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Abstract

Conformance checking unleashes the full power of process mining: techniques
from this discipline enable the analysis of the quality of a process model dis-
covered from event data, the identification of potential deviations, and the
projection of real traces onto process models. This way, the insights gained
from the available event data can be transferred to a richer conceptual level,
amenable for a human interpretation. Unfortunately, most of the aforemen-
tioned functionalities are grounded in a very hard fundamental problem:
given an observed trace and a process model, to find the model trace that
is most similar to the trace observed. This paper presents an architecture
that supports the creation and distribution of alignment subproblems based
on a novel horizontal acyclic model decomposition, disengaged of the con-
formance checking algorithm applied to solve them. This is supported by
a Big Data infrastructure that facilitates the customised distribution of a
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great amount of data. Experiments are provided witnessing the enormous
potential of the architecture proposed, opening the door to further research
in several directions.

Keywords: Conformance Checking, Decompositional Techniques, Big Data,
MapReduce

1. Introduction

Organisations tend to define, by means of conceptual models, complex
business processes that must be followed to achieve their objectives [1]. Some-
times the corresponding processes are distributed in different systems, and
most of the cases include human tasks, enabling the occurrence of unexpected
deviations with respect to the (normative) process model. This is aggravated
by the appearance of more and more complex processes, where the observa-
tions are provided by heterogeneous sources, such as Internet-of-Things (IoT)
devices involved in Cyber-physical Systems [2].

Conformance checking [3] techniques provide mechanisms to relate mod-
elled and observed behaviour, so the frictions between the footprints left
by process executions, and the process models that formalise the expected
behaviour, can be revealed.

One of the major challenges in conformance checking is the alignment
problem: given an observed trace o, compute an end-to-end model run that
is more similar to 0. Computing alignments is a very hard problem, with a
complexity exponential in the size of the model or the trace [4]. Intuitively,
computing an alignment requires a search through the model’ state space,
which implies in some cases a large exploration when the process model is
large and/or highly concurrent.

In order to face the challenge of computing alignments, the conformance
checking community has proposed very different alternatives. Among these,
we highlight decompositional techniques, that break the alignment problem
into pieces, whose solutions can be composed to reconstruct the final align-
ment [5, @, 7, §]. All these decompositional approaches have in common
their strategy to decompose the problem by means of vertical cuts of the
process model, and then projecting the traces in the log accordingly in order
to derive subtraces that only contain events of the alphabet corresponding to
each model fragment. Although in very particular cases (e.g., well-structured
process models) the aforementioned decompositional approaches represent a



significant alleviation of the alignment problem, they rely on very stringent
conditions (e.g., model fragments should agree on the alphabet at the fron-
tiers), and provide weak guarantees (e.g., necessary conditions for deriving
an alignment), which hamper them from being applied in general.
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Figure 1: Functional description of the Big Data architecture to compute alignments.

In this paper, we step back from the decompositional approach, and focus
on working at a more abstract, architectural level. We propose a Big Data
infrastructure that can be instantiated to any of the existing decomposi-
tional approaches, although our approach is focused on an specific horizontal
decomposition, employing the MapReduce paradigm [9] for the decomposi-
tion and aggregation. A first sight to our functional strategy (depicted in
Figure (1)) will not bring any new idea to the landscape of decompositional
techniques: the process model is decomposed into a set of partial models, and
traces in the log are projected into subtraces. These two types of elements
are then distributed and their partial solutions composed to aggregate a final
alignment. This distribution of the problem may facilitate the simplification
of the problem, splitting the conformance analysis into partial models and
subtraces across different nodes (Map), and combining the partial alignments
obtained from different algorithms in the nodes (Reduce). The general idea
of applying MapReduce for conformance checking is not new, as is analysed
in the related work section. However, the Big Data [10] framework proposed
in this paper is novel for the following reasons:

e A novel decomposition is proposed, which differs from the aforemen-
tioned approaches in one important feature: instead of a vertical cut,



it is based on horizontal, end-to-end cuts that can be obtained by what
we call acyclic cover, which is originated from a partial order represen-
tation of the initial process model.

e Tuning the construction, distribution and parallelisation of the com-
puting alignment between different nodes in a Big Data environment,
according to the features of the problem and the available requirements.
Moreover, the application of heuristics is proposed for optimising the
resolution of the subproblems.

e [t enables us to choose and customise the conformance checking al-
gorithm, being possible to compute the alignment with different tech-
niques. In this case, we have used the A* algorithm, as a classical
solution, and Constraint Programming Paradigm [11], as novel one, in
order to show how different types of alignment algorithms can be ap-
plied in the distributed paradigm.

e The development of a practicable infrastructure based on Big Data,
that represents a leap forward in the resolution of more complex con-
formance checking problems reducing the resource limitations of the
current solutions evaluated locally.

The paper is organised as follows: Section [2] analyses the related work.
Section [3|includes the necessary foundations to understand the state of the art
and the proposal. Section [4] determines how the use of Big Data techniques
provides mechanisms for the partitioning and distribution of the computa-
tion of the conformance checking analysis. Section [5| describes how the A*
algorithm and Constraint Programming can be applied to traces that repre-
sent the acyclic horizontal partial models. Section [6] depicts the experiments
used to evaluate our proposal, and finally, the paper is concluded.

2. Related Work

The seminal work in [4] proposed the notion of alignment and developed
a technique based on A* to compute optimal alignments for a particular
class of process models. Improvements of this approach have been presented
recently in different papers [12,[13]. The approach represents the state-of-the-
art technique for computing alignments, and can be adapted (at the expense



of increasing significantly the memory footprint) to provide all optimal align-
ments. Alternatives to A* have appeared in the last years: in the approach
presented in [14], the alignment problem is mapped as an automated plan-
ning instance. Automata-based techniques have also appeared [I5] 16]. The
techniques in [15] (recently extended in [I7]) rely on state-space exploration
and determination of the automata corresponding to both the event log and
the process model, whilst the technique in [16] is based on computing several
subsets of activities and projecting the alignment instances accordingly.

The work in [I8] presented the notion of approzimate alignment to alle-
viate the computational demands by proposing a recursive paradigm on the
basis of the structural theory of Petri nets. In spite of resource efficiency,
the solution is not guaranteed to be executable. Alternatively, the technique
in [I9] presents a framework to reduce a process model and the event log
accordingly, with the goal of alleviating the computation of alignments. The
obtained alignment, called macro-alignment since some of the positions are
high-level elements, is expanded based on the information gathered during
the initial reduction. Techniques using local search have recently been also
proposed very recently [20].

Against this background, the process mining community has focused on
divide-and-conquering the problem of computing alignments, as a valid al-
ternative to this problem with the aim of alleviating its complexity without
degrading the quality of the solutions found. We turn now our focus to de-
compositional approaches to compute alignments, which are more related to
the research of this paper.

Decompositional techniques have been presented [5] [0], [7] that, instead of
computing optimal alignments, they focus on the crucial problem of whether
a given trace fits or not a process model. These techniques vertically de-
compose the process model into pieces satisfying certain conditions (so only
valid decompositions [5], which satisfy restrictive conditions on the labels
and connections forming a decomposition, guarantee the derivation of a real
alignment). Later on, the notion of recomposition has been proposed on top
of decompositional techniques, in order to obtain optimal alignments when-
ever possible by iterating the decompositional methods when the required
conditions do not hold [§]. In contrast to the aforementioned vertical decom-
position techniques, our methodology does not require this last consolidation
step of partial solutions, and therefore can be a fast alternative to these
methods at the expense of loosing the guarantee of optimality.

