
CoPModL: Construction Process Modeling Language
and Satisfiability Checking.

Elisa Marengoa,∗, Werner Nutta, Matthias Perktoldb

aFaculty of Computer Science, Free University of Bozen-Bolzano, Italy
name.surname@unibz.it

bFaculty of Computer Science, Free University of Bozen-Bolzano, Italy
matthias.perktold@asaon.com

Abstract

Process modeling has been widely investigated in the literature and several general purpose approaches have
been introduced, addressing a variety of domains. However, generality goes to the detriment of the possibil-
ity to model details and peculiarities of a particular application domain. As acknowledged by the literature,
known approaches predominantly focus on one aspect between control flow and data, thus neglecting the
interplay between the two. Moreover, process instances are not considered or considered in isolation, ne-
glecting, among other aspects, synchronization points among them. As a consequence, the model is an
approximation of the real process, limiting its reliability and usefulness in particular domains. This obser-
vation emerged clearly in the context of a research project in the construction domain, where preliminary
attempts to model inter-company processes show the lack of an appropriate language.

Building on a semi-formal language tested on real construction projects, in this paper we define CoP-
ModL, a process modeling language which accounts both for activities and items on which activities are to
be executed. The language supports the specification of different item-based dependencies among the activ-
ities, thus serving as a synchronization specification among several activity instances. We provide a formal
semantics for the language in terms of LTL over finite traces. This paves the way for the development of
automatic reasoning. In this respect, we investigate process model satisfiability and develop an effective
algorithm to check it.

Keywords: Multi-instance Process Modeling, Satisfiability Checking of a Process Model, Construction
Processes

1. Introduction

Process modeling has been widely investigated in the literature, resulting in approaches such as BPMN,
Petri Nets, activity diagrams and data centric approaches. Known shortcomings of these approaches are,
among others, that i) they need to be general in order to accommodate a variety of domains, inevitably
failing in capturing all the peculiarities of a specific application domain [1, 2, 3]; ii) they predominantly
focus on one aspect between control flow and data, neglecting the interplay between the two [4]; iii) process
instances are considered in isolation, disregarding possible interactions among them [5, 6].

∗Corresponding author

Preprint submitted to Elsevier July 12, 2019

2

As a result, a process model is just an abstraction of a real process, limiting its applicability and useful-
ness in some application domains. This is particularly the case in domains characterized by multiple-instance
and item-dependent processes. We identify as multiple-instance those processes where several process in-
stances run in parallel on different items, but their execution cannot be considered in isolation, for instance
because there are synchronization points among the instances or because there are limited resources for the
process execution. With item-dependent we identify those processes where modeling activities only (as in
BPMN or Petri Nets) is not enough because also the items on which activities have to be performed play a
role and has to be modeled. This is because items are different to one another and part of the role of a model
is indeed to define i) what are the items; ii) on which items an activity has to be executed; and iii) how does
the execution of an activity on some items synchronizes with the execution of other activities on the same or
different items.

The need of properly addressing multiple-instance and item-dependent processes emerged clearly in
the context of some research projects [7, 8] in the building construction domain. A construction project is
composed of phases. A common approach is to organize it into six phases [9]: i) conception of the project,
ii) design, iii) pre-construction, iv) procurement, v) execution (construction), vi) post-construction. In this
work we consider the execution stage only. A process model for the execution stage aims at defining in detail
the synchronization and coordination agreement between the different companies simultaneously present on-
site. Thus, besides defining the activities to be executed and the dependencies among them, aspects that can
be expressed by most of the existing modeling languages, there is the need of representing for each activity
the items on which it has to be executed, where items in the construction domain correspond to locations. In
this sense, construction processes are item-dependent: i) locations need to be defined in a structured way and
ii) a model has to explicitly represent in which locations an activity has to be performed (for synchronization
or organizational purposes, for instance). Note indeed that not necessarily an activity has to be performed in
all locations. Processes are also multiple-instance, since parallelism in executing the activities is possible but
there is the need to synchronize their execution on the items. For instance, only one activity at a time can be
executed in a location and precedence constraints may rule the execution of the activities in one location [9].

The aim of a process model is to capture these aspects in a non-ambiguous way, both in order to collect
the requirements for a construction process in such a way that all participants agree on them, discuss the
details of the execution and possibly to identify and solve potential problems. Also, it is desirable to rely on
(automatic) tool that can support the definition and management of such models. For instance, an appeal-
ing functionality is the automatic generation of (optimized) schedule starting from a process model. As a
preliminary step, however, it would be important to verify some properties of interest on the starting model,
such as its satisfiability. To achieve these results, a model must rely on a formal semantics.

In this paper we address the problem of multiple-instance and item-dependent process modeling, specif-
ically considering the building construction domain. We tackle the problems of how to specify the items
on which activities are to be executed and how the control flow can be refined to account for them. Rather
than defining “yet another language”, we start from an existing informal language that has been defined in
collaboration with construction companies and tested on-site [7, 10] in a construction project (Figure 1). We
introduce CoPModL (Construction Process Modeling Language), which refines and extends the constructs
of the language, and define a formal semantics grounded on Linear Temporal Logic over finite traces [11]
(LTLf). The formal semantics allows us to automatically check the satisfiability of a process model, that is
checking whether an execution satisfying all the requirements exists in principle. In this paper we propose
an efficient algorithm to check this property. To easily communicate with the construction companies, from
which we gathered the requirements for construction process modeling, we developed a web-based proof-
of-concept tool which supports a graphical definition of a model and implements the satisfiability check.

CoPModL has been defined in the context of the research project COCkPiT [8], based on the require-

3

ments identified for the building construction domain. In principle the language is general and thus can be
applied to other applications domains. In fact, the need of representing locations and the need of expressing
formal conditions ruling the control flow already emerged in the literature [12, 13, 14]. However, we believe
that due to its peculiarities CoPModL mainly suits construction related domains (e.g., civil and infrastructure
projects) and production domains (e.g., manufacturing and manufacturing-as-a-service [15]).

The paper extends the work in [16], discussing more in detail the requirements of the application do-
main and using them to discuss in detail existing approaches and their unsuitability for construction process
modeling and satisfiability checking in this setting. Formal proofs and lemmas are introduced in this pa-
per, as well as the description of the proof-of-concept tool that we developed to support CoPModL process
modeling and satisfiability checking [17]. The efficiency of the satisfiability checking algorithm is better
substantiated by means of additional experiments, showing i) the efficiency of the algorithm compared to
a model checking tool; ii) that the optimizations on which the satisfiability checking algorithm relies on
are indeed improving the checking performances; and iii) the algorithm is able to handle process models of
reasonable size.

The paper is structured as follows. In Section 2 we collect the main requirements that emerged in our
research projects and with the collaboration with some companies; we also discuss the unsuitability of two
well known languages, namely BPMN and Declare. Section 3 presents CoPModL and its formalization and
Section 4 presents an example of its application. The satisfiability checking algorithm and its evaluation
are described in Section 5. Section 6 presents CoPMod, a proof-of-concept tool that is developed as a web
application and that supports construction process modeling and satisfiability checking. In Section 7 we
discuss the related work both from the computer science and the construction domain. Conclusions end the
paper in Section 8.

2. Construction Process Requirements

Before entering into the details of our proposal, let us first analyze in Section 2.1 some characteristics of
the construction domain and the requirements for process modeling emerging from them. In Section 2.2 we
clarify some of the requirements by discussing a possible application of the modeling languages BPMN, a
well known procedural standard, and Declare, a well known declarative approach, and we show the unsuit-
ability of these languages for the domain.

2.1. Requirements for Construction Process Modeling
Management and modeling of construction processes for the execution stage are challenging due to some

peculiarities of the domain which lead to specific requirements.

Process model elements: perspectives, activities, locations, and location-based dependencies. One of the
main aim of defining a process model is to capture the desired coordination among the different compa-
nies that are involved in the project. As anticipated in the introduction, indeed, construction processes are
multiple-instance, meaning that parallelism in executing the activities in the locations is possible, but coordi-
nation should ensure that workers do not obstruct each other and that the prerequisites for a crew of workers
to perform its work are all satisfied when it has to start. In very small projects, coordination is defined on
the fly at execution time based on the experience of the workers. However, when a few different companies
are involved, it is important to define and agree on the coordination so as to avoid misunderstandings, to
discover possible execution problems and to potentially optimize some parts of the process. An effective
way to achieve this result is by defining a process model in a collaborative way, that is by involving the main
actors taking part in the construction (such as project managers and foremen of the involved companies).

4

In this way, indeed, it is possible to leverage on the experience of the workers in defining the coordination
rather than imposing one.

In this scenario, different expertise is brought together and it is thus important that a model is able to
capture the different perspectives at the right level of detail and that the information that is relevant for co-
ordination purposes can be expressed explicitly and not left as common or hidden knowledge. Different
perspectives emerge mainly in the representation of the activities and of the items on which they need to be
performed. For example, let us consider as a scenario an excerpt of a real project for the construction of
a hotel. In this case, it happened that the company responsible for the construction of the skeleton had to
synchronize with the other companies, among which the one responsible for the interior. However, when
representing the locations where activities had to be performed, more levels of detail were needed for the
interior activities (identifying the technological content for the area, such as “office”, “swimming pool”,
“room” and the precise location, such as room 1 at the second floor), while for the skeleton a coarser rep-
resentation was needed (that is in terms of levels). Both representations were needed in the same model, as
well as a relation between them (e.g. the second floor represents the same area both for interior construction
and skeleton). A model must be able to accommodate both perspectives and potentially others.

When specifying a process model one must be able to specify what needs to be performed in terms of
activities, where an activity has to be executed in terms of locations (accounting for different perspectives),
and also to represent location-based dependencies on the execution of the activities. For instance, in the
hotel scenario wooden windows were installed only in the rooms while aluminum windows were installed
in the other locations. Since wooden windows are delicate, the companies agreed among them that in the
rooms the floor would have been put first and then the wooden windows would have been installed (so that
the floor could dry without damaging the windows). When defining this precedence, it must be possible to
specify also at which level the dependency applies. Does the precedence in the example mean that the floor
must be put everywhere before a window can be installed, or does it rather mean that the floor must be put
entirely at one level of the building before the installation of the windows can start there, or even that the
precedence applies room by room. In this sense, a model must be able to capture location-based relations
specifying at which level a dependency applies.

Adequate support for one-of-a-kind projects. It is not difficult to imagine that construction processes, as
opposed to manufacturing for instance, are one of a kind both from a design and organizational point of
view. Design-wise, the elements to be built as well as material and technologies to be used are likely
different from project to project. From the execution point of view, this affects the coordination patterns
that are related to the technological and material requirements. Organization-wise, for a construction project
several companies and crafts are required on-site and also in this case they are always different. As a
consequence, also the coordination among them changes from project to project, at least for what concerns
preferred patterns of execution and specific needs of the companies. For these reasons, only little can be
reused from project to project and most of the time a process model must be defined from scratch. However,
even if the coordination patterns are always different, most of the terminology that is used, such as the
activity names, the name of the locations, and the terminology for the involved crafts can potentially be
reused and adapted to different projects.

Flexibility and adaptability of the model. When it comes to the execution, construction processes are subject
to unpredictable events [1] and to changing requirements from the customer. The advantage of having a
process model is that in these cases one can evaluate several alternative countermeasures and adaptations
before implementing them, thus considering the impact of the changes in the long run, rather than adopting
a solution that seems to be good at the time it is taken. However, changes are possible only if the process
model supports them in reality. In theory, indeed, any process model can be changed and adapted. In

5

Figure 1: Process Modeling Workshop with Construction Companies and the Resulting Model.

practice, an adaptation is possible only if it is possible to understand how the model should be changed in
order to obtain the desired result and if the changes to be made are circumscribed to one part of the model.

Non-ambiguity of the language. A first attempt of collaborative process modeling was part of a research [7]
and a construction project [10]. Here a new approach for a detailed modeling and management of con-
struction processes was developed in collaboration with a company responsible for facade construction. An
ad-hoc and informal modeling language was defined, with the aim of specifying the synchronization of the
companies on-site and used as a starting point for the daily scheduling of the activities (performed manu-
ally). The process model of the construction project, depicted in Figure 1, was defined collaboratively by
the companies participating in the project by means of magnetic plates representing activities and locations
where to perform them, sticking them on magnetic whiteboards and drawing dependencies among them.

This approach for process modeling was evaluated positively by the involved companies because they
could discuss in advance potential problems and more efficiently schedule the work. The benefit was es-
timated in a 8% saving of the man hours originally planned and some synchronization problems (e.g., in
the use of the shared crane) were discovered in advance and corresponding delays were avoided. However,
the language presented several ambiguities which required additional knowledge and disambiguation, often
provided as annotations in natural language. Indeed, in the approach people could represent activities and
locations where to perform the work, but these latter were represented in an ad-hoc and unstructured way,
requiring additional knowledge to interpret them case by case and also leading to non-consistent representa-
tions of the same location in different activities. Concerning dependencies, these were all represented in the
same way by means of an arrow, but they were interpreted differently depending on the case: sometimes, the
meaning was that a task must be finished everywhere before another can start, other times the precedence
was intended as a floor by floor constraint and so on.

Also, different constraint types were all represented in the same way. A loop was interpreted as two
activities to be performed one after the other, alternating in the different floors, that is with the first one
waiting for the second one before progressing on the next floor. In some cases an arrow was interpreted as a
precedence (with potentially other tasks performed in between the two), while other times it was interpreted
as a strict sequence. Finally, in some cases tasks needed an exclusive access to a certain area, that is,
regardless of any order with the other tasks, once it is started in one area (e.g., one floor) no other tasks could
access that area. This is to avoid obstructions and for efficiency reasons.

The ambiguity of the language has several drawbacks, among which the difficulties in interpreting a
model for someone who is not involved in the definition process and, also very important, the impossibility
to provide automatic support.

6

Need of IT-tools as a support. The representation of more details, like the definition of locations and
location-based dependencies rather than just activities and precedences, complicates the definition of a pro-
cess model, which was already perceived as a demanding activity for some workers when introduced in [10].
For instance, when introducing a new task one had to first remember where the task was foreseen and how
they agreed to represent locations in the workshop (in fact, leading to inconsistencies in the representation
of the locations). Also, at the end of the workshop someone had to copy the resulting process model with
some tool (often inadequate for the purpose), such as Microsoft Excel and Power Point, and then share it
with the other participants. These time-demanding and error-prone activities can be mitigated by providing
adequate IT and automated support. After this first step, other automation steps can be undertaken, like the
automatic generation of optimized schedules.

