

checking [9, 10, 11] and online concept drift detection [3, 4, 5]. In the context of

online conformance checking, Burattin et al. [9] propose an approach that uses

an enriched version of the original process model to detect deviant behavior.

In [10], van Zelst et al. propose to detect deviant behavior by incrementally

computing prefix-alignments. More recently, in [11], Burattin et al. present a85

framework that allows one to compute conformance indicators on the basis of

behavioral patterns described by the given process model. In the context of on-

line concept drift detection, Ostovar et al. [3] propose to detect drifts on event

streams by monitoring the distribution of behavioral abstractions (i.e. α+ rela-

tions [18]) of the event stream across adjacent time sliding-windows. In follow-up90

4

work [4], Ostovar et al. extend [3] to allow for concept drift characterization.

With respect to noise filtering and/or outlier detection in the context of

event logs, several approaches are described in literature [19, 20, 21, 22, 23].

The approach proposed by Wang et al. [19] relies on a reference process model

to repair a log whose events are affected by labels that do not match the expected95

behavior of the reference model. The approach proposed by Conforti et al. [20]

removes events that cannot be reproduced by an automaton constructed using

frequent process behavior recorded in the log. In [21], Fani Sani et al. propose

an approach that uses conditional probabilities between sequences of activities

to remove events that are unlikely to occur in a given sequence. In [22], Fani Sani100

et al. propose to repair infrequent trace fragments by more frequent fragments

on the basis of conditional probabilities occurring in the log. Finally, in [23],

Fani Sani et al. propose to exploit (in)frequent patterns, i.e. as defined in the

domain of sequence mining, in order to identify potential outlier behavior.

Existing noise filtering techniques have shown to improve the quality of pro-105

cess mining techniques, yet they are not directly applicable in an online context.

Similarly, online process mining techniques do not address the problem of noise

in event streams. The technique presented in this paper, therefore, bridges the

gap between these techniques.

3. Background110

In this section, we present basic preliminary background material, covering

the notions of event logs, event streams and probabilistic automata.

3.1. Basic Notation

Let X denote an arbitrary set. We let P(X) denote the power set of X,

i.e. P(X)={X ′ | X ′⊆X}. We let N={1, 2, ...} denote the positive integers, N0115

includes 0. We let B={true, false} denote the set of boolean values. A binary

relation R on set X, written as (X,R), is a set of ordered pairs of elements of

X, i.e. R⊆X×X. In case (x, y)∈R, we alternatively write xRy. A strict partial

5

order ≺ on set X, is a binary relation on X, for which x⊀x, x≺y =⇒ y⊀x and

x≺y ∧ y≺z =⇒ x≺z hold, for all x, y, z∈X. A multiset generalizes the notion120

of a set, i.e. it allows its members to have multiple appearances. We define

a multiset M over a set X as a function M : X → N0. We write a multiset

as [xi, yj , ..., zk], where M(x)=i, M(y)=j, ..., M(z)=k. If M(x)=0, we omit

it from multiset notation, and, if M(x)=1, we omit its superscript, e.g. [x2, y]

contains 2 times x, one y element and zero z elements. We let M(X) denote125

the universe of all possible multisets over base-set X.

A sequence σ of length n over set X, relates n positions to elements of X,

i.e. it is a function σ : {1, 2, ..., n}→X. The set of all possible sequences over

set X, of arbitrary length, is denoted as X∗. Given σ∈X∗, we let elem : X∗ →

P(X), where elem(σ)= {x∈X | ∃1 ≤ i ≤ |σ| (σ(i) = x)}. We furthermore let130

parikh : X∗ → M(X), where parikh(σ)(x)=| {i ∈ {1, ..., |σ|} | σ(i) = x} |, i.e.

the parikh-function counts the number of occurrences of a certain element x∈X,

in the given sequence σ.

3.2. Event Data

As indicated, process mining aims to gain insights into business processes135

for their improvement, by means of analysing the data generated during pro-

cess execution. Modern information systems track, often in great detail, what

specific activity is performed for a running instance of the process (also referred

to as a case) at a certain point in time. Traditional process mining techniques

aim to analyse such data, i.e. event logs, in a static/a-posteriori setting, i.e. for140

completed cases only. Consider Table 1, depicting an example of an event log,

related to a fictional business process for the purpose of filing a compensation

request for concert tickets. Each line in Table 1, refers to the execution of an

activity, i.e. an event, in the context of a process instance, which is identified

by means of a case-id. In this example, the case-id equals the id of the ticket145

for which a compensation request is filed. In general, the case-id depends on

the process under study, e.g. a customer type or product-id are often used as a

case-id.

6

Table 1: Example event log fragment.

Event-id Case-id Activity Resource Time-stamp

...

6711 4123 decide (e) Fred 2018-12-10 13:47

6712 4173 register request (a) Wilma 2018-12-10 14:14

6713 4123 reject request (g) Fred 2018-12-10 14:18

6714 4173 examine cause (b) Barney 2018-12-10 14:33

6715 4173 check ticket (d) Betty 2018-12-10 14:06

6716 4173 decide (e) Fred 2018-12-10 14:51

6717 4173 pay compensation (f) Betty 2018-12-10 15:03

6718 5043 register request (a) Wilma 2018-12-10 15:05

...

Consider the events related to case-id 4173. The first event, i.e. with id 6712,

describes that Wilma executed a register request activity. Subsequently, Barney150

performed a causal examination of the request (event 6714). In-between event

6712 and 6714, event 6713 is executed that relates to a case with id 4123, which

reflects that several process instances run in parallel. The next activity executed

for case-id 4713 is the check ticket activity, executed by Betty. A decision is

made for the case by Fred, after which Betty handles the compensation payment.155

As reflected by Table 1, an event describes a multitude of different data at-

tributes, e.g. the event-id, case-id, activity, resource and time-stamp. However,

we primarily focus on the control-flow dimension, i.e. the sequential ordering of

activities in the context of the different process instances. Therefore, let E de-

note the universe of events, C the universe of case identifiers and A the universe160

of activities. We assume that we are able to assess the case identifier and exe-

cuted activity of an event by means of two projection functions, i.e. πC : E → C

and πA : E → A, respectively. For example, for the first event of Table 1 (which

we write as e6711), we have πC(e6711)=4123 and πA(e6711)=decide. We formalize

the notion of event logs, as well as traces, i.e. as typically used in offline process165

mining, in Definition 1.1

1We omit projection functions to access the time-stamps, resources and/or other types of

7

Definition 1 (Event, Event Log, Trace). Let E denote the universe of events,

let A denote the universe of activities and let C denote the universe of case iden-

tifiers. An event e∈E describes the (partial-)execution of an activity, in the con-

text of some process instance. Projection functions πA : E → A and πC : E → C,170

allow us to access the activity and case identifier, respectively, of an event e.

Given a collection of events E ⊆ E, an event log L is a strict partial order

of events, i.e. L=(E,≺). A trace related to case c∈C is a sequence σ∈E∗ for

which:

1. ∀1 ≤ i ≤ |σ|(πC(σ(i)) = c); Events in σ relate to case c.175

2. ∀e∈E(πC(e) = c⇒ ∃1 ≤ i ≤ |σ|(σ(i) = e)); Each event related to c is in σ.

3. ∀1 ≤ i < j ≤ |σ|(σ(i) 6= σ(j)); All events in σ are unique.

4. ∀1 ≤ i < j ≤ |σ|(σ(j) ⊀ σ(i)); Events in σ respect their order.