There has been related work also on the use of partial order representa-



tions of process models for computing alignments. In [21], unfoldings were
used to capture all possible transition relations of a model so that they can
be used for online conformance checking. In contrast, unfoldings were used
recently in a series of papers [22, 23] to speed-up significantly the computa-
tion of alignments. We believe these approaches, specially the last two, can
be easily integrated in our framework.

Also, the work of [I7] can also be considered a decompositional ap-
proach, since it proposes decomposing the model into sequential elements
(S-components) so that the state-space explosion of having concurrent activ-
ities is significantly alleviated. We believe that this work is quite compatible
with the framework suggested in this paper, since the model restrictions as-
sumed in [17] are satisfied by the partial models arising from our horizontal
decomposition.

Finally, the MapReduce distributed programming model has already been
considered for process mining. For instance, Evermann applies it to process
discovery [24], whilst [25] applies it for monitoring declarative business pro-
cesses.

3. Foundations

We denote, L the empty set. Let A be a set of elements, we denote A*
the set of all sequences over elements of A. Let a,b € (AU {L})* be two
sequences. We denote, a® the sequence a, but omit all elements L from a.
We write, a = b if a* = b* holds.

3.1. Process Models

In this paper, we model process models and partial models by means of
labelled Petri net.

Definition 1 (Labelled Petri net). A labelled Petrinet is a tuple (P, T, F),
Y., ¢) where P and T are finite disjoint sets of places and transitions, respec-
tively, F': (P xT)U(T x P) — {0,1} is the flow-relation, 3 is the alphabet,
0:T — X U{L} is the labelling function.

Figure[2] depicts a labelled Petri net. Places are circles and transitions are
rectangles. Every transition has a unique name and a label on top. Places
and transitions are connected according to the flow-relation.

In Petri nets, there is the so-called firing rule. Transitions of a Petri net
can fire changing the state of the net.
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Figure 2: A labelled Petri net.

Definition 2 (Firing Rule). Let N = (P, T, F,3,{) be a labelled Petri
net. A function m : P — Ny is a marking of N. We define, ot : P — {0,1}
by et(p) := F(p,t), and te : P — {0,1} by t e (p) := F(t,p). A transition
t € T is enabled at marking m if m > et holds. If transition t is enabled,
transition ¢ can fire. In this case, we write m [t). Firing ¢ changes the marking
m to m' :=m — et + te. In this case, we write m [t) m'.

We depict a marking by putting black dots, called tokens, in the places of
the marking. For example, Figure [2| depicts the initial state of the labelled
Petri net. The initial marking only contains place ¢ once. In this marking,
only transition ¢, labelled by A, is enabled. Firing ¢; leads to the marking
where 7 does not carry a token, but both places in the post-set of ¢; carry a
token each.

Starting at the initial marking, sequentially enabled sequences of transi-
tions are words of the language of the Petri net. The related traces of labels
are the so-called trace-language.

Definition 3 (Language of a Petri net). Let N = (P, T, F,%, () be a la-
belled Petri net. A marked Petri net is a tuple (N, mg, my) where my is the

initial marking and my is the final marking. A sequence (t1,...,t,) € T* is
a firing sequence. If there is a sequence of markings (my,...,m,;1) so that
my [t1) me, ma [ta) mg, ..., My, [ty) My holds, we write my [t1,. .., t,) Mpy.

LN) == {{tr, ... ta) € T* | mots, ..., tn) my}
T(N) = {0 € S| (t1,....ta) € LINY A= ((t), ..., 0(t))}

L(N) is the language of N, T(N) is the trace-language of N.
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In Figure [2] if we assume the final marking where only place f carries one
token, for example, (t1,to, 13,16, t7) and (tq,to,t3, t5, ty, Lo, t3, t7) are words of
the language, and (A, B,C, F,G) and (A, B,C, E, D, B, C, G) are the related
traces.

3.2. Conformance checking

Event logs record the behaviour observed from the execution of a business
process.

Definition 4 (Trace, Event Log). Let X be an alphabet. A sequence o €
¥* is a trace. A multi-set of traces L : ¥* — Nj is an event log.

The classical notion of aligning an event log and a process model was
introduced by [4]. An alignment maps a trace of an event log to a firing
sequence of the model. An alignment replays the trace and the firing sequence
simultaneously, where either the trace, the firing sequence, or both move.
Trace and sequence are only allowed to move synchronously if the label of
the transition matches the event.

We consider the Petri net depicted in Figure [2f with initial state ¢ and final
state f. Aligning the Petri net to, e.g., the trace (A, A, B,C, D, B,C, G), we
get a lot of possible alignments, where moves of the trace are at the top, and
moves of the model are at the bottom of a table.

AlA|B|C|D|B|C|L1L]|G
ty | L ta|ts|ts|ta|ts]| sty

Al/A|B|C|D|B|L|C|G
t1 1 to tg ty | 1o ts t3 t7
AlA|B|C|D|B|L|C|C
Lt ta|ts|ta|ta|te]| ts]|tr

Definition 5 (Alignment). Let N = (P, T, F,%,{,my,ms) be a marked
Petri net, o be a trace of an event log L : ¥* — Ny, and 7 € L(N) be a firing
sequence. The set

M= {(a,t) € (ExT)|l(t) =a} U (Ex {L)U{L} xT)



is the set of legal moves. An element ((aj,t1),...,(an,t,)) € M* is an
alignment of o and 7 iff (a1,...,a,) = o and (t;,...,t,) = 7 holds.

We define a cost-function to get a cost for every alignment. Every move
of an alignment adds to its cost, where asynchronous moves add greater cost
than synchronous ones [4].

Definition 6 (Cost-Function). Let N = (P, T, F, %, () be a labelled Petri
net and let L : ¥* — Ny be an event log. Let 0 < 67 < 09,03 hold. We
define the cost-function \s, 5,45, : M* — Ny as follows: for every alignment
a= (a1, t1),. .., (an, tn)) € M* we define

Ma)sy o5 7= 01 [{(a,1) € afa= ()}
+385-[{(a, L) € a}|
+03-[{(L,1) € a}l

We fix a cost-function to calculate an optimal alignment between a trace
of an event log and a process model. In the previous example, if we define
the cost of an asynchronous move as 1 and the cost of a synchronous move
as 0, the depicted alignments have cost 2.

4. Computing Conformance Checking by Big Data

4.1. Qverview of the Approach

The fundamental problem in conformance checking is to align a trace con-
cerning a process model [3]. This problem, known as the alignment problem,
is a search (which can be very time consuming) to find a model trace similar
(according to a cost-function) to the observed trace. Please refer to Section
for a complete overview of the current approaches for computing alignments.

Derived from the complexity of the alignment problem, we present a
solution based on the creation of simpler problems that can be distributed in a
Big Data architecture that aims at facilitating the computation of alignments
on the large. In this paper, we assume both process models and logs can be
decomposed so that we can take advantage of a Big Data infrastructure,
and therefore the fundamental problem of computing an alignment can be
distributed over the infrastructure, in a MapReduce fashion [9]. As we will
see in Section [f] to instantiate the architecture for a real situation, we build
upon our previous work [I1] and the case of a partial order decomposition of a
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process model (cf., Section. However, while the architecture presented in
this section is not tied to any particular conformance checking algorithm, the
decomposition technique must be based on the extraction of subtraces and
the unfolding of a process model into partial models. Other decompositional
approaches available in the literature [5, [0, [7] might be employed, but it
leads to changes in the way the Generate partitions of Problems, Map and
Reduce activities are implemented. In addition, bear in mind that other
decompositional approaches must be capable of forming partitions so that
these can be distributed among the nodes of the nodes.

