
08/05/2024 12:19

Reproducible experiments on Three-Dimensional Entity Resolution with JedAI / Mandilaras, George;
Papadakis, George; Gagliardelli, Luca; Simonini, Giovanni; Thanos, Emmanouil; Giannakopoulos, George;
Bergamaschi, Sonia; Palpanas, Themis; Koubarakis, Manolis; Lara-Clares, Alicia; Farina, Antonio. - In:
INFORMATION SYSTEMS. - ISSN 0306-4379. - 102:(2021), pp. 101830-101830. [10.1016/j.is.2021.101830]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Reproducible experiments on Three-Dimensional Entity Resolution with JedAI

George Mandilaras1, George Papadakis1∗, Luca Gagliardelli2, Giovanni Simonini2,
Emmanouil Thanos3, George Giannakopoulos4, Sonia Bergamaschi2, Themis Palpanas5,

Manolis Koubarakis1, Alicia Lara-Clares6∗∗, Antonio Fariña7∗∗

1National and Kapodistrian University of Athens, Greece {gmandi,gpapadis,koubarak}@di.uoa.gr
2University of Modena and Reggio Emilia, Italy {name.surname}@unimore.it

3KU Leuven, Belgium emmanouil.thanos@kuleuven.be
4NCSR “Demokritos”, Greece ggianna@iit.demokritos.gr

5University of Paris & French University Institute (IUF), France themis@mi.parisdescartes.fr
6NLP&IR Research Group, Universidad Nacional de Educación a Distancia (UNED), Spain alara@lsi.uned.es

7University of A Coruña, CITIC, Database Lab, Spain antonio.farina@udc.es

Abstract

In Papadakis et al. [1], we presented the latest release of JedAI, an open-source Entity Resolution (ER) system that allows for
building a large variety of end-to-end ER pipelines. Through a thorough experimental evaluation, we compared a schema-agnostic
ER pipeline based on blocks with another schema-based ER pipeline based on similarity joins. We applied them to 10 established,
real-world datasets and assessed them with respect to effectiveness and time efficiency. Special care was taken to juxtapose their
scalability, too, using seven established, synthetic datasets. Moreover, we experimentally compared the effectiveness of the batch
schema-agnostic ER pipeline with its progressive counterpart. In this companion paper, we describe how to reproduce the entire
experimental study that pertains to JedAI’s serial execution through its intuitive user interface. We also explain how to examine the
robustness of the parameter configurations we have selected.

Keywords: Entity Resolution, Batch Methods, Progressive Methods, Reproducibility

1. Introduction1

Entity Resolution (ER) is the task of identifying matches2

or duplicates, i.e., different entity profiles that describe the3

same real-world object. For example, ER should match the4

entity profiles https://www.wikidata.org/wiki/Q305

and https://en.wikipedia.org/wiki/United_States,6

which refer to the United States of America in two different7

data sources, Wikidata1 and Wikipedia2 respectively. ER8

constitutes a core data integration task and, thus, numerous9

approaches for tackling it have been proposed in the literature.10

Overviews of the main methods can be found in recent books11

[2, 3, 4, 5], surveys [6, 7, 8] and tutorials [9, 10, 11, 12].12

To facilitate the use of the main ER methods, we created13

JedAI [1], an open-source system that allows for building end-14

to-end pipelines. JedAI enables users to effectively address the15

ER problem by categorizing the main methods into three or-16

thogonal dimensions:17

1. Schema-awareness categorizes ER methods into schema-18

based and schema-agnostic ones, depending on whether19

they rely on schema knowledge or not.20

∗Corresponding author
∗∗Reviewer
1https://www.wikidata.org
2https://www.wikipedia.org

2. Budget-awareness categorizes ER methods into budget-21

agnostic ones, which operate as batch processes, and22

budget-aware ones, which operate in a pay-as-you-go23

manner that produces results progressively — they maxi-24

mize the detected matches within a specific budget of tem-25

poral or computational resources.26

3. Execution mode categorizes ER methods into serial and27

massively parallelized ones, e.g., over Apache Spark.328

Using JedAI, we experimentally evaluated in [1] the relative29

performance of the main end-to-end ER pipelines that are de-30

fined by the three aforementioned dimensions. In this work, we31

focus on serially executed pipelines of any type.32

Regarding schema-awareness, the schema-agnostic pipeline33

consists of the following steps, as shown in Figure 1(a):34

• Data Reading loads the data to be processed into main35

memory.36

• Schema Clustering is an optional step that groups together37

different attributes that share syntactically similar values38

so as to improve the performance of the subsequent steps.39

Note that this task differs from Schema Matching, which40

tries to identify the semantically matching attributes.41

3https://spark.apache.org

Preprint submitted to Elsevier June 20, 2021

https://www.wikidata.org/wiki/Q30
https://en.wikipedia.org/wiki/United_States
https://www.wikidata.org
https://www.wikipedia.org
https://spark.apache.org

Entity
Matching

Data
Reading

Block
Cleaning

Comparison
Cleaning

Entity
Clustering

Data Writing
& Evaluation

Schema
Clustering

Block
Building

Data
Reading

Similarity
Join

Entity
Clustering

Data Writing
& Evaluation

Entity
Matching

Data
Reading

Block
Cleaning

Comparison
Cleaning

Entity
Clustering

Data Writing
& Evaluation

Schema
Clustering

Block
Building

Prioritization

(a)

(b)

(c)

Figure 1: The three main end-to-end ER pipelines implemented by JedAI: (a) the budget- & schema-agnostic one, (b) the budget-agnostic, schema-based one, and
(c) the budget-aware, schema-agnostic one. Shaded rectangles indicate optional steps.

• Block Building aims to reduce the computational cost of42

the brute-force approach, by limiting the search space to43

similar entity profiles. To this end, it clusters together en-44

tity profiles that share identical or similar signatures.45

• Block Cleaning is an optional step that further curtails the46

computational cost of ER by refining the output of Block47

Building. Its goal is actually to discard those blocks that48

are dominated by redundant and superfluous comparisons;49

the former involve pairs of entities co-occurring in multi-50

ple blocks, while the latter compare pairs of entities that51

do not match.52

• Comparison Cleaning is another optional step that serves53

the same purpose as Block Cleaning. It offers a more time-54

consuming, but more precise functionality that operates at55

the level of individual comparisons.56

• Entity Matching estimates the matching likelihood for all57

entity pairs in the final set of blocks, using string similarity58

measures.59

• Entity Clustering models the estimated similarities as a60

weighted, undirected graph and then partitions it into61

equivalence clusters, i.e., disjoint sets of entity profiles62

that are considered as matches.63

• Data Writing & Evaluation allows for storing the final re-64

sults and for assessing the performance of the selected ER65

pipeline with respect to the main effectiveness and time66

efficiency measures.67

The schema-based end-to-end pipeline also starts with68

Data Reading and ends with Entity Clustering and Data Writing69

& Evaluation, as shown in Figure 1(b). In between, it applies a70

single step, called Similarity Join, which rapidly estimates the71

pairs of entity profiles that satisfy a given matching rule, which72

consists of:73

1. a similarity measure,74

2. the attribute on which the measure is applied, and75

3. a threshold designating the minimum acceptable similarity76

for two entity profiles that are considered as matching.77

As an example, consider the following matching rule for bibli-78

ographic entities: JaccardS im(title1, title2) > 0.8.79

In [1], we also compare the batch, schema-agnostic pipeline80

with its progressive counterpart, i.e., the budget-aware,81

schema-agnostic pipeline, which is shown in Figure 1(c). The82

only difference from the batch pipeline is the Prioritization83

step, which intervenes between Comparison Cleaning and En-84

tity Matching. Its goal is to define the optimal processing order85

of the entity pairs in the final set of blocks so that the matching86

ones are detected as early as possible.87

A video demonstrating JedAI in action is available at:88

https://www.youtube.com/watch?v=OJY1DUrUAe889

2. The reproducible experiments on Entity Resolution90

2.1. Preliminaries91

Depending on the input data, Entity Resolution is categorized92

into two main categories:93

1. Clean-Clean ER receives as input two datasets, which are94

individually duplicate-free (e.g., Wikipedia and Wikidata),95

and its goal is to identify the matches they share.96

2. Dirty ER receives as input one or more datasets, with at97

least one of them containing duplicates in itself. Its goal is98

to partition all entity profiles into equivalence clusters.99

In both cases, the end-result of any end-to-end pipeline is100

evaluated with respect to three effectiveness measures:101

• Recall assesses the portion of existing duplicates that are102

actually identified as such.103

• Precision estimates the portion of entity pairs that are104

marked as matches and are indeed duplicates.105

• F-Measure is the harmonic mean of Recall and Precision.106

The progressive pipelines are additionally assessed through107

Progressive Recall, which quantifies the evolution of recall108

as more entity pairs are compared. We actually consider the109

area under its curve (AUC), which is derived from a two-110

dimensional diagram, where horizontal axis corresponds to the111

number of executed comparisons and the vertical one to the112

number of detected duplicates. The larger (the area under the113

curve of) Progressive Recall is, the earlier are the matches iden-114

tified and the better is the progressive pipeline.115

All effectiveness measures are defined in the interval [0, 1],116

with higher values corresponding to higher effectiveness.117

The time efficiency of an end-to-end pipeline is measured118

through its run-time, i.e., the time that intervenes between re-119

ceiving the input entity profiles and producing the end result.120

2

https://www.youtube.com/watch?v=OJY1DUrUAe8

Table 1: Technical characteristics of the Dirty ER datasets. |E| stands for the number of entity profiles, NVP for the total number of name-value pairs in the dataset,
|N| for the number of distinct attributes, |p̄| for the average profile size (in terms of name-value pairs), |D(E)| for the number of duplicate pairs, and ||E|| for the
comparisons executed by the brute-force approach.