2.2. BPMN and Declare for Construction Process Modeling

The Business Process Modeling Notation (BPMN) standard is a widely known approach for modeling
business processes. BPMN is a graphical language which supports the definition of, among others, activities
to be performed, roles performing them, events, parallel and alternative branches [18]. The language has a
rich notation and the fact of being graphical supports its comprehension even by non-experts.

One of the recognized limitations of the language is the fact that the connection between the control flow
and the data objects is under-specified [4, 19, 20]: items and their role in ruling the control flow are not
expressed explicitly. This is one of the reasons why, as noticed also by other authors [2, 21], in some cases
the approach is too general to capture the specificity of a particular domain or to perform automatic tasks.
The language supports the representation of data objects and data stores (see Figure 2a) which however
can only express that a certain information is needed for the activity to be executed (or as an output of the
activity). To represent explicitly the items on which an activity is executed, the language should be enriched.
For instance, in [21] the authors show that in order to reason about the data that is manipulated by a process,
one necessarily needs to enrich the language with formal annotations about the way the activities manipulate
the data. Another possibility supported by the languages is the representation of repetitive activities. BPMN
allows for the representation of activities with a loop or multi-instance marker. However, also in this case,
the items on which the loops or the activities need to be repeated is not represented explicitly [20].

In construction processes there is the need of representing locations and location-based relationships.
Consider, for instance, the example in which the activity Lay Floor must be performed in each room of a
floor before the activity Install Wooden Window can be performed in any room of the same floor. This is
because in this way the company laying the floor can complete its work in one floor without obstructions
by the other company. Figure 2a represents the case in which the locations are read from a data object or
a data store. As can be seen, it is not possible to specify to which locations each activity applies and how
the locations affect the control flow (in this case the precedence between the two tasks). Another possibility
would be to represent a BPMN task as a pair of a construction activity and the location where to perform it,
as represented in Figure 2b. This model describes that both activities need to be performed in floors 1 and
2 (f1, f1) in rooms 1, 2 and 3 (r1, r2 and r3). The precedences are defined in such a way that Install Wooden
Window can start in a floor only after the execution of the task Lay Floor is completed in the three rooms
of that floor. It is not hard to see that, already with few activities and locations the model becomes difficult
to specify, to understand and thus also to maintain. It must also be considered that constraints can be more
complicated than simple precedences. Consider, for instance, the case in which there is no order between
laying the floor and the other activities, but once it is started in a floor, then no other tasks can be executed
there. We refer to this as an exclusive constraint. To represent such a pattern in BPMN one would need to
explicitly represent, among the possible executions, the allowed one, i.e., those in which the activity Lay
Floor is not interrupted during its execution in a floor. Figure 3 reports this case considering one floor only

7

(a) BPMN Data Object (top) and
Data Store (bottom)

(b) Precedence between Lay Floor and Install Wooden Window where
locations are represented as part of the activity

Figure 2: Representing Activities and Locations in BPMN

and one additional activity beside Lay Floor. One can imagine that having more levels and more activities
makes the model even more complicated. These complications are due to the characteristic of BPMN of
being procedural. Procedural approaches define all and only the possible executions that are allowed, by
specifying at each step what are the possible future steps. This makes them less flexible and adaptable,
which is a requirement of construction processes to face unexpected events and changing requirements. For
instance, let us consider again the situation depicted in Figure 3. If one wants to introduce the activity
Install Aluminum Windows that can be performed at any time with respect to the installation of the wooden
windows and the laying of the floor, but still respecting the exclusivity constraint at the floor for the Lay
Floor activity, then the diagram in Figure 3 will have many more alternatives than it already has. Similarly, if
new constraints must be added or existing constraints must be relaxed, then all the possible sequences must
be analyzed and potentially changed [22].

Declarative approaches are discussed in the literature as approaches that better support flexibility [14, 23,
24]. Given that they represent only the constraints that an execution must satisfy, without representing all of
them explicitly, when a new condition needs to be captured usually few new constraints need to be added. In
this way the representation results to be more compact and the changes more circumscribed. It is however
true that it might be more complicated to understand how to change the specification in order to obtain a
desired result [25]. Declare [26] has been introduced as a declarative work flow management system that
supports multiple declarative languages such as DecSerFlow [27] and ConDec [28]. DecSerFlow provides
a number of constraint templates that are grounded on LTL and that have a graphical representation so as to
easy a model specification. In Declare, expressing that Lay floor must be done before installing the wooden
windows while installing the aluminum windows can be done at any time, can be done by just putting a
precedence constraint between Lay Floor and Install Wooden Windows, and leave Install Aluminum Windows
unconstrained. A precedence, indeed, does not represent a strict sequence, but a requirement on the ordering
between two tasks meaning that other tasks can in principle be performed in-between the two.

8

Figure 3: Exclusivity constraint in BPMN for Lay Floor, without ordering constraints with Install Wooden Windows

However, similarly to BPMN, also Declare does not consider other perspectives besides the activities
and the control flow [13]. Therefore, to represent the locations and location-based dependencies one would
need to do something similar to Figure 2b and represent the locations as part of the activities. This would
make a model more complicated than needed, difficult to understand and maintain. Additionally, in Declare
it is not possible to express an exclusivity constrain. Let us consider again the example in Figure 3. An
exclusivity constraint (without ordering constraints) is requiring that the installation of the window in one
room, for each of the three rooms, either precedes the execution of Lay Floor (LF) in all of the three rooms,
or succeeds it. Let us consider Install Wooden Window in room 1 at floor 1 (IWW 〈f1, r1〉), then the constraint
to express would be something like (and similarly for IWW 〈f1, r1〉 and IWW 〈f1, r3〉):

((LF 〈f1, r1〉 and LF 〈f1, r2〉 and LF 〈f1, r3〉) precedes IWW 〈f1, r1〉) or
(IWW 〈f1, r1〉 precedes (LF 〈f1, r1〉 and LF 〈f1, r2〉 and LF 〈f1, r3)

In Declare it is not possible to express such alternatives on patterns. There are approaches in the literature
that extend Declare in order to support more expressive conditions to rule the control flow. These will be
discussed in the Related Work (Section 7), but basically they also fail in representing exclusive constraints.

9

3. CoPModL: Construction Process Modeling Language

One of the requirements identified in the previous section is the need of supporting one-of-a-kind projects.
To do this we decouple two components of process modeling that we call configuration and flow part. The
idea is that the former defines the parts of a process model that more likely can be reused from project to
project, although extended and adapted as needed. This basically consists in the vocabulary of activities to
be performed, the attributes defining the locations, the required crafts and so on. The flow part, instead,
represents the dynamic part mainly capturing i) which activities, among those defined in the configuration
part, are expected to be executed, ii) for each of them, in which locations to execute them and iii) the de-
pendencies in performing the activities. In the following we will introduce the two parts in an intuitive way,
providing some examples taken from or inspired by real projects, and propose a formalization.

3.1. Configuration Part
One of the core elements of process modeling are the activities, which represent pieces of work to be

performed (e.g., install window, lay floor). Additionally, the items on which the activities will be executed
need to be part of the model. On the one hand, the representation of items should be abstract, so that items
can be easily specified and identified. On the other hand, the representation should accommodate different
perspectives (e.g., skeleton and interior construction). To this aim, we foresee representations that consist of
i) a hierarchy of attributes, and ii) for each attribute a range of possible values (called domain values). The
attributes, their hierarchy, and the possible values will vary depending on the domain and on the project. For
a construction project, one can represent in this way a location-break-down structure of a building.

Example. A possible hierarchy to represent locations, as depicted in Figure 4, is composed of the following
attributes: i) sector (sr), which represents an area of the construction site where activities can be performed
more or less independently from the other sectors (like different buildings or wings); as possible values, in
the running example that we will use in this paper we consider B1 and B2 (respectively standing for building
1 and 2); ii) level (l), identifying a floor; we consider values underground (u1), zero (f 0) and one (f1);
iii) section (sn), which specifies the technological content of an area; as possible values we consider room
(r), bathroom (b), corridor (c) and entrance (e); and iv) unit (u), which enumerates locations of similar
type; we use it to enumerate the hotel rooms from one to four. Other attributes could be considered, such as
wall, with values north, south, east and west, to identify the walls within a section (which is important when
modeling activities such as cabling and piping). Note that in this work we are not concerned about where
locations are physically located in the building, like, for instance, which location is adjacent to which other.
This knowledge should come from some expert or from drawings of the building. BIM technologies can help
in this respect, but this is out of the scope of this paper.

The domain values of an attribute can be ordered. This is the case, for instance, for the levels where
often there is the need of specifying an ascending (u1 < f 0 < f1, from bottom to top) or descending order.

We call item structure a hierarchy of attributes. As anticipated, in a construction project several per-
spectives (e.g., skeleton, interior) are involved for which different activities need to be performed on items
having a different item structure. To express this, we define a set of perspectives and for each of them the
corresponding item structure. An item structure is defined as a tuple of attributes, and a set of item values
defining the allowed values for the items. Thus, an item is a sequence of values indexed by the attributes.

Example. Common perspectives in construction are the skeleton and interior construction, requiring re-
spectively a coarser representation of the locations and a more fine-grained one. The construction of the
skeleton, indeed, occurs at the beginning of a construction process, and a coarse representation of the loca-
tions is usually sufficient since little parallelism between the trades occurs and the execution of the activities

10

Sector
(sr)

Level
(l)

Section
(sn)

Unit
(u)

Interior
Item Structure

Attributes

B1, B2

u1,f0,f1
(u1<f0<f1)

r,b,c,e

1,2,,3,4

Domain Values

B2

u1

...

f0

b

1

r

1 ... 4

B1

u1

...

f0

b

1

r

1 ... 4

f1

...

Interior Item Values

Level f1

Sector B1

Sector B2

Level f0

Level u1

Level f0

Level u1

Level f0

Room 1

Room 2

Room 3

Room 4

Bath
Room

Sector B2

Building

Skeleton
Item Structure

Skeleton Item Values

Figure 4: Representation of the items in the hotel case study.

takes long. One may foresee several suitable ways to identify the locations in this case. Among these, one
possibility is to consider sectors and levels. Accordingly, in Figure 4, an item for the skeleton is described
in terms of sector and level only, with sector B1 having three levels and sector B2 only two. Accordingly,
the item structure for the skeleton perspective is 〈sector, level〉 and the possible values for sector B1 are
〈B1, u1〉, 〈B1, f 0〉, 〈B1, f1〉, while for B2 they are 〈B2, u1〉, 〈B2, f 0〉.

The interior construction usually occurs simultaneously to other construction parts (such as the enve-
lope), and concerns activities for the construction of the inner parts of the building. Here, locations should
allow one to identify the technological content of an area, that is identified with the section. Indeed, different
sections require different activities to be performed there. For instance, the activities to be performed in
a bathroom are different from the activities to be performed in a room, a kitchen or a swimming pool. As
depicted in Figure 4, the item structure for the interior perspective is 〈sector, level, section, unit〉 and among
the possible values for sector B1 there are 〈B1, f 0, r, 1〉, . . . , 〈B1, f 0, r, 4〉 to identify the four rooms at level
f 0 of building B1.

Formally, a configuration C is a tuple 〈At, P 〉, where: i) At is the set of attributes each of the form
〈α,Σα, α↑〉, where α is the attribute name, Σα is the domain of possible values, and α↑ is a linear total
order over Σα (for simplicity, we assume all attributes to be ordered); ii) P is a set of Perspectives, each
of the form 〈Ac, Is, Iv〉, where Ac is a set of activities; Is = 〈α1, ..., αn〉 is the item structure for the
perspective and Iv ⊆ Σα1

× ...× Σαn
is the set of item values.

3.2. Flow Part
The configuration part can be seen as the “vocabulary” containing possible activities and items. Based on

them, the flow part describes the construction process starting from specifying on which items the activities
must be executed. We call task an activity a on a set of items I , represented as 〈a, I〉, where I is a subset of
the possible item values for the activity’s perspective. We use 〈a,i〉 for an activity on one item i.

A process model must also capture dependencies (ordering constraints) on the execution of the activities.
Combining activity and locations in a task, allows us to refine the representation of the execution constraints,
being more precise. In particular, one may want to order the locations according to some criteria (e.g., bottom
to top, far from the entrance to close) and specify that an activity should be performed following that order.

Example. Not surprisingly, in construction walls are built from bottom to top. Another common pattern
is that cleaning is performed from top to bottom. Intuitively, this is because the cleaning of an upper floor

11

makes the underlying floors dirty. One may also want to specify that the floor should be laid starting from
the rooms that are farther from the entrance and proceeding towards it.

A requirement from the domain is that when defining a dependency between two tasks it should be
possible to clarify the scope, specifying whether it applies i) at the task level, that is, the first task must be
finished in all its locations before progressing with the second; ii) at the item level, that is, once the first task
is finished in a location the second can be performed in the same location; iii) or on some broader location
to express, for instance, that only after the first task is finished everywhere in a floor, the second can start
in the locations at the same floor. In the original language from which this approach started, the scope of
precedences was provided as disambiguation notes in natural language.

Example. Consider a precedence between the tasks Lay Floor and Install Wooden Window. A dependency
at the level of task would require the floor to be finished everywhere before starting installing the windows.
However, it is probably more likely to start with the installation of the windows once the floor is finished
everywhere at a level. This can be achieved with a scope at the floor level. In some cases, it is even feasible
to start with the installation in a room once the floor is finished there (i.e., at the scope of section).

Besides refining the precedence dependencies between tasks specifying the scope, the construction do-
main requires the modeling of some different temporal ordering relations between tasks. Among these, from
the previous project the need emerged to express that a task must have exclusive access to an area, that is
no other tasks can be performed there while it is executed. By default in construction, two items cannot be
performed at the same time on the same item (e.g., in the same room of a particular floor of a building).
In some cases, however, there is the need to express an exclusive constraint at a higher level (for instance,
no other task can be performed at the same floor where the exclusive task is executing). Additionally, there
is the need to express exclusive constraints between two tasks, that is, the execution of the two cannot be
interrupted by other tasks.

Example. For safety reasons, once excavate starts in an area no other tasks can be performed there until it
is finished. Moreover, once excavate is finished, before any other task can start, the area must be secured.

Another type of constraint that is needed is to express a relation between two tasks such that the first task
must be performed before the second, but in order for the first to progress on another item it also has to wait
for the second one to be finished on the previous item.