The strict partial order of the events of an event log is typically imposed by

means of recorded times-stamps. A log is a strict partial order due to, for exam-180

ple, inherent parallelism of the process and/or mixed time-stamp granularity.

A trace is a sequence of events related to the same case identifier which re-

spects the strict partial order. Reconsider case 4173 in Table 1, which we write

as a trace as 〈(6712, 4173, register request), (6714, 4173, examine cause), (6715,

417, check ticket), (6716, 4173,decide), (6717, 4173,pay compensation)〉, or sim-185

ply 〈(6712, 4173, a), (6714, 4173, b), (6715, 4173, d), (6716, 4173, e), (6717, 4173, f)〉

using short-hand activity names. Using the control-flow perspective, the exam-

ple trace simply represents the activity sequence 〈a, b, d, e, f〉. Note that, when

adopting the control-flow perspective, a multitude of cases exist which project

onto the same sequence of activities.190

We adopt the notion of online/real-time event stream-based process mining,

in which the data is assumed to be an infinite sequence of events. Since in

practice, several instances of a process run in parallel, we have no guarantees

w.r.t. the arrival of the events related to the same case. Thus, the events related

data attributes, as these are not used in the remainder of the paper.

8

∞· · · (6711, 4123, e), (6712, 4173, a), (6713, 4123, g), (6714, 4173, b), · · ·

Figure 1: Example event stream S.

to a certain case of the process are likely to be emitted onto the stream in a195

dispersed manner.

Definition 2 (Event Stream). An event stream S is a (possibly infinite) se-

quence of unique events, i.e. S∈E∗ s.t. ∀1 ≤ i < j ≤ |S|(S(i) 6= S(j)).

Consider Figure 1, in which we depict a few of the (short-hand) events that

are also presented in Table 1. The first event depicted represents (6711, 4123,200

decide), the second event is (6712, 4173, register request), and so on. We assume

that one event arrives per unit of time. Moreover, we assume that the order of

event arrival corresponds to the order of execution.

3.3. Probabilistic Automata

The filtering approach, presented in this paper, builds on top of the no-205

tion of probabilistic automata (PA). Such automata extend conventional non-

deterministic automata, i.e. a basic mathematical model describing a collection

of (possibly accepting) states and associated transitions that allow us to change

the state of the model. Probabilistic automata allow us to assign a probability

of occurrence to each transition in the model.210

Definition 3 (Probabilistic Automaton). A probabilistic automaton (PA)

is a 6-tuple (Q,Σ, δ, q0, F, γ), where Q is a finite set of states, Σ is a finite set

of symbols, δ : Q×Σ→ P(Q) is a transition relation, q0∈Q is the initial state,

F⊆Q is the set of accepting states and γ : Q × Σ ×Q → [0, 1] is the transition

probability function.215

Additionally we require:

1. ∀q, q′∈Q, a∈Σ (q′∈δ(q, a)⇔ γ(q, a, q′) > 0): if an arc labelled a connects q

to q′, then the corresponding probability is non-zero (and vice-versa).

2. ∀q∈Q\F (∃q′∈Q, a∈Σ (q′∈δ(q, a))): non-accepting states have outgoing arc(s).

9

q1start q2

q3

q4

q5

a(1)

b(2
3)

c(1
3)

b(1
3)

c(1
3)b(2

3)

d(1
3)

d(1
3)

Figure 2: Example probabilistic automaton. Probabilities are listed in brackets, e.g. b(2
3

).

3. ∀q∈Q\F

(∑
{(a,q′)∈Σ×Q|q′∈δ(q,a)}

γ(q, a, q′) = 1

)
: the sum of probabilities of220

outgoing arcs of a non-accepting state equals one.

4. ∀q∈F

(∑
{(a,q′)∈Σ×Q|q′∈δ(q,a)}

γ(q, a, q′) < 1

)
: the sum of probabilities of

outgoing arcs of an accepting state is smaller than one.

For a given state q∈Q and label a∈Σ, we denote the conditional probability of

observing label a, whilst being in state q, as P (a | q), where:225

P (a | q) =
∑

{q′∈Q|q′∈δ(q,a)}

γ(q, a, q′)

Consider Figure 2, in which we depict an example probabilistic automaton.

Observe that, in state q2, label b occurs with probability 2
3 , whereas label c

occurs with probability 1
3 . Furthermore, observe that, according to Definition 3,

an accepting state is allowed to have outgoing arcs. We accordingly define the

probability of not observing any label for such an accepting state q as P (∅ |230

q) = 1−
∑
a∈Σ

P (a | q).

4. Filtering Infrequent Behaviour from Event Streams

In this section, we present a probabilistic automaton-based approach to iden-

tify and filter infrequent behavior from event streams. We first present the gen-

eral architecture of the proposed filter, after which we explain in detail how to235

use probabilistic automata for the purpose of control-flow oriented event filter-

ing.

10

Input Event Stream S ∞
Time

New Event e

Sliding Window w

Delay d

e ′

e ′′

Filter f

Output Event Stream S′ ∞

Figure 3: Schematic overview of the proposed filtering architecture.

4.1. Architecture

In this section, we present the basic architecture of the proposed event filter.

Consider Figure 3, in which we depict a high-level overview of the architecture240

of the filter. We assume that the input event stream S contains both proper and

noisy behavior. In this context, noisy behavior is referred to as events that are

improperly executed, i.e., events that are observed on the stream but should not

have been observed. We maintain a sliding window w on the basis of the input

stream. A new event e, arriving at the event stream, is immediately incorporated245

in the behavioral representation of the stream, as maintained by the event filter

f . As such, the filter f always reflects the behavior captured within the sliding

window w. Thus, when events are removed from the underlying sliding window,

as caused by the addition of the newly received event e, i.e. visualized by event

e′′ in Figure 3, we process the event removal within the filter.250

We propose to instantiate filter f by constructing an ensemble of different

probabilistic automata, which describe the behavior captured within the sliding

window.2 A state within a probabilistic automaton maintained by the filter,

2Note that, the automata used in this paper can be regarded as extended/decorated vari-

11

represents a view on recently observed behavior of a specific process instance

as represented by its corresponding case identifier. For example, a state of an255

automaton can represent the three most recent activities performed for a certain

process instance. The outgoing transition probabilities of a state are based on

observed behavior for that state, as temporarily described by the sliding window.

When applying filtering on an event, we assess the state of the process instance

described by the event and check, based on the distribution as defined by that260

state’s outgoing arcs, whether the new event is infrequent, according to the

probability distribution of that state.

Note that, actually filtering an event is optionally delayed, i.e. the events are

temporarily buffered in some secondary storage component, prior to be evalu-

ated in the filter. Finally, after such optional delay, the filter f either decides to265

emit the event onto output stream S′, or, to discard it. Observe that, each event,

eventually filtered or not, is always incorporated in the internal representation

of the filter. We mainly do so because of the fact that typically, concept drift,

i.e. changes in the predominant underlying distribution of behavior, initially

seem to relate to outlier behavior and only over time they become mainstream270

behavior

4.2. Constructing Prefix-Based Automata

As indicated, we instantiate filter f by constructing an ensemble of different

probabilistic automata, on the basis of the behavior present in the underlying

sliding window. The states in the automata represent different views on recently275

observed behavior of a specific process instance. In the remainder of this sec-

tion, we describe how to construct probabilistic automata on the basis of event

streams.