Dcora Dcddb D10K D50K D100K D200K D300K D1M D2M

|E| 1,295 9,763 10,000 50,000 100,000 200,000 300,000 1,000,000 2,000,000
NVP 7,166 183,072 106,108 530,854 1,061,421 2,123,728 3,184,885 10,617,729 21,238,252
|N | 12 106 12 12 12 12 12 12 12
|p̄| 5.53 18.75 10.61 10.62 10.61 10.62 10.62 10.62 10.62
|D(E)| 17,184 299 8,705 43,071 85,497 172,403 257,034 857,538 1,716,102
||E|| 8.38·105 4.77·107 5.00·107 1.25·109 5.00·109 2.00·1010 4.50·1010 5.00·1011 2.00·1012

Table 2: Technical characteristics of the Clean-Clean ER datasets.
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Dataset1 Rest.1 Abt Amazon DBLP Walmart DBLP DBPedia DBPedia 3.0rc
Dataset2 Rest.2 Buy Google Pr. ACM Amazon Scholar IMDB DBPedia 3.4
|E1|/|E2| 339/2,256 1,076/1,076 1,354/3,039 2,616/2,294 2,554/22,074 2,516/61,353 27,615/23,182 1.19·106/2.16·106

NVP1/NVP2 1,130/7,519 2,568/2,308 5,302/9,110 10,464/9,162 14,143/1.1·105 10,064/2·105 1.6·105/8.2·105 1.69·107/3.50·107

|N1|/|N2| 7/7 3/3 4/4 4/4 6/6 4/4 4/7 30,688/52,489
| p̄1|/| p̄2| 3.33/3.33 2.39/2.14 3.92/3.00 3.99/4.00 5.54/5.18 3.23/3.26 5.63/35.20 14.19/16.18
|D(E1 ∩ E2)| 89 1,076 1,104 2,224 853 2,308 22,863 892,579
||E1 × E2|| 7.65·105 1.16·106 4.11·106 6.00·106 5.64·107 1.54·108 6.40·108 2.58·1012

Note that we also provide the minimum amount of main121

memory that is required to successfully run each test in a way122

that approximates the lowest possible running time by minimiz-123

ing the impact of the garbage collector. The reported values cor-124

respond to the −Xmx parameter when running each experiment125

as a Java process, independently of Docker and the browser,126

which raise additional memory requirements.127

2.2. Sets of Experiments128

The experimental analysis of [1] used 17 datasets. Each of129

them consists of one or two sets of entity profiles, in the case130

of Dirty and Clean-Clean ER, respectively, as well as a golden131

standard, i.e., the complete ground-truth of the actual duplicate132

entity profiles. They are all publicly available in the form of133

Java serialized objects as a Mendeley dataset [13] and through134

JedAI’s repository.4 Their technical characteristics are reported135

in Tables 1 and 2, which are the same as Tables 1 and 2 in [11],136

but are repeated here for convenience. Additional information137

about all datasets is provided in Table 3.138

Our experiments are divided into three sets as follows:139

1. The Performance Tests examine the relative performance140

of the two budget-agnostic pipelines - the schema-based141

and the schema-agnostic one.142

2. The Scalability Tests examine how the performance of the143

two budget-agnostic pipelines evolves as the size of the144

input data increases.145

3. The Budget-awareness Tests examine the relative perfor-146

mance of the two forms of the schema-agnostic pipeline:147

the budget-agnostic and the budget-aware.148

Below, we describe every set of experiments in more detail.149

4https://github.com/scify/JedAIToolkit

Performance Tests. These experiments, which are reported150

in Table 4 of [1], compare the schema- and budget-agnostic151

pipeline with its schema-based counterpart over 10 real-world152

datasets. Two of them pertain to Dirty ER (Dcora and Dcddb) and153

the rest to Clean-Clean ER (Dc1-Dc8). The goal of these experi-154

ments is to evaluate both the relative effectiveness and the rela-155

tive time efficiency of these pipelines. For the schema-agnostic156

pipeline, we consider two configurations:157

1. the best one, which uses the parameters that maximize the158

F-Measure per dataset, and159

2. the default one, which uses the default parameters for each160

method in the pipeline, thus being the same for all datasets.161

For the schema-based pipeline, we exclusively consider the best162

configuration per dataset, which maximizes F-Measure.163

Note that these tests involve two baseline systems that have164

been developed by other research groups, Magellan [26] and165

DeepMatcher [27]. Due to their human-in-the-loop approach166

and the lack of necessary details, we could not test their perfor-167

mance ourselves. Instead, we reported their top F-measure per168

dataset in [27], among all configurations and dataset versions.169

For this reason, we disregard both systems in the following.170

Scalability Tests. These experiments are described in the di-171

agrams of Figure 7 in [1], comparing again the two budget-172

agnostic end-to-end pipelines. In this case, though, the goal173

is to assess how their time efficiency and effectiveness evolve174

as the size of the data increase from several thousand to few175

million entity profiles. To this end, we use seven datasets176

that pertain exclusively to Dirty ER; their names indicate their177

size, i.e., the number of their entity profiles: D10K , D50K ,178

D100K , D200K , D300K , D1M and D2M . These datasets con-179

tain synthetic census data, i.e., information about individu-180

als that has been enriched with various forms of artificial181

3

https://github.com/scify/JedAIToolkit

Table 3: Core information about each dataset: its reference work, its type (i.e., whether it involves real or synthetic data), the corresponding ER task (Clean-Clean or
Dirty ER), the paths of its entity profiles and its golden standard files in the data repository of [13] and the original data source. We have categorized the 17 datasets
in three groups according to their type and task, following [13], which contains a different folder for each group. Note that in [13], all parts of Dc8 are provided
through a single zipped file, newDBPedia.tar.xz, to minimize their large size.

Dataset Type Task Path to the Entity Profiles File in [13] Path to the Golden Standard File in [13] Source

Dc1 [14] Real Clean-Clean ER Real Clean-Clean ER data/restaurant1Profiles Real Clean-Clean ER data/restaurant1IdDuplicates [15]Real Clean-Clean ER data/restaurant2Profiles

Dc2 [16] Real Clean-Clean ER Real Clean-Clean ER data/abtProfiles Real Clean-Clean ER data/abtBuyIdDuplicates [17]Real Clean-Clean ER data/buyProfiles

Dc3 [16] Real Clean-Clean ER Real Clean-Clean ER data/amazonProfiles Real Clean-Clean ER data/amazonGpIdDuplicates [17]Real Clean-Clean ER data/gpProfiles

Dc4 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles Real Clean-Clean ER data/dblpAcmProfiles [17]Real Clean-Clean ER data/acmProfiles

Dc5 [18] Real Clean-Clean ER Real Clean-Clean ER data/walmartProfiles Real Clean-Clean ER data/amazonWalmartIdDuplicates [19]Real Clean-Clean ER data/amazonProfiles2

Dc6 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles2 Clean-Clean ER data/dblpScholarIdDuplicates [17]Real Clean-Clean ER data/scholarProfiles

Dc7 [20] Real Clean-Clean ER Real Clean-Clean ER data/imdbProfiles Clean-Clean ER data/moviesIdDuplicates [21]Real Clean-Clean ER data/dbpediaProfiles