E%nalyse results
to adjust settings

XES file
Extract

subtraces MapReduce
Subtraces oo -
: igood?
Select Pre-process Setting Generate Map Reduce i Persist
Alignment subtraces and parameters > partitions of — Distribute & Combine : | results
Algortihm partial models and heuristics | | Problems Compute partitions results :
Unfold @ imeout .

T 3
rocess model Number of Partial Models ————)
P Partial Number of Traces roblems
Models Distribution mode
Proces Model Memory (nodes)

(Problems )
Figure 3: Workflow of the approach.

Results

To determine each of these parameters that describe how the subprob-
lems are created, distributed, solved and combined, Figure |3| summarises the
workflow followed in our approach. Since our proposal is not hooked to a
concrete alignment algorithm, it has been tested with two very different al-
gorithms to analyse how the type of conformance technique algorithms can
affect the Map and Reduce stages. In the first phase, the alignment algo-
rithm is determined as both the subtracesﬂ and partial models. Once these
aspects are defined, a subtrace and partial model pre-processing are needed
(cf., Pre-process traces and partial models) to find out certain features used
in the heuristics for the later problem distribution. Afterwards, the system
is set up (cf., Setting parameters and heuristics) in terms of the number of
partitions (set of alignment subproblems) to be distributed in each node, the
subproblem assignations to each node according to the parameters obtained

1 As the reader will identify later, in this paper we use subtrace to stress the fact that
the methodology proposed is general, although in our particular explanations subtraces
will be full traces.
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from the previous activity, the thresholds of time used for solving each sub-
problem, and the threshold of memory in the nodes of each cluster. When
the parameters are configured, the MapReduce paradigm can be applied fol-
lowing the three following activities: Generate partitions of problems, Map -
Distribution and compute partitions and Reduce - Combine results that will
be detailed in Subsection and [4.4] respectively. The framework fol-
lows the idea of MapReduce paradigm as depicted in Figure [dl The input of
the problem is the set of alignment problems formed of a combination of a
subtrace and a partial model. These alignment problems will be distributed
in different divisions solved in each node, where the Map function is applied
obtaining a map (key, value) whose key is the trace and the value the align-
ment found for the set of traces involved in this subproblem. All the partial
solutions represented by maps are then combined.

Input
Partitions Map Reduce
<trl,pml>
<trl,pm2>
<trl,pm3> <trlpml>
<trl,pm2> X
<trl,pm100> 4 <trl,pm3> <trl,aligment>
<trl,pm101> /S --- > AR .
<trl,pm102> /’ <tr2,pml> <tr2,alignment,,> \‘ : <trl,alignment;>
<tr2pml> S <tr2,pm2> NS
<tr2,pm2> i <tr2,pm3> ~
<tr2,pm3> g ! \\‘
S <trl,pm100> K # <t2,alignment,>
<tr2,pm100> | <trl,pm101> K g
<tr2,pml01> .- - <trlpmio2> <trl,alignment,> R
<u2pml02> % .. i
<tr3,pml> N <tr2,pm100> <tr2,alignment >
<tr3,pm2> ' <tr2,pm101>
<tr3,pm3> \ <tr2,pm102>
<tr3,pml100> “‘ e
<tr3,pm101> Y\ <tr100,alignment,>
<3 pmi02= \ | <erto0pmioo> B :
P \ | <r100,pm101> .
\ <tr100,ahgnmentj>
<1r100,pm100> y <rl00pmioz>1
<trl100,pm101> <tr200,alignment,> .
<tr200,pm100> alig n Al < i
<tr100,pm102> g <tr200,alignment,>
riehpm <tr200,pm101> :
<1r200,pm100> <1r200,pm102>
<tr200,pm101>
<tr200,pm102>

Figure 4: MapReduce for alignment analysis.

Our framework provides a mechanism to set up the parameters to perform
the alignment analysis in a more efficient way. Therefore, after a solution
is found, the parameters (i.e., timeout and number of partitions) can be
adjusted to re-execute the alignment analysis reducing the time.
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4.2. Generate Partitions of Problems

As indicated in Section 1, we aim at alleviating the complexity of a con-
formance checking problem by dividing a model into a set of partial models.
A partial model covers a part of the trace-language of the original model.
Furthermore, a partial model needs to be acyclic and conflict-free.

Definition 7 (Partial Model, Cover). Let N = (P, T, F, ¥, ¢, mg, my) and
N' = (P, T, F', X', l', mg, m}) be two marked Petri nets. N’ is conflict-free

iff (m[t1) m’ A m[ta)) = m'[t3) holds. We call N” a partial model of N iff

N’ is conflict-free, acyclic, and 7 (N') C T (N) holds. We call a set of partial

models {Ny,...,N,} a cover of N iff | J, T(N;) = T(NN) holds.

Figure [5] depicts a partial model of Figure 2 The depicted marked
Petri net is conflict-free, acyclic, and its trace-language is {(A, B,C, E,G)
(A,B,E,C,G), (A E,B,C,G)}. Obviously, this trace-language is a sub-set
of the trace-language of Figure 2] Figure [6] depicts another partial model.
In this example, transitions ¢, and t5 carry the label B, transitions t3 and tg
carry the label C. Thus, the loop of Figure [2| is unfolded.

B C
4 _LO==O— =0
@[] O
i‘% 0" 7

E

Figure 5: A partial model of Figure

1Ol OB Ol O {s O~ li O
Op e &H-O

> 7] >

F

Figure 6: Another partial model of Figure

One straight forward approach to split a Petri net into a cover is to
calculate its branching process [26]. It is well-known, that the set of so-
called process nets of a branching process is a cover. Remark, the branching
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process itself can be infinite, but knowing the maximal length of a trace of the
log, we can always determine a sufficient depth to calculate an appropriate
prefix of a cover for the alignment problem at hand. In the literature, there
is a rich body of different approaches calculating finite representations of an
infinite branching process in a reasonable time, i.e. [27].

D P9
D Ds B p7 C Ps O

Z 6<: pl‘O !
Cf) ENe)
' f

Figure 7: A prefix of the branching process of Figure

Figure [7] depicts a prefix of the branching process of the model of Figure
2l This acyclic labelled net is able to execute all traces up to length seven of
the original model. It is a prefix because the looping behaviour of transitions
B, C, and D generate infinite behaviour. In a branching process, a model
is unfolded so that all places have at most one preceding transition. For
instance both places (cf., ps and p1o) behind transitions labelled by E and F'.
In Figure 2] this pair is only one place (cf., p5). The same holds for all places
before transitions labelled by B and places behind transitions labelled by D.
In the original model, they are just one place (cf., p; in Figure . Thus,
conflicts and cycles are unfolded. Every connected subnet of a branching
process, so that all places have at most one subsequent transition, are called
occurrence nets. By construction, these occurrence nets are partial models.
For example, the set of transitions {¢1, t5, t3, 5, t7} with all connected places
form the partial of Figure Transitions {t1,to, 3, t4, g, ts, t10, t13} are the
partial model of Figure [6]

Occurrence nets of branching processes are only one of many possibilities
to decompose a model horizontally. Log-based unfolding [28] or token flow-
based unfolding [27] can generate similar decompositions. In the more general
setting of the paper, we just required the set of partial models is given as a
set of acyclic, conflict-free marked Petri nets.
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Every trace of a partial model can be replayed by its original model.
Thus, for every alignment of the partial model, there is a related alignment
in the original model having the same cost. For example, the firing sequence
(t1,ta, t3, ta, ts, t7, 6, ts) of the partial model depicted in Figure [6] can be re-
played by the original model depicted in Figure[2|by (t1,to, 3, ta, t2, te, t3, t7).
Obviously, related (replayed) alignments have the same cost:

A/ B|C|D|B|L|C|G
t3t4t5t7t6t8

R R R R R
bl ta |ty |ty | to | te | ts | t

e S

If a set of partial models covers a Petri net, for every alignment of the
original model, a partial model covering this alignment, because the set of
partial models can replay every trace of the original model. Thus, we can cal-
culate an optimal alignment for the original model by calculating an optimal
alignment for the set of partial models.