As an example of maintaining probabilistic automata on the basis of observed

process behavior, consider Figure 4a. In the two example automata, for each280

observed process instance, we obtain the corresponding state by applying the

ants of the transition systems described in [24].

12

εstart

{a, b}

{a, c}

{b, c}

{b, d}

{c, d} {d, e}

{d, f}

τ(1
2)

τ(1
2)

c(1)

b(1
2)

d(1
2)

d(1
2)

d(1
2)

e(1)

f(1)

(a) Example automaton based on four (possibly

incomplete) observed fragments of traces, i.e.

〈a, b, c, d, e〉, 〈a, c, b, d, f〉, 〈a, c, d, e〉 and 〈a, c〉.

εstart

{a, b}

{a, c}

{b, c}

{b, d}

{c, d} {d, e}

{d, f}

τ(1
2)

τ(1
2)

c(1)

b(2
3)

d(1
3)

d(1
2)

d(1
2)

e(1)

f(1)

(b) Similar automaton to Figure 4a, after re-

ceiving a new event b for the (incomplete) trace

〈a, c〉 (yielding trace 〈a, c, b〉). As a conse-

quence, the outgoing arcs of state {a, c} get

different probabilities.

Figure 4: Example of maintaining a prefix-based automaton, using a window size of 2 with a

set abstraction.

elem function on the two most recently received events, e.g. if we have observed

〈a, b, c〉 for some process instance, the corresponding state is elem(〈b, c〉) = {b,

c}. Since we use a view size of 2, we only obtain meaningful states if a trace

is at least of length 2. Therefore, from the initial state, we use a uniform285

distribution of τ -labelled transitions to states {a, c} and {a, b} respectively. The

automaton depicted in Figure 4a is based on four traces of observed behavior,

i.e. 〈a, b, c, d, e〉, 〈a, c, b, d, f〉, 〈a, c, d, e〉 and 〈a, c〉. Note that some of these

traces, e.g., 〈a, c〉, are likely to be incomplete, i.e., this is an inherent property

of stream based process mining. Therefore, within the automaton, we only mark290

a state as being accepting, if it has no outgoing arcs. For each state within the

example automaton, based on previously observed process instances, we record

the probability of observing a certain activity.

The probabilistic automata that we construct, contain states that represent

recent control-flow oriented behavior for the process instances currently cap-295

tured within the sliding window. As such, each state refers to a (partial) prefix

of the process instance’s most recent behavior, and hence, we deem these au-

tomata prefix-based automata. Therefore, in prefix-based automata, a state q

represents an abstract view on a prefix of executed activities, whereas outgoing

arcs represent those activities a∈A that are likely to follow the prefix repre-300

13

sented by q, and their associated probability of occurrence. We define two types

of parameters, that allow us to deduce the exact state in the corresponding

prefix automaton based on a prefix, i.e.:

1. Maximal abstraction view size: Represents the size of the prefix to take

into account when constructing states in the automaton. For example,305

if we use a maximal size of 5, we only take into account the five most

recent events present in the sliding window for the process instance under

consideration as being recent behavior.

2. Abstraction: Represents the abstraction that we apply on top of the de-

rived recent historical behavior, i.e. subject to the maximal abstraction310

view size parameter, in order to define a state. We propose three abstrac-

tions:

• Identity : Given view size k∈N and a trace σ∈A∗, the identity ab-

straction ~id
k

yields the prefix as a state, i.e. ~id
k

: A∗ → A∗, where

~id
k
(σ) = 〈σ(|σ| − (k + 1)), ...σ(|σ|)〉.315

• Set : Given view size k∈N and a trace σ∈A∗, the set abstraction

indicates the presence of a∈A in the last k elements of σ, i.e. we

apply elem(〈σ(|σ| − (k + 1)), ...σ(|σ|)〉).

• Parikh: Given view size k∈N and a trace σ∈A∗, the Parikh abstrac-

tion yields a multiset describing the number of occurrences of a∈A320

within σ, i.e. we apply parikh(〈σ(|σ| − (k + 1)), ...σ(|σ|)〉).

The maximal abstraction view size influences the degree of generalization of

the automaton. For example, when using a maximal view size of 1, we obtain

a strictly smaller automaton than the one depicted in Figure 4, allowing for

much more behavior. Moreover, for the case of maximal view size 1, each of the325

abstractions mentioned, i.e. identity, set and Parikh, yields the same automaton.

Observe that, increasing the maximal window size is likely to generate automata

of larger size, i.e. we are able to distinguish a wider variety of states, and is thus

likely to be more memory intensive. Hence, there is a trade-off between precision

of the automata w.r.t. training data and memory complexity.330

14

εstart

〈a〉

〈b〉

〈c〉

〈d〉

〈e〉

τ

τ

c

c

d

e

(a) Automaton (probabilities omitted) de-

scribing the behavior of the process, i.e.

traces 〈a, c, d〉 and 〈b, c, e〉, using a window

size of 1.

εstart

〈a, c〉

〈b, c〉

〈c, d〉

〈c, e〉

τ

τ

d

e

(b) Automaton (probabilities omitted) de-

scribing the behavior of the process, i.e.

traces 〈a, c, d〉 and 〈b, c, e〉, using a window

size of 2.

Figure 5: Two automata, using different window lengths, i.e. length 1 and 2, describing the

behavior of the process, i.e. traces 〈a, c, d〉 and 〈b, c, e〉. Only using a window length of 2 allows

us to observe the long-term dependencies as described by the data

4.3. Incrementally Maintaining Collections of Automata

In this section, we indicate how to maintain a ensemble of automata which

we use to filter. Prior to this, we motivate the need for using multiple automata

within filtering.

Consider that we observe an event stream, on which we observe only two335

traces, i.e. 〈a, c, d〉 and 〈b, c, e〉. Note that, within the data, there is a dependency

between, on the one hand, a and d, and, b and e, on the other hand. Consider

Figure 5, in which we present two automata constructed on the basis of the two

simple traces. In both automata we use an identity abstraction, yet in Figure 5a,

we use a maximal view size of 1, whereas in Figure 5b, we use a maximal view340

size of 2. For simplicity, we have omitted the probabilities of the edges of the

automata. Note that, when only using the automaton depicted in Figure 5a,

we do not observe the dependency. As a result, whenever an event describes

the occurrence of activity e after earlier observed prefix 〈a, c〉, we are not able

to identify this as being infrequent, i.e. both 〈a, c〉 and 〈b, c〉 are translated into345

state 〈c〉. In the automaton in Figure 5b, this is however possible. Hence, we

aim to use automata using different window sizes, which allows us to generalize

on the one hand (smaller window sizes), yet, also allows us to detect certain

long-distance patterns (larger window sizes).

15

As new events are emitted on the stream, we aim to keep the automata up-350

to-date in such way that they reflect the behavior present in the sliding window.