Example. Let us consider the construction of a building with several floors. In order to build the walls
at a floor, the scaffolding must be installed at that floor first. However, the scaffolding for the next floor is
anchored to the previous floor, that is why the installation of the scaffolding for a subsequent floor can be
performed only after the concrete has been poured for the previous floor.

In summary, the flow part defines a set of tasks that must be performed and dependencies to be satisfied.
Formally, a flow part F is a tuple 〈T,D〉, where T and D are sets of tasks and dependencies.

In the original language, the dependencies were declarative, i.e., not expressing strict sequences but
constraints to be satisfied. In this paper we extend the kind of dependencies that can be specified, we support
the specification of a scope and we provide a formal semantics in terms of LTL over finite traces. A detailed
description and the formalization are provided in the following.

The fact of being declarative supports the flexibility and adaptability of a process model [14, 23, 24],
which is also supported by the distinction between configuration and a flow parts. Additionally, this distinc-
tion better supports the reusability (especially of the configuration) from project to project. With respects
to the requirements identified in Section 2.1, the current approach is able to represent the main elements

12

Task ID
#crews x
#workers Duration Craft

Activity

Ordering
Constraint Exclusive

Constraint

Locations

Task and Dependency Representation

Precedence

Alternate Precedence

Chain Precedence

Figure 5: Excerpt of the hotel process model. (The * denotes all possible values for an attribute).

of a construction process model, that is different perspectives, activities, locations and location-based de-
pendencies. Finally, its formal grounding makes the approach non-ambiguous and paves the way to the
development of automatic tools, as we will show in Section 5.

3.3. Constraint Specification in CoPModL

CoPModL defines a number of constructs for the specification of execution and ordering constraints on
task execution. In particular, we consider that the execution of an activity on an item does not occur more
than once and that a task execution has a duration. Ordering constraints basically relate the start and the
end of the tasks, for instance requiring the start of a task to occur after the end of another one. To this
aim, for each task 〈a,i〉 we introduce a start and an end event represented as start(a,i) and end(a,i)
respectively. An execution is then a sequence of states, each of which comprising a set of start and end
events for different tasks that may occur simultaneously. For each construct of the language we provide a
collection of LTL formulas that capture the desired behavior by constraining the occurrence of the start and
end events of the activities on the items.

To support the representation of a process model and provide an overall view of a process flow we
propose a graphical representation. Figure 5 shows an excerpt of a process for the construction of a hotel.
We will use it as a running example. Intuitively, each box is a task where the color represents the perspective,
the label the activity and the bottom matrix the items. The columns of the matrix are the item values and the
rows are the attributes of the item structure.

Example. As an example, consider the task Excavate in Figure 5. The task belongs to the skeleton perspec-
tive (coded with a light blue color). Accordingly, the item structure is composed of two attributes: the sector
and the level, which correspond respectively to the first and the second row of the matrix in the box. The
item values are two in this case: 〈B1, u1〉 and 〈B2, u1〉 represented as columns and specifying that the task
must be executed at the underground level (u1) of building 1 (B1) and building 2 (B2).

Arrows between the boxes represent binary dependencies among the tasks and can be of different kinds.
The dependency names and intuitive meaning are inspired by Declare [26], although the language and its

13

LTLf semantics are different. To improve readability, Table 1 lists macros that we use in the definition of
the semantics of the CoPModL dependencies and Table 2 summarizes the dependencies, providing a short
explanation for them and the formal semantics.

For the sake of clarity, we recall that the LTL formulas are built up starting from a set of propositions
P . In our case the propositions are of the form start(a,i) or end(a,i), where a ranges over all activities in
a given model and i over all items for which a is foreseen. In addition to the standard operators ∧, ∨, and
¬, LTL allows one to construct temporal expressions of the form �φ, ♦φ and ©φ, with the meaning that
condition φ must be satisfied i) always in the future, ii) eventually in the future, and iii) in the next state,
respectively. Furthermore, the formula φ U ψ requires condition φ to be true until ψ becomes true [29].

The semantics is the one of LTLf , that is, formulas are evaluated over finite traces as defined by De
Giacomo and Vardi [11]. We restrict ourselves to finite traces because a construction project that runs
forever would be absurd.

Execute. As described previously, the flow part specifies a set of tasks. Note that all tasks defined in the
flow part need eventually to be executed. This is captured by specifying an execute dependency executes(t),
for each task t of the flow part. Graphically, this is represented by drawing a box. Formally, it is expressed
by an executes(t) constraint for t = 〈a, I〉. The constraint

executes(〈a, I〉)

is a shorthand for a collection of LTL formulas that formalize four intuitive principles of how activities are
to be executed on items. The four principles are the following:

Eventual start: For each item i ∈ I , activity a has to start eventually:

∀i ∈ I ♦ start(a,i).

Start-end order: Every start event is followed by an end event:

∀i ∈ I �(start(a,i)→©♦end(a,i).

Non-repetition: An activity cannot be executed more than once on the same item, that is, start and end
events never repeat:

∀i ∈ I �(start(a,i)→©�¬start(a,i)) ∧�(end(a,i)→©�¬end(a,i)).

Non-concurrency: At a given point in time, no other task can be performed on an item i concurrently with
a, i.e., for all tasks 〈b, Ib〉 distinct from 〈a, I〉 in the set of tasks T of the model, the following holds:

∀i ∈ I ∩ Ib �(start(a,i)→ ¬start(a′,i) U end(a,i)).

These constraints are captured by the four macros eventually starts(〈a, I〉), start-end order(〈a, I〉),
non repetition(〈a, I〉), and non concurrency(〈a, Ia〉), respectively.

14

MACROS:

Eventual start: eventually starts(〈a, I〉 : task)

Activity a must be started on all instances in I

∀i ∈ I ♦ start(a,i)

Start end order: start-end order(〈a, I〉 : task)

Every start event is followed by an end event

∀i ∈ I �(start(a,i)→©♦end(a,i)

Non-repetition: non repetition(〈a, I〉 : task)

An activity cannot be executed more than once on the same item

∀i ∈ I �(start(a,i)→©�¬start(a,i)) ∧�(end(a,i)→©�¬end(a,i))

Non-concurrency: non concurrency(〈a, Ia〉 : task)

No other task than a can be performed on an item of Ia at a given time

∀〈b, Ib〉 ∈ T \ {〈a, Ia〉}

∀i ∈ Ia ∩ Ib �(start(a,i)→ ¬start(b,i) U end(a,i))

Precedes: precedes(〈a, Ia〉 : task, 〈b, Ib〉 : task)

Activity a must be performed on Ia before activity b is performed on Ib
∀ia ∈ Ia,ib ∈ Ib ¬start(b,ib) U end(a,ia)

Not interrupt: not interrupt(T1 : set of tasks, T2 : set of tasks)

All tasks in T1 must not be interrupted by the tasks in T2 and vice versa, i.e., all tasks in T1 are performed
on all their instances before any task in T2, or the other way around.

∀t1 ∈ T1, t2 ∈ T2 precedes(t1, t2) or ∀t1 ∈ T1, t2 ∈ T2 precedes(t2, t1)

Table 1: CoPModL Macros for Process Modeling.

Ordered execution. In some cases it is necessary to specify an order on the execution of an activity on a set
of items, for instance, to express that the concrete must be poured from the bottom level to the top one. To ex-
press this requirement we define the ordered execution construct having the form ordered execution(〈a, I〉,O).
This constraint specifies that the activity ‘a’ must be executed on all items in I following the order specified
in O. We express O as a tuple of the form 〈α1o1, ..., αmom〉 where αi is an attribute and oi is an ordering
operator among ↑ or ↓. The expression αi↑ refers to the linear total order of the domain of α (defined in
the configuration), while αi↓ refers to its inverse. Given the set of items I , these are ordered according to
O in the following way. The items are partitioned so that the items with the same value for α1 are in the
same partition set. The resulting partition sets are ordered according to α1o1. Then, each partition set is fur-

15

ther partitioned according to α2 and each resulting partition set is ordered according to α2o2, and so on for
the remaining operators. This iterative way of partitioning and ordering defines the ordering relation <O,I ,
based on which precedence constraints are defined to order the execution of the activity a on the items.

Example. Consider the task Pour Concrete (PC) in Figure 5. To specify that it must be performed from
bottom to top, we graphically use the label <:l ↑, which corresponds to the constraint

ordered execution(〈PC, I〉, l ↑),

meaning that the items I are partitioned according to their values for level (regardless of the sector), and
then ordered. As a result, the activity must be performed at level u1 before progressing to f 0 (and then f1).

Formally, a constraint ordered execution(〈a, I〉,O) is:

executes(〈a, I〉) and ∀〈i1,i2〉 ∈<O,I precedes(〈a, {i1}〉, 〈a, {i2}〉)

Precedes (auxiliary construct). The formula above relies on the precedes(〈a, Ia〉, 〈b, Ib〉), auxiliary con-
struct which requires an activity a to be executed on a set of items Ia before an activity b (potentially the
same) is performed on any item in Ib. Formally, the following formula captures that b cannot start on an
item ib until a is not finished on an instance ia, for all items in Ia and Ib:

∀ia ∈ Ia,ib ∈ Ib ¬start(b,ib) U end(a,ia)

Not interrupt (auxiliary construct). Another requirement is the possibility to express that the execution of
an activity on a set of items is not interrupted by other activities. For instance, to express that once the lay
floor activity starts at one level in one sector, no other task can be performed at the same level and sector,
we have to express that the execution of the task on a group of items must not be interrupted, and that we
group and compare the items by considering their values for sector and level only (abstracting from section
and unit). To this aim, we introduce the auxiliary construct not interrupt(T1, T2) which applies to sets of
tasks T1 and T2 and specifies that the two sets of tasks cannot interrupt each other: either all tasks in T1
are performed before the tasks in T2 or the other way around (we consider sets of tasks because this will
be useful later in the definition of the alternate precedence constraint). Formally, not interrupt(T1, T2) is
defined as:

∀t1 ∈ T1, t2 ∈ T2 precedes(t1, t2) or ∀t1 ∈ T1, t2 ∈ T2 precedes(t2, t1)

Projection Operator. To compare two items by considering only some of the attributes of their item struc-
ture, we introduce the concept of scope. The scope is a sequence of attributes used to compare two
items. For instance, given a scope s = 〈sector, level〉, we can say that the items 〈B1, f1, room, 1〉 and
〈B1, f1, bathroom, 1〉 are equal under s. In this case, we say that the two items are at the same scope. For
the comparison, we define the projection operator to project an item on the attributes in the scope.

Definition 1 (Projection Operator Πs). Given an item i = 〈v1, .., vn〉 and a scope s = 〈αj1 , .., αjm〉, the
projection of i on s is Πs(i) = 〈vj1 , .., vjm〉 with vjh = αjh(i).

This means, in particular, that for the empty scope s = 〈〉, we have Π〈〉(i) = 〈〉, and thus ∀i,i′ Π〈〉(i) =
Π〈〉(i

′). When applied to a set of items I , the result of the projection operator with scope s is the set (without
duplicates), obtained by applying the projection operator to every item i ∈ I . In other words, it is the set of
possible values for the attributes in s, w.r.t. the items in I .

16

EXECUTION CONSTRAINT:

EXECUTE: executes(〈a, I〉 : task)

Activity a must be started on all instances in I , every start event must be followed by an end event,
activity a cannot be repeated on any item, and at any time at most one task can be performed on an item

eventually starts(〈a, I〉) and start-end order(〈a, I〉) and
non repetition(〈a, I〉) and non concurrency(〈a, I〉)

UNARY AND BINARY DEPENDENCIES:

ORDERED EXECUTION: ordered execution(〈a, I〉 : task, O : ordering)

Activity a must be executed on all instances in I following the order in O

executes(〈a, I〉) and ∀〈i1,i2〉 ∈<O,I precedes(〈a, {i1}〉, 〈a, {i2}〉)

EXCLUSIVE EXECUTION: exclusive execution(〈a, Ia〉 : task, s : scope)

The execution of activity a cannot be interrupted by other activities on instances at the same scope s
executes(〈a, Ia〉) and

∀〈b, Ib〉 ∈ T \ {〈a, Ia〉}, ∀πs ∈ Πs(Ia), ∀ib ∈ σπs(Ib)

not interrupt({〈a, σπs(Ia)}〉, {〈b, {ib}〉})

PRECEDENCE: precedence(〈a, Ia〉 : task, 〈b, Ib〉 : task, s : scope)

Activity a must be executed before activity b on instances at the same scope s

∀πs ∈ Πs(Ia) ∩Πs(Ib) precedes(〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉)

ALTERNATE PRECEDENCE: alternate(〈a, Ia〉 : task, 〈b, Ib〉 : task, s : scope)

Activity a precedes activity b and once b is started on an instance, a cannot progress on an instance at a
different scope until b is finished

precedence(〈a, Ia〉, 〈b, Ib〉, s) and

∀πs, π′s ∈ Πs(Ia) ∩Πs(Ib), πs 6= π′s

not interrupt({〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉}, {〈a, σπ′
s
(Ia)〉, 〈b, σπ′

s
(Ib)〉})

CHAIN PRECEDENCE: chain(t1 = 〈A, IA〉 : task, t2 = 〈B, IB〉 : task, s : scope)

Activity a precedes activity b and their executions cannot be interrupted by other activities on the instances
at the same scope s

precedence(〈a, Ia〉, 〈b, Ib〉, s) and

∀πs ∈ Πs(Ia) ∩Πs(Ib), ∀ t3 = 〈c, Ic〉 ∈ T \ {t1, t2}, ∀i ∈ σπs(Ic)

not interrupt({〈c, {i}〉}, {〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉})

Table 2: CoPModL Unary and Binary Dependencies for Process Modeling.

17

Exclusive execution. An exclusive execution constraint exclusive execution(〈a, Ia〉, s) expresses that once
an activity is started on an item at scope s, no other activity can be performed on items at the same scope.
Formally, the task has to be executed and for every other task having an item at scope s, the two tasks must
not interrupt each other.