Dc8 [20] Real Clean-Clean ER Real Clean-Clean ER data/cleanDBPedia1 Clean-Clean ER data/newDBPediaMatches [21]Real Clean-Clean ER data/cleanDBPedia2
Dcora [22] Real Dirty ER Real Dirty ER data/coraProfiles Real Dirty ER data/coraIdDuplicates [23]
Dcddb [24] Real Dirty ER Real Dirty ER data/cddbProfiles Real Dirty ER data/cddbIdDuplicates [23]
D10K [25] Synthetic Dirty ER Synthetic Dirty ER data/10Kprofiles Synthetic Dirty ER data/10KIdDuplicates [21]
D50K [25] Synthetic Dirty ER Synthetic Dirty ER data/50Kprofiles Synthetic Dirty ER data/50KIdDuplicates [21]
D100K [25] Synthetic Dirty ER Synthetic Dirty ER data/100Kprofiles Synthetic Dirty ER data/100KIdDuplicates [21]
D200K [25] Synthetic Dirty ER Synthetic Dirty ER data/200Kprofiles Synthetic Dirty ER data/200KIdDuplicates [21]
D300K [25] Synthetic Dirty ER Synthetic Dirty ER data/300Kprofiles Synthetic Dirty ER data/300KIdDuplicates [21]
D1M [25] Synthetic Dirty ER Synthetic Dirty ER data/1Mprofiles Synthetic Dirty ER data/1MIdDuplicates [21]
D2M [25] Synthetic Dirty ER Synthetic Dirty ER data/2Mprofiles Synthetic Dirty ER data/2MIdDuplicates [21]

noise (see [1] for more details). For both pipelines, we con-182

sider a single configuration that is applied to all datasets:183

the default configuration for the schema-agnostic pipeline and184

the matching rule that consistently achieves reasonable per-185

formance across all datasets for the schema-based one, i.e.,186

JaccarS im(all tokens 1, all tokens 2) > 0.4, executed by187

PPJoin and followed by Connected Components with the same188

similarity threshold.189

Budget-awareness Tests. These experiments are reported in190

the diagrams of Figure 8 in [1]. They compare the budget-191

and schema-agnostic pipeline with its budget-aware counterpart192

across the same datasets as the Performance Tests - except the193

largest one, Dc8. For each dataset, the parameter configuration194

that corresponds to the optimal performance of the budget- and195

schema-agnostic pipeline is also used for the common meth-196

ods of its budget-aware version. In this way, these tests assess197

the impact of the Prioritization step, which constitutes the sole198

difference between the two pipelines. We evaluate the time effi-199

ciency of the two workflows through their running times and the200

effectiveness through the area under their Progressive Recall.201

2.3. Experimental setup in our primary paper202

All single-core experiments in [1] were implemented in Java203

8 and can be reproduced through JedAI’s Docker image, which204

is publicly available.5 The only requirement is to have Docker6
205

5https://hub.docker.com/repository/docker/gmandi/

jedai-webapp
6https://www.docker.com

installed. Table 4 provides detailed instructions for installing206

the latest version of Docker on Ubuntu. A similar procedure207

is required for other Linux distributions, like Debian,7 Fedora8
208

and CentOS.9 JedAI’s Docker image is expected to run seam-209

lessly in all these cases. Upon successful completion of these210

commands, JedAI’s Web application appears in a browser at:211

http://localhost:8080.212

Note that the option -e JAVA OPTIONS=‘-Xmx4g’ deter-213

mines that 4 Gigabytes (GB) of RAM memory is allocated to214

Java to run JedAI’s Web application. This is an optional pa-215

rameter, as the vast majority of our experiments can be run with216

much fewer memory, as indicated by the memory requirements217

that are reported in Tables 8, 9 and 10 for each experiment. In218

our tests, though, we noticed that 4GB are more suitable for219

ensuring Docker’s stability. Otherwise, it needs restarting af-220

ter some tests. When experimenting with larger datasets, it is221

actually recommended to devote all or most of the available222

memory to Docker so as to avoid out-of-memory exceptions223

or excessively large running times, due to the overuse of the224

garbage collector.225

Note also that the option -v /absolute/path is necessary226

because JedAI’s Docker starts by downloading all datasets from227

the Mendeley data repository [13]. Thus, this option determines228

the directory on the host system (e.g., /home/user/jedai),229

7See https://docs.docker.com/engine/install/debian for de-
tailed instructions.

8See https://docs.docker.com/engine/install/fedora for de-
tailed instructions.

9See https://docs.docker.com/engine/install/centos for de-
tailed instructions.

4

https://hub.docker.com/repository/docker/gmandi/jedai-webapp
https://hub.docker.com/repository/docker/gmandi/jedai-webapp
https://www.docker.com
https://docs.docker.com/engine/install/debian
https://docs.docker.com/engine/install/fedora
https://docs.docker.com/engine/install/centos

Table 4: Detailed instructions for installing and running JedAI’s Docker image on Ubuntu. The steps 1-7 install the latest version of Docker Community Edition. For
more details, please refer to the official Docker setup page at: https://docs.docker.com/engine/install/ubuntu. The remaining steps download JedAI’s
Docker image from the Docker Hub (step 8) or from JedAI’s Mendeley data repository (step 8’) and execute it (step 9).

Step Setup instructions
Update the apt package index.

(1) $ sudo apt-get update
Install packages to allow apt to use a repository over HTTPS.

(2) $ sudo apt-get -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
Add Docker’s official GPG key.

(3) $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
Set up the stable repository.

(4) $ sudo add-apt-repository “deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb release -cs) stable”
Update the apt package index.

(5) $ sudo apt-get update
Install the latest version of Docker Engine.

(6) $ sudo apt-get -y install docker-ce docker-ce-cli containerd.io
Verify that Docker Engine is installed correctly.

(7) $ sudo docker run hello-world
Download the latest JedAI Docker image from Docker Hub.

(8) $ sudo docker pull gmandi/jedai-webapp:latest
Alternatively, download JedAI’s Docker image from the Mendeley dataset.

(8’) wget -O jedai.tar https://data.mendeley.com/public-files/datasets/4whpm32y47/files/79f5ccdd-e60a-4f9c-99cb-8f2d7ef0fc25/file_downloaded

$ sudo docker load < jedai.tar
Launch the JedAI Web application.
Note that parameter -Xmx4g allows JedAI to use up to 4Gb RAM. Higher values can be used if more main memory is available.
Note also that parameter -v should point to a directory, e.g., /home/user/jedai, with user-write permissions.

(9) $ sudo docker run -e ‘JAVA OPTIONS=-Xmx4g’ -p 8080:8080 -v /absolute/path gmandi/jedai-webapp

where Docker will store and unpack the dataset files as long as230

it has user-write permissions.231

It is also worth noting that in the option -p 8080:8080, the232

first 8080 refers to the host port, and could be replaced by any233

other free port in the host. Docker will map the first port 8080234

to the http port (second 8080) from the docker container.235

Finally, it is worth noting that it is also possible to use Docker236

on Windows 10. The installation is a straightforward proce-237

dure10 that merely needs some additional steps.11 After the238

successful installation, all experiments can be seamlessly run,239

without any performance issue. Indeed, one of our testing plat-240

forms runs on Windows 10 Pro (Windows − base1 in Table 5).241

2.4. System requirements and performance evaluation242

All single-core experiments in [1] can be reproduced on any243

Java 8 compliant platform, which practically includes all major244

Linux distributions. Our experiments have been successfully245

reproduced on all testing platforms reported in Table 5, with the246

aggregate running times that are reported in Table 6. Note that247

in all systems, a single CPU core was used for each experiment.248

Our original configuration corresponds to Ubuntu−base1 for249

the Performance and Scalability Tests and to Ubuntu − base1′250

for the Budget-awareness Tests. Ubuntu − base2 is a similar251

10See https://docs.docker.com/docker-for-windows/install for
detailed instructions.

11See https://docs.docker.com/docker-for-windows/wsl for
more details.

server but with a different CPU that accounts for significant di-252

versity in the running times. A more important difference is that253

in Ubuntu − base1 and Ubuntu − base1′, all experiments were254

run through script files,12 whereas in Ubuntu − base2, the ex-255

periments were carried out through the user interface of JedAI’s256

Web application. The same applies to all other systems.257

Among the other platforms, it is worth stressing that258

Ubuntu−base4 consists of a bootable USB stick that runs a live259

Ubuntu instance on top of a Windows 10 laptop. The only im-260

plication was that it required a different approach for installing261

Docker.13 No performance issue arose. In fact, Ubuntu−base4262

is often one of the fastest testing platforms, due to the newer263

generation of CPU and RAM technology.264

Regarding the minimum system specifications required by265

our experiments, the size of the hard disk plays a minor role.266

Given that all experiments are executed in main memory and267

produce no output files, the hard disk requirements are deter-268

mined by the space occupied by the Java JDK and the Docker269

installation as well as the size of JedAI’s Docker image, which270

also includes all datasets. In total, this amounts to around 4271

GB, assuming an underlying blank Ubuntu installation. Note,272

though, that this space is occupied whenever command 9 in Ta-273

ble 4 is executed. To recover the space occupied after multiple274

12The source code of all tests is available at: https://github.com/

scify/JedAIToolkit/tree/master/src/test/java/org/scify/

jedai/version3.
13For more details, please refer to https://stackoverflow.com/

questions/30248794/run-docker-in-ubuntu-live-disk.

5

https://docs.docker.com/engine/install/ubuntu
https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu
https://data.mendeley.com/public-files/datasets/4whpm32y47/files/79f5ccdd-e60a-4f9c-99cb-8f2d7ef0fc25/file_downloaded
https://docs.docker.com/docker-for-windows/install
https://docs.docker.com/docker-for-windows/wsl
https://github.com/scify/JedAIToolkit/tree/master/src/test/java/org/scify/jedai/version3
https://github.com/scify/JedAIToolkit/tree/master/src/test/java/org/scify/jedai/version3
https://github.com/scify/JedAIToolkit/tree/master/src/test/java/org/scify/jedai/version3
https://stackoverflow.com/questions/30248794/run-docker-in-ubuntu-live-disk
https://stackoverflow.com/questions/30248794/run-docker-in-ubuntu-live-disk

Table 5: The testing platforms that were successfully used to reproduce our experiments. Note that Ubuntu− base1 was used in [1] for performing the experiments
reported in Tables 8 and 9, while Ubuntu − base1′ was only used for the experiments in Table 10.