For each case identifier c∈C, after receiving i events, we keep track of the events

present in the underlying sliding window at corresponding time i, i.e. we denote

this sequence as σic∈E∗. Note that we assume the order of the events in σc to

comply with the order of the events as stored in the underlying sliding window355

w. Let k > 0 represent the maximal abstraction view size we take into account

when building automata. We maintain k prefix-automata, where for 1 ≤ j ≤ k,

automaton PAj = (Qj ,Σj , δj , q
0
j , Fj , γj) uses maximal abstraction window size

j to define its state set Qj . Upon receiving a new event, we incrementally update

the k maintained automata.360

Consider receiving the ith event S(i) = e, with πC(e) = c and πA(e) = a. To

update automaton PAj , we apply the abstraction of choice on the j preceding

events of the newly received event, i.e.
〈
σic(|σic| − j), ..., σic(|σic| − 1)

〉
, to deduce

the corresponding previous state q∈Qj . The newly received event influences

the probability distribution as defined by the outgoing arcs of state q, i.e. it365

describes that q can be followed by activity a. Therefore, instead of storing the

probabilities of each γj , we store weighted outdegree of each state qj∈Qj , i.e.

deg+
j (qj). Moreover, we store the individual contribution of each a∈A to the

outdegree of qj , i.e. deg+
j (qj , a). Observe that deg+

j (qj) =
∑
a∈A

deg+
j (qj , a), and,

that deducing the empirical probability of activity a in state qj is trivial, i.e.370

P (a | qj) =
deg+

j (qj ,a)

deg+
j (qj)

.

As an example of updating a single automaton, reconsider the example au-

tomaton in Figure 4, and consider that we receive an event related to activity

b, which in turn belongs to the same case as the trace 〈a, c〉. Hence, we obtain

a new trace 〈a, c, b〉 for the corresponding case identifier. As we use a window375

size of 2, in combination with the set abstraction, we deduce the new state in

the automaton related to that case is {a, c}. We observe a total of 3 traces that

describe an action out of state {a, c}, two of which describe activity b. Only one

of the traces describes activity d after state {a, c}. Hence, we deduce empirical

probability 2
3 for activity b and 1

3 for activity d.380

16

Updating the automata based on an event that is removed from the sliding

window, is performed as follows. We let ∆c(i) = |σi−1
c | − |σic|, ∀c∈C. Again,

assume that we receive a new event e at some point in time i > 0 related to

a process instance identified by some case identifier c. Observe that for any

case identifier c∈C, that does not relate to the newly received event, we have385

∆c(i) ≥ 0. This is the case since events are potentially dropped for such case,

yet no new events are received, hence |σic| ≤ |σi−1
c |. In a similar fashion, for the

process instance identified by case c that relates to the new event e, we have

∆c(i) ≥ −1. This is the case since either |σic| = |σi−1
c | + 1, or, |σic| = |σi−1

c |.

Thus, to keep the automata in line with the events stored in the event window,390

in the former case we need to update the automata if ∆c(i) > 0, i.e. at least

one event is removed for the corresponding case identifier, whereas in the latter

case we need to update the automata if ∆c(i) ≥ 0.

To update the collection of k maintained automata, given j = min(k, |σi−1
c |−

1), we generate sequences 〈σi−1
c (1)〉, 〈σi−1

c (1), σi−1
c (2)〉, ..., 〈σi−1

c (1), ..., σi−1
c (j)〉.395

For each generated sequence, we apply the abstraction of choice to determine

corresponding state q, and subsequently reduce the value of deg+(q) by 1. More-

over, assume that state q corresponds to sequence 〈σi−1
c (1), σi−1

c (2), ..., σi−1
c (j)〉

with 1 ≤ j ≤ min(k, |σi−1
c | − 1), we additionally reduce deg+(q, a) by 1, where

a = σi−1
c (j + 1).400

4.4. Filtering Events

After receiving an event and subsequently updating the collection of au-

tomata, we determine whether the new event is spurious or not. To determine

whether the newly arrived event is likely to relate to outlier behavior, we assess

to what degree the empirical probability of occurrence of the activity described405

by the new event is an outlier w.r.t. the probabilities of other outgoing activities

of the current state. Given the set of k automata, for automaton PAj = (Qj ,

Σj , δj , q
0
j , Fj , γj) with prefix-length j (1 ≤ j ≤ k), we characterize an automaton

17

specific filter as fj : Qj×Σj → B.3 Note that an instantiation of a filter fj often

needs additional input, e.g., a threshold value or range. The exact characteri-410

zation of fj is a parameter of the approach, however, we propose and evaluate

the following instantiations:

• Fractional : Considers whether the probability obtained is higher than a

given threshold, i.e., fFj : Qj×Σj×[0, 1]→ B, with fFj (qj , a, κ) = 1 if P (a |

qj) < κ.415

• Heavy Hitter : Considers whether the probability obtained is higher than

a fraction of the maximum outgoing probability, i.e., fHj : Qj × Σj × [0,

1]→ B, with fHj (qj , a, κ) = 1 if P (a | qj) < κ ·max
a′∈A

P (a′ | qj).

• Smoothed Heavy Hitter : Considers whether the probability obtained is

higher than a fraction of the maximum outgoing probability subtracted420

by the uniform distribution over the number of outgoing arcs. Let NZ =

{a∈Σj | P (a | qj) > 0}, we define fSHj : Qj × Σj × [0, 1] → B, with

fSHj (qj , a, κ) = 1 if P (a | qj) < κ ·
(

max
a′∈A

P (a′ | qj)− 1
|NZ|

)
.

Recall that we are able to optionally delay the actual filtering of the event.

For an event that we aim to filter, each automaton, combined with a filter425

of choice yields a boolean result indicating whether or not the new event is

an outlier. In general, we are able to define a weight to each automaton and

compute a combined filter score for an event. However, in the remainder, we

use two alternative schemes. We symbol an event to be a potential outlier when

any of the k maintained automata signals an event to be a potential outlier.430

Alternatively, we signal an event to be a potential outlier, if the majority of the

automata signals this. Finally, note that maintaining/filtering the automata can

be performed in parallel, e.g., we maintain an automaton on each node within

a cluster.

3It is also possible to have rng(fi) = [0, 1], i.e., indicating the probability of an event being

spurious, however, the filters we propose in this paper all map to boolean values.

18

5. Evaluation435

In this section, we evaluate the proposed filter in two ways. First, we assess

filtering accuracy on randomly generated event data, based on synthetic process

models. Second, we assess the applicability of our filter in combination with an

existing class of online process mining techniques, i.e., concept drift detection

techniques. In the latter experiment, we consider both synthetic and real-life440

datasets.4 The source code of the filter is available through http://svn.win.

tue.nl/repos/prom/Packages/StreamBasedEventFilter.

5.1. Stable Process Behaviour

In these experiments we use a wide variety of stable process behavior, i.e.,

a stream generated out of a process free of concept drift, with differing levels445

of noise. We first present the experimental setup, after which we discuss the

obtained accuracy results.

5.1.1. Experimental Setup

To evaluate the proposed method on stable process behavior, we automati-

cally generated several process models with different probabilities (ranging from450

0 to 0.20 in steps of 0.05) of inserting parallel structures. To obtain a more ro-

bust analysis, for each insertion probability, we generated 40 different process

models. Afterwards, for each process model, subject to different noise injection

probabilities (from 0 to 0.5 with steps of 0.05), we generated an event log con-

taining a total of 3000 traces of process behavior. We additionally checked that455

the generated noisy events are indeed noise w.r.t. the original model. Consider

Table 2, which presents a schematic overview of the experimental setup.

4As already indicated in [13], in an earlier performed set of experiments, we measured an

average event handling time of ∼ 0.017 ms, leading to handling ∼ 58.8 events per ms., which

confirm that automaton-based filtering is suitable to work in real-time/event stream based

settings. Therefore, in this paper, we mainly focus on the quality of the filter in terms of

filtering accuracy.