The division of the problem in smaller partitions is the base of the ap-
plication of the MapReduce paradigm. Thereby, it is necessary to tackle
the problem of the partitioning of an alignment problem (AP) into a set of
subproblems by distributing the set of traces of an event log and the set of
partial models extracted from a process model. Firstly, and following Figure
[3}, the process model and log are decomposed into subtraces and partial mod-
els that can be analysed independently obtaining the alignment in a more
efficient way.

Definition 8. (Decomposition, Alignment Subproblem). Let AP be
an alignment problem aligning a set of traces Tr = {try,try,--- ,tr,} to a
model M. Let Pm = {pmy,pma,--- ,pmuy} be a cover of M. We call every
element pr € (T'rx Pm) an alignment subproblem. We write AP = (Trx Pm)
and call (T'r x Pm) a decomposition of AP into n - m subproblems.

In some ideal scenario with unlimited resources, we can solve each align-
ment subproblem independently and in parallel. In this case, the total run-
time needed to solve AP is the time spent in the most complex subproblem
plus the time spent to combine the partial alignments. Here, we would need
as many nodes as subproblems to process all subproblems in parallel.
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In real-life applications, the number of subproblems is much too high to
just generate a node for every problem. Thus, different subproblems need to
share nodes. To control the distribution of subproblems to nodes, we parti-
tion the set of all possible subproblems into groups of subproblems sharing
the same features. Features are the involved trace and partial alignments
calculated in other subproblems. How to properly group and distribute sub-
problems to calculate solutions efficiently is analysed bellow.

Definition 9 (Partitions). Let Tr be a set of traces. We call a set of
disjoint sets of traces {Try,Tro,...,Tr,} a partition of Tr if Tr = J,_, Tr;
holds. Let Pm be a set of partial models. We call a set of disjoint sets of
partial models {Pmy, Pmo, ..., Pm,,} a partition of Pm if Pm = J;", Pm,
holds. Fix a set T'r; of the partition of Tr and fix a set Pm,; of the partition of
Pm. We call pr(; jy := (T'r; x Pm;) a partition of the alignment subproblems.

Partitions define sets of alignment subproblems. Each set will result in a
partial alignment. Figure |8 depicts schematically partitions of Tr and Pm
and the resulting sets of alignment subproblems. Remark, every trace is
handled by nodes of the same trace-partition (in one row). Section will
discuss how this speeds-up the computation by taking advantage of other
partial alignments.

In the next subsection, we will discuss the distribution of every partition
of alignment problems following the MapReduce strategy [9], which is a pro-
gramming model to support the parallel computing for large collections of
data.

4.8. Map - Distribute and compute alignment problem partitions

The map function is based on solving smaller problems, obtaining partial
solutions that will be combined later. The algorithm used in the map func-
tion is represented in Figure [9] It receives a partition of subproblems and
creates a dictionary of partial solutions with default values. Then, for each
subproblem, it makes a lower bound estimation for the possible alignment
that can be taken before it will be solved. This estimation is employed to
sort the subproblems to solve in the same node (sequentially solved). The
estimation is obtained by comparing model and trace: (1) checking the size of
the trace w.r.t. the maximum number events that can be extracted from the
submodel (e.g., if the trace has 100 events and the longest trace generated by
the submodel is 90, the alignment must be at least 10); (2) the events that
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Figure 8: Partitions and sets of subproblems.

occur in the trace but not in the model and vice versa; and (3) considering the
number of occurrences of events with regard to the submodel (e.g., the event
A is repeated three times in the trace but two in the submodel, the align-
ment cost must be at least 1). These values are calculated and aggregated to
generate an estimation as a lower value which the alignment can take. If a
solved model has found out a better alignment than the estimation, it makes
no sense to evaluate the rest of subproblems with a worse estimation. The
partition of subproblems is then sorted by estimation in ascending order. It
is crucial for optimising the execution time since it prevents the alignment
process from executing subproblems that would not beat the best alignment
found up to that moment (cf., Note 1 in Figure @ If a new alignment is ob-
tained, then the partial solution associated with that trace is updated iff the
new alignment value is better than the previous one (see Note 2 in Figure[J)).
Note that the partial solutions have an attribute called isOptimal. This will
be true iff it is possible to guarantee that the solution associated with this
trace is the optimal one. If the isOptimal attribute of any of the subproblems
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Figure 9: Activity diagram to describe the Map algorithm.

that were executed was marked as false because of the timeout was reached,
we cannot guarantee that the solution to any other subproblem associated
to that trace is the optimal one, because any other subproblem with better
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estimation value previously executed could have returned a better alignment
value if the timeout had not been reached.

In order to illustrate the algorithm, Figure [10| presents the iteration of the
partition presented in Figure[9} Remark that at this point, the partitions are
already sorted by estimation. There are four elements to process (hence, there
are four iterations). In [teration 1 the subproblem (trl,pm2) is processed.
Then, the alignment process is executed because the estimation yielded a
value of 2, which could improve the partial solution found until the moment
(00). Once computed the alignment value (6), the partial solution for ¢rl
(tr1,pm2,6,true) is stored. In Iteration 2, we have a similar situation with
(tr2,pm1), where the partial solution is updated as well after obtaining an
alignment of 5. However, the timeout was fired, so the alignment cannot
be guaranteed to be optimal ({(tr2, pm1,5, false)). However Iteration 3 does
not execute the alignment process nor updates the partial solution previously
obtained for ¢r1, since the estimation for the subproblem (¢r1, pm1) is greater
than the best optimal computed alignment.

In Iteration 4, we have the same situation, so the partial solution formerly
found for ¢r2 is not updated.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
partial imati partial imati traceP2Tt8L ogtimation trace/P2T 18l ostimation
trace|P " 7" |estimation . trace P " 7" lestimation s model s model
trl pm2 2 tr2 pml 4 trl pml 7 tr2 pm2 9
partial N N : partial| .. : : partial . . : partial . : N
It 1 t| t: 1 t: 1 Opt: 1 1 t 1 t
race” i1 |alignment|isOptima race|" o1 [ali imall | Jerace P07 lalignment|isoptimal| | ftrace P " 7" lalignment|isOptimall
trl | null =Y null tr2 | null oo null trl pm2 6 true tr2 pml 5 false
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Figure 10: Execution trace of the Map function.
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4.4. Reduce - Combining Alignment Problem Result

The reduce phase is responsible for combining the partial solutions that
are generated during the map phase. Bear in mind that each partition yielded
a set of partial solutions, with the following information: trace, partial model,
alignment value, and an indicator pointing out whether the solution is opti-
mal or it is impossible to ensure that the obtained alignment is the optimal
one. In this phase, all the partial solutions corresponding to the same trace
are combined, and the one with the best alignment value is selected as the
best solution for such a trace.