Testing platform Type Software Configuration Hardware Configuration Tested by

Ubuntu − base1 Server Ubuntu 14.04.5 LTS 1 Intel Xeon E5-4603 v2 @2.20GHz, AuthorsOpenJDK 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base1′ Server Ubuntu 14.04 LTS 1 Intel Xeon E5-2670 v2 @2.50GHz, AuthorsJava 1.8.0 80GB DDR3 RAM, 1Tb mechanical disk

Ubuntu − base2 Server Ubuntu 14.04.6 LTS 1 AMD Opteron 6320 @2.80GHz, Authors
Docker 19.03.13, Java 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base3 Laptop Ubuntu 18.04.5 LTS 1 Intel Core i7-4710MQ @2.50GHz, AuthorsDocker 20.10.5, Java 1.8.0 16 Gb DDR3 RAM, 120 Gb SSD

Ubuntu − base4 Laptop Ubuntu 20.04 LTS 1 Intel Core i5-1035G1 @1.00GHz, AuthorsDocker 19.03.8, OpenJDK 1.8.0 4 Gb DDR4 RAM, 32 Gb flash drive

Ubuntu − base5 Laptop Linux Mint 19.1 Tessa 1 Intel Core i7-3770 @3.40GHz, AuthorsDocker 19.03.8, Java 1.8.0 16 Gb DDR3 RAM, 1 Tb mechanical disk

Ubuntu − base6 Laptop Ubuntu 20.04.2 LTS Intel Core i7-9750H @2.60GHz, ReviewerDocker 19.03.14, OpenJDK 1.8.0 32 GB RAM, 2.5Tb mechanical disk

Ubuntu − base7 Server Ubuntu 20.04.2 LTS 1 Intel Xeon Bronze 3204 @1.9GHz, Reviewer512 Gb DDR4 RAM,120Gb mechanical disk

Ubuntu − base8 Server Ubuntu 16.04.7 LTS 1 Intel Core i7 8700k @3.7GHz, 64Gb swap, Reviewer64 Gb DDR4 RAM, 3Tb mechanical disk

Ubuntu − base9 Laptop Ubuntu 20.04.1 LTS 1 Intel Core i5 8265u @1.6GHz, 16 DDR4 RAM, Reviewerno swap, 34Gb virtual disk over SSD

Windows − base1 Laptop Windows 10 Pro v. 20H2, 1 Intel Core i5-1035G1 @1.00GHz, AuthorsDocker 20.10.5, Java 15.0.1 6 Gb DDR4 RAM, 240 Gb SSD

Table 6: The aggregate time required to run all the experiments included in
Tables 8, 9 and 10 (that could be completed in less than 40 hours) for each
testing platform, while reproducing most experiments from [1]. The testing
platforms Ubuntu− base3, Ubuntu− base4, Ubuntu− base5, Ubuntu− base6,
Ubuntu − base9 and Windows − base1 were limited in some experiments by
the available main memory, thus exhibiting lower aggregate running times.

Run Testing platform Running time Tested by
1 Ubuntu − base1 5,526 min ≈ 92.1 hrs Authors
2 Ubuntu − base2 6,832 min ≈ 113.9 hrs Authors
3 Ubuntu − base3 2,678 min ≈ 44.6 hrs Authors
4 Ubuntu − base4 187 min ≈ 3.1 hrs Authors
5 Ubuntu − base5 2,198 min ≈ 36.6 hrs Authors
6 Ubuntu − base6 1,428 min ≈ 23.8 hrs Reviewer
7 Ubuntu − base7 6,393 min ≈ 106.5 hrs Reviewer
8 Ubuntu − base8 3,212 min ≈ 53.5 hrs Reviewer
9 Ubuntu − base9 1,731 min ≈ 28.8 hrs Reviewer
10 Windows − base1 1,743 min ≈ 29.1 hrs Authors

runs, we can:275

• Remove the existing Docker containers:276

sudo docker container ls -a | grep gmandi277

obtains the IDs of JedAI’s containers, and278

sudo docker rm -f containerID279

removes a given container.280

• Remove JedAI’s Docker image:281

sudo docker rmi gmandi/jedai-webapp.14
282

14Alternatively, run sudo docker images to obtain the IDs of the images,
and then use sudo docker rmi imageID to remove them.

• Finally, recover disk space for unused volumes:283

sudo docker volume prune.284

Regarding the size of main memory (RAM), the vast major-285

ity of experiments require less than 2 Gb, as reported in Tables286

8, 9 and 10, but 4 Gb are suggested to ensure Docker’s sta-287

bility, as explained above. However, the experiments with the288

two largest synthetic datasets, D1M and D2M , require up to 25289

Gb, whereas the largest real dataset, Dc8, requires up to 105290

Gb. The corresponding experiments cannot be run on most291

testing platforms that are equipped with 16 Gb RAM or less,292

namely Ubuntu − base3, Ubuntu − base4, Ubuntu − base5,293

Ubuntu − base6, Ubuntu − base9 and Windows − base1. Be-294

low, we report in detail the memory requirements of every ex-295

periment, highlighting the experiments that were not feasible,296

due to insufficient main memory in the testing platforms.297

Finally, it is worth noting that the times reported in Table 6298

merely correspond to the time taken by each system to run all299

experiments. Given that each experiment is carried out through300

the user interface of JedAI’s Web application (i.e., they are not301

executed through a script), significant time is taken to manually302

navigate through all menus. Among them, the Entity Matching303

step requires additional time to transform the selected dataset304

into the textual representation that is suitable for assessing en-305

tity similarity (e.g., by tokenizing all attribute values into char-306

acter n-grams). This time, which is negligible only for the307

smallest datasets, is not added to the overall running times in308

Table 6, which disregard completely the navigation time.309

6

Table 7: Detailed instructions for reproducing all single-core experiments in [1] using the graphical user interface of JedAI’s Web application.

Step Reproduction instructions
After launching JedAI’s Docker image with the last command in Table 4:

(1) Open a browser at http://localhost:8080.
If Docker runs on a server, replace ‘localhost with its URL. The host port 8080 was arbitrarily specified by the last
command in Table 4 and can be changed at will. JedAI’s homepage, depicted in Figure 2(a), shows up.

(2) Press the button ‘New Workflow’.
The window ‘Choose New Workflow mode’ in Figure 2(b) pops up.

(3) Press the button ‘Desktop Mode’.
Because we are interested in the serial execution of JedAI’s experiments.
The Web page ‘Select Workflow’ in Figure 2(c) shows up.

(4) Press the button ‘Run tests’ at the bottom right corner.
The window ‘Select Test to execute’ in Figure 2(d) shows up.
The web application is already equipped with the parameters of all experiments.
Thus, any experiment in [1] can be reproduced simply by selecting it from the menus of Figure 2(d).

(5) In ‘Test Type’, select ‘Performance Test’, ‘Scalability Test’ or ‘Budget-awareness Test’.
The options for the rest of the selection criteria in the same window are activated.

(6) In ‘ER Mode’, select ‘Clean-Clean ER’ or ‘Dirty ER’.
For Scalability Tests, only ‘Dirty ER’ is available.

(7) In ‘Workflow Type’, select ‘Best Schema-agnostic’, ‘Default Schema-agnostic’ or ‘Schema-aware’ pipelines.
For Scalability Tests, only the last two options are available.

(8) In ‘Datasets’, select one among the available datasets in Tables 1, 2 and 3.
(9) Press the button ‘Confirm’.

JedAI loads the selected pipeline with the parameter configuration corresponding to the selected dataset.
One Web page for each step in the selected pipeline (see Figure 1) shows up.

(10) Press the button ‘Next’ in the window of each pipeline step to proceed to the next one.
After going through all pipeline steps, the Web page ‘Confirm Configurations’ in Figure 2(e) shows up.

(11) Press the button ‘Confirm’.
The Web page ‘Workflow Execution’ shows up.

(12) Press the button ‘Execute Workflow’.
The selected experiment is carried out. Upon completion, the respective performance is reported in the same window
with respect to Recall, Precision, F-Measure and running time, as in Figure 2(f).

(13) In case of Budget-awareness Tests, press the button ‘Show Plot’ at the bottom left corner.
A window similar to the one in Figure 2(g) shows up, depicting Progressive Recall along with the area under its curve.

(14) Press JedAI logo at the top of the window to return to the first screen and proceed with the next test.