19

http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventFilter
http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventFilter
http://svn.win.tue.nl/repos/prom/Packages/StreamBasedEventFilter

Table 2: Parameters of Data Generation and Experiments with Synthetic Data

Artefact/Parameter Value

Data Generation

Parallel construct probabilities {0, 0.05, ..., 0.20}

Number of models per construct prob. 40

Probability of spurious event injection, per model {0, 0.05, ..., 0.5}

Number of traces, generated per model/noise combination 3000

Filter Parameters

Sliding Window Size {2500, 5000}

Maximal Abstraction View Size {1, 3, 5}

Abstraction {Identity, Parikh, Set}

Filter
{Fractional (fF), Heavy Hitter (fH),

Smoothed Heavy Hitter (fSH}

Filter Threshold (κ) {0.05, 0.1, ..., 0.5}

Delay {0, 500, 1000, 2000}

5.1.2. Results

We measured the F-Score obtained by the algorithm, under different param-

eter configurations. In this context, a true positive filtering outcome is defined460

as a noisy event that is correctly identified as such by the filter. Since the pro-

cess models and corresponding event logs used in the experiments only describe

stable behavior, the impact of applying an emission delay is expected to be

negligible. Indeed, upon inspection, the corresponding results show a negligible

influence of applying filtering delay on the filtering accuracy under stable event465

stream behavior.

We assess the influence of four different parameters, as presented in this

paper, i.e., the abstraction, maximal view size, filtering technique and the voting

scheme used, which we present in Figure 6 and Figure 7 respectively (excluding

noise-free data).470

Consider Figure 6a, in which we present the accuracy results for the differ-

ent types of abstractions presented in this paper, i.e., the Parikh, identity and

set abstraction. For the majority of the results, the Parikh and set abstraction

20

0.0

0.2

0.4

0.6

0.8

1.0
Noise: 0.05 0.1 0.15 0.2 0.25

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F-
Sc

or
e

Noise: 0.3

0.5 1.0

0.35

0.5 1.0

0.4

0.5 1.0

0.45

0.5 1.0
Threshold

0.5

Parikh Identity Set

(a) Average F-score per abstraction used.

0.0

0.2

0.4

0.6

0.8

1.0
Noise: 0.05 0.1 0.15 0.2 0.25

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F-
Sc

or
e

Noise: 0.3

0.5 1.0

0.35

0.5 1.0

0.4

0.5 1.0

0.45

0.5 1.0
Threshold

0.5

1 3 5

(b) Average F-score per abstraction view size used.

Figure 6: Average F1-score for different abstractions and abstraction view sizes. The identity

abstraction slightly outperforms the Parikh/set abstraction for small noise levels. Maximum

view size of 3 provides an adequate balance between under- and overhitting and outperforms

sizes 1 and 5 for smaller threshold values.

21

result in the same accuracy values. This is most likely explained by the fact

that repeated execution of activities in the underlying event data is limited.475

For low noise levels (0.05-0.15), combined with high threshold values, we ob-

serve that the identity abstraction slightly outperforms both the Parikh and set

abstraction, in terms of obtained F-score. Upon inspection, we observe that

this is caused by slightly higher precision values for the identity abstraction.

Hence, for these lower noise ranges, limited generalizing power of the identity480

abstraction enables us to more adequately distinguish actual noisy behavior

from proper behavior, i.e., by obtaining a slightly lower amount of false neg-

atives. For higher noise levels (≥ 0.35), combined with low threshold values,

we observe that the Parikh and set abstraction slightly outperform the identity

abstraction, in terms of obtained F-score. Again, this is due to variety in the485

precision levels. In this case, the limited generalization power of the identity

abstraction leads to reverse effects, i.e., the noise generates infrequent states

that have small outgoing distributions, which do no longer allow us to identify

noisy behavior.

In Figure 6b, we present the accuracy results obtained for the different pos-490

sible abstraction view sizes used. Interestingly, using a larger size (size 5), i.e.,

using a larger collection of automata yielding less behavioral generalization,

leads to poorer accuracy in the majority of the noise-threshold combinations.

We furthermore observe that using a view size of 1 tends to lead to better accu-

racy results for larger threshold values. Using a window size of 3 tends to lead495

to better accuracy values for lower threshold values. Hence, we conclude, that

using a too large window, having limited generalizing power within the filter,

does not allow us to obtain good results. Depending on the threshold used,

either the extreme generalizing power of view size 1 (higher threshold values)

or the less generalizing view size of 3 (lower threshold values) is appropriate.500

Consider Figure 7, in which we present accuracy results obtained by using a

different filtering technique as well as using different voting mechanisms among

the different automata.

In Figure 7a, we show the obtained accuracy results for the different filtering

22

0.0

0.2

0.4

0.6

0.8

1.0
Noise: 0.05 0.1 0.15 0.2 0.25

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F-
Sc

or
e

Noise: 0.3

0.5 1.0

0.35

0.5 1.0

0.4

0.5 1.0

0.45

0.5 1.0
Threshold

0.5

Heavy Hitter Smoothed Heavy Hitter Fractional

(a) Average F-score per filtering technique applied.

0.0

0.2

0.4

0.6

0.8

1.0
Noise: 0.05 0.1 0.15 0.2 0.25

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F-
Sc

or
e

Noise: 0.3

0.5 1.0

0.35

0.5 1.0

0.4

0.5 1.0

0.45

0.5 1.0
Threshold

0.5

Any Majority Vote

(b) Average F-score per voting scheme adopted.

Figure 7: Average F1-score for different filtering techniques and voting schemes. Smoothed

heavy hitter outperforms fractional and heavy hitter filtering in the majority of the cases.

Similarly, majority voting outperforms using any negative automaton outcome as a noise

classification.

23

techniques proposed in this paper. We observe that the fractional filter leads to505

suboptimal accuracy in the majority of cases. When observing the underlying

recall and precision values, we observe that the low F-measure values are pri-

marily caused by extremely low precision values, as opposed to very high recall

values. This is explained by the fact that the fractional filter works on a global

level, i.e., anything below the given threshold is considered noise. As such, only510

very prominent behavior is considered not to be noise, leading to high recall val-

ues and low precision values. Both the heavy hitter and smoothed heavy hitter,

which can be considered as local filtering techniques, i.e., subject to the state of

the respective automaton, perform significantly better. For low levels of noise,

the smoothed heavy hitter outperforms the heavy hitter filtering techniques.515

For higher levels of noise, the smoothed heavy hitter outperforms the heavy

hitter filtering technique only for higher threshold values. Upon inspection, we

observe that the smoothed heavy hitter filtering technique results in lower recall

values, yet higher precision values than the heavy hitter filtering technique.

Finally, in Figure 7b, we present the obtained accuracy results by the two dif-520

ferent voting mechanisms proposed in this paper. We observe that the majority

vote scheme tends to outperform the any scheme, i.e., in which any automaton

signalling noise leas to filtering. Upon inspection, this difference is mainly ex-

plained by a large difference in precision, for which the majority voting scheme

consistently results in higher values. The alternative scheme consistently leads525

to higher recall values, yet, the difference is smaller w.r.t. the difference in ob-

tained precision values. Hence, the majority voting scheme seems to allow us

to reduce the effect of falsely highlighting proper events as noisy events.

5.2. Filtering with Concept Drift

In a second set of experiments, we evaluate the impact of our filter on the530

accuracy of process drift detection. For this, we use a state-of-the-art technique

for drift detection that works on event streams [3]. We apply our filter to

the event streams generated from a variety of synthetic and real-life logs, with

different levels of noise, and compare drift detection accuracy with and without

24

the use of the proposed filter. We first discuss the experimental setup, after535

which we compare drift detection results obtained with and without the use of

our filter.