Figure [11] depicts the reduce process, including some partial solutions to
follow the execution. The proposal is based on the function know as reduce-
ByKey, that groups by the key of the data provided by the map function,
and then apply a function in order to combine the values associated with
each key. For the alignment problem, the reduce phase groups the partial
solutions with the same key (i.e., with the same trace), and combines every
partial solution in the same group obtaining another partial solution. Fol-
lowing the example of Figure [II] the tuples of Partial Solution 1 and 2
are grouped by trace (¢rl and tr2). The tuples in each of these groups are
combined returning a single tuple in each case. The new obtained partial
solution follows the form:

e trace: the trace which was employed to create the groups and shared
by every tuple in the group.

e partial model: the partial model whose alignment is minimal for that
trace.

e alignment: the minimal alignment of every tuple.

e isOptimal: the A combination of the isOptimal values of every tuple.
It means that it is false for a tuple, the others related to the same
trace will be marked as false as well, since it is impossible to ensure
that the found alignment is optimal because the problem has not been
fully analysed.

5. Interchangeable Solutions for Encoding Alignment

The MapReduce algorithm presented in the previous section can be ap-
plied to different types of alignment techniques, subtraces and partial models.
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Figure 11: Execution trace of the Reduce function.

Several are the algorithms that have faced the conformance checking problem
in the context of business processes (cf., Section [2| for a full description). In
this section, we included two, the A* algorithm as an example of a classical
algorithm developed by other authors [4] and a novel implemented solution
based on the Constraint Programming Paradigm. Both algorithms have the
same objective (i.e., finding out the alignment). However, we have included
the Constraint Programming Paradigm since it let us incorporate some spe-
cial features, such as to restrict the domain of the possible value where the
alignment can be found, and determining a maximum time of resolution per
subproblem returning the best solution found until the timeout.

5.1. Alignment based on the A* Algorithm

One of the most relevant solutions to computing alignments found in
literature is the A* algorithm [4]. It has been successfully employed as a
feasible approximation to find out the optimal alignment between the process
model and traces [3]. Basically, the model and trace are combined into a
synchronous product. Figure|l12|illustrates the synchronous product, showing
the partial model, obtained from a cover (see Definition [7]) given in Figure
|§|, and the log trace: (A, B,E,D,C,B,C,F,G).

The simplest way to compute alignment is to build the reachability graph
(cf., Definition 7, [3]) from the synchronous product, and then to find out
the shortest path from an initial marking to final marking. However, the
construction of the full reachability graph is not always possible due to the
state space explosion problem. To overcome that problem, the reachability
graph is built in pieces. The A* algorithm is efficiently used (cf., chapter
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Figure 12: Example of synchronous product of model and trace.

7.3, Procedure 2 [3]) to compute the shortest path. The core of the A*
algorithm relies on a heuristic function, f(m) = g(m) + h(m), that guides
the search, where g(m) is the cost of the path from the initial marking to m.
For instance, for any m reachable state, A* must determine h(m) < h*(m),
where h*(m) is the shortest path from m to the final marking. There are
cases in which A* fails to compute the alignments since it is very complex
and time-consuming (e.g., in models with a very high level of parallelisms
7).

Our approach integrates the implementation of the A* algorithm provided
by the Python library PM/Pif}

5.2. Alignment based on Constraint Programming

The Constraint Programming paradigm is a general-purpose technique
that can be applied to optimise problems. Since the alignment problem is
an optimisation problem that can be distributed, we considered relevant the
incorporation of this novel solution in our framework as an evolution of a pre-
vious proposal [I1]. Moreover, since the alignment computation can be mod-
elled as a variable and restrictions whose domain can be bounded, and the
breakage of the model in submodels, we consider relevant to analyse how the
former resolution of subproblems can be used to tight the possible domain to
analyse in further resolutions. The partial model, obtained from a cover (see
Definition [7)) given in Figure [6] and the log trace: (A, B, E,D,C,B,C, F,G)
are used as a running example to illustrate the encoding based on Constraint
Programming. The partial model can contain concurrent paths, that is, there
would be and-splits that divide the execution into various branches that can
be executed in parallel.

2PM4Py: https://pmdpy.fit.fraunhofer.de/
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In our approach, the computation of the alignment problem of a log trace
and a partial model is encoded as a Constraint Problem as an improvement
of time and resources of the proposal presented in [I1]. Thus, the information
extracted to the partial model and the trace such as the name of transitions,
events, the execution order and their possible positions are translated to
variables, constraints and an objective function of a Constraint Optimisation

Problem (COP).

5.2.1. Constraint and Optimisation Problems in a nutshell

Constraint programming is a paradigm that permits the declarative de-
scription of the constraints that determine a problem [29][30]. Constraint
Programming brings together a set of algorithms to find out the solutions of
a problem described.

Definition 10. Constraint Satisfaction Problem (CSP) is a defined by
a 3-tuple (X, D, C), where X= {x1, ..., z,} is a finite set of variables, D =

{d(z1), ..., d(x,)} is a set of domains of the values of the variables, and C' =
{C1, ..., Cp}is a set of constraints. Each constraint C; determines relations
R between a subset of the variables V = {x;, z;, ..., 21}

A constraint C; = (V;, R;) simultaneously specifies the possible values of
the variables in V' that satisfy R. Let Vi = {xy,, ..., x,} be a subset of X,
and an l-tuple (xy,, ..., z,) from d(zy,), ..., d(xy,) can therefore be called
an instantiation of the variables in V). An instantiation is a solution iff it
satisfies the constraints C. The CSP solvers permit to search for one tuple of
instantiation of one, multiple of all these values, according to the requirement
of the problem.

An example of its applicability in the alignment context, it is by repre-
senting the order relation existing in the models and the traces, as found in
Figure[6] By using a set of variables to represent the order of the events, and
satisfying the relative constraints of the activities that appear in the partial
model, the alignment can be encoded in the following CSP.
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// Variables

position 4, positiong, positionc ... in the domain {0..trace.lenght-1}
// Constraints of the log trace

positiony == 0

positionc == 1

positiong == 2

positionpap ==

position gz == 14

// Constraints of the partial model
position o < positionc

positionc < positionoc

positionc < positionor
position oc < positionap

If the model and the event cannot be aligned, this CSP will not be satis-
fied. However, no more feedback about the level of misalignment is provided
by the resolution of the CSP. In this case, a Constraint Optimisation Prob-
lem (COP) is able to know the minimal distance between the partial model
and the log observed since a COP is a CSP that includes an optimisation
function. Only the solution of the CSP that satisfies the optimal function
could be the solution of the COP.

Constraint Optimisation Problems (COPs) have already been used to
detect the alignment between the expected and the observed behaviour in
model-based diagnosis [31], B2], and specifically, when the behaviour is de-
scribed by means of business process models [33, 34, 35]. These works used
the concept of reified constraints as a mechanism to assign a Boolean value
to the constraints included in the model [33], being possible that a constraint
that cannot be satisfied during the CSP resolution can be relaxed. Since the
idea is to find out the minimal distance between the model and the log, these
constraints relaxed must be the minimum number, defined as the objective
of the function to optimise. Following the previous example, the below COP
is created where the Ref variables regard to the reified constraints.
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// Variables
Refa, Refc, Refc ... in the domain {0..1}

position 4, positiong, positionc ... in the domain {0..trace.lenght-1}
// Constraints of trace

position g == 0

positionc == 1

positiong ==

positionap ==

position g == 14

// Constraints of the model

Refa N Refc = (positiona < positionc)

Refc N Refac = (positionc < positionac)
Refc N Refar = (positionc < positionap)
Refac N Refap = (positionac < positionap)

maximize(Refa + Refc + ...+ Refar)

Albeit the idea of the COP modelling follows the previous COP, in the
following subsection we approach the definition included in Section |3| in re-
lation with a COP to find out the alignment between a partial model and a
log trace.