2.5. Obtaining and compiling our source code310

The source code for JedAI version 3.0, which is used in311

[1] and in the present experimental study, has been publicly312

released at: https://github.com/scify/JedAIToolkit.313

Any development kit and/or IDE for Java 8 or higher can be314

used for compiling it, but this is not necessary. JedAI’s Docker315

image contains an executable jar file with the entire source code316

and its dependencies. When executed, it deploys JedAI’s Web317

application, allowing users to reproduce all experiments by fol-318

lowing the instructions below, in Section 2.6.319

2.6. Running the experiments320

Table 7 provides detailed guidelines for reproducing all ex-321

periments. In essence, the user merely needs to navigate322

through the windows of JedAI’s user interface, which are il-323

lustrated in Figure 2. This means that minimal human interven-324

tion is required. For example, all datasets in Tables 1, 2 and 3325

are already included in JedAI’s Docker image; the one selected326

in Step 8 is automatically loaded after the Data Reading step,327

which follows Step 9 in all pipelines. Similarly, there is a sep-328

arate window with all available methods for each pipeline step,329

but no particular action is required from the user: the method330

used in the chosen experiment is already marked as selected and331

its parameters are appropriately configured. The user simply332

needs to press ‘Next’ in each step to proceed with the next one.333

It is worth stressing at this point the wealth of informa-334

tion that is provided by the final window, called ‘Workflow335

Execution’, after completing an experiment:336

1. The button ‘Explore’ presents the entity profiles that form337

each equivalence cluster.338

2. The tab ‘Details’ contains the output of each step in the339

latest pipeline so as understand its operation and contribu-340

tion to the overall performance.341

3. The tab ‘Workbench’ summarizes the performance of all342

pipelines executed so far, as shown in Figure 2(h). This al-343

lows for juxtaposing the performance of different pipelines344

over the same dataset, even at the level of individual steps:345

pressing the button ≡ in the leftmost column displays a346

performance breakdown among all steps.347

7

https://github.com/scify/JedAIToolkit

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: The screens of JedAI’s Web application for reproducing all single core experiments in [1]: (a) The initial screen of JedAI’s Web application. The button
‘New Workflow’ should be pressed. (b) The second screen, which defines the execution mode. The button ‘Desktop Mode’ should be pressed for the single-core
experiments. (c) The third screen, which defines the type of the end-to-end pipeline. The button ‘Run tests’ should be pressed to start the reproduction of the
experiments. (d) The fourth screen, which defines the experimental settings we want to reproduce with respect to the type of experiments, the type of ER, the type of
end-to-end pipeline and the dataset. (e) The ‘Confirm Configuration’ screen that summarizes the experimental settings we have selected. (f) The final screen,
‘Workflow Execution’, which presents the performance of the selected end-to-end pipeline. (g) The screen showing the area under the curve of Progressive
Recall (AUC) in case of Budget-awareness Tests. (h) The benchmark screen summarizing the performance of all pipelines executed so far with respect to Precision,
Recall, F-Measure, Run-time and Progressive Recall (AUC), in case of Budget-awareness Tests.

8

Table 8: The results of the Performance Tests over all real datasets across all testing platforms. For each pipeline, the effectiveness measures per dataset are common
among all testing platforms. Only the running times differ among them. IM indicates a test that was not carried out due to insufficient memory. Note that Precision,
Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.

Clean-Clean ER Dirty ER
Restau- Abt Amazon DBLP Walmart DBLP IMDB DBP-3.0rc

Dcora Dcddbrants Buy GP ACM Amazon Scholar DBPedia DBP-3.4
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Precision 0.473 0.902 0.544 0.975 0.310 0.887 0.908 0.806 0.876 0.874
Recall 1.000 0.836 0.653 0.988 0.878 0.952 0.834 0.819 0.816 0.856
F-Measure 0.643 0.867 0.594 0.981 0.459 0.919 0.869 0.813 0.845 0.865
Memory (Gb) 0.02 0.04 0.19 0.09 0.32 0.75 0.99 105.00 0.17 1.45
Ubuntu − base1 1.1 sec 1.3 sec 12.0 sec 2.0 sec 8.3 sec 23.5 sec 91.0 sec 14.5 hrs 5.5 sec 65.0 sec
Ubuntu − base2 0.6 sec 1.3 sec 15.1 sec 1.3 sec 6.2 sec 28.9 sec 113.0 sec 22.1 hrs 2.7 sec 61.8 sec
Ubuntu − base3 0.5 sec 1.0 sec 11.2 sec 0.9 sec 4.4 sec 10.2 sec 68.0 sec IM 1.8 sec 30.6 sec
Ubuntu − base4 0.2 sec 0.6 sec 8.6 sec 0.7 sec 3.5 sec 9.2 sec 53.4 sec IM 1.8 sec 23.4 sec
Ubuntu − base5 0.3 sec 0.6 sec 8.2 sec 0.8 sec 3.7 sec 9.1 sec 48.5 sec IM 1.3 sec 23.9 sec
Ubuntu − base6 0.1 sec 0.6 sec 8.3 sec 0.7 sec 3.0 sec 7.7 sec 51.9 sec IM 1.3 sec 21.7 sec
Ubuntu − base7 0.2 sec 1.3 sec 15.9 sec 1.2 sec 5.3 sec 15.3 sec 98.4 sec 16.8 hrs 2.4 sec 49.0 sec
Ubuntu − base8 0.2 sec 0.6 sec 7.9 sec 0.6 sec 2.5 sec 6.5 sec 39.5 sec IM 1.0 sec 18.8 sec
Ubuntu − base9 0.4 sec 1.1 sec 16.1 sec 1.0 sec 5.1 sec 11.8 sec 75.5 sec IM 1.8 sec 30.8 sec
Windows − base1 0.3 sec 1.0 sec 8.7 sec 0.9 sec 4.2 sec 18.2 sec 98.6 sec IM 1.7 sec 26.7 sec

(a) Default configuration of the budget- and schema-agnostic pipeline
Precision 0.788 0.946 0.576 0.993 0.590 0.946 0.905 0.841 0.912 0.869
Recall 1.000 0.854 0.646 0.992 0.753 0.949 0.876 0.821 0.819 0.886
F-Measure 0.881 0.898 0.609 0.992 0.662 0.948 0.890 0.831 0.863 0.877
Memory (Gb) 0.03 0.04 0.07 0.04 0.12 0.98 0.80 64.00 0.02 1.47
Ubuntu − base1 1.0 sec 1.1 sec 4.5 sec 1.3 sec 5.3 sec 30.0 sec 46.0 sec 12.7 hrs 0.9 sec 65.7 sec
Ubuntu − base2 0.7 sec 1.1 sec 6.1 sec 0.8 sec 12.9 sec 45.1 sec 49.5 sec 21.9 hrs 0.8 sec 70.0 sec
Ubuntu − base3 0.5 sec 0.8 sec 5.0 sec 0.6 sec 2.4 sec 16.4 sec 29.0 sec IM 0.6 sec 32.4 sec
Ubuntu − base4 0.5 sec 0.7 sec 4.1 sec 0.4 sec 1.8 sec 12.6 sec 23.9 sec IM 0.4 sec 25.6 sec
Ubuntu − base5 0.4 sec 0.6 sec 3.2 sec 0.7 sec 2.0 sec 12.2 sec 24.5 sec IM 0.5 sec 30.8 sec
Ubuntu − base6 0.1 sec 0.5 sec 3.1 sec 0.5 sec 1.7 sec 13.1 sec 21.8 sec IM 0.3 sec 23.3 sec
Ubuntu − base7 0.1 sec 0.6 sec 7.3 sec 0.8 sec 2.8 sec 23.9 sec 41.7 sec 16.5 hrs 0.7 sec 51.3 sec
Ubuntu − base8 0.1 sec 0.4 sec 3.5 sec 0.4 sec 1.2 sec 11.2 sec 18.6 sec 12.9 hrs 0.3 sec 24.5 sec
Ubuntu − base9 0.2 sec 0.4 sec 5.9 sec 0.6 sec 2.2 sec 16.8 sec 34.8 sec IM 0.3 sec 34.9 sec
Windows − base1 0.2 sec 0.6 sec 4.8 sec 0.5 sec 2.3 sec 18.7 sec 28.9 sec IM 0.5 sec 32.5 sec

(b) Best configuration of the budget- and schema-agnostic pipeline
Precision 0.755 0.884 0.663 0.978 0.829 0.953 0.931 0.833 0.751 0.278
Recall 0.933 0.438 0.423 0.932 0.552 0.775 0.499 0.370 0.859 0.719
F-Measure 0.834 0.585 0.517 0.954 0.663 0.855 0.649 0.512 0.802 0.401
Memory (Gb) 0.01 0.02 0.02 0.02 0.06 0.11 0.42 30.00 0.02 0.06
Ubuntu − base1 0.2 sec 0.4 sec 0.5 sec 0.6 sec 0.5 sec 14.0 sec 7.7 sec 15.2 min 0.3 sec 0.6 sec
Ubuntu − base2 0.2 sec 0.2 sec 0.2 sec 0.5 sec 0.2 sec 13.8 sec 6.9 sec 12.4 min 0.3 sec 0.3 sec
Ubuntu − base3 0.2 sec 0.3 sec 0.3 sec 0.2 sec 0.2 sec 10.6 sec 5.2 sec IM 0.2 sec 0.3 sec
Ubuntu − base4 0.1 sec 0.1 sec 0.1 sec 0.1 sec 0.1 sec 10.2 sec 3.5 sec IM 0.2 sec 0.3 sec
Ubuntu − base5 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.3 sec 7.4 sec 3.4 sec IM 0.2 sec 0.3 sec
Ubuntu − base6 0.1 sec 0.1 sec 0.2 sec 0.3 sec 0.1 sec 6.3 sec 3.3 sec IM 0.1 sec 0.3 sec
Ubuntu − base7 0.1 sec 0.2 sec 0.2 sec 0.2 sec 0.2 sec 14.2 sec 7.7 sec 11.0 min 0.1 sec 0.2 sec
Ubuntu − base8 0.1 sec 0.1 sec 0.1 sec 0.1 sec 0.1 sec 5.9 sec 3.2 sec 5.2 min 0.1 sec 0.1 sec
Ubuntu − base9 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.1 sec 16.5 sec 5.6 sec IM 0.1 sec 0.2 sec
Windows − base1 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.1 sec 16.5 sec 5.6 sec IM 0.1 sec 0.2 sec