For a scope s = 〈αj1 , .., αjm〉, let πs = 〈vj1 , .., vjm〉 be a tuple of values for the attributes in s. We use
the selector operator σπs(I) to select the items in I having the values specified in πs for the attributes s .
Formally, exclusive execution(〈a, Ia〉, s) is:

executes(〈a, Ia〉) and ∀〈b, Ib〉 ∈ T \ {〈a, Ia〉}, ∀πs ∈ Πs(Ia),∀ib ∈ σπs(Ib)
not interrupt({〈a, σπs(Ia)}〉, {〈b, {ib}〉})

In this formula, the result of Πs(Ia) is the set of possible values for the attributes in s considering Ia.
For each of them we select the items in Ib that are at the same scope, and we apply the not interrupt. As a
special case, when s = 〈〉 the execution of the entire task cannot be interrupted. By default, tasks have an
exclusive constraint at the finest-granularity level for the items, i.e. two activities cannot be executed at the
same time on the same item.

An exclusive execute constraint (except the default at the item scope) is represented with a double border
box and the scope is specified in the slot labeled with ex. In Figure 5, lay floor has an exclusive execution
constraint ex:(sr,l) for sector and level.

We now introduce binary dependencies that specify ordering constraints between pairs of tasks. By
representing also the items, we can specify precedences at different scopes: i) task (a task must be finished
on all items before the second task can start); ii) item scope (once the first task is finished on an item, the
second task can start on the item); iii) between items at the same scope (e.g. a task must be performed in all
locations of a floor before another task can start on the same floor). This is visualized by annotating a binary
dependency (an arrow) with the sequence of attributes representing the scope. When no label is provided,
the task scope is meant.

Example. In Figure 5, the dependency between pour concrete and lay floor is at task level, while the one
between lay floor and install wooden window is labeled with “sr,l”, to represent the scope 〈sector, level〉:
given a sector and a level, the activity lay floor must be done in every section and unit before install wooden
window can start in that sector at that level.

Precedence. A precedence dependency precedence(〈a, Ia〉, 〈b, Ib〉, s) expresses that an activity a must be
performed on a set of items Ia before an activity b starts on items Ib. The scope s defines whether this applies
at the task, item, or item group.

∀πs ∈ Πs(Ia) ∩Πs(Ib) precedes(〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉)

The formula above expresses that for the items at the same scope in Ia and Ib, activity a must be executed
there before activity b. If s = 〈〉 activity a must be performed on all its items before activity b can start (task
scope).

Alternate precedence. Let us consider the example of the Install Scaffolding and the Pour Concrete: once
the scaffolding is installed at one level, the concrete must be poured at that level before the scaffolding can
be installed to the next level. This alternation is captured by the dependency alternate(〈a, Ia〉, 〈b, Ib〉, s),
which is in the first place a precedence constraint between a and b. It also requires that once a is started on
a group of items at a scope (σπs(Ia)), then b must be performed on its items at the same scope (σπs(Ib)),
before a can progress on items at a different scope (σπ′

s
(Ia)):

18

precedence(〈a, Ia〉, 〈b, Ib〉, s) and ∀πs, π′s ∈ Πs(Ia) ∩Πs(Ib), πs 6= π′s
not interrupt({〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉}, {〈a, σπ′

s
(Ia)〉, 〈b, σπ′

s
(Ib)〉})

Note that the projection operator is applied to Ia and Ib and only projections πs and π′s that are in common
are considered. For every distinct πs and π′s either a and b are performed on items at scope πs without being
interrupted by executing a and b on items at scope π′s, or vice versa.

Graphically, an alternate precedence is represented as an arrow (to capture the precedence), and an X as
a source symbol, to capture that the source task cannot progress freely, but it has to wait for the target task
to be completed on items at the same scope.

Chain precedence. Finally, let us consider the case in which the execution of two tasks must not be inter-
rupted by other tasks on items at the same scope. For instance, the tasks excavate and secure area must be
performed one after the other and no other tasks can be performed in between for each sector. Note that
the dependency types defined before, declaratively specify an order on the execution of two tasks but do not
prevent other tasks to be performed in-between. To forbid this we define the chain precedence dependency
chain(〈a, Ia〉, 〈b, Ib〉, s), which, as the alternate precedence, builds on top of a precedence dependency. Ad-
ditionally, it requires that the execution of the two tasks on items at the same scope is not interrupted by
other tasks executing on items at the same scope. The formula considers all tasks different from t1 = 〈a, Ia〉
and t2 = 〈b, Ib〉 sharing items at the same scope. For this it specifies a not interrupt constraint. Formally,

precedence(〈a, Ia〉, 〈b, Ib〉, s) and ∀πs ∈ Πs(Ia) ∩Πs(Ib), ∀ t3 = 〈c, Ic〉 ∈ T \ {t1, t2}
∀i ∈ σπs(Ic) not interrupt({〈c, {i}〉}, {〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉})

Graphically, it is represented as a double border arrow.
In the next section we present an excerpt of a real project, modeled according to CoPModL.

4. Process Modeling for the Hotel Scenario

The original model of the hotel case study consists of roughly fifty tasks. From that we extracted an ex-
cerpt and elaborated it by removing the ambiguities and modeling the requirements expressed as annotations
in natural language using the construct of CoPModL. The excerpt is reported in Figure 5. It shows activities
of the skeleton (blue) and interior perspectives (green). The item structure for the skeleton perspective is de-
fined in terms of sector sr and level l, while the interior consists of sector, level, section sn, and unit number
u (see Figure 4).

According to the model, the task Excavate belongs to the skeleton perspective and must be performed
in sectors B1 and B2, in both cases at the underground level u1. The activity Secure Area must also be
performed in both sectors, but at the underground and ground floors f0. For security reasons, once the
excavation is finished in one sector, the area must be secured for that sector before any other task can start.
This is expressed with a chain precedence at scope sr (sector), graphically represented as a double bordered
arrow annotated with the label sr. Additionally, the excavation cannot be interrupted by other activities
while it is performed in a sector. This is expressed with an exclusive execution at scope sector, represented
as double border box and a label “ex: sr”. The same condition is expressed for the task Secure Area.

Only after the area has been secured everywhere, the Pour Concrete task can start. This is expressed with
a precedence at the task scope (graphically an arrow without label). The concrete can be poured proceeding
from the bottom to the top floor, captured by an ordered constraint represented with the label “<: l ↑”. Note
that this task has an exclusive constraint “ex: UNIT”, i.e. an exclusive constraint at the finest granularity
level for the locations, which expresses that two activities cannot be performed simultaneously in the same

19

location. This is because by default it is assumed that two activities cannot be performed at the same time on
the same item. This is then captured with an exclusive constraint which, being the default, is not graphically
highlighted with double borders. An exclusive constraint is graphically highlighted only when a coarser
scope is specified.

Once the concrete has been poured at the underground level of one sector, the pipes for the water can
be connected (Connect Water Pipes) before the excavation is filled (Fill Excavation), and after this the task
Install Scaffolding can start, proceeding from the bottom floor to the top. Once the scaffolding is installed at
one level, not only the concrete can be poured at that level but it must be poured there before the scaffolding
can be installed at the next level. In other words, Install Scaffolding needs to be performed before Pour
Concrete but its execution is also conditioned by this latter. This requirement is captured by an alternate
precedence at scope “sr, l”. It is graphically represented with an arrow starting with an X.

When the pour concrete task is finished everywhere, the Lay Floor task can start (which belongs to
the interior perspective). This task must be performed before Install Wooden Window, which is foreseen
in all rooms, so not to damage them. This is captured by a precedence constraint between Lay Floor and
Install Wooden Window at scope “sr, l”. To be more efficient, the lay floor task has an exclusive execution
constraint at scope “sr, l”. Since aluminum windows are less delicate than wooden ones, their installation
does not depend on the lay floor task.

To support the graphical definition of a process flow, we implemented a web-based prototype [30, 31]
which we used to produce Figure 5 and is described in Section 6.

5. Satisfiability Checking

straightforward developing a tool requiring inputs from the user, one cannot assume that the provided
input will be free of contradictions. Due to the logic semantics of CoPModL, we can check for the absence
of contradictions by checking whether a given model is satisfiable, that is, there exists at least one trace
satisfying it.

In this section, we will show first that for CoPModL constraints there is no difference between satisfiabil-
ity over finite traces and over infinite traces, that is, a CoPModL model is satisfiable under LTLf semantics
if and only if it is satisfiable under LTL semantics. This allows us in principle to perform satisfiability tests
using model checking techniques. As an alternative, we develop a specially tailored graph-based algorithm.
With experiments, we show that the new algorithm outperforms the model checker by several orders of
magnitude in checking the satisfiability of CoPModL models.

5.1. Equivalence of LTL and LTLf Satisfiability for CoPModL

To formally specify the trace semantics of LTL and LTLf we draw upon the notation of De Giacomo and
Vardi, who first studied the formal properties of LTLf [11].

Let P be a fixed set of propositions. An infinite trace is a mapping τ : N → 2P , and a finite trace is a
mapping τ : Nn → 2P , where Nn = {0, . . . , n− 1} is the set of the first n natural numbers for some natural
number n. In this case we say that τ is of length n. Intuitively, N or Nn, respectively are the sets of states
of the trace τ , and τ maps each state, represented by a natural number j, to the set of propositions τ(j)
that hold in that state. If τ is a trace, τ is defined for j, and p is a proposition, then τ, j |= p if and only if
p ∈ τ(j). We then say that p is satisfied in state j of τ . For the satisfaction of an arbitrary formula φ in a
state of a trace we refer to [11]. We say that τ satisfies φ if τ, 0 |= φ. We say that φ is satisfiable over finite
or infinite traces if there is a finite or infinite trace, respectively, that satisfies φ.

We recall that a process model is a pairM = (C,F), where C is a configuration part and F is a flow
part. The constraints of our language CoPModL are shorthands for LTL formulas whose propositions are

20

of the form start(a,i) or end(a,i) for some activity a and item i. Next we show that the constraints are
satisfied only by traces of a specific, simple form. Moreover, satisfying traces share their characteristics
independently of whether they are finite or infinite. By a slight abuse of language, we identify a process
modelM in the following with the constraints inM.

Proposition 2. Let M be a process model and τ be a finite or infinite trace that satisfies M. Then the
following holds:

1. For every proposition p there is exactly one state j such that p ∈ τ(j).

2. If τ, j |= start(a,i) and τ, k |= end(a,i), then j < k.

3. There is a least number s ∈ N such that if τ, j |= p for some proposition p and state j ∈ N,
then j < s.

Proof. 1. Due to the Eventual Start principle, every start atom is satisfied in some state of τ and due to the
Start-end Order principle, also the corresponding end atom is satisfied by some state. The Non-repetition
principle ensures that there is only one satisfying state for each atom.

2. The Start-end Order principle for each activity on an item enforces that the state satisfying the start
atom comes strictly before the one satisfying the corresponding end atom.

3. The third claim is an immediate consequence of the first claim, because there are only finitely many
propositions. The number s is therefore the greatest index j for which τ(j − 1) 6= ∅ holds.

We call the number s with the property of Claim 3 of Proposition 2 the support of τ . If τ is an infinite
trace, then we define τ|s as the finite trace that is obtained by restricting τ to the set Ns. If τ is a finite trace
of length n, then we define τ∞ as the infinite trace that is obtained by extending τ to N with τ∞(j) = ∅ for
all j ≥ n.

Proposition 3. LetM be a process model and τ be a trace such that τ |=M.

1. If τ is finite, then also τ∞ |=M;

2. If τ is infinite, then also τ|s |=M, where s is the support of τ .

Proof. Let PM be the set of atoms ofM. Among the constraints inM we distinguish between execution
constraints on the one hand, which are those comprised by the executes constraints, and the formulas corre-
sponding to the dependencies on the other hand. We denote the first set of formulas as EM and the second
as ∆M .

Suppose that τ is finite and satisfies EM. Then clearly also τ∞ satisfies EM, which is easy to verify
by checking each type of existence formula. Conversely, suppose that τ is infinite and let s be the support
of τ . Then it is again straightforward to verify that τ|s satisfies EM, checking the four cases of existence
formulas.

Regarding the formulas in ∆M , we note that all of them are constructed from elementary formulas,
which have the form δ = ¬start(b,ib) U end(a,ia). More precisely, all formulas in ∆M are obtained by
taking conjunctions and disjunctions of elementary formulas. Clearly, “Precedes” dependencies are conjunc-
tions of elementary formulas, while “Precedence ” and “Ordered Execution” constraints are conjunctions of
“Precedes” dependencies. A “Not Interrupt” dependency is a disjunction of conjunctions of “Precedes”
dependencies. Finally, “Exclusive Execution”, “Alternate Precedence”, and “Chain Precedence” are con-
junctions of “Not Interrupt” dependencies, possibly conjoined with “Precedence” dependencies.

21

We now show our claim about the constraints in ∆M by proving it for formulas that are repeated con-
junctions and disjunctions of elementary formulas.

Suppose that τ is finite and satisfies the elementary formula δ. That means, start(b,ib) is false until
end(a,ia) is true. Since there is only one state in τ where end(a,ia) is true, it is immediate to check that
also τ∞ satisfies δ. If τ is infinite and satisfies δ, then one shows with the same argument that also τ|s
satisfies δ.

For arbitrary formulas, obtained by taking conjunctions and disjunctions, we show the claim by induc-
tion. Therefore, let again τ be finite and φ = φ1 ∧ φ2. Suppose that τ |= φ. Then τ |= φ1 and τ |= φ2.
By the induction hypothesis, also τ∞ |= φ1 and τ∞ |= φ2. Hence τ∞ |= φ. The argument for the opposite
direction and for disjunctions is similar. This completes the proof.

Corollary 4. Let M be a process model. Then M is satisfiable over finite traces if and only if M is
satisfiable over infinite traces.

Proof. Suppose that τ |= M. By the preceding proposition, if τ is finite, then also τ∞ |= M, and if τ is
infinite, then also τ|s |=M, where s is the support of τ .

Due to this equivalence, we can check satisfiability of a process model by submitting the corresponding
formulas to an LTL model checker. However, this will usually come with a considerable overhead. For
instance, in our experiment (Section 5.4), it took a state-of-the-art model checker more than 2 minutes to
check a satisfiable model with 8 tasks and 9 dependencies.

5.2. Graph-based Satisfiability Checking

As an alternative, we will develop a satisfiability checking algorithm for CoPModL models that exploits
the restricted form of such formulas. First, we discuss that it is enough to look only for satisfying traces of
a special kind. Then we show that to find them we can inspect graphs derived from the model constraints.

In the following we call a finite trace that satisfies the executes constraints of M an execution of M.
An execution τ ofM is instantaneous if for all activities a and items i it is the case that τ, j |= start(a,i)
implies τ, j + 1 |= end(a,i), that is, an activity on an item finishes immediately after it has started. An
execution is sequential if no activities take place at the same time, that is, an activity is only started if all
previously started activities have ended and no two activities start at the same time. We show next that when
checking for satisfiability, it is enough to concentrate on sequential instantaneous executions.