5.2.2. Constraint Optimisation Problem for Solving an Alignment Subprob-
lem

Our proposal builds the COP from the perspective of the placement of
the events in a positional order that satisfies both the log trace order and the
partial model, but if this is not possible some of the constraints are skipped
from the COP firing reified constraints. Then, the structure of the COP is
as shown in Figure

As defined above, a COP is composed of a set of variables, a set of con-
straints and an objective function. It is important to take into account the
possibility that an event can appear more than once in a log trace derived, for
example, from an unfolding process. In this case, a relabelling of the events
is necessary to differentiate the variables that represent one or another, al-
though some constraints must be included to express that they can represent
the same transition. In detail a COP is formed of:

o Variables for the Log Fvents: for each event in the log trace, two vari-
ables are created:

— Position (pos): Integer variable with a domain between 0 and the
number of events, that is, all the different locations of the events.
This domain represents all the possible positions with respect to
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% Variables - Log Events
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Trace :
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E.dev = Boolean

Cl.dev = Boolean

% Constraints - Enforce Log Trace

D. dev = Boolean % Constraints - Enforce Partial Model

B2.dev = Boolean
C2.dev = Boolean
F.dev = Boolean
G.dev = Boolean
A. pos = integer(0, 8)
Bl.pos = integer(0..8)
Cl.pos = integer(0..8)
E. pos = integer(0..8)

D. pos = integer(0..8)

—A.dev A - Bl.dev

—Bl.dev A =Cl.dev

~Cl.dev A ~D.dev

—-D.dev A ~B2.dev

—B2.dev A ~C2.dev

—C2.dev A ~G. dev

—A.dev A—F.dev

=> A.pos < Bl.pos
Bl.pos < Cl.pos
Cl.pos < D. pos
D. pos < B2.pos
B2.pos < C2.pos

C2.pos < G. pos

Ll

A. pos < F. pos

—A.dev = A.pos ==
-Bl.dev = Bl.pos == 1V Bl.pos ==
-Cl.dev => Cl.pos ==4V Cl.pos ==

—D.dev = D.pos ==
—B2.dev = B2.pos == 1V B2.pos ==
-C2.dev => C2.pos ==3V C2.pos ==

-F.dev = F.pos ==

-G.dev = G.pos ==

E.dev == true

% Objective Function - Alignment

B2.pos = integer(0..8)

~F.dev A—G.Dev => F.pos < G.pos
C2.pos = integer(0..8)

Bl.pos # B2.pos MINIMIZE(A.dev + Bl.dev + E.dev + Cl.dev +

D.dev + B2.dev + C2.dev + F.dev + G. dev)

F. pos = integer(0..8)

G. pos = integer(0..8) Cl.pos # C2.pos

Figure 13: COP for the example of Figure @

the partial model. In the running example, all the variables get a
domain from 0 to 8 since 9 is the total number of events, although
the event E is not in the partial model and the transition H in
the partial model is not included in the events.

— Deuviation (dev): Boolean variable which represents the correct or
incorrect order of the event according to the model. Thus, seman-
tically the false value indicates that the event is aligned with the
partial model, and the true value otherwise. These variables are
the key to obtain the log and model moves in the alignment calcu-
lation as it will be seen in the objective function. These variables
are also used to enable/disable to fire the reified constraints of the
COP.

e (Constraints to enforce Log Traces: According to the log-relation of the
events in the trace, the events are enforced to take those positions.
Thus, a set of reified constraints are build to represent conditions of
the position of the events with respect to the log trace. For instance,
the event A occurs first:
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—A.dev = A.pos == (1)

In case the event does not occur in the partial model, it is a deviation,
then a constraint is included to force the establishment of a true value
for the dev variable of the event, as occurs with E event:

E.dev == true (2)

In the case of the repeated events, the COP must evaluate all the
possibilities of occurrence, as in the case of Bl and B2. The reified
constraint must consider the two possibilities, as follows:

—Bl.dev = Bl.pos == 1V Bl.pos == (3)

Constraints to Enforce Partial Model Run: These reified constraints
represent conditions of the position (pos) of the events with regard to
the partial model. The reified constraint describes whether an event
can be aligned according to the partial model or not. According to
the flow-relation of the partial model, we build reified constraints to
represent the related ’later than’-relations between the occurrences of
transitions. Take into account that in the partial models used in our
proposal, the XORs are eliminated, and every transition of the model
participate in any correct event log. Therefore, the next constraint is
an example of this type of reified constraints:

—A.dev AN ~Bl.dev = A.pos < Bl.pos (4)

The reified constraint means, if events A and B1 are aligned with the
model, the value assigned to pos of the event A have to be lower that
the values of pos of the event B1.

In case of repeated events (e.g., BI and B2), extra constraints have to
be included to avoid the occurrence of them at the same positions:

Bl.pos # B2.pos (5)

When a transition in the model is not supported by the execution of
an event (taking into account that in the partial model supported by
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the proposal every transition must be involved in a correct trace since
only and-branches are included), constraints related to this transitions
are not added, albeit a misalignment will be included (a model move).
See below for a description of how this is computed.

e Optimisation function: The objective function tries to find out a so-
lution that minimise the number of deviations. The Boolean variables
are considered as Integer, that is, the false is the 0 value and true is
1 value. As shown in Figure [13] the objective function is the minimi-
sation of the sum of all deviation variables of our problem. Thus, to
find a solution (an assignment) where all the dev variables are fixed as
false, means that every event of the log trace is aligned with the partial
model. In case of any dev variable is fixed to true, the alignment will
be, at least, the number of dev true values.

This COP allows to detect the possible deviations between the partial
models and the events:

e Log moves: The log moves are determined by consulting the false
values fixed in the deviation (dev). If the dev variable of an event
reached a false value then this event is not producing a log move.
When an event does not occur in the partial model, this situation is a
log move, thereby this situation is controlled by forcing the true value
in the dev variable of the event.

e Model moves: Model moves occur when there exists a transition in
the partial model that does not occur in the log trace. This situation is
easy to identify since a partial model is conflict-free (see Definition ,
meaning that all the transitions must occur in a partial model run.
Then, we only have to penalise that situation as a model move by
adding one to the alignment cost function.

After the COP resolution, the log and model moves are known, therefore
the alignment cost function is determined as follows:

7 %

alignment = Z e;.dev + Z 1

e, €Tr e;€PmAe;¢Tr (6)

Vv
log moves model moves
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For the example, the COP reached two optimal solutions where the align-
ment is equal to 3, one value for the E.dev=true, other due to the C1.dev=true
(D.dev=true in the another equivalent solution) since it is impossible to lo-
cate it according to the log trace, and another because H does not occurs in
the log trace.

The inclusion of the time limit is crucial in Constraint Programming
since the solvers return partial solutions during its execution. If the solver
is stopped by the time limits, we could have, at least, the best option found
until the moment, although it can or cannot be the global optima since the
search space has not been completely solved.