(c) Best configuration of the budget-agnostic, schema-based pipeline

The outcomes of the Performance, the Scalability and the348

Budget-awareness tests over all testing platforms are reported349

in Tables 8, 9 and 10, respectively. In all cases, the effec-350

tiveness measures are common among all platforms, with the351

only differences corresponding to the running times. Compared352

to the experiments reported in [1], the effectiveness results of353

Budget-awareness tests are practically identical in most cases.354

The only significant exceptions pertain to the best schema-355

agnostic pipeline over Dc2, Dc3 and Dcddb, whose F-Measure356

has now changed from 0.900, 0.607 and 0.872 to 0.898, 0.609357

and 0.877, respectively, after some bug fixes. The F-Measure358

of the default schema-agnostic pipeline over Dc3 has also in-359

creased from 0.586 to 0.594. The effectiveness results of the360

Scalability and the Budget-awareness tests are also identical361

9

Table 9: The results of the Scalability Tests over the seven synthetic datasets across all testing platforms. For each pipeline, the effectiveness measures per dataset
are common among all testing platforms. Only the running times differ among them. IM indicates a test that was not carried out due to insufficient memory. Note
that Precision, Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.

D10K D50K D100K D200K D300K D1M D2M

Precision 0.948 0.899 0.887 0.844 0.866 0.868 0.836
Recall 0.994 0.989 0.983 0.978 0.973 0.960 0.954
F-Measure 0.970 0.942 0.933 0.906 0.916 0.911 0.891
Memory (Gb) 0.12 0.80 3.10 6.20 7.20 15.00 25.00
Ubuntu − base1 1.8 sec 12.8 sec 35.1 sec 120.2 sec 193.1 sec 32.3 min 147.1 min
Ubuntu − base2 1.6 sec 11.4 sec 37.3 sec 130.8 sec 199.3 sec 33.4 min 145.4 min
Ubuntu − base3 1.4 sec 5.2 sec 19.8 sec 51.9 sec 141.9 sec 22.1 min IM
Ubuntu − base4 0.9 sec 4.3 sec 10.7 sec 54.3 sec IM IM IM
Ubuntu − base5 1.0 sec 3.7 sec 11.5 sec 37.8 sec 77.0 sec 16.9 min IM
Ubuntu − base6 0.7 sec 4.2 sec 10.8 sec 36.7 sec 114.6 sec – –
Ubuntu − base7 0.8 sec 6.3 sec 19.9 sec 63.4 sec 148.0 sec 24.2 min 93.5 min
Ubuntu − base8 0.5 sec 3.6 sec 9.0 sec 27.1 sec 71.3 sec 12.9 min 51.4 min
Ubuntu − base9 1.5 sec 8.2 sec 15.7 sec 46.9 sec 118.4 sec 22.6 min IM
Windows − base1 1.4 sec 5.0 sec 10.8 sec 47.2 sec 232.5 sec IM IM

(a) Default configuration of the budget- and schema-agnostic pipeline
Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.593 0.598 0.602 0.600 0.602 0.603 0.602
F-Measure 0.744 0.749 0.752 0.750 0.751 0.752 0.752
Memory (Gb) 0.03 0.10 0.30 1.15 1.75 11.00 16.00
Ubuntu − base1 7.0 sec 137.2 sec 695.3 sec 55.6 min 140.3 min 17.8 hrs >40 hrs
Ubuntu − base2 5.3 sec 120.3 sec 534.8 sec 49.6 min 96.9 min 19.3 hrs >40 hrs
Ubuntu − base3 4.0 sec 89.4 sec 367.8 sec 26.3 min 69.4 min 13.0 hrs >40 hrs
Ubuntu − base4 3.9 sec 74.6 sec 316.5 sec 24.0 min 48.4 min IM IM
Ubuntu − base5 3.6 sec 67.9 sec 298.2 sec 21.3 min 55.9 min 10.3 hrs >40 hrs
Ubuntu − base6 3.8 sec 78.6 sec 341.5 sec 23.6 min 57.1 min – >40 hrs
Ubuntu − base7 7.9 sec 172.2 sec 704.1 sec 49.5 min 111.9 min 19.8 hrs >40 hrs
Ubuntu − base8 3.1 sec 140.1 sec 375.2 sec 22.3 min 49.7 min 10.2 hrs 39.8 hrs
Ubuntu − base9 5.3 sec 96.8 sec 376.4 sec 28.7 min 64.5 min 10.8 hrs >40 hrs
Windows − base1 4.3 sec 87.3 sec 376.7 sec 26.7 min 56.8 min IM IM

(b) Best configuration of the budget-agnostic, schema-based pipeline

with those reported in [1]; only their format has changed from362

diagrams to tables. In all cases, the running times in [1] are363

reproduced here, corresponding to Ubuntu − base1 in Tables 8364

and 9 and to Ubuntu − base1′ in Table 10.365

Finally, it is worth stressing that there is a delay when press-366

ing the ‘Next’ button in the window ‘Entity Matching’ of367

the schema-agnostic pipelines. For small datasets, the delay is368

hardly observable, but it increases for larger datasets, raising up369

to few minutes for D1M , D2M and Dc8. This delay is caused by370

a process that converts all entity profiles into the representation371

model of the selected Entity Matching method. This is included372

in the running times of Ubuntu − base1, where all experiments373

were run through script files, but is not considered by any other374

testing platform, where all experiments were executed through375

JedAI’s user interface. This is one of the reasons for the signif-376

icantly higher running times of Ubuntu − base1 even in com-377

parison to similar testing platforms, like Ubuntu − base2.378

3. Reconfiguring and Extending our Experiments379

3.1. Evaluating different experimental setups380

To test the robustness of our experimental study, the configu-381

ration of a particular experiment can be adjusted in two different382

ways as follows:383

1. by enriching or modifying the methods of at least one384

pipeline step, and/or385

2. by altering the value of at least one parameter in one of the386

selected methods.387

This is possible by repeating the procedure in Table 7 up to388

the first window of Step 10, namely ‘Data Reading’. Subse-389

quently, in the separate window of each step, the pre-selected390

options can be modified as described below, in Sections 3.1.1,391

3.1.2 and 3.1.3, for each type of experiments.392

Note that every method in every pipeline step is associated393

with three configuration approaches: ‘Default’, ‘Automatic’,394

‘Manual’. The ‘Default’ configuration is already widely used395

in the experimental analysis of [1]. The ‘Automatic’ config-396

uration applies grid or random search over numerous iterations397

10

Table 10: The results of the Budget-awareness Tests over all real datasets across all testing platforms. For each pipeline, effectiveness is measured through the
area under the curve of Progressive Recall, which is common among all testing platforms in each dataset only for the budget-aware pipeline. Its budget-agnostic
counterpart arranges all pairwise comparisons in a random order, thus yielding a Progressive Recall that differs in each run and, thus, among the testing platforms.
Note that Precision, Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.
Note also that Dc8 is omitted, as in [1], due to the excessively large running time and the very high memory requirements of the corresponding experiment.

Clean-Clean ER Dirty ER
Restau- Abt Amazon DBLP Walmart DBLP IMDB

Dcora Dcddbrants Buy GP ACM Amazon Scholar DBPedia
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7

Progressive Recall 0.709 0.689 0.573 0.866 0.635 0.930 0.616 0.416 0.585
Memory (Gb) 0.06 0.08 0.30 0.16 0.65 4.00 6.00 0.30 3.50
Ubuntu − base1′ 0.5 sec 13.7 sec 1.8 min 32.9 sec 5.2 min 46.3 min 18.4 hrs 16.9 sec 79.3 sec
Ubuntu − base2 0.6 sec 19.0 sec 3.4 min 49.8 sec 7.8 min 68.2 min 20.1 hrs 15.8 sec 96.5 sec
Ubuntu − base3 0.4 sec 14.6 sec 2.2 min 48.5 sec 7.4 min 54.1 min 12.7 hrs 12.2 sec 73.5 sec
Ubuntu − base4 0.3 sec 12.5 sec 1.5 min 35.7 sec 6.1 min 40.7 min IM 9.9 sec 55.6 sec
Ubuntu − base5 0.6 sec 12.2 sec 2.0 min 31.5 sec 5.1 min 37.2 min 10.8 hrs 9.4 sec 49.9 sec
Ubuntu − base6 0.3 sec 11.9 sec 1.4 min 33.5 sec 4.9 min 34.5 min 9.6 hrs 10.1 sec 53.8 sec
Ubuntu − base7 0.4 sec 20.9 sec 2.7 min 63.1 sec 9.4 min 64.7 min 22.0 hrs 19.6 sec 107.8 sec
Ubuntu − base8 0.3 sec 10.2 sec 1.2 min 30.0 sec 4.2 min 28.7 min 9.5 hrs 8.8 sec 45.8 sec
Ubuntu − base9 0.8 sec 16.6 sec 2.2 min 48.8 sec 6.9 min 38.8 min 13.9 hrs 14.3 sec 66.9 sec
Windows − base1 0.5 sec 14.9 sec 1.9 min 20.4 sec 8.3 min 52.4 min 11.3 hrs 15.3 sec 80.0 sec