5.2.1. Experimental Setup

For these experiments, we used the 18 event logs proposed in [3] as a basis.

The event data are generated by simulating a model featuring 28 different ac-540

tivities (combined with different intertwined structural patterns). Additionally,

each event log contains nine drifts obtained by injecting control-flow changes

into the model. Each event log features one of the twelve simple change pat-

terns [25] or a combination of them. Simple change patterns may be combined

through the insertion (“I”), resequentialization (“R”) and optionalization (“O”)545

of a pattern. This produces a total of six possible nested change patterns, i.e.

“IOR”, “IRO”, “OIR”, “ORI”, “RIO”, and “ROI”. For a detailed description

of each change pattern, we refer to [3].

Starting from these 18 event logs, we generated 36 additional event logs i.e.

two for each original event log. One of the two generated event logs contains550

2.5% noise and the other contains 5% of noise. Noise is generated by means of

inserting random events into traces of each log. Hence, the final corpus of data

consists of 54 event logs, i.e. 12 simple patterns and 6 composite patterns with

0%, 2.5%, and 5% noise, each containing 9 drifts and approximately 250, 000

events.555

5.2.2. Results on Synthetic Data

In this experiment, we evaluate the impact of the proposed filter on the

accuracy of the drift detection technique proposed in [3]. We use the previously

described corpus of data for the experiments. Figure 8 on page 26 illustrates the

F1 score and mean delay of the drift detection, before and after the application560

of our filter over each change pattern.

The filter, on average, successfully removes 95% of the injected noise, main-

taining and even improving the accuracy of the drift detection (with F1 score

25

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Filter
With Filter
Without Filter

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0

1000

2000

3000

4000

M
ea

n
D

el
ay

Filter
With Filter
Without Filter

(a) Noise ratio = 0%.

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Filter
With Filter
Without Filter

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0

1000

2000

3000

4000

5000

M
ea

n
D

el
ay

Filter
With Filter
Without Filter

(b) Noise ratio = 2.5%.

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Filter
With Filter
Without Filter

re cp rp sw pm cm cf pl cd lp cb fr
IO

R
IR

O
OIRORI

RIOROI
Change Patterns

0

1000

2000

3000

4000

5000

M
ea

n
D

el
ay

Filter
With Filter
Without Filter

(c) Noise ratio = 5%.

Figure 8: Drift detection F1 score and mean delay (in number of events) per change pattern,

obtained from the drift detection technique in [3] over filtered versus unfiltered event streams.

26

of above 0.9 in all but two change patterns). This is achieved whilst delaying

the detection of a drift by less than 720 events on average (approximately 28565

traces).

When considering noise-free event streams (cf. Figure 8a), the filter pre-

serves the accuracy of the drift detection. For some change patterns (“rp”,

“cd”, “IOR”, and “OIR”), our filter improves the accuracy of the detection by

increasing its precision. This is due to the removal of sporadic event relations,570

that cause stochastic oscillations in the statistical test used for drift detection.

Figure 8b and Figure 8c show that noise negatively affects drift detection, caus-

ing the F1 score to drop, on average, to 0.61 and 0.55 for event streams with

2.5% and 5% of noise, respectively. This is not the case when our filter is ap-

plied, where an F1 score of 0.9 on average is achieved. In terms of detection575

delay, the filter on average increases the delay by 370, 695, and 1087 events (15,

28, and 43 traces) for the logs with 0%, 2.5%, and 5% noise, respectively. This

is the case since changes in process behavior immediately following a drift are

treated as noise.

As a final experiment using synthetic data, we investigate the potential effect580

of temporal buffering of events within the filter, i.e., by means of delaying the

actual moment of filtering the received events. We do so under similar levels

of noise as used in the experiments reported on in Figure 8. We present the

corresponding results in Figure 9 In the experiments performed, we measure

the impact of using filtering delay of 250, 500, 750, 1000, 1250, 1500 and 2000585

events. For reference, when using no delay, the mean drift detection delay under

0% of noise is 2945.6 events, under 2.5% of noise is 3158 events and under 5%

of noise is 3303.67 events respectively. Interestingly, we observe that in all

cases, the mean drift detection delay, i.e., is reduced when measured on the

output stream. At the same time, the average decrease in delay is usually less590

than the actual filtering delay. Additionally, we observe that the impact of the

filtering delay on the drift detection delay stagnates for higher delay values.

Furthermore, upon inspection, we observe that in the cases of 2.5% and 5% of

noise, using the filtering delay positively contributes to the filtering accuracy in

27

0 1000 2000
0

100

200

300

400

500

Av
g.

 R
ed

uc
tio

n
in

 D
et

ec
tio

n
D

el
ay

 (#
 E

ve
nt

s)

Noise: 0%

0 1000 2000

2.5%

0 1000 2000
Delay

5%

Figure 9: Average reduction in mean drift detection delay for increasing levels of filtering

delays, with different noise percentage levels. Temporarily buffering events has a positive

impact on the mean drift detection delay.

terms of f-score. From these experiments we conclude that the proposed delay595

in the filter is able to achieve higher filtering accuarcy in the presence of both

noise and concept drift.

5.2.3. Results on Real-Life Data

In this experiment, we assess whether the positive effects of our filter on drift

detection, observed on synthetic data, translate to real-life data. For this, we600

used an event log containing cases of Sepsis (a life-threatening complication of

an infection) from the ERP system of a hospital [26]. The event log contains

1, 050 cases with a total of 15, 214 events belonging to 16 different activities.

For this experiment, we attempt to detect concept drift over the last 5, 214

events, as the first 10, 000 events are used to train the filter. Figure 10 plots605

the significance probability p-value curves of the statistical tests used for drift

detection, both without (Figure 10a) and with (Figure 10b) the use of our filter.

In order to detect a drift, the p-value of the drift detection technique needs to

be below a user-specified significance probability threshold, commonly set to

28

0.05. Moreover, the p-value needs to be lower than the threshold for a given610

window of φ events. In the unfiltered case, cf. Figure 10a, we see two clear

regions of p-values below the threshold, i.e. after the 2067th event and after the

4373th event. In the case when applying the filter, cf. Figure 10b, we observe

that there is much more oscillation in the p-value and we do not detect a clear

drift.615

In the experiments with synthetic logs, we observed that the filter reduced

the number of false positives (drift detected when it did actually not occur). To

verify if this is also the case for the real-life event log, we profiled the direct-

follows dependencies occurring before and after the drifts. The profiling in-

dicates that while direct-follows dependencies “IV Antibiotics −→ Admission620

NC” and “ER Sepsis Triage −→ IV Liquid” are observed several times across

the entire event stream, the infrequent direct-follows dependencies “Admission

NC −→ IV Antibiotics” and “IV Liquid −→ ER Sepsis Triage” appear only

in the proximity of the two drifts. These two infrequent dependencies cause a

change in the underlying α+ relations between the activities, which we use to625

detect the drifts (in this case changing from causal to concurrent). This change

in the relation results in the detection of the drifts. These infrequent depen-

dencies are removed when applying the filter, which in turn does not lead to a

clear concept drift. In light of these insights, we can argue that the two drifts

detected over the unfiltered event stream are indeed false positives, confirming630

what we already observed on the experiments with synthetic logs, i.e. that our

filter has a positive effect on the accuracy of drift detection.