6. Experiments and Evaluation

In order to evaluate our proposal, we have performed different tests to
compare the local and distributed version of the A* algorithm and the COP-
based approach on computing alignments. The structure of section is the
following;:

e Design of the architecture and the technology stack to support our
framework (see Subsection [6.1]).

e Selection of a set of representative datasets (see Section that in-
cludes examples where: (1) local (standalone) resolutions have a better
performance than the distributed ones for the same type of algorithm;
(2) the distribution of A* implies a better performance than the lo-
cal alignment, and (3) the application of the distribution of Constraint
Programming problems improves the resolution in comparison with the

distributed A*.

e Analysis of the configuration parameters for the subproblem distri-
butions, and it can affect the alignment resolution. To do that, the
datasets and various setups for the parameters are tested (see Section
6.3). For the evaluation, we just consider the performance in terms
of the timeﬂ related to the computation of the alignments through the
approach presented in this paper.

3The Elapsed Real Time (ERT) as the time from the start of the execution of a program
to the end of it.
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6.1. Architecture

We propose the use of a three-layer architecture, as shown in Figure [14]
Additionally, we include information about the employed technological stack
to instantiate this architecture and to perform the experiments.

e Storage Layer. The role of this layer is to store the log and process
model so that it can be accessed by the rest of the nodes that compose
the system. In our particular implementation, it is based on Hadoop
HDFYY which is a distributed storage system.

e Persistence Layer. This layer is intended to store the results of the
alignments. Our implementation relies on the NoSQL database Mon-

goD B}

o Computing layer. It is intended to perform the computing operations
related to the generation and distribution of partitions and computing
alignments. In our implementation, it is based on Apache Spark®|, which
is a distributed computing framework which enables users to implement
applications for the distribution of tasks and Big Data processing.

The mechanism for the generation and distribution of partitions explained
in Section has been implemented in Apache Spark. As aforementioned,
we have integrated PM4Py[| platform for the computation of alignments us-
ing the A* algorithm. On the other hand, the COPs have been implemented
with ILOG CPLEXF] although other solvers can be applied. Regarding the
architecture of the Apache Spark cluster (i.e., the architecture of the Com-
puting layer), it is composed of five nodes. Each node is configured with
16GB of RAM and 4 CPUs. This cluster is composed of three types of
nodes:

o (luster manager. 1t is responsible for monitoring and assigning re-
sources among the nodes of the cluster. There is one node entirely
dedicated to this task.

4HDFS: https://hadoop.apache.org/

5MongoDB: https://www.mongodb.com/

6 Apache Spark: https://spark.apache.org/

TPM4Py: https://pmdpy.fit.fraunhofer.de/

SIBM-ILOG CPLEX: https://www.ibm.com/products/ilog-cplex-optimization-
studio
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Figure 14: Cluster Architecture.

e Driver program. This node is responsible for distributing the tasks
among the Executor nodes. Regarding our implementation, it will
schedule the partitioning process, assigning the partitions and the tasks
related to them to the executor nodes. In our case, the driver program
is configured for using 8GB of RAM and 1 CPU by default, and it is
run on one of the five nodes of the cluster.

e Fzecutor nodes. These nodes execute the tasks assigned by the driver
program. They receive the partitions and execute their corresponding
tasks. We configured each executor node with 8GB of RAM and 4
CPUs by default. All the four nodes of the cluster host one executor.

Both the source code with the implementation of the framework and the
datasets used for the experimentation are available for the community at
http://www.idea.us.es/confcheckingbigdata/.

6.2. Setting Experiments

Five benchmark datasets have been used for the experiments. These
are composed of a set of files in XES format as event logs and a set of
partial models in Labelled partial orders (LPO) format [36]. For a better
understanding, the LPO format is a simplification but compatible with the
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PNML format. An LPO represents a run of a place/transition Petri net if it is
enabled w.r.t the net. It makes sense when the events of the LPO modelling
transition occurrences can fire in the net respecting the concurrency and
dependency relations given by the LPO.

The event logs and Petri nets used to illustrate how our proposal works
with different size of problems are extracted from [19] 37, [38], whereas the
partial models are of the unfolding of Petri nets. Table [I| summarises the
dimensions of the datasets employed for this evaluation in terms of (1) the
event logs (number of cases, events, variants and size); (2) Petri net (number
of places, transitions, arcs and the Cardoso metric (CFC) [39]), and; (3)
partial models (number of unfolded partial models, number of problems to
compute to solve the alignment problem and size, regarding the number of
problems to tackle).

Once traces and partial models are combined, the total number of sub-
problems (cf., Num. of Problems of Table 1)) is derived from the application
of the Cartesian product and the theoretical required storage space of them.
The objective of this table is giving an idea about the complexity involved
for solving all the problems of each dataset, especially M5 and prGmé, in
which more than five and forty millions of subproblems must be solved. Ap-
proximately, the approach must manage a total of 96GB and 2.5TB of data
volume, as appeared for M5 and prGmé in the table. The distribution of
the alignment computation can imply the transferring of a great amount of
data among the nodes, producing a negative impact on the performance. For
this reason, the access to traces and partial models have been centralised and
they are accessed by a unique identifier assigned to each one of them.

Event Log Petri Net Partial Models
Cases | Events | Variants | Size (MB) | Places | Transitions | Arcs | CFC | Num. of Models | Num. of Problems | Size (MB)
M2 [19) 500 8,809 500 2.20 34 34 160 | 36 102 51,000 509.4
M5 [19)] 500 17,028 | 500 4.2 35 33 156 | 35 10,545 5,272,500 96,989

Dataset

M8 [19) 500 8,246 432 2.1 17 15 72 18 4,1590 2,079.5 31,408.733
CCC20d [37) | 1,265 | 28,440 | 732 13.3 45 44 94 47 26 32,890 346.619
prGmé6 [38] 1,200 | 171,685 | 335 41.8 714 335 1644 | 383 33,457 40,148,400 2,488,254.81

Table 1: Datasets used for the experimentation.

The main aspect that might impact on the performance of our approach
is the setup configuration in terms of the number of partitions for the set of
traces (n), and the number of partitions for a set of partial models (m). It
is crucial to find out the best setup in terms of the timeout, n and m, albeit
they will depend on the type of problem. These parameters are configured
as explained below:
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e Grouping the subproblems from the same trace in a parti-
tion helps to reduce the number of subproblems to solve. The
approach is optimised for avoiding the execution of subproblems in
twofold: (a) a subproblem is executed iff its estimation of the alignment
is lower than the best alignment value obtained for the subproblem re-
lated to the same trace in the same partition; and (b) the subproblems
are sorted by estimation in ascending order. In consequence, when
any subproblem is not executed for the reason explained before, the
execution of the remaining subproblems related to the same trace are
skipped since the estimation will be always worse. For this reason, a
good setup should concentrate all the problems related to the same
trace in the fewest number of partitions as possible, but not reducing
the parallelisation too much. By setting n equals to the number of cases
in the log, we can assure that each partition will contain subproblems
related to the same trace. Hence, this parameter is set to: 500 for M2,
M5 and MS; 1,265 for CCC20d, and 1,200 for prGme6.

¢ Balancing the number of partitions. Some problems are too com-
plex. It might lead to bottlenecks in the resolution of the whole align-
ment problem. A proper partitioning might help in avoiding them. For
instance, if there is a low number of partitions, it is possible to take
advantage of the factor explained above (i.e., avoiding mixing subprob-
lems generated from different traces). The drawback is the fact that
there could be one or several partitions with a bunch of complex sub-
problems increasing disproportionately the workload of some executors,
at the same time there are idle nodes. The other extreme is having a
high number of partitions, the number of subproblems to be solved will
increase, since it would not take advantage of the factor previously ex-
plained. In this situation, we assume the rule of thumb as the higher
the number of partition is, the more subproblems are solved. But, the
lower the number of partition is, the fewer subproblems are solved, but
it might cause bottlenecks. Since it is not possible to know what is the
best number of partitions for each dataset, we will test the following
values for m in the tests: 1, 2, 4, 5, 6, 8, 12, and 16.