(a) Budget-aware, schema-agnostic pipeline
Memory (Gb) 0.09 0.20 0.20 0.35 0.65 4.00 6.00 0.30 3.50
Progressive Recall 0.489 0.418 0.337 0.491 0.386 0.478 0.435 0.661 0.451
Ubuntu − base1′ 1.6 sec 19.2 sec 2.4 min 34.4 sec 11.6 min 51.0 min 20.8 hrs 30.4 sec 13.5 min
Progressive Recall 0.491 0.400 0.341 0.489 0.383 0.479 0.436 0.665 0.446
Ubuntu − base2 0.5 sec 15.5 sec 2.6 min 40.4 sec 13.6 min 61.5 min 21.8 hrs 18.5 sec 13.6 min
Progressive Recall 0.481 0.403 0.328 0.488 0.397 0.474 0.437 0.659 0.466
Ubuntu − base3 0.4 sec 12.4 sec 1.9 min 31.4 sec 12.6 min 49.5 min 14.5 hrs 15.4 sec 11.9 min
Progressive Recall 0.521 0.405 0.335 0.495 0.371 0.488 IM 0.668 0.464
Ubuntu − base4 0.5 sec 10.2 sec 1.6 min 25.9 sec 9.7 min 36.7 min IM 10.4 sec 7.8 min
Progressive Recall 0.487 0.402 0.322 0.488 0.383 0.475 0.435 0.678 0.482
Ubuntu − base5 0.5 sec 11.1 sec 1.4 min 25.8 sec 8.8 min 37.3 min 12.2 hrs 10.8 sec 8.0 min
Progressive Recall 0.483 0.399 0.326 0.498 0.374 0.476 0.436 0.666 0.460
Ubuntu − base6 0.2 sec 10.7 sec 1.6 min 28.9 sec 9.0 min 35.6 min 11.1 hrs 10.6 sec 8.0 min
Progressive Recall 0.457 0.406 0.344 0.501 0.381 0.463 0.436 0.661 0.510
Ubuntu − base7 0.4 sec 21.9 sec 2.9 min 57.4 sec 19.0 min 72.7 min 23.3 hrs 21.8 sec 15.9 min
Progressive Recall 0.528 0.416 0.319 0.502 0.376 0.464 0.435 0.668 0.488
Ubuntu − base8 0.2 sec 9.0 sec 1.4 min 25.1 sec 7.5 min 29.8 min 10.8 hrs 9.9 sec 6.9 min
Progressive Recall 0.453 0.414 0.330 0.490 0.379 0.476 0.436 0.669 0.463
Ubuntu − base9 0.3 sec 14.4 sec 2.4 min 39.7 sec 12.4 min 46.4 min 14.5 hrs 18.0 sec 11.9 min
Progressive Recall 0.520 0.396 0.334 0.498 0.381 0.469 0.434 0.659 0.453
Windows − base1 0.7 sec 14.5 sec 2.2 min 37.9 sec 13.8 min 50.8 min 13.5 hrs 15.1 sec 24.3 min

(b) Budget- and schema-agnostic pipeline

11

(a)

(b)
Figure 3: (a) The screen showing the configuration for a particular pipeline
step. (b) The tooltip that explains the role of a particular parameter during the
manual configuration of a method.