6. Discussion

As discussed in the related work section, several authors have proposed dif-

ferent process mining specific filtering techniques (in an offline setting). Most of635

these techniques, like the technique proposed in this paper, learn some model,

often probabilistic, of predominant normative behavior and subsequently use

that model to identify and remove behavior. All these techniques have diffi-

29

0 1000 2000 3000 4000 5000
Event

0.0

0.2

0.4

0.6

0.8

1.0
P-

Va
lu

e

(a) P-values obtained without applying filter-

ing.

0 1000 2000 3000 4000
Event

0.0

0.2

0.4

0.6

0.8

1.0

P-
Va

lu
e

(b) P-values obtained with applying filtering.

Figure 10: P-values without filtering and with the proposed filter, for the Sepsis event log [26].

culties in distinguishing noise, i.e., true unrelated behavior, from correct yet

infrequent behavior. Even more so, a proper corresponding taxonomy of noisy640

behavior and corresponding rationale of idealised filtering behavior in terms of

such taxonomy is lacking.

Therefore, we introduce a control-flow-oriented taxonomy of process behavior

and discuss to what degree our filter can deal with different undesired behavioral

categories as described by the taxonomy. Specifically, we identify three major645

data characteristics, which we then use to classify process execution data.

• Trustworthiness: Indicates to what degree the recorded behavior corre-

sponds to reality, i.e. what actually happened during the execution of the

process.

• Compliance: Indicates to what degree the recorded behavior is in accor-650

dance with a predefined set of rules or expectations. These rules may

derive from a regulatory framework, business rules or normative pro-

cess model and dictate that explicit forms of behavior are required. In

other cases, service level agreements prescribe certain expectations on

the process behavior. When the process behavior complies with such655

rules/expectations, we consider the behavior as compliant.

• Frequency : Indicates the relative frequency of the behavior, i.e. compared

30

Figure 11: Control-flow-oriented taxonomy of behavior. The types of behavior that, ideally,

are used in process mining are marked with X. Behaviour that is ideally removed is marked

with ×. Behaviour of which the type of process mining analysis determines inclusion, is

marked with ∼. The types of behavior that are identified by the proposed filter, i.e. infrequent

behavior, are highlighted in green.

to other observed executions of the same process.

In Figure 11, we present a graphical overview of the different characteris-

tics, and their relation. Depending on the type of process mining task per-660

formed someone may desire to include certain types of behavior in the analysis.

However, observe that, when behavior is untrustworthy, in general, we are not

interested in including it, i.e. we are not able to trust the behavior, and thus

draw any significant meaningful conclusions from it. Hence, even in the case

of conformance-checking-oriented process mining studies, we aim to remove the665

untrustworthy behavior. In fact, we aim to omit any form of untrustworthy

behavior. However, note that, even though behavior is untrustworthy, system-

atic errors may cause it to occur frequently. Therefore, in Figure 11, we do

distinguish between frequent and infrequent forms. We always aim to include

behavior that is trustworthy, frequent and compliant, while when we perform670

process discovery, it is most likely that we aim to only include such frequent

31

compliant behavior and leave out any other type of trustworthy behavior. When

we apply conformance checking, it is more likely that all trustworthy behavior

is required to be included. Observe that in Figure 11, we explicitly highlight

the types of behavior, i.e. infrequent behavior, that the presented filter is able675

to identify and remove.

It is important to note that, in principle, trustworthiness of behavioral data

is often not known. Hence, when applying filtering techniques in practice, either

online or offline, it is hard or even impossible to accurately detect untrustworthy

behavior. In general, any frequency-based filter only allows us to detect infre-680

quent behavior. Hence, in case non-compliant frequent behavior is present, this

is not recognized as eligible to be filtered. Similarly, infrequent yet compliant

behavior, is equally likely to be filtered. However, the impact of such filtering

behavior is less severe, e.g., in the case of parallelism one does not need to ob-

serve all possible interleaving behavior of the parallel construct, to observe the685

parallel construct itself.

7. Conclusion

The existence of noise in event data typically leads to inaccurate results of

process mining techniques. A fraction of noisy behavior in a single trace may al-

ready be enough to significantly reduce the accuracy of process mining artefacts690

such as an automatically discovered process model. While a range of techniques

exist for filtering out or tolerating noise in offline settings, online process mining

techniques working on event streams are still affected by this problem. As such,

such techniques are not reliable in the context of event streams containing noise,

which are common in reality. In this paper, we proposed an event stream based695

filter for online process mining. Our filter relies on an ensemble of probabilistic

and non-deterministic automata which are updated dynamically as the event

stream evolves. A state in one of these automata represents an abstract view on

the recent history of process instances observed from the stream. The empirical

probability distribution defined by the outgoing arcs of a state is used to classify700

32

new behavior as being spurious (i.e. noise) or not. The time measurements of

the corresponding implementation indicate that our filter is suitable to work in

real-time settings, i.e. with a response time within one second. Moreover, the

experiments on accuracy show that, on a set of stable event streams, we achieve

high filtering accuracy for different instantiations of the filter. Finally, we ap-705

plied our filter to state-of-the-art online drift detection techniques and show

that the filter significantly increases the accuracy of these techniques. The filter

proposed in this paper allows us to employ a static delay prior to event filtering

and construction of the output stream. The initial results with this delay are

promising, yet, in practice, concept drift is not expected to occur on a static710

rate. Hence, an investigation towards a dynamic filter delay which incorporates

a concept drift detection component is of interest. In line with this, integrating

the filter with an alternative underlying storing mechanism, e.g. dynamic sliding

windows, could similarly achieve better results.

Acknowledgments. This research is funded by the Australian Research Coun-715

cil (grant DP180102839).

References

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second

Edition, Springer, 2016. doi:10.1007/978-3-662-49851-4.

[2] P. Gonella, M. Castellano, P. Riccardi, R. Carbone, Process Mining: A720

DATABASE OF APPLICATIONS; 2017 Edition (2017).

[3] A. Ostovar, A. Maaradji, M. La Rosa, A. H. M. ter Hofstede, B. F.

van Dongen, Detecting Drift from Event Streams of Unpredictable Business

Processes, in: Conceptual Modeling - 35th International Conference, ER

2016, Gifu, Japan, November 14-17, 2016, Proceedings, 2016, pp. 330–346.725

doi:10.1007/978-3-319-46397-1_26.

[4] A. Ostovar, A. Maaradji, M. La Rosa, A. H. M. ter Hofstede, Characterizing

Drift from Event Streams of Business Processes, in: Advanced Information

33

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-46397-1_26

Systems Engineering - 29th International Conference, CAiSE 2017, Essen,

Germany, June 12-16, 2017, Proceedings, 2017, pp. 210–228. doi:10.1007/730

978-3-319-59536-8_14.

[5] A. Maaradji, M. Dumas, M. La Rosa, A. Ostovar, Detecting Sudden and

Gradual Drifts in Business Processes from Execution Traces, IEEE Trans.

Knowl. Data Eng. 29 (10) (2017) 2140–2154. doi:10.1109/TKDE.2017.

2720601.735

[6] M. Hassani, S. Siccha, F. Richter, T. Seidl, Efficient Process Discovery From

Event Streams Using Sequential Pattern Mining, in: IEEE Symposium

Series on Computational Intelligence, SSCI 2015, Cape Town, South Africa,

December 7-10, 2015, 2015, pp. 1366–1373. doi:10.1109/SSCI.2015.195.

[7] A. Burattin, A. Sperduti, W. M. P. van der Aalst, Control-Flow Discovery740

from Event Streams, in: Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2014, Beijing, China, July 6-11, 2014, 2014, pp. 2420–

2427. doi:10.1109/CEC.2014.6900341.