Proposition 5. LetM be a satisfiable process model. Then there exists a sequential instantaneous execution
ofM.

Proof. Let τ |=M be an execution ofM. We transform τ into an instantaneous execution τin by anticipating
the end of each activity to the state immediately after its start. That is, if τ, j |= start(a,i) and τ, k |=
end(a,i), then we add end(a,i) to τin(j + 1) and remove it from τin(k). It is straightforward to check that
all constraints continue to hold. Intuitively, this is the case because all constraints either relate to the unique
existence of start and end events, or are essentially end-start relationships, which continue to hold if the end
is anticipated.

Next, suppose that τ |= M is an instantaneous execution of M. We transform τ into a sequential
execution τseq by first ordering activity-item pairs according to their start times, and then arbitrarily ordering
pairs with the same start time. The execution τseq then alternates between start and end events for the pairs
according to their ordering. Again, after this change all constraints continue to hold because, intuitively, the
existence constraints and all end-start relationships are preserved.

22

(a) A process model diagram M.

〈LF, 〈B1, u1, r, 1〉〉 〈LF, 〈B1, f1, r, 1〉〉

〈IWW, 〈B1, u1, r, 1〉〉 〈IWW, 〈B1, f1, r, 1〉〉

(b) The corresponding AI-graph GM.

Figure 6: Example of (a) a process model diagram and (b) the corresponding AI-graph representation.

The algorithm we develop will rely on an auxiliary structure that we call activity-item (AI) graph. Intu-
itively, in an AI-graph we represent each activity to be performed on an item as a node 〈a,i〉, conceptually
representing the execution of a on i. Ordering constraints are then represented as arcs in the graph. This
allows us to characterize the satisfiability of a model by the absence of cycles in the corresponding AI graph.

Satisfiability with precedences and ordered execution.. Let us first consider P-models, which are process
models with precedence and ordered execution dependencies only— in addition to the execution constraints,
which are present for every task. Given a P-model M, we denote the corresponding AI-graph as GM =
〈V,A〉, where for each task 〈a, I〉 in the flow part and for each item i ∈ I there is an AI node 〈a,i〉 ∈ V ,
without duplicates; for each precedence and ordered execution we introduce a number of arcs in A among
the AI nodes in V . For instance, a precedence constraint between two tasks at the task scope is translated
to a set of arcs, linking each AI node corresponding to the source task to each AI node corresponding to the
target task. A precedence constraint at the item scope is translated into arcs between AI nodes of the two
activities on the same items.

Example. Figure 6a represents a model with two tasks, where each activity needs to be performed in the
locations 〈B1, u1, r, 1〉 and 〈B1, f1, r, 1〉. The precedence constraint is at scope level, requiring that Lay
Floor is performed before Install Wooden Window at each floor. This translates to an AI graph with four
nodes (as represented in Figure 6b) and an arrow between the AI nodes having the same level (thus between
〈LF, 〈B1, u1, r, 1〉〉 and 〈IWW, 〈B1, u1, r, 1〉〉 and between 〈LF, 〈B1, f1, r, 1〉〉 and 〈IWW, 〈B1, f1, r, 1〉〉).

Theorem 6. A P-modelM is satisfiable if and only if the graph GM is cycle-free.

Proof. If GM does not contain cycles, the nodes can be topologically ordered and the order can be translated
into a sequential instantaneous execution that satisfies all ordering constraints inM. A cycle in GM corres-
ponds to a mutual precedence between two AI nodes, which is unsatisfiable.

Satisfiability for all models. We now consider general models, called G-models, where all types of depen-
dency are allowed. First, let us consider an exclusive constraint exclusive execution(〈a, Ia〉, s). It requires
for each scope πs ∈ Πs(Ia), that the execution of a on the items in the set σπs(Ia) is not interrupted by the
execution of other activities on items at the same scope. Considering an activity b to be executed on an item
ib at the same scope (i.e., Πs(ib) = πs), the exclusive constraint is not violated if the execution of b occurs
before or after the execution of a on all items in σπs(Ia). We call exclusive group a group of AI nodes,
whose execution must not be interrupted by another node. We connect this node and the exclusive group
with an undirected edge, since the execution of the node is allowed either before or after the exclusive group.

23

(a) A process model diagram M.

〈LF, 〈B1, u1, r, 1〉〉

〈LF, 〈B1, f1, r, 1〉〉

〈LF, 〈B2, u1, r, 1〉〉

〈LF, 〈B2, f 0, r, 1〉〉

〈IAW, 〈B1, u1, c, 1〉〉

〈IAW, 〈B2, f 0, b, 1〉〉

(b) The corresponding DAI-graph DM.

Figure 7: Example of (a) a process model with an exclusive constraint and (b) the corresponding DAI-graph.

Then, we look for an orientation of this edge, such that it does not conflict with other constraints, i.e., it does
not introduce cycles. With chain and alternate precedences, we deal in a similar way. Indeed, both require
that the execution of two tasks on a set of items is not interrupted by other activities (chain) or by the same
activity on other items (alternate).

Example. In the example in Figure 7a the task Lay Floor has an exclusive constraint at scope sector, meaning
that once it is started in a sector it cannot be interrupted by other tasks. This is represented in the graph in
Figure 7b by grouping in exclusive groups the AI nodes in the same sector (B1 and B2).

The task Install Aluminum Window is also foreseen in the same sectors of Lay Floor, thus can potentially
interrupt its exclusive execution. Therefore, in the graph the AI node 〈IAW, 〈B1, u1, c, 1〉〉 is linked with an
undirected edge to the exclusive group for the activity lay floor in sector B1 (similarly for B2). Finding an
orientation for the undirected edge corresponds to substituting it with one directed arc for each node in the
group such that each arc has the same orientation, that is towards 〈IAW, 〈B1, u1, c, 1〉〉 or coming from it.

More formally, to represent a not interrupt constraint in a graph we introduce disjunctive activity-item
graphs (DAI-graphs) inspired by Fortemps and Hapke [32]. Given a G-modelM, the corresponding DAI-
graph is DM = 〈V,A,X,E〉, where 〈V,A〉 is defined as in the AI-graph of a P-model,1 X ⊆ 2V is the
set of exclusive groups, and E ⊆ X × V is a set of undirected edges, called disjunctive edges, connecting
exclusive groups to single nodes. A disjunctive edge can be oriented, either by creating arcs from the single
node to each node in the exclusive group or vice versa, so that all arcs go in the same direction (i.e., either
outgoing from or incoming to the single node). An orientation of a DAI-graph is a graph that is obtained by
choosing an orientation for each edge. We say that a disjunctive graph is orientable if and only if there is an
acyclic orientation of the graph.

Theorem 7. A G-modelM is satisfiable iff the DAI-graph DM is orientable.

Proof. Assume DM = 〈V,A,X,E〉 is orientable. Then there exists an acyclic orientation ~DM = 〈V,A′〉
of DM. Then we can topologically sort ~DM to obtain an instantaneous sequential execution. Because
A ⊆ A′, all precedence constraints are satisfied. Also, by construction of ~DM, for every disjunctive edge
〈x, v〉 in E, the node v occurs either before or after all nodes in x. Then, by construction of DM, all
exclusiveness constraints are satisfied. Hence, the sequential execution conforms toM, soM is consistent.

1Including also the directed arcs to represent the precedence constraints of the chain and alternate dependencies (see the formaliza-
tion in Section 3.3)

24

Next, suppose DM is not orientable. Then, there is no acyclic orientation of DM, i.e., every orientation
of DM is cyclic. Then, there is no possible execution that corresponds to any orientation of DM, thus there
is no execution satisfyingM, soM is inconsistent.

5.3. An Algorithm for Satisfiability Checking

To check for the orientability of a DAI-graphDM = 〈V,A,X,E〉 we develop an algorithm that is based
on the following four observations.

1. Cycles. If the graph GM obtained from DM by ignoring the undirected edges has a cycle, then also DM
is not orientable.

2. Simple edges. Disjunctive edges where both sides consist of a single node, called simple edges, can be
oriented so that they do not introduce cycles.

Lemma 8. Let DM = 〈V,A,X,E〉 be a DAI-graph, and let D′M = 〈V,A,X,E \ E1〉 be the result of
removing all simple edges E1 from E. Then DM is orientable iff D′M is orientable.

Proof. If DM is orientable it has an acyclic orientation. By topologically ordering it, we obtain an instanta-
neous sequential execution satisfying all the constraints. SinceD′M is a subset ofDM, the topological order
corresponds also to a satisfying execution of D′M.

Conversely, if D′M is orientable, then there is a sequential execution that satisfies all constraints in D′M.
Since this execution imposes an ordering on all AI nodes, we can orient all simple edges according to this
ordering. Hence, there is a possible orientation for the simple edges that does not introduce cycles. Such a
sequential execution satisfies all constraints in DM, and hence DM is orientable.

3. Resolving. Consider an undirected edge between a node u and an exclusive group of nodes G ∈ X . If
there is a directed path from u to a node v ∈ G (or the other way round), then there is only one way to orient
the undirected edge between u and G without introducing cycles. For such an edge from u to G, we say that
we resolve the edge if we i) check for directed paths between u and nodes in G, and ii) orient the edge in the
direction of the path.

4. Partitioning. Sometimes, one can partition a DAI-graph DM into DAI-subgraphs such that DM is
orientable if and only if each of these DAI-subgraphs is orientable. Then each such subgraph can be checked
independently.

Let us discuss such partitioning in more detail. Given DM = 〈V,A,X,E〉, let P = {S1, . . . , Sn} be a
partition of the node set V into disjoint subsets. Such a partition induces a canonical quotient graph D′M
of DM as follows: i) the nodes of the quotient graph D′M are the partition sets; ii) there is an arc from Si
to Sj in D′M if there are nodes ui ∈ Si and uj ∈ Sj such that there is arc from ui to uj in DM; iii) an
exclusive group G′ of the quotient is obtained from an exclusive group G ∈ X by collecting all sets Si such
that Si ∩ G 6= ∅ (then we say that G′ is induced by G); iv) for every edge from an exclusive group G to a
point u in E, the quotient has an edge from the induced group G′ to the partition set Si that contains u.

We say that such a partition is acyclic if the corresponding quotient graph has no cycles among its arcs.
The quotient may still have edges that need to be oriented. However, we know from Lemma 8 that the task
to orientate edges becomes trivial for simple edges.

Therefore, we are particularly interested in partitions where all edges are simple. Clearly, this is the case
if and only if all exclusive groups in the quotient are singletons, which holds exactly if for every exclusive
group G ∈ X , there is a partition set Si such that G ⊆ Si. We say that such a partition is a proper partition.

25

D1

D2

D3

D4

(a) DAI-graph partition.

D1

D2

D3

D4

(b) Subgraphs collapsed to single nodes.

Figure 8: Example of (a) a proper acyclic partition of a DAI-graph DM partitioned into subgraphs D1, D2, D3, D4. The partition is
acyclic because, collapsing each subgraph into a single node, as shown in (b), yields an acyclic DAI-graph.

As an example, the partition in Figure 8a is an acyclic proper partition: i) there are no nodes belonging
to the same exclusive group of DM and to different partition sets; ii) as show in Figure 8b, there is no cycle
among the partition sets.

We now prove that in such circumstances the original DAI-graph is orientable if and only if each partition
set, considered as a DAI-graph, is orientable. Intuitively, if the partition sets do not form a cycle, then they
can be topologically ordered, and the AI nodes in each partition set can be executed respecting the order.
Since an exclusive group is entirely contained in one partition set, execution according to a topological order
also satisfies the exclusive constraint.

By DM[Si], we denote the restriction of DM to the node set Si.

Lemma 9. Let DM = 〈V,A,X,E〉 be a DAI-graph, and let P = {S1, . . . , Sn} be a proper and acyclic
partition of DM. Then DM is orientable iff for all parts Si ∈ P , the subgraph DM[Si] is orientable.

Proof. First, suppose there is a partition set Si ∈ P such that DM[Si] is not orientable. Since DM[Si] is a
subgraph of DM, all nodes, arcs, and disjunctive edges of DM[Si] are contained in DM. Then DM is not
orientable either.

Next, suppose that for each Si ∈ P , the subgraph DM[Si] is orientable. Then DM[Si] has an acyclic
orientation Di = 〈Si, Ai〉. We show how to construct an acyclic orientation of DM. First, note that DM
is itself acyclic, because P is acyclic and all Di are acyclic, and each arc in A is either contained in some
subgraphDi or is between nodes of different subgraphs. Therefore, we must orient all disjunctive edges inE
without introducing cycles. For edges entirely contained in a subgraph, the orientations are already contained
in the corresponding subgraphs. Therefore, we can orient these edges in DM by removing them from E and
adding all arcs from all subgraphs Di. Because P is proper, each exclusive group is fully contained in a
single subgraph. Thus, we can find an orientation of the edges between different subgraphs by topologically
ordering the subgraphs according to the arcs between them, i.e., by topologically ordering the partition sets
in P . Each edge crossing partition sets is then oriented in the direction that follows the obtained topological
order on the corresponding subgraphs. In this way, the topological order is always respected and no cycle is
introduced. The resulting graph is an acyclic orientation of the original DM. Hence, DM is orientable.

26

Obviously, for every graph there is always a proper partition that is acyclic, namely the trivial one
consisting of one set, the set of all nodes. To achieve a maximal reduction of the problem size, we must
choose a proper partition with partition sets as small as possible. Such a partition can be found as follows.
We temporarily add for each pair of nodes in an exclusive group two auxiliary arcs, connecting them in
both directions. Then we compute the strongly connected components (SCCs) of the extended graph and
consider each of them as a partition set. (In the worst case, it may be that there is only one of them, that
is, we only find the trivial partition.) After that we drop the auxiliary arcs. This construction ensures that
i) each exclusive group is entirely contained in some SCC; and ii) there are no cycles among the partition
sets because a cycle would cause the nodes to belong to the same partition set.

