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Abstract

Over the last decade, due to the Gravity Recovery And Climate Experiment

(GRACE) mission and, more recently, the Gravity and steady state Ocean

Circulation Explorer (GOCE) mission, our ability to measure the ocean’s

mean dynamic topography (MDT) from space has improved dramatically.

Here we use GOCE to measure surface current speeds in the North Atlantic

and compare our results with a range of independent estimates that use

drifter data to improve small scales. We find that, with filtering, GOCE

can recover 70% of the Gulf Steam strength relative to the best drifter-

based estimates. In the subpolar gyre the boundary currents obtained from

GOCE are close to the drifter-based estimates. Crucial to this result is

careful filtering which is required to remove small-scale errors, or noise, in

the computed surface. We show that our heuristic noise metric, used to

determine the degree of filtering, compares well with the quadratic sum of

mean sea surface and formal geoid errors obtained from the error variance-

covariance matrix associated with the GOCE gravity model. At a resolution

of 100 km the North Atlantic mean GOCE MDT error before filtering is 5
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cm with almost all of this coming from the GOCE gravity model.

Keywords:

1. Introduction

The ocean’s mean dynamic topography (MDT) is the surface expression

of the horizontal pressure gradients associated with the ocean’s steady-state

circulation. From it, the geostrophic surface currents of the world’s oceans

can be diagnosed. These currents span a wide range of scales from global cir-

culations, pivotal in the regulation of Earth’s climate, to sub-mesoscale flows,

knowledge of which is crucial for optimising the resource potential of the ma-

rine environment. Clearly then, accurate measurement of the ocean’s MDT

over its full range of spatial scales is an important scientific and practical

goal.

While there exist a number of approaches to estimating the MDT, the

focus in this paper is the geodetic method, whereby a global geoid N is

removed from an altimetric mean sea surfaceH to leave only that part related

to geostrophic ocean dynamics (Hughes and Bingham, 2008). This has the

simple mathematical expression: η = H −N .

Accurate determination of the geoid is the limiting factor for the geodetic

method. Early attempts to measure the MDT using satellite observations

delivered poor results due to the low accuracy of early gravity field models

(e.g. Tai and Wunsch, 1983; Denker and Rapp, 1990; Nerem et al., 1990).

Over the last decade, however, the Gravity Recovery and Climate Experiment

(GRACE; Tapley et al. (2004)) mission has produced a step change in our

ability to measure Earth’s global gravity field, and thus the global MDT,
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from space (e.g. Jayne et al., 2003; Tapley et al., 2003). However, GRACE

has as its main focus the time variable gravity field and its design is such

that it performs best at longer wavelengths, thus limiting the spatial scales

of the MDT that may be resolved.

Launched in March 2009, the Gravity and steady-state Ocean Circulation

Explorer (GOCE) satellite (Drinkwater et al., 2003), has been designed to

measure the smaller spatial scales of Earth’s gravity required to more fully

resolve important features of the ocean’s mean circulation, such as the narrow

boundary currents. The pre-launch objective of the GOCE mission was an

accuracy of 1 cm at spatial scales of 100 km. Although, as we shall see below,

this has yet to be achieved, a number of studies have found that GOCE has

further improved our ability to measure the ocean’s circulation from space

(e.g. Bingham et al., 2011; Knudsen et al., 2011; Volkov and Zlotnicki, 2012).

Due to a number of remaining error sources, geodetic MDTs are usually

filtered before ocean currents are calculated. A common approach is to use a

Gaussian, or similar, spatial averaging filter (e.g. Jayne et al., 2003; Knudsen

et al., 2011). While easy to implement, such isotropic filters in addition to

removing noise also attenuate the MDT signal, particular in regions where

there are steep gradients corresponding to strong currents; the features we

are most interested in measuring. An alternative MDT filtering method

based on non-linear diffusion has been shown by Bingham (2010) to better

preserve these oceanographically important features when compared with

conventional isotropic filtering.

Our aim here is to assess the ability of GOCE to measure the surface

currents of the North Atlantic relative to a range of independent estimates
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which rely on in-situ drifter data. We do this for currents derived from both

a filtered and an unfiltered GOCE MDT. In the case of the filtered MDT,

establishing an objective criterion by which the degree of filtering required

can be decided is crucial to realising the full potential from GOCE. We

employ a method based on a heuristic metric of noise. We show that this

metric is consistent with independently obtained error fields for the geoid

and MSS. In doing so, we also determine their relative contributions to the

MDT error budget. Even with careful filtering, however, we still find that if

our concern is measuring the main current systems then a better approach

may be to avoid filtering and chose a truncation that gives the best signal to

noise ratio.