In addition, we remark that for each configuration, 10 executions will be
performed, so that all the results depicted are the average of those executions.
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6.3. Results of the experiments

We have performed the experiments confronting three scenarios: (a) Sce-
nario 1, the models and traces are decomposed and distributed, and the
alignment computations are determined by the A* algorithm; (b) Scenario
2, the models and traces are decomposed and distributed, and the alignment
computation is done by the COP-based approach, and; (c¢) Scenario 3, com-
paring the computation of the alignments performed locally (standalone) by
using the A* algorithm and the best results from the Scenarios 1 and 2.
In order to measure the performance, we employed the metric Elapsed Real
Time (ERT|for each scenario and dataset. Each ERT shown in this section
comprises the average of ten executions.

6.3.1. Scenario 1: Distributed Computation of the Alignment with the A*
Algorithm

The chart in Figure shows the evolution of the ERT increasing the
number of partitions of the set of partial models (m) for the datasets M2, M5,
M8, and CCC20d. We can see in the figure how the larger m is, the smaller
partitions are distributed. For these tests, no timeout has been established
since the A* algorithm can solve all the subproblems in a reasonable time.
Therefore, all the alignments that have been obtained are optimal. Note that
the results for prGmé6 are not in the chart because of the complexity in that
particular case, so it is analysed separately.

In details, the best ERT for M5 and M8 have been obtained with m = 2.
From there, the FRT tends to worsen. If we analyse the slope of their
trendlines, we find that the one for M5 is 0.08, while the one for M8 is 0.16.
Compared to M2 and CCC20d, the best ERT is obtained with m = 1, and
the slope of their trendline is 0.22 and 0.57, respectively.

As aforementioned, the results obtained for the dataset prGm6 are de-
picted in Figure [I5b] Due to memory issues arising from the size of the
partitions, it has been no possible to employ values for m from 1 to 6. For
this reason, we have used the following values for m in this benchmark: 8,
10, 12, 13, 14, 16, 20, and 24. The best FRT value was obtained for m = 24,
being the slope of the trendline —1.28.

From these results, we can conclude that the datasets that produce a

9The Elapsed Real Time (ERT) is the time from the start of the execution of a program
to the end of it.
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Figure 15: Results in terms of ERT for the distributed algorithm (logarithmic scale).

larger number of subproblems are more benefited from a larger distribution.
It is especially noticeable in the prGmb6 dataset, as it has a clear tendency
to decrease the ERT when the number of partitions increases.

6.3.2. Scenario 2: Distributed Computation of the Alignments with the COP-
based approach

Similarly done in the previous scenario, the chart in Figure [15¢ shows
the evolution of the FRT increasing the number of partitions of the set of
partial models (m). Once again, the larger m is, the smaller partitions are
distributed. For these tests, a timeout of 500ms per subproblem has been
established, since the COP is not capable to solve all the subproblems in
a reasonable time if it is unbounded (note that the datasets which have a
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large number of subproblems might contain a high number of them producing
bottlenecks). Therefore, certain alignments might not achieve the optimal.
In the next section, the percentage of traces per dataset for which an optimal
alignment value was found will be shown and analysed.

Remark that due to the excessive memory consumption by the COPs; it
has been impossible to successfully complete any of the executions for the
prGmb dataset hence none results are shown.

Analysing the results, for M5 and M8, the best ERT was obtained for
m = 6. The slopes of the trendline for both of them are —3.13, and —1.44,
respectively. On the other hand, for M2 and C'CC20d the best FRT value
was obtained for m = 1. The slopes of both datasets are 0.02, and 0.06,
respectively.

In this scenario the conclusions are similar to the previous one, we can
conclude that the datasets which produce a larger number of subproblems
are more benefited from a larger distribution (note that the slopes of the
trendlines of M5 and M8 have a negative tendency). Additionally, we can
also conclude that the more complex the algorithm for computing alignments
is, the more benefits the execution gets by a larger distribution. It is justified
by the fact that the slopes of the trendlines tend to be closer to zero or
negative as the time spent by subproblem increases.

6.3.3. Scenario 3: Comparing the A* Algorithm in standalone with the dis-
tributed approaches

Figure presents a comparison between the ERT of the A* algorithm
in standalone, and the best results for A* and COPs in the Scenarios 1
and 2. Remark that there are no results for the COP-based approach in
standalone since the COP implementation proposed in this paper was only
conceived to be performed in distributed scenarios. Moreover, there are no
results for the prGm6 and the A* algorithm in standalone nor the COP in
distributed because (i) in the case of the A* algorithm in standalone, the
PM4Py execution took more than 24 hours without any results; and (ii)
regarding the distributed COP-based approach, some issues due to excessive
memory consumption during the execution of these tests made it impossible
to successfully finish any execution.

Figure depicts the percentage of optimal alignments found over the
set of traces for each dataset. Note that the only dataset for which the
COP-based approach was able to find an optimal value for all the traces was
C'C20d.
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Figure 16: Comparison between the standalone A* and the distributed A* and the COP-
based approach in terms of ERT and percentage of optimal traces.

In summary, the distributed approach gets better results for M2, M5
and prGm6 with the A* algorithm, and for CCC20d with the COP-based
approach. On the other and, the only dataset for which the A* algorithm in
standalone gets a better FRT is in the M8 dataset. In the light of the results,
we can conclude that our approach on decomposing the alignment problem
in subproblems and distributing them, in general, achieve better results in
terms of ERT in comparison with the standalone approach. Finally, we
remark that the complexity of the conformance checking algorithm has a
heavy influence both in the FRT and in the number of optimal alignments
(e.g., the COP-based approach).

7. Conclusion

In this paper, a Big Data framework is provided for the parallelisation and
distribution of the conformance checking analysis disengaged of the algorithm
applied. The creation of subproblems that can be solved distributed makes
it possible to tackle problems whose complexity could not be approachable
with local algorithms. For the decomposition, we have proposed a novel
horizontal technique to build subproblems whose resolution is based on a map
function, and combined by a reduce ByKey strategy, with the improvement of
an estimation metric that avoids the resolution of unpromising subproblems.

The proposed framework includes the capacity of customising the distri-
bution of models and traces to find out the best configuration for distributing
the alignment resolution. To demonstrate the applicability of our proposal,
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the framework has been tested by two alignment techniques, the classical
A* approach and a novel approach based on the Constraint Optimisation
paradigm. The analysis of these two options is derived from the interest to
compare a classical solution, with others such as Constraint Optimisation
Problems that enables to enclose the domain and limiting the amount of
time available for finding an optimal alignment value. Five different datasets
have been used for testing our framework to compare local (standalone) and
distributed solutions, the distributed solution among them, and the effects
of the configuration of the distribution in the performance. In summary,
the framework provides a high degree of flexibility, facilitating the tuning of
the parameters that determine the level of distribution of the subproblems,
the application of different alignment algorithms, and the applicability of an
estimation of the alignment, before it is computed, to avoid the analysis of
unpromising subproblems.

After analysing experiments, it is possible to find examples where a local
solver is more efficient, but for other examples, the distribution of the problem
is more efficient than the local. Comparing the two algorithms in distributed
scenarios, it is possible to find problems where both of them find a better
solution. This is why we plan to carry out a deeper analysis of the features
of the models and logs to characterise the problems for ascertaining which
perform is better or worse before computing alignments.
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