Below we list our boolean procedure SAT that takes as input a DAI-graph D and returns “true” iff D
is orientable. It calls the subprocedure NDSAT that chooses a disjunctive edge and tries out its possible
orientations.

procedure SAT(D)
drop all simple edges in D
resolve all orientable disjunctive edges in D
if D contains a cycle then

return false
else partition D, say into subgraphs D1, . . . ,Dn

if NDSAT(Di) = true for all i ∈ {1, . . . , n} then
return true

else return false

procedure NDSAT(D)
if D has a disjunctive edge e then

orient e in the two possible ways, resulting in D+, D−
return SAT(D+) or SAT(D−)

else return true

SAT itself performs only deterministic steps that simplify the input, discover unsatisfiability, or divide
the original problem into independent subproblems. After that, NDSAT performs the non-deterministic
orientation of a disjunctive edge. Since the calls to NDSAT at the end of SAT are all independent, they can
be run in parallel.

5.4. Satisfiability Checking Evaluation
We implemented the algorithm in Java and ran three series of experiments, i) to compare the running

time of our algorithm with the one of a state-of-the-art model checker; ii) to identify to which extent the
main optimization heuristics of the algorithm contribute to its performance; iii) to evaluate its scalability.
All the experiments described in this section were run on the same machine, a Windows desktop PC with
eight core Intel i7-4770 of 3.40 GHz and 8GB of RAM.

NuSMV [33] is a state-of-the-art model checker. We considered four models to compare it with our
algorithm:

Satisfiable (Sat). A satisfiable hotel process model similar to the one in Figure 5.

With Cycle (Cycle). A variation of the consistent model such that the corresponding DAI-graph has a cycle.

Non-Orientable (N-Orient.). A variation of the consistent model such that the corresponding DAI-graph
has no cycles but is not orientable, i.e., there is no orientation of the undirected edges such that the
resulting graph has no cycles.

27

Model DAI-graph NuSMV SAT

Model Tasks Dep. Nodes Arcs Edges Time Time (ms)
Sat 8 9 236 9415 524 2’ 35” 27
Cycle 8 9 236 10003 521 > 1h 5
N-Orient. 12 14 244 9435 574 > 1h 10
Big 12 14 424 15131 1740 > 1h 23

Table 3: Comparison of NuSMV and our algorithm SAT

Non-Orientable bigger (Big). Similar to the Non-Orientable model the DAI-graph has more nodes.

The results of the experiment are reported in Table 3. The model checker NuSMV with Bounded Model
Checking took 2 min 35 sec on the satisfiable model Sat. On the other models we stopped the verification
after one hour. These results are not surprising if we consider the way satisfiability is checked in NuSMV. To
perform the check a model is translated into a transition system representing the possible executions given
the tasks in the model. Dependencies from the flow part of the model, instead, are translated into an LTL
formula ϕ, and its negation ¬ϕ is checked on the transition system. When the negated formula is violated,
this means that there is one path in the transition system that satisfies ϕ, which corresponds to a possible
execution. If ¬ϕ is valid it means that there is no path satisfying ϕ, meaning that there is no execution
satisfying all dependencies in the process model. In other words, the model is not satisfiable. It is then
possible to see that if the model is satisfiable, NuSMV can stop its execution at the first violation found.
Otherwise, it has to check all possible paths. This explains the results of the experiment.

As a second experiment we wanted to understand how much the observations described in Section 5.3
improved the verification. To this aim, we ran the experiment on the four models described before, by
enabling/disabling the three optimization heuristics of i) Ignoring simple edges (ISE); ii) Resolving (R); and
iii) Partitioning (P). The experiments were repeated three times and then the average time was computed and
reported in Table 4, which shows the average time needed to translate a model into a DAI-graph, the average
time needed for the check and the average overall time. The table shows that the combination of the three
strategies improves the performance of the check. The verification is slower only in the Cycle case but the
slow down is of a few milliseconds, thus negligible, especially considering that consistency checking need
not be performed in real time.

Finally, we wanted to understand how the performance of the algorithm depends on the size of the
graph. There are two ways of increasing the size of the graph, that is by increasing the number of locations
in the model or by increasing the number of tasks. For convenience, we decided to increase the number of
tasks. Specifically, we started from the non-orientable (N-Orient.) variant and in the experiment that we
performed we copied it several times. We started from replicating the model 5 times and reached a total of
80 copies. To connect the copies, with a given probability we add a basic precedence constraint at global
scope from some task of a model to some task of the other model. The choice of the tasks is random. To
make sure we did not introduce cycles (which would simplify the check) we defined an order on the copies
and added the precedences following that order. Finally, to make sure that the number of nodes in the graph
was increased, we renamed the activities with new names in each copy. We chose this variant because it is
the most challenging for the algorithm: i) the inconsistency is not due to a cycle, ii) the algorithm has to
find a partition and non-deterministically chose an orientation, iii) the orientation, however, does not exist
because the model is not orientable.

The results are reported in Table 5 and shown in Figure 9. On a model of 180 tasks, which we believe
represents an average real case scenario, the performances are still acceptable (around 4 seconds). The

28

Model ISE R P Translation Check Total
Sat 2 ms 27,981 ms 27,984 ms
Sat X 2 ms 6,546 ms 6,548 ms
Sat X 5 ms 181 ms 187 ms
Sat X X 2 ms 15 ms 17 ms
Sat X 4 ms 16 ms 21 ms
Sat X X 2 ms 8 ms 11 ms
Sat X X 5 ms 16 ms 21 ms
Sat X X X 7 ms 19 ms 27 ms
Cycle 2 ms < 1 ms 3 ms
Cycle X 2 ms 1 ms 3 ms
Cycle X 3 ms 1 ms 4 ms
Cycle X X 1 ms < 1 ms 2 ms
Cycle X 2 ms 4 ms 6 ms
Cycle X X 1 ms 3 ms 5 ms
Cycle X X 2 ms 3 ms 6 ms
Cycle X X X 1 ms 4 ms 5 ms
N-Orient. 5 ms > 1 h > 1 h
N-Orient. X 1 ms 22,751 ms 22,753 ms
N-Orient. X 3 ms 632 ms 636 ms
N-Orient. X X 1 ms 46 ms 48 ms
N-Orient. X 3 ms 29 ms 33 ms
N-Orient. X X 2 ms 18 ms 20 ms
N-Orient. X X 3 ms 8 ms 12 ms
N-Orient. X X X 2 ms 8 ms 10 ms
Big 5 ms > 1 h > 1 h
Big X 2 ms > 1 h > 1 h
Big X 5 ms 15,844 ms 15,849 ms
Big X X 3 ms 575 ms 579 ms
Big X 5 ms > 1 h > 1 h
Big X X 2 ms 33 ms 36 ms
Big X X 5 ms 59 ms 65 ms
Big X X X 2 ms 21 ms 23 ms

Table 4: Experimental results on the four variants of the hotel process model, comparing the use of the strategies: Ignoring Simple
Edges (ISE), Resolving (R), and Partitioning (P). Durations are rounded down to whole milliseconds.

29

Model DAI-graph Alg.
Tasks Dep. Nodes Arcs Edges Time (ms)

60 75 2,120 76,103 10,635 598
120 173 4,240 168,681 42,470 1,189
180 296 6,360 361,969 95,505 3,682
240 452 8,480 478,701 169,740 7,513
300 623 10,600 674,584 265,175 14,199
360 822 12,720 948,099 381,810 24,223
420 1,044 14,840 1,309,129 519,645 40,359
480 1,291 16,960 1,436,759 678,680 55,866
720 2,562 25,440 3,082,925 1,526,820 379,409
960 4,187 33,920 5,217,426 2,714,160 OOM

Table 5: Experimental results to test the behavior of the algorithm changing the size of the model. (OOM Out-of-Memory)

algorithm took around 1 minute on a model of 480 tasks, which is acceptable for an offline check. It ran out
of memory (OOM) on a model of 960 tasks, but we can expect that for inter-company process models this
limit will never be reached. In these model, indeed, the level of detail in specifying the tasks and the items
should be enough to represent the synchronization between the different companies present on-site, rather
than defining step-by-step the intra-company process. The graph in Figure 9 reports the relations between
the three variables in a graph, i.e., the number of nodes, edges and arcs, and the time needed to perform the
check. As can be seen the relation seems to be exponential and grows very fast in the number of nodes.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500

Ti
m

e
(m

s)

Th
ou

sa
nd

s

Thousands

Nodes Arcs Edges

(a) Growing of time depending on nodes, arcs and edges.

0
50

100
150
200
250
300
350
400

0 1000 2000 3000 4000

Ti
m

e
(m

s) Th
ou

sa
nd

s

Thousands

Arcs

0
50

100
150
200
250
300
350
400

0 500 1000 1500 2000

Ti
m

e
(m

s) Th
ou

sa
nd

s

Thousands

Edges

0
50

100
150
200
250
300
350
400

0 5 10 15 20 25 30

Ti
m

e
(m

s) Th
ou

sa
nd

s

Thousands

Nodes

(b) Individual graphs showing the growing of time with respect to the growing of nodes, arcs and edges.

Figure 9: Relation between number of nodes, arcs and edges with the time needed for the algorithm to check satisfiability.

30

Figure 10: Flow Part.

6. CoPMod: IT Support for Construction Process Modeling

In order to acquire feedback from construction companies and to explain our approach for construction
process modeling to potentially interested people, we developed a proof-of-concept tool called CoPMod:
Construction Process Modeling. It supports the process modeling and the satisfiability checking as described
in this paper and can be seen at copmod.inf.unibz.it (a screencast is available at copmod.inf.
unibz.it/copmod.html).

To start using the tool, first one has to create a new project. This is possible by creating a project i) from
scratch; ii) as a clone of an existing project; or iii) by importing a specification of a project which must
be provided as a JSON file. A project is conceptually organized into a configuration and a flow part. In
the configuration part one has to specify information such as the construction perspectives; the locations, in
terms of attributes, their range of values, the item structure and the item values (see Section 3.1); the crafts;
and the foreseen activities assigned to a construction perspective. Currently this is possible by uploading a
JSON file containing the specification. It will later be supported by a proper graphical interface.

The flow part supports the companies, orchestrated by a moderator familiar with the tool and the lan-
guage (likely the project manager responsible for the project) in drawing a diagram containing tasks and
dependencies on their execution. Figure 10 reports the flow part diagram for the hotel example.

By relying on a configuration part defining the building, the set of crafts and of activities, the tool limits
the introduction of insertion errors (such as typos). Additionally, CoPMod checks for structure warnings,
structure errors and consistency errors. Structure warnings show parts of the diagram that potentially can be
rewritten in a better way, such as a location repeated in a task box, or cycles that do not create inconsistencies
but that may mean that some constraint is redundant. Structure errors indicate that something is missing in

copmod.inf.unibz.it
copmod.inf.unibz.it/copmod.html
copmod.inf.unibz.it/copmod.html

31

Figure 11: Warnings and Consistency Checks.

the diagram (e.g., an activity is not associated to a construction perspective). More interestingly, the tool
implements the consistency check. When the tool visualizes a consistency error, it means that the model
cannot be satisfied by any execution. In Figure 11 several warnings and errors are signaled. For instance,
the loop between Install Aluminum Window, Lay Floor and Install Wooden Window cannot be satisfied by any
execution. The loop between Pour Concrete, Fill Excavation and Install Scaffolding, instead, is satisfiable and
thus is not highlighted as a consistency error but as a structure warning.

The tool has been implemented as a RESTful web application, so that it can be accessed by the interested
companies without having to install or setup anything. Several libraries and technologies have been used for
the implementation, among which the main ones are Java for the back-end, JavaScript and AngularJS for the
front-end and Spring Data REST to generate the REST API. MySQL was used as DBMS.

7. Related Work

In this paper we presented inter-disciplinary work that involves the computer science and construction
research areas. Accordingly, in Section 7.1 we relate work that focuses on process modeling and formal
verification from the computer science point of view, while in Section 7.2, we discuss current and emerging
approaches for process management in construction.

7.1. Process Modeling in Computer Science
In computer science, (Business) Process Management is a research branch that addresses several aspects

related to processes, such as modeling, discovery, verification, optimization and so on. The work presented
in this paper focuses on process modeling and on an efficient way to verify satisfiability of a model.

32

Concerning process modeling, one of the main distinctions that can be found in the literature is between
procedural and declarative approaches [25]. In the first case, a model is defined by representing all and only
the executions that are allowed. Everything that is not specified is forbidden. Declarative approaches, in-
stead, represent what is required or forbidden for an execution to be compliant with a model. All executions
that satisfy the declarative requirements are allowed but executions are not represented explicitly. Concern-
ing the procedural approaches, one of the best known is the Business Process Modeling Notation (BPMN)
that we already discussed in Section 2.2. BPMN has been widely investigated from several point of views.
For instance, a number of tools to support modeling and execution of BPMN processes have been proposed
among which Bizagi [34], Bonita Software [35], Camunda [36], and Signavio [37]. Several studies focused
on the verification of formal properties over a model [38]. One of the adopted techniques is to use model
checking, as in [39], where the author proposes a translation of a BPMN process into a NuSMV model. By
using the model checker it is then possible to verify properties expressed as LTL or CTL formulas. In [40]
compliance of a process model is checked against a number of patterns that can be expressed in BPMN-Q,
a graphical language for querying BPMN process models [41]. Also in this approach model checking tech-
niques are applied: the patterns are translated into temporal formulas and then are checked against a model.
However, to reduce the state-space problem of model checking, the authors propose a technique where only
the relevant parts of a model, w.r.t. a path to check, are considered for the verification.

All of these approaches aim at modeling and checking properties that are mainly related to the control
flow. BPMN, indeed, focuses mainly on how to capture the possible executions, while the data on which
activities are to be executed is considered in a limited way [4, 19, 20]. As discussed in Section 2.2, the
specification of the locations on which activities must be performed is possible adopting an ad-hoc solution
where a BPMN activity is actually a pair of construction activity and location (see Figures 2 and 3). This,
however, makes a model more complex (in terms of size and dependencies), difficult to understand, use and
maintain. Therefore, with respect to the requirements identified in Section 2.1, BPMN fails in representing
in an adequate way the elements that are needed for construction process models and does not support
flexibility and adaptability of a model. Some studies in the literature also show that BPMN specifications
can be ambiguous [19, 20], which is mainly due to the generality of the approach, which makes it possible
to capture the same behaviour in different ways.

Of course, BPMN is not the only procedural approach for process modeling. Petri Nets (PN), UML Dia-
grams and Session Types have been used for several purposes among which process modeling and property
verification. For instance, in [42] the authors investigate how to enforce soundness and termination by con-
struction, on a model defined in PN. Session Types in [43] have been defined in such a way as to guarantee
liveness for non-terminating processes. These approaches, however, are general purpose and procedural,
suffering from the problems that we already discussed.