2. The GOCE MDT and currents

To compute the GOCEMDT (GMDT) and associated geostrophic surface

current speeds for the North Atlantic we use the CLS11 mean sea surface

(MSS; Schaeffer et al. (2012)). This MSS has been computed using 16 years of

altimetry observations, including data from the TOPEX/POSEIDON, ERS-

2 , GFO and JASON-1 missions, the ENVISAT mean profile and data from

the two 168-day non-repeat cycles of the geodetic phase of ERS-1. The

CLS11 MSS is estimated on a 2 arc-minute grid using a local inverse method,

which also provides an estimation of the error field. Although the MSS is

computed with 16 years of observations, the data is adjusted so that the

MSS, and, therefore, the MDT computed from it, refers to the 1993-1999

time-mean. Note, variations of the geoid over time are considered negligible

in comparison to those of the MSS and so the time-mean period of the MDT
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is overwhelmingly determined by the MSS.

From the CLS11 MSS we subtract a geoid determined from a GOCE

gravity model. The GOCE High-level Processing Facility (HPF) is respon-

sible for delivering the Earth gravity models to the user community (Koop

et al., 2007). Within the HPF three processing strategies have been adopted,

each with a distinct approach to generating the gravity model from the ba-

sic satellite-to-satellite tracking and gradiometer observations. An overview

is provided by Pail et al. (2010). Here we use the third generation grav-

ity model obtained by the so-called timewise approach (henceforth GTIM3)

using one year of GOCE observations covering the period November 2009

to April 2011. Uniquely, the timewise approach is based purely on obser-

vations from GOCE. This model is freely available from http://icgem.gfz-

potsdam.de/ICGEM/ICGEM.html.

The GMDT is calculated by the spectral method, as described in Bing-

ham et al. (2008). The distinguishing feature of this method is that the MSS

is first represented as a set of spherical harmonic coefficients. This allows the

MDT to be computed up to a given harmonic degree L ≤ 250: ηL = HL−NL.

The upper limit of 250 is set by the GTIM3 gravity model which is defined

to this degree and order. Note, however, that the GTIM3 gravity

model is weakly regularised from degree 180 onwards (Pail et al.,

2011). Effectively, this acts as a low-pass filter, not only sup-

pressing noise in the high-degree coefficients but also attenuating

the short-wavelength signal. This will, to some extent, limit the

oceanographic signal that can be recovery for spatial scales less

than 111 km and lead to some geoid omission error contamination
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of the GMDT.

By ameliorating the impact on the MDT of geoid omission error (that

part of the gravity field not resolved by the model) and other numerical

errors, such as Gibbs fringes, one advantage of the spectral method is that

it permits a crucial conflict of errors to be explored. By increasing L, MDT

omission error can be reduced; MDT gradients will be enhanced and finer

scale features of the MDT may potentially be resolved. This is clearly seen

for the GMDT as we move from η30 (Figure 1a) to η170 (Figure 1h). A conflict

arises, however, because the impact of commission errors (particularly, as we

shall see below, geoid commission errors) on the MDT grows with increasing

L, and this tends to obscure any improvement due to the expected decrease

in MDT omission error. This is particularly evident for the GMDT as we

move from η190 (Figure 1i) to η250 (Figure 1l).

INSERT FIG 1 HERE

Our primary interest in this study is ocean surface currents. Geostrophic

surface current speeds are obtained through differentiation of ηL:

UL = g|∇ηL|/f, (1)

where f is the Coriolis parameter, and g is acceleration due to gravity. Being

derived from the gradient of ηL, the spectral content of UL is shifted towards

the higher degree terms. Hence, maximising L becomes even more important

for resolving ocean currents. Yet, as Fig. 2 makes clear, the differentiation

also amplifies the noise in ηL, a problem increasingly exacerbated toward the

equator due to the latitudinal dependence of f .

INSERT FIG 2 HERE
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3. Errors and filtering

3.1. Informal errors and filtering

Figure 2 suggests the need for filtering to remove noise before useful cur-

rent speeds can be estimated from the GMDT. As discussed previously by

Bingham et al. (2008), the severity of filtering should be carefully chosen

to remove noise without unnecessarily attenuating the oceanographic sig-

nal. With the non-linear diffusive filtering approach used here (Bingham,

2010), the filtering severity is controlled by the number of iterations I over

which the filter is run. Bingham et al. (2011) find I by minimising the root

mean squared (RMS) difference between the currents derived from the fil-

tered GMDT and an independent reference MDT. A metric such as this can,

with a number of caveats, be thought of as a heuristic, or informal, MDT

error estimate.

Adopting a similar approach, here we define an informal GMDT error for

a given L according to: Eη
L =< ηL−ηR >, where ηR is some reference MDT,

with < ∗ > representing the RMS difference of quantity ∗ computed in a

10◦ × 10◦ window surrounding each grid point. To provide an independent

reference we use an MDT estimate published by Niiler et al. (2003) (which

we denote by NMM03). For our purposes it is useful that this MDT is not

based on gravity data. Rather, it is derived primarily from in-situ drifter

data corrected for non-geostrophic motions, including Ekman transport and

inertial motion. It is defined on a global 0.5 degree grid and covers the

period 1992–2003. To ensure consistence with the GMDT whose time mean

period of 1993–99 is set by the period over which the MSS is computed, the

NMM03 MDT is adjusted using AVISO sea level anomalies so that it refers to
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the same time-mean period. This is achieved simply by calculating the 1992–

2003 mean of the 1993-99 referenced sea level anomalies and subtracting this

mean from the NMM03 MDT.