so as to identify the settings that maximize F-Measure. The398

random search involves 100 iterations, while the grid search399

might yield an exponential number of iterations in case multi-400

ple parameters are simultaneously fine-tuned. As both options401

might lead to long running times, the preferred approach is the402

‘Manual’ configuration. After selecting it, JedAI presents all403

parameters of the current pipeline along with their default val-404

ues, as in Figure 3(a). The user can alter these values at will and405

store them by pressing ‘Next’ to proceed to the next window.406

Note also that every method in JedAI implements the407

IDocumentation interface, which conveys all necessary in-408

formation for its manual configuration. When configuring a409

specific parameter, the information image i is shown. When410

leaving the mouse cursor over it, a tooltip appears that describes411

the role of this parameter. An example is shown in Figure 3(b).412

Below, we explain the restrictions that apply to each pipeline413

step with respect to the methods that can be selected.414

3.1.1. Schema-Agnostic End-to-End Pipeline415

As explained above, this pipeline involves six steps:416

1. Schema Clustering. At most one method can be selected,417

but this step is not used in the considered experiments.418

2. Block Building. One or more of the nine available meth-419

ods can be selected. All experiments exclusively employ420

Token Blocking, which is a parameter-free approach.421

3. Block Cleaning. Any combination of the three available422

methods is possible. All experiments apply Comparison-423

based Block Purging and Block Filtering with their default424

parameter values.425

4. Comparison Cleaning. At most one of the nine available426

methods can be selected. In our experiments, we exclu-427

sively use Cardinality Node Pruning (CNP) with its de-428

fault configuration. All methods are configured simply by429

selecting one of the six weighting schemes.430

5. Entity Matching. One of the two available methods can431

be applied. All experiments employ the Profile Matcher.432

Both methods are configured by selecting a similarity mea-433

sure and a compatible representation model, which trans-434

forms the set of textual attribute values in each entity pro-435

file into a suitable format. These two parameters give rise436

to numerous configurations.437

6. Entity Clustering. At most one method can be selected438

in this step. There are three methods available for Clean-439

Clean ER, but all experiments employ the Unique Map-440

ping Clustering approach. For Dirty ER, there are seven441

methods for Dirty ER, but all experiments use the Con-442

nected Components Clustering. All methods are config-443

ured by setting their similarity threshold, below which all444

pairwise comparisons are discarded.445

3.1.2. Schema-Based End-to-End Pipeline446

This pipeline consists of two steps:447

1. The Similarity Join step offers five similarity join algo-448

rithms. Among them, PPJoin is used in all experiments.449

All methods are configured by setting their similarity450

threshold along with the attribute(s), to which they are ap-451

plied.452

2. The Entity Clustering step is the same as the schema-453

agnostic pipeline. In most cases, it uses the same similarity454

threshold as the previous step.455

3.1.3. Budget-Aware Schema-Agnostic Pipeline456

This pipeline differs from its budget-agnostic counterpart457

(see Section 3.1.1) only in the Prioritization step that intervenes458

between Comparison Cleaning and Entity Matching. There459

are different options for this step, depending on the preced-460

ing pipeline steps: if no Block Building method is employed,461

two methods are available, otherwise one of five different meth-462

ods can be used. The latter approach was used in all Budget-463

awareness tests. In both cases, at most one approach can be464

selected and it is configured by setting its budget (i.e., number465

of executed comparisons) and the weighting scheme that lies at466

its core.467

Note that for all tests, the next configuration experiment is468

performed by pressing the ‘Start Over’ button at the bottom469

right corner of Figure 2(f) to return to the Data Reading step of470

the current experiment.471

3.2. Extending our experiments472

Our experimental study can be extended in two ways. First,473

by adding new datasets through the ‘Data Reading’ step. The474

window of this step allows users to select any dataset in any of475

the supported formats (CSV, relational DB, XML or RDF) that476

is stored either locally or is available through a server with a477

public URL. Note that each dataset should be accompanied by478

the golden standard comprising all duplicates.479

Second, it is possible to extent our experimental analysis with480

new methods in any of the considered pipeline steps by lever-481

aging JedAI’s extensible architecture. The only requirement is482

that every new method is available through a Java class that im-483

plements the interface of the corresponding pipeline step - as484

12

explained in [1], every step is associated with a simple Java in-485

terface that determines its input and output. In this way, new486

methods can be seamlessly integrated into JedAI’s code and487

be treated like the already available methods. Ideally, the new488

methods should also implement the IDocumentation inter-489

face, which exposes the following functions that return textual490

descriptions about the core characteristics of an algorithm:491

• getMethodName() returns the name of the method.492

• getParameterName(int parameterId) returns the493

name of a particular configuration parameter.494

• getParameterDescription(int parameterId)495

returns a short description for a particular configuration496

parameter.497

• getMethodParameters() returns a description for all498

configuration parameters of the method, using the above499

functions.500

• getMethodInfo() returns a short description of the501

method’s internal functionality.502

• getMethodConfiguration() returns the parameter con-503

figuration of the current instance of a method. It is called504

by logger.505

• getParameterConfiguration() returns a JsonArray506

object with a JsonObject for every configuration pa-507

rameter that comprises the following information: the508

class of the parameter (e.g., java.lang.Integer), its509

name, determined by the function getParameterName,510

its default, minimum and maximum values along with the511

step one, and its description, determined by the function512

getParameterDescription. This information is used513

for the manual configuration through JedAI’s interface.514

This documentation, which is also leveraged by JedAI’s user515

interface, ensures that new methods can be easily employed by516

users other than their creators. For more details on extending517

JedAI please refer to [1].518

4. Conclusions519

We have presented an analytical user guide for JedAI’s Web520

application, which is available through a Docker image. Our521

instructions allow a user with limited or no familiarity with En-522

tity Resolution to repeat all single-core experiments in [1] so523

as to evaluate the relative performance of the main end-to-end524

pipelines. Our instructions also facilitate the reconfiguration of525

these experiments, by constructing and evaluating pipelines of526

arbitrary complexity.527

All these experiments involve learning-free methods. In the528

future, we plan to extend JedAI with learning-based methods,529

paying particular attention to the integration of Deep Learning530

technologies.531

5. Revision Comments532

This reproducibility manuscript is a valuable complement to533

the parent paper [1], where the last release of JedAI software534

was presented. JedAI includes a web-based user interface and a535

complete library of techniques needed to create end-to-end En-536

tity Resolution (ER) pipelines. The authors compared different537

ER techniques by considering three different dimensions that538

included: (a) Schema-awareness, (b) Budget-awareness, and539

(c) Execution mode. The wide set of experiments provided in-540

cluded the evaluation of 17 datasets and considered the perfor-541

mance, scalability, and budget awareness of the ER pipelines.542

This paper provides the actual configuration used for those ER543

pipelines, and gives some ideas regarding how they can be per-544

sonalized. Furthermore, some guidelines showing how JedAI545

can be extended are also devised.546

Apart from creating a permanent repository in Mendeley547

with the necessary software and datasets, the authors provide548

a Docker-based system to reproduce those experiments. Using549

the web-based interface of JedAI, any researcher can easily use550

the default configuration parameters provided for each exper-551

iment, execute it, and finally see the results of that execution.552

Besides, JedAI also allows to configure and personalize those553

default parameters, as well as the addition of new methods for554

the comparison with existing methods, adding extra value to the555

current work.556

While reviewing this manuscript, a few issues around repro-557

ducibility were brought into the discussion, which show how558

difficult it can be to provide a complete reproducible frame-559

work. We dealt with some experiments where the provided560

default parameters were wrong, which led to unexpected re-561

sults. Another minor issue was related to yielding slightly dif-562

ferent values than those reported in the parent paper or figures563

showing the results in a rather different shape. We also found564

some mismatches concerning the memory requirements needed565

to run some experiments, which would not end or report higher566

execution times than expected. All those issues were success-567

fully fixed during the revision process. The authors satisfac-568

torily took all our comments into account and improved their569

software library and web application. Finally, the JedAI repro-570

duction framework does not provide a mechanism to automat-571

ically run all the experiments, gather all the results, and create572

the same tables and figures of the parent paper, which would573

be extremely interesting to reproduce the original work easily.574

However, the workflow included in JedAI still allows any re-575

searcher to effortlessly reproduce each experiment. The process576

consists of choosing the experiment to perform, going through577

the screens that display the default parameters, starting the ex-578

ecution, waiting for it to complete, and finally gathering the579

results.580

We would like to thank the authors for their considerable ef-581

fort to provide a valuable software library to the research com-582

munity. This library allows new researchers to understand and583

reproduce state-of-the-art experiments with minimal effort and584

guarantees long-term software support, following a sequence of585

precise and straightforward instructions.586

Acknowledgements. This work was partially funded by the587

13

EU H2020 project ExtremeEarth (Grant No. 825258).588

References589

[1] G. Papadakis, G. Mandilaras, L. Gagliardelli, G. Simonini,590

E. Thanos, G. Giannakopoulos, S. Bergamaschi, T. Palpanas,591

M. Koubarakis, Three-dimensional entity resolution with jedai,592

Inf. Syst. 93 (2020) 101565.593

[2] G. Papadakis, E. Ioannou, E. Thanos, T. Palpanas, The four gen-594

erations of entity resolution, Synthesis Lectures on Data Man-595

agement.596

[3] P. Christen, Data Matching - Concepts and Techniques for597

Record Linkage, Entity Resolution, and Duplicate Detection,598

Data-Centric Systems and Applications, Springer, 2012.599

[4] X. L. Dong, D. Srivastava, Big Data Integration, Synthesis Lec-600

tures on Data Management, Morgan & Claypool Publishers,601

2015.602

[5] V. Christophides, V. Efthymiou, K. Stefanidis, Entity Resolution603

in the Web of Data, Synthesis Lectures on the Semantic Web:604

Theory and Technology, Morgan & Claypool Publishers, 2015.605

[6] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, Duplicate606

record detection: A survey, IEEE Trans. Knowl. Data Eng. 19 (1)607

(2007) 1–16.608

[7] G. Papadakis, D. Skoutas, E. Thanos, T. Palpanas, Blocking and609

filtering techniques for entity resolution: A survey, ACM Com-610

puting Surveys 53 (2) (2020) 31:1–31:42.611

[8] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis,612

K. Stefanidis, An overview of end-to-end entity resolution for613

big data, ACM Computing Surveys 53 (6).614

[9] L. Getoor, A. Machanavajjhala, Entity resolution: Theory, prac-615

tice & open challenges, PVLDB 5 (12) (2012) 2018–2019.616

[10] K. Stefanidis, V. Efthymiou, M. Herschel, V. Christophides, En-617

tity resolution in the web of data, in: WWW, 2014, pp. 203–204.618

[11] G. Papadakis, T. Palpanas, Web-scale, schema-agnostic, end-to-619

end entity resolution, in: The Web Conference (WWW), Lyon,620

France, 2018.621

[12] G. Papadakis, E. Ioannou, T. Palpanas, Entity resolution: Past,622

present and yet-to-come, in: EDBT, 2020, pp. 647–650.623

[13] G. Papadakis, Entity resolution benchmark dataset, https://624

data.mendeley.com/datasets/4whpm32y47 (2020).625

[14] J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Scharffe,626

P. Shvaiko, H. Stuckenschmidt, O. Sváb-Zamazal, V. Svátek,627

C. T. dos Santos, Results of the ontology alignment evaluation628

initiative 2010, in: Proceedings of the 5th International Work-629

shop on Ontology Matching (OM-2010), 2010.630

[15] Ontology alignment evaluation initiative, http://oaei.631

ontologymatching.org/2010 (2010).632

[16] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution633

approaches on real-world match problems, Proc. VLDB Endow.634

3 (1) (2010) 484–493.635

[17] Benchmark datasets for entity resolution, https:636

//dbs.uni-leipzig.de/research/projects/object_637

matching/benchmark_datasets_for_entity_resolution638

(2010).639

[18] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W.640

Shavlik, X. Zhu, Corleone: hands-off crowdsourcing for entity641

matching, in: SIGMOD, 2014, pp. 601–612.642

[19] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind,643

D. Paulsen, The magellan data repository, https://sites.644

google.com/site/anhaidgroup/projects/data.645

[20] G. Papadakis, E. Ioannou, C. Niederée, P. Fankhauser, Efficient646

entity resolution for large heterogeneous information spaces, in:647

WSDM, 2011, pp. 535–544.648

[21] G. Papadakis, Blocking framework, https://sourceforge.649

net/projects/erframework/.650

[22] A. McCallum, K. Nigam, L. H. Ungar, Efficient clustering of651

high-dimensional data sets with application to reference match-652

ing, in: ACM SIGKDD, 2000, pp. 169–178.653

[23] Repeatability datasets, https://hpi.de/naumann/654

projects/repeatability/datasets.html.655

[24] U. Draisbach, F. Naumann, A comparison and generalization656

of blocking and windowing algorithms for duplicate detection,657

in: Proceedings of the International Workshop on Quality in658

Databases (QDB), 2009, pp. 51–56.659

[25] B. Kenig, A. Gal, Mfiblocks: An effective blocking algorithm for660

entity resolution, Inf. Syst. 38 (6) (2013) 908–926.661

[26] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard,662

H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krish-663

nan, R. Deep, V. Raghavendra, Magellan: Toward building en-664

tity matching management systems, Proc. VLDB Endow. 9 (12)665

(2016) 1197–1208.666

[27] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan,667

R. Deep, E. Arcaute, V. Raghavendra, Deep learning for entity668

matching: A design space exploration, in: SIGMOD, 2018, pp.669

19–34.670

14

https://data.mendeley.com/datasets/4whpm32y47
https://data.mendeley.com/datasets/4whpm32y47
https://data.mendeley.com/datasets/4whpm32y47
http://oaei.ontologymatching.org/2010
http://oaei.ontologymatching.org/2010
http://oaei.ontologymatching.org/2010
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
https://sourceforge.net/projects/erframework/
https://sourceforge.net/projects/erframework/
https://sourceforge.net/projects/erframework/
https://hpi.de/naumann/projects/repeatability/datasets.html
https://hpi.de/naumann/projects/repeatability/datasets.html
https://hpi.de/naumann/projects/repeatability/datasets.html

	Introduction
	The reproducible experiments on Entity Resolution
	Preliminaries
	Sets of Experiments
	Experimental setup in our primary paper
	System requirements and performance evaluation
	Obtaining and compiling our source code
	Running the experiments

	Reconfiguring and Extending our Experiments
	Evaluating different experimental setups
	Schema-Agnostic End-to-End Pipeline
	Schema-Based End-to-End Pipeline
	Budget-Aware Schema-Agnostic Pipeline

	Extending our experiments

	Conclusions
	Revision Comments