Declarative approaches are an alternative to procedural ones. In general, declarative approaches better
suit dynamic and collaborative settings, where flexibility of process models is a desired characteristic [44, 23,
14, 22, 45]. Among the best known declarative approaches are Declare [27], the case handling paradigm [46,
47], and DCR Graphs [45, 48].

Declare is graphical language with an LTLf formal semantics. The graphical representation was in-
troduced aiming at supporting the definition and comprehension of process models, aspects that might be
difficult to achieve in declarative approaches and which are supposed to be better realized in procedural ones.
As discussed in Section 2.2, Declare suffers from some of these drawbacks, which makes it not suited for
construction process modeling. Specifically, similarly to BPMN, also Declare focuses on the control flow,
making it complicated to represent the items on which activities have to be performed. As in BPMN, this can
be done by representing each activity as an activity-location pair, making, however, the process model more
complicated. Additionally, Declare does not support the representation of alternative constraints, which are

33

needed to capture exclusivity constraints. If an activity has an exclusivity constraint on a set of locations,
then any other activity to be performed on one such location can be performed either before or after the
activity is executed on all the locations, but not in between. In Declare it is possible to express alternative
between activities (like the not-coexistence constraint or branching constraints as in [49]) but not between
patterns. These are the main reasons why CoPModL does not rely on Declare. Note, indeed, that CoPModL
is similar to Declare in the declarative nature, the naming of the constraints and their intuitive interpretation,
but the formal semantics is different.

Different aspects of Declare have been investigated in the literature, such as process mining, formal
verification of properties, and extensions of the language to capture more expressive execution conditions.
In general, a shortcoming that is shared by all of these approaches is that, since they rely on Declare, they
suffer from the problems discussed above. Let us discuss some of them more in detail.

In the context of process mining, the authors in [24, 50] focuses on two properties of Declare process
models that are automatically extracted from process logs, namely consistency and redundancy. They con-
sider a subset of the Declare language and introduce techniques based on automata-products to check the two
properties and to propose a new model without inconsistencies and redundancies. The possibility to suggest
an alternative process model, similar to the original one, is very interesting but relies on the assumption that
each constraint retains information such as the support, confidence and interest factor, that can be obtained
from the process log during the discovery phase. In our setting, we cannot count on the availability of process
logs and we focus on a simpler problem, that is to check whether a model is consistent or not. Moreover, the
consistency and redundancy checks that they introduced can be defined on the Declare constraint templates.
In our case, considering constraint templates would not be enough, since also locations and the scope of
a template play an active role in process satisfiability. Finally, the semantics provided in [24, 50] is given
by regular expressions, which naturally fits with the purpose of the paper, i.e., automata-based verification
of properties. In our case, we aim at specifying properties that a linear execution should satisfy. For this
purpose, a semantics as LTLf represents a natural choice.

Multi-Perspective Declare (MP-Declare) has been introduced as an extension of Declare to consider also
data and temporal perspectives beside the control flow one. In this proposal, Declare templates are extended
with the possibility to specify an activation condition, which is related to the activating activity and specifies
which condition should be met, besides the occurrence of the activity, in order for the constraint to be
activated; a target condition, expressing a condition to be met for the constraint to be fulfilled and concerning
the target activity of the constraint; a correlation condition which is a condition that relates aspects of
both activities and is evaluated when the target is achieved. In [23] the authors investigate the problem of
checking conformance, that is verifying that a process instance complies with an MP-Declare process model.
The conditions they express are over data elements, which can be event attributes (i.e., data produced by
an activity of the instance) or over case attributes (i.e., data concerning the whole process instance). The
authors in [13] focus on the execution of MP-Declare processes. In particular, they are interested in checking
whether, given a partial process instance, it can be completed without violating any constraint. This property
is similar to the conformance check in [23], but it is performed over partial traces. In both cases, the two
properties are different from satisfiability, which we consider in our work, where no trace is given but the
existence of one satisfying all the constraints must be checked. Another line of research related to Declare is
about mining of processes extended with data. In particular, [44] focuses on MP-Declare processes mining,
while [14] focuses on similar processes but where only activation conditions are considered.

From the literature on MP-Declare two aspects emerge clearly: i) the usefulness of declarative languages
(at least in dynamic domains), and ii) the need of extending the control flow specification of Declare with
conditions defined on (process instance) data. Our approach is very much in line with both aspects, given the
flexibility and adaptability requirements of construction processes and the need of expressing locations and

34

location-based dependencies. The language and the conditions defined in MP-Declare are able to capture a
variety of constraints, which however are different from the items on which a CoPModL activity has to be
executed and the scope of a dependency. MP-Declare conditions, indeed, aim at capturing when a constraint
is activated and, if activated, what conditions must be satisfied not to violate it. In CoPModL, locations and
the scope are part of the model definition, specifying exactly what needs to be done, where it needs to be
done, and how the different tasks are related one to another. However, CoPModL constraints do not have
any “conditional” nature on the activation of the constraint.

Dynamic Condition Response (DCR) Graphs [45, 48] in their graphical format resemble the Declare-
language. A graph consists of events and relations among them. Relations can be of four kinds: dynamic
inclusion, dynamic exclusion, condition and response. The work in [48] is considering the case in which a
process model is continuously adapted to achieve specific sub-goals. In this settings some properties need
to be ensured all the time. Therefore, they automatically check the absence of deadlock and livelock by ap-
plying model checking techniques. The work in [45] extends DCR Graphs by introducing nesting of graphs.
This nesting is defined in such a way to ensure consistency of the model. Consistency holds if, when flat-
tening a nested graph, there are no events that are both excluded (something should not occur) and included
(something must occur). In this case, consistency is enforced, rather than checked.

Another declarative approach is the case handling paradigm [46, 51] which introduces a shift from a
flow perspective to a case perspective. A case can be seen as a product to be realized and the idea is that
a process must be represented in a flexible way, thus the choice of being declarative, and the workers need
to have at any time all information about a case. Accordingly, a case is defined with a structure and a
current state, which in turn is represented as a collection of data objects. Therefore, the current state of a
case is represented by the presence of data objects. This represents a shift of perspective where, besides the
control flow also the data-flow is considered. Data objects are linked to activities and may be mandatory, i.e.,
needed to complete the activity, or restricted, that is, the data object is needed to complete the activity and
the process cannot progress with other activities. Synchronization between several instances and activities
is achieved via data objects. Additionally, activities may be non-atomic and are assigned to roles which
can have different capabilities such as execute an activity, redo it, undo it or skip it. In 2014 the OMG
introduced the Case Management Model and Notation [47] (CMMN) standard, which is a graphical notation
for case-based process modeling. In [1], the paradigm has been applied to construction, sharing with our
work similar requirements (such as adaptability and flexibility).

However, the focus of [1] is on the “preparation of execution phase”, where a number of documents,
drawings and such like need to be orchestrated. Instead, the focus of our work is on the execution phase,
where the kind of information to represent and the level of detail needed are different.

Some approaches in the literature try to consider different or additional perspectives, other than the
control flow. The instance-spanning constraints [6] approach aims at dealing with constraints that relate
several process instances of one or several process schemas. An example could be the need to express
the synchronization between several instances before the process can progress further. In [6] the authors
identify several properties for the constraints: i) localization, which defines whether a constraint should
be enforced for a single instance, all instances of a process, instances of many processes, or instances of
processes of different organizations; ii) the span, which considers whether a constraint that affects multiple
tasks, concerns tasks of the same instance, of multi-instances, of multi-processes or of multi-organizations;
iii) dependency, which concerns executions that depend on previous executions (e.g., some task can be
executed only if a certain number of executions of another task have already occurred).

The work on Object-Centric Behavioural Constraints [5] also is concerned with expressing constraints
over several process instances, focusing on cardinality constraints to relate flow and data constraints. Also in

35

this approach, items are not represented explicitly, which in our approach plays a role in checking the con-
sistency of a model. Also, representation of item-dependent relationships is not considered in this approach.

The approaches that we described up to know have been classified as activity-centric approaches, be-
cause the focus is mainly on the activities to be performed and their (temporal, ordering) relation. If they can
represent data, this is considered only in a second place and usually in a limited way (e.g., BPMN). A dif-
ferent perspective is represented by the data-centric approaches, of which the artifact-centric approach [52]
can be considered as one representative. The idea is to model a process by considering a number of entities
(artifacts) that are relevant in the setting and for the purpose the model is made. Each artifact is characterized
by an information model and a lifecycle model. The former stores business-relevant information and the lat-
ter specifies the possible evolution of the artifact over time. In [53, 54], the lifecycle is specified in terms
of Guard-Stage-Milestone. Here, an artifact is organized into stages (which can be composed or atomic). A
guard specifies a condition that makes the stage active, meaning that the tasks, in terms of which a stage is
defined, can be performed. A task can be an assignment (for or from attributes in the information model),
service invocations, human tasks or the creation of an artifact instance. A milestone represents a condition
that closes the stage. When more than one milestone is specified, then the stage is closed when one is met.
The process is then defined in terms of interactions between the business artifacts and their evolution.

Data-centric approaches represented a switch of perspective, from the control flow to the data (artifact)
perspective. Accordingly, this kind of representation suits those situations in which there are a number of
well-defined entities to be modeled, and the aim of the model is in capturing their evolution and interaction.
In the construction setting that we discussed, the aim of the model is closer to the activity-centric approaches,
aiming at specifying in the first place the activities and the locations where the companies have to perform
some work, and then the relations among these. In the artifact centric approach, the perspective of activities
and the order of their execution is hidden inside the specification of an artifact and its data model and stages.
For this reason we believe that artifact-centric approaches are not the right solution to express in an effective
way the coordination among several construction companies.

7.2. Process Management in Construction

In construction, the traditional and most adopted techniques are activity-based approaches, focusing
mainly on the activities to be performed. The most famous ones are the Critical Path Method (CPM) [55],
established in 1960 [9], and the Program Evaluation and Review Technique (PERT) [56]. These approaches
rely on the definition of an activity network, where nodes specify the activities and their duration and arcs
represent orderings between the activities. For such a network, one can compute a critical path, that is, a
path in the network such that if one activity on the path is delayed, then the overall duration of the project
increases. Instead, for non-critical paths there is a time buffer, such that a certain activity delay can be
absorbed without increasing the overall duration of the project.

CPM and PERT are simple enough to be used also without IT support and this contributed to their
initial success and wide adoption. However, these approaches have some limitations: mainly they do not
account for the locations where activities are to be executed. Since locations are not considered, it is also
not possible to express location-based relationships between the activities [9]. As a result, the process
representation abstracts from important details, causing [57]: i) the communication among the companies to
be sloppy, possibly resulting in different interpretations of a model; ii) difficulties in managing the variance
in the schedule and resources; iii) imprecise activity duration estimates (based on lags and float in CPM
and on probability in PERT); iv) inaccurate duration estimates not depending on the quantity of work to
be performed in a location and not accounting for the expected productivity there. As a result, project
schedules are defined to satisfy customer or contractual requirements, but are rarely updated during the
execution, which would be necessary if one wanted to use them for process control [9].

36

Gantt charts are a graphical tool for scheduling in project management. Being graphical, these charts are
intuitive and naturally support the visualization of when an activity is planned to be executed and of how long
is its duration. By connecting the activities with arrows it is also possible to represent some dependencies
among them. Similarly to the approaches described previously, also Gantt charts do not support naturally the
definition of the locations. Practically, they have been used representing locations as activities and activities
as sub-activities of the locations. This has some drawbacks, like the impossibility to explicitly represent
location-based relationships and their scope. Moreover, a Gantt chart already represents a commitment to
one particular schedule and does not constitute a more declarative process model that would specify only the
requirements on the allowed/desired executions.

Such a declarative process model would allow for a more flexible approach: in case of a delay or unfore-
seen events any re-scheduling which satisfies the model leads to a possible schedule. In case only a schedule
is provided, the requirements (such as tasks to be executed before/after other tasks) are not explicit, thus,
it might not be clear how to perform the (re-)scheduling. The limitations of Gantt charts also apply to the
IT-tools supporting the approach (such as Microsoft Project).

Orthogonal to activity-based approaches there are the location-based approaches where the main focus
is on the locations where activities need to be performed. The Line-of-Balance (LOB) [58] method has been
introduced in the first half of the twentieth century, with the aim of addressing repetitive constructions (that
is, projects where some sub-process is repeated frequently, for instance at each floor). This method plots
the planned activities on a chart, where the axes represent, respectively, the time and the quantity (of work)
that can be delivered at a certain point in time. Activities are then represented by lines, showing how much
of an activity can be achieved at a certain point in time. Accordingly, the slope of a curve represents the
production line of the corresponding activity, which can be varied by varying the number of crews assigned
to the activity: more crews means that the activity can progress faster, thus a higher quantity can be delivered
in a certain amount of time. This approach has been appreciated because it easily supports an evaluation of
the workflow continuity in performing the activities. Specifically, if the lines representing two activities are
continuous and parallel then this indicates a continuous workflow, intuitively meaning that the two activities
progress at the same pace and that one succeeds the other, location by location. If the two activities have
different pace, then parallelism can be achieved by changing the number of crews working on the activity:
fewer or more crews to progress more slowly or faster, respectively. In this way, the graphical representation
supports a form of resource management.

It is not hard to see that this approach specifically suits repetitive tasks, that is tasks that must be repeated
in several locations always taking the same time. Similar approaches are the flowline [59] and the Location-
Based Management System [9] methods. The differences with LOB are that axes represent time and location
(instead of quantities) and that the activities are represented with lines in a slightly different way. Location-
based approaches thus focus on workflow continuity and on productivity. Similarly to some of the activity-
based approaches, they do not have an explicit model with the requirements to be satisfied by an execution.
Also in these approaches, indeed, a chart already represents a schedule and the commitment to established
dates.

The Building Information Modeling (BIM) process was introduced more or less at the same time, how-
ever it become popular only recently. One of the main aims of BIM is to facilitate the exchange of digital
information concerning the functional and the physical characteristics of a building [60]. The underlying
idea is that different actors with complementary expertise (e.g., architects, engineers, foremen) can work on
the same model and enrich it with discipline-specific information. As well as the tools supporting BIM, the
approach is very powerful, but the abundance of information makes it also difficult to manage and maintain,
and requires dedicated resources to do that [61], resources that not all companies are willing or able to afford
(in particular small and medium-size enterprises). As a result, either BIM is not adopted, or it is adopted

37

only in the initial phases of a project and then, given the effort required to maintain it, in many cases a model
is not updated.