[8] S. J. van Zelst, B. F. van Dongen, W. M. P. van der Aalst, Event Stream-

Based Process Discovery using Abstract Representations, Knowl. Inf. Syst.745

54 (2) (2018) 407–435. doi:10.1007/s10115-017-1060-2.

[9] A. Burattin, J. Carmona, A Framework for Online Conformance Check-

ing, in: Business Process Management Workshops - BPM 2017 Interna-

tional Workshops, Barcelona, Spain, September 10-11, 2017, Revised Pa-

pers, 2017, pp. 165–177. doi:10.1007/978-3-319-74030-0_12.750

[10] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, W. M. P. van der

Aalst, Online Conformance Checking: Relating Event Streams to Process

Models using Prefix-Alignments, International Journal of Data Science and

Analyticsdoi:10.1007/s41060-017-0078-6.

[11] A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. van Dongen,755

J. Carmona, Online Conformance Checking Using Behavioural Patterns,

34

https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1109/TKDE.2017.2720601
https://doi.org/10.1109/TKDE.2017.2720601
https://doi.org/10.1109/TKDE.2017.2720601
https://doi.org/10.1109/SSCI.2015.195
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1007/s10115-017-1060-2
https://doi.org/10.1007/978-3-319-74030-0_12
https://doi.org/10.1007/s41060-017-0078-6

in: Business Process Management - 16th International Conference, BPM

2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings, 2018,

pp. 250–267. doi:10.1007/978-3-319-98648-7_15.

[12] A. E. Márquez-Chamorro, M. Resinas, A. Ruiz-Cortés, Predictive Moni-760

toring of Business Processes: A Survey, IEEE Trans. Services Computing

11 (6) (2018) 962–977. doi:10.1109/TSC.2017.2772256.

[13] S. J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, M. La Rosa, Filtering

Spurious Events from Event Streams of Business Processes, in: Advanced

Information Systems Engineering - 30th International Conference, CAiSE765

2018, Tallinn, Estonia, June 11-15, 2018, Proceedings, 2018, pp. 35–52.

doi:10.1007/978-3-319-91563-0_3.

[14] V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection for Discrete

Sequences: A Survey, IEEE Trans. Knowl. Data Eng. 24 (5) (2012) 823–

839. doi:10.1109/TKDE.2010.235.770

[15] M. Gupta, J. Gao, C. C. Aggarwal, J. Han, Outlier Detection for Temporal

Data: A Survey, IEEE Trans. Knowl. Data Eng. 26 (9) (2014) 2250–2267.

doi:10.1109/TKDE.2013.184.

[16] A. J. M. M. Weijters, J. T. S. Ribeiro, Flexible Heuristics Miner (FHM),

in: Proceedings of the IEEE Symposium on Computational Intelligence775

and Data Mining, CIDM 2011, part of the IEEE Symposium Series on

Computational Intelligence 2011, April 11-15, 2011, Paris, France, 2011,

pp. 310–317. doi:10.1109/CIDM.2011.5949453.

[17] A. Burattin, M. Cimitile, F. M. Maggi, A. Sperduti, Online Discovery

of Declarative Process Models from Event Streams, IEEE Trans. Services780

Computing 8 (6) (2015) 833–846. doi:10.1109/TSC.2015.2459703.

[18] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst,

A. J. M. M. Weijters, Process Mining for Ubiquitous Mobile Systems:

35

https://doi.org/10.1007/978-3-319-98648-7_15
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/10.1007/978-3-319-91563-0_3
https://doi.org/10.1109/TKDE.2010.235
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/TSC.2015.2459703

An Overview and a Concrete Algorithm, in: Ubiquitous Mobile Informa-

tion and Collaboration Systems, Second CAiSE Workshop, UMICS 2004,785

Riga, Latvia, June 7-8, 2004, Revised Selected Papers, 2004, pp. 151–165.

doi:10.1007/978-3-540-30188-2_12.

[19] J. Wang, S. Song, X. Lin, X. Zhu, J. Pei, Cleaning Structured Event Logs:

A Graph Repair Approach, in: 31st IEEE International Conference on Data

Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015, pp.790

30–41. doi:10.1109/ICDE.2015.7113270.

[20] R. Conforti, M. La Rosa, A. H. M. ter Hofstede, Filtering Out Infrequent

Behavior from Business Process Event Logs, IEEE Trans. Knowl. Data

Eng. 29 (2) (2017) 300–314. doi:10.1109/TKDE.2016.2614680.

[21] M. Fani Sani, S. J. van Zelst, W. M. P. van der Aalst, Improving Pro-795

cess Discovery Results by Filtering Outliers Using Conditional Behavioural

Probabilities, in: Business Process Management Workshops - BPM 2017 In-

ternational Workshops, Barcelona, Spain, September 10-11, 2017, Revised

Papers, 2017, pp. 216–229. doi:10.1007/978-3-319-74030-0_16.

[22] M. Fani Sani, S. J. van Zelst, W. M. P. van der Aalst, Repairing Out-800

lier Behaviour in Event Logs, in: Business Information Systems - 21st

International Conference, BIS 2018, Berlin, Germany, July 18-20, 2018,

Proceedings, 2018, pp. 115–131. doi:10.1007/978-3-319-93931-5_9.

[23] M. Fani Sani, S. J. van Zelst, W. M. P. van der Aalst, Applying Se-

quence Mining for Outlier Detection in Process Mining, in: On the Move805

to Meaningful Internet Systems. OTM 2018 Conferences - Confederated

International Conferences: CoopIS, C&TC, and ODBASE 2018, Val-

letta, Malta, October 22-26, 2018, Proceedings, Part II, 2018, pp. 98–116.

doi:10.1007/978-3-030-02671-4_6.

[24] W. M. P. van der Aalst, V. A. Rubin, H. M. W. Verbeek, B. F. van Dongen,810

E. Kindler, C. W. Günther, Process Mining: A Two-Step Approach to Bal-

36

https://doi.org/10.1007/978-3-540-30188-2_12
https://doi.org/10.1109/ICDE.2015.7113270
https://doi.org/10.1109/TKDE.2016.2614680
https://doi.org/10.1007/978-3-319-74030-0_16
https://doi.org/10.1007/978-3-319-93931-5_9
https://doi.org/10.1007/978-3-030-02671-4_6

ance Between Underfitting and Overfitting, Software and System Modeling

9 (1) (2010) 87–111. doi:10.1007/s10270-008-0106-z.

[25] B. Weber, M. Reichert, S. Rinderle-Ma, Change Patterns and Change Sup-

port Features - Enhancing Flexibility in Process-Aware Information Sys-815

tems, Data Knowl. Eng. 66 (3) (2008) 438–466. doi:10.1016/j.datak.

2008.05.001.

[26] F. Mannhardt, Sepsis Cases - Event Log (2016). doi:10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460.

37

https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

	Introduction
	Related Work
	Background
	Basic Notation
	Event Data
	Probabilistic Automata

	Filtering Infrequent Behaviour from Event Streams
	Architecture
	Constructing Prefix-Based Automata
	Incrementally Maintaining Collections of Automata
	Filtering Events

	Evaluation
	Stable Process Behaviour
	Experimental Setup
	Results

	Filtering with Concept Drift
	Experimental Setup
	Results on Synthetic Data
	Results on Real-Life Data

	Discussion
	Conclusion