All these factors contribute to a resistance against IT-support in construction and result in a lower adop-
tion of IT-tools in the industry, compared to others, such as manufacturing [62].

8. Conclusions and Future Work

This work presents an approach and the language CoPModL for process modeling that represents activ-
ities, items and accounts for both of them in the control flow specification. We investigate the problem of
satisfiability of a model and develop an efficient algorithm to check it. The algorithm has been implemented
in CoPMod, a proof-of-concept tool that also supports the graphical definition of a process model [17].

The motivation for developing a formal approach for process modeling emerged in the application of
non-formal models in real projects [7, 10], which resulted in improvements and cost savings in construction
process execution. This opens the way for the development of automatic tools to support construction
process management. In this paper we presented the statisfiability checking, starting from which we are
currently investigating the automatic generation of process schedules, optimal w.r.t. some criteria of interest
(e.g., costs, duration). To this aim we are investigating the adoption of constraint satisfaction and (multi-
objective) optimization techniques. We will apply modeling and automatic scheduling to real construction
projects in the context of the research project COCkPiT [8]. We are also investigating the integration with
BIM-based tools (such as Autodesk R© Revit or Archicad) so as to extract the geometries of the buildings
and assign activities and quantities to be performed there. This would support both process modeling and
scheduling.
Acknowledgments. This work was supported by the projects MoMaPC, financed by the Free University of
Bozen-Bolzano, and by the research project “COCkPiT – Collaborative Construction Process Management
– FESR1008”, funded by the European Regional Development Fund (ERDF) of the Autonomous Province
of Bolzano-South Tyrol.

References

[1] W. van der Aalst, M. Stoffele, J. Wamelink, Case Handling in Construction, Automation in Construc-
tion 12 (3) (2003) 303–320.

[2] M. Dumas, From Models to Data and Back: The Journey of the BPM Discipline and the Tangled Road
to BPM 2020, in: BPM, LNCS 9253, Springer, 2015, pp. XV–XVI.

[3] U. Frank, Multilevel Modeling - Toward a New Paradigm of Conceptual Modeling and Information
Systems Design, Business & Information Systems Engineering 6 (6).

[4] D. Calvanese, G. De Giacomo, M. Montali, Foundations of Data-Aware Process Analysis: a Database
Theory Perspective, in: PODS, ACM, 2013, pp. 1–12.

[5] W. M. P. van der Aalst, A. Artale, M. Montali, S. Tritini, Object-Centric Behavioral Constraints: Inte-
grating Data and Declarative Process Modelling, in: Description Logics, 2017, pp. 1–12.

[6] M. Leitner, J. Mangler, S. Rinderle-Ma, Definition and Enactment of Instance-Spanning Process Con-
straints, in: Web Information Systems Engineering, LNCS 7651, 2012, pp. 652–658.

[7] Build4Future, www.fraunhofer.it/en/focus/projects/build4future.html.

www.fraunhofer.it/en/focus/projects/build4future.html

38

[8] COCkPiT: Collaborative Construction Process Management, www.cockpit-project.com/.

[9] R. Kenley, O. Seppänen, Location-Based Management for Construction: Planning, Scheduling and
Control, Routledge, 2006.

[10] E. Marengo, P. Dallasega, M. Montali, W. Nutt, M. Reifer, Process Management in Construction:
Expansion of the Bolzano Hospital, in: Business Process Management Cases, Springer, 2018, pp.
257–274.

[11] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: 23rd
International Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 854–860.

[12] S. Schönig, M. Zeising, S. Jablonski, Towards Location-Aware Declarative Business Process Manage-
ment, in: Business Information Systems Workshops, Vol. 183 of LNBIP, Springer, 2014, pp. 40–51.

[13] L. Ackermann, S. Schönig, S. Petter, N. Schützenmeier, S. Jablonski, Execution of Multi-perspective
Declarative Process Models, in: On the Move to Meaningful Internet Systems. (OTM), Vol. 11230 of
LNCS, Springer, 2018, pp. 154–172.

[14] F. M. Maggi, M. Dumas, L. Garcı́a-Bañuelos, M. Montali, Discovering Data-Aware Declarative Pro-
cess Models from Event Logs, in: Business Process Management - 11th International Conference,
BPM, Vol. 8094 of LNCS, Springer, 2013, pp. 81–96.

[15] Y. Lu, X. Xu, J. Xu, Development of a Hybrid Manufacturing Cloud, Journal of Manufacturing Systems
33 (4).

[16] E. Marengo, W. Nutt, M. Perktold, Construction Process Modeling: Representing Activities, Items
and Their Interplay, in: Business Process Management BPM 2018, LNCS 11080, Springer, 2018, pp.
48–65, Best Paper Award.

[17] E. Marengo, W. Nutt, M. Perktold, CoPMod: Support for Construction Process Modeling, in: Pro-
ceedings of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018, CEUR 2196,
CEUR-WS.org, 2018, pp. 61–65.

[18] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business Process Management,
Second Edition, Springer, 2018.

[19] E. Börger, Approaches to Modeling Business Processes: a Critical Analysis of BPMN,Workflow Pat-
terns and YAWL, Software & Systems Modeling 11 (3) (2012) 305–318.

[20] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, On the Suitabil-
ity of BPMN for Business Process Modelling, in: Business Process Management, 4th International
Conference, Vol. 4102 of LNCS, Springer, 2006, pp. 161–176.

[21] O. Savkovic, E. Marengo, W. Nutt, Query Stability in Monotonic Data-Aware Business Processes, in:
ICDT, Vol. 48 of LIPIcs, 2016, pp. 16:1–16:18.

[22] M. Zeising, S. Schönig, S. Jablonski, Towards a Common Platform for the Support of Routine and
Agile Business Processes, in: 10th IEEE International Conference on Collaborative Computing: Net-
working, Applications and Worksharing, ICST / IEEE, 2014, pp. 94–103.

www.cockpit-project.com/

39

[23] A. Burattin, F. M. Maggi, A. Sperduti, Conformance Checking Based on Multi-Perspective Declarative
Process Models, Expert Syst. Appl. 65 (2016) 194–211.

[24] C. Di Ciccio, F. M. Maggi, M. Montali, J. Mendling, Resolving Inconsistencies and Redundancies in
Declarative Process Models, Information Systems 64 (2017) 425–446.

[25] D. Fahland, D. Lübke, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, S. Zugal, Declarative
Versus Imperative Process Modeling Languages: The Issue of Understandability, in: 10th International
Workshop on Enterprise, Business-Process and Information Systems Modeling, Vol. 29 of LNBIP,
Springer, 2009, pp. 353–366.

[26] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative Workflows: Balancing Between Flexi-
bility and Support, Computer Science-R&D 23 (2).

[27] W. M. P. van der Aalst, M. Pesic, DecSerFlow: Towards a Truly Declarative Service Flow Language,
in: Web Services and Formal Methods, Springer, 2006, pp. 1–23.

[28] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full Support for Loosely-Structured
Processes, in: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC
2007), IEEE Computer Society, 2007, pp. 287–300.

[29] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer
Science, (FOCS), 1977, pp. 46–57.

[30] M. Perktold, E. Marengo, W. Nutt, CoPMod: Construction Process Modeling (Proof-of-concept tool),
http://copmod.inf.unibz.it.

[31] M. Perktold, Processes in Construction: Modeling and Consistency Checking, Master’s thesis, Free
University of Bozen-Bolzano, http://pro.unibz.it/library/thesis/00012899S_
33593.pdf (2017).

[32] P. Fortemps, M. Hapke, On the Disjunctive Graph for Project Scheduling, Foundations of Computing
and Decision Sciences 22.

[33] Nusmv, http://nusmv.fbk.eu/ (June 2019).

[34] Bizagi, https://www.bizagi.com/ (June 2019).

[35] Bonitasoft, https://www.bonitasoft.com/ (June 2019).

[36] Camunda, https://camunda.com/bpmn/tool/ (June 2019).

[37] Signavio, https://www.signavio.com/ (June 2019).

[38] H. Groefsema, D. Bucur, A Survey of Formal Business Process Verification: From Soundness to Vari-
ability, in: International Symposium on Business Modeling and Software Design, 2013, pp. 198–203.

[39] V. S. W. Lam, Formal Analysis of BPMN Models: a NuSMV-Based Approach, International Journal
of Software Engineering and Knowledge Engineering 20 (7) (2010) 987–1023.

[40] A. Awad, G. Decker, M. Weske, Efficient Compliance Checking Using BPMN-Q and Temporal Logic,
in: Business Process Management, 6th International Conference, Vol. 5240 of LNCS, Springer, 2008,
pp. 326–341.

http://copmod.inf.unibz.it
http://pro.unibz.it/library/thesis/00012899S_33593.pdf
http://pro.unibz.it/library/thesis/00012899S_33593.pdf
http://nusmv.fbk.eu/
https://www.bizagi.com/
https://www.bonitasoft.com/
https://camunda.com/bpmn/tool/
https://www.signavio.com/

40

[41] A. Awad, BPMN-Q: A Language to Query Business Processes, in: Proceedings of EMISA’07, 2007,
pp. 115–128.

[42] K. M. van Hee, N. Sidorova, J. M. E. M. van der Werf, Business Process Modeling Using Petri Nets,
Trans. Petri Nets and Other Models of Concurrency 7480 (2013) 116–161.

[43] S. Debois, T. T. Hildebrandt, T. Slaats, N. Yoshida, Type Checking Liveness for Collaborative Pro-
cesses with Bounded and Unbounded Recursion, in: Formal Techniques for Distributed Objects, Com-
ponents, and Systems, Vol. 8461 of LNCS, Springer, 2014, pp. 1–16.

[44] S. Schönig, C. Di Ciccio, F. Maria Maggi, J. Mendling, Discovery of Multi-perspective Declarative
Process Models, in: Service-Oriented Computing - 14th International Conference, ICSOC, Vol. 9936
of LNCS, Springer, 2016, pp. 87–103.

[45] T. T. Hildebrandt, R. R. Mukkamala, T. Slaats, Nested Dynamic Condition Response Graphs, in: Fun-
damentals of Software Engineering - 4th IPM International Conference, Vol. 7141 of LNCS, Springer,
2011, pp. 343–350.

[46] W. M. P. van der Aalst, M. Weske, D. Grünbauer, Case Handling: a New Paradigm for Business Process
Support, Data Knowl. Eng. 53 (2) (2005) 129–162.

[47] Case Management Model and Notation, https://www.omg.org/cmmn/ (June 2019).

[48] R. R. Mukkamala, T. T. Hildebrandt, T. Slaats, Towards Trustworthy Adaptive Case Management
with Dynamic Condition Response Graphs, in: 17th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2013, IEEE Computer Society, 2013, pp. 127–136.

[49] M. Pesic, W. M. P. van der Aalst, A Declarative Approach for Flexible Business Processes Manage-
ment, in: Business Process Management Workshops, Vol. 4103 of LNCS, Springer, 2006, pp. 169–180.

[50] C. Di Ciccio, F. M. Maggi, M. Montali, J. Mendling, Ensuring Model Consistency in Declarative
Process Discovery, in: Business Process Management - 13th International Conference, BPM 2015,
Vol. 9253 of LNCS, Springer, 2015, pp. 144–159.

[51] W. M. P. van der Aalst, P. J. S. Berens, Beyond Workflow Management: Product-driven Case Handling,
in: Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting Group Work,
ACM, 2001, pp. 42–51.

[52] R. Hull, Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges,
in: On the Move to Meaningful Internet Systems: OTM 2008, Vol. 5332 of LNCS, Springer, 2008, pp.
1152–1163.

[53] R. Vaculı́n, R. Hull, T. Heath, C. Cochran, A. Nigam, P. Sukaviriya, Declarative Business Artifact
Centric Modeling of Decision and Knowledge Intensive Business Processes, in: Proceedings of the
15th IEEE International Enterprise Distributed Object Computing Conference, IEEE Computer Soci-
ety, 2011, pp. 151–160.

[54] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. F. T. Heath III, S. Hobson, M. H.
Linehan, S. Maradugu, A. Nigam, P. N. Sukaviriya, R. Vaculı́n, Business Artifacts with Guard-Stage-
Milestone Lifecycles: Managing Artifact Interactions with Conditions and Events, in: Proceedings of
the Fifth ACM International Conference on Distributed Event-Based Systems, ACM, 2011, pp. 51–62.

https://www.omg.org/cmmn/

41

[55] J. E. Kelley Jr, M. R. Walker, Critical-path Planning and Scheduling, in: Eastern Joint IRE-AIEE-ACM
Computer Conference, IRE-AIEE-ACM ’59 (Eastern), ACM, 1959, pp. 160–173.

[56] U. Navy, Program Evaluation Research Task, Summary Report Phase 1, AD-735 902.

[57] A. Shankar, K. Varghese, Evaluation of Location Based Management System in the Construction of
Power Transmission and Distribution Projects, in: 30th International Symposium on Automation and
Robotics in Construction and Mining, 2013, pp. 1447–1455.

[58] P. Lumsden, The Line-of-Balance Method, Pergamon Press Limited, 1968.

[59] W. E. Mohr, Project Management and Control:(in the Building Industry), Department of Architecture
and Building, University of Melbourne, 1978.

[60] B. Hardin, D. McCool, BIM and Construction Management: Proven Tools, Methods, and Workflows,
John Wiley & Sons, 2015.

[61] P. Forsythe, S. Sankaran, C. Biesenthal, How Far Can BIM Reduce Information Asymmetry in the
Australian Construction Context?, Project Management Journal 46 (3).

[62] KPMG International: Building a Technology Advantage. Harnessing the Potential of Technology to
Improve the Performance of Major Projects, Global Construction Survey (2016).

	Introduction
	Construction Process Requirements
	Requirements for Construction Process Modeling
	BPMN and Declare for Construction Process Modeling

	CoPModL: Construction Process Modeling Language
	Configuration Part
	Flow Part
	Constraint Specification in CoPModL

	Process Modeling for the Hotel Scenario
	Satisfiability Checking
	Equivalence of LTL and LTLf Satisfiability for CoPModL
	Graph-based Satisfiability Checking
	An Algorithm for Satisfiability Checking
	Satisfiability Checking Evaluation

	CoPMod: IT Support for Construction Process Modeling
	Related Work
	Process Modeling in Computer Science
	Process Management in Construction

	Conclusions and Future Work