It is important to note that the use of the NMM03 MDT does not imply

that it is error free. If it were then there would of course be no need for

the geodetic approach and missions such as GOCE. The important feature

is that the error characteristics of the NMM03 MDT are quite different from

those of the GMDT. For large spatial scales in particular it is expected that

the GMDT will be more accurate. Indeed, the analysis presented below

confirms this expectation. In contrast, as we move to shorter spatial scales

the drifter-based MDT will have much smaller errors than the unfiltered

GMDT. However, since the corrections applied to the drifter data will not

be perfect and the drifter data coverage is not homogeneous – this is the

one of the main arguments for the geodetic method – even the small scales

in NMM03 will not be totally error free. For this reason the NMM03 MDT

provides an upper bound on our estimate of the GMDT error.

Figure 3a (dashed red), shows the North Atlantic mean of Eη
L with ηR

provided by the NMM03 MDT. Initially, Eη
L falls with increasing L due to

a reduction in MDT omission error. Eη
L reaches a minimum for L ≈ 110,

at which point the growth in MDT commission error begins to outweigh the

reduction in MDT omission error. If, before computing Eη
L, we first express

the reference MDT as a set of spectral coefficients and then project back into

the spatial domain with expansion to degree L (ηR → ηRL ), differences due

to MDT omission error can be largely negated (Figure 3a, solid red). In this

case, Eη
L approximates the upper bound on the MDT commission error, since
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it will also include errors in the NMM03 MDT, particularly at the largest

spatial scales where we expect the geodetic approach to be superior.

INSERT FIG 3 HERE

Figure 3b shows the equivalent differences for geostrophic current speeds:

EU
L =< UL−UR

L >, with reference current speeds, UR or UR
L , computed from

ηR (dashed red) or from ηRL (solid red). Just as for Eη
L, with UR providing the

reference, EU
L initially falls with increasing L, before rising at an increasing

rate until an almost linear rate of growth is obtained. However, the initial

drop in EU
L is much smaller than for Eη

L and the minimum point occurs for

lower L. This reflects the aforementioned shift in spectral content – both

signal and error – of UL towards shorter spatial scales. Again, with UR
L as

the reference the omission error component can be largely negated, and we

take this as an upper bound on the commission component of the geostrophic

current speed error.

Since our primary motivation here is to estimate ocean currents, for any

given L, the minimisation of EU
L can be used to determine the number of

iterations I = Imin over which the diffusive filter should be run. GMDTs ηL

were calculated for 0 < L ≤ Lmax = 250. The diffusive filter was then applied

to each ηL for 1000 iterations. The iteration minimising EU
L was then taken

as Imin, with this providing the optimally filtered MDT ηL and associated

geostrophic current speeds UL for a given L.

Having obtained the optimally filtered fields, retrospective informal er-

ror estimates can be derived according to: E
η

L =< ηL − ηL > and E
U

L =<

UL − UL > (Figure 3, dashed blue). In this case the error estimates E
∗

L are

not contaminated by errors in the NMM03 based references, but reflect the
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combined effect of the noise, removed by the filter, and any error introduced

by the filter’s attenuation of the signal. However, these estimates cannot ac-

count for MDT errors that are not removed by the filter. Thus, E
η

L and E
U

L

represent lower bounds on the MDT and geostrophic current speed commis-

sion error, plus the deleterious impact of the filter on the MDT. Correcting

for this filter-induced error, as described immediately below, in the GMDT,

and in a similar fashion for the currents, gives the true lower bounds for the

ηL and UL commission error (Figure 3, solid blue).

The negative consequence of filtering is the attenuation of the MDT gra-

dients and loss of finer scale detail which filtering causes. The diffusive filter

is specifically designed to reduce this. However, it does not eliminate it.

Clearly for a given number of filter iterations the attenuation of an MDT

will depend on its initial spectral content or resolution – how much signal

there is to lose – which depends on L. Hence, the NMM03 MDT was used

to model this filter-induced error according to: Ef
L =< ηRL − ηRL >, where ηRL

is the spectrally truncated NMM03 MDT diffusively filtered over the same

number of iterations as ηL. Ef
L will not be a perfect estimate of the filter

induced error in ηL because it will also include the error in ηRL removed by

the filter. However, this error is only a small part of what is already a small

correction to the initial lower bound error estimate.

The convergence of E∗

L and E
∗

L in Figure 3 confirms that these informal

error spectra are indeed dominated by the GMDT noise for 100 < L. Another

way of putting this is that as we move towards shorter spatial scales the

error in the NMM03 MDT is far outweighed by the noise in the GMDT;

What the filter removes from the GMDT is almost identical to the difference
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between the NMM03 MDT and the unfiltered GMDT. Moving in the opposite

direction towards larger spatial scales, however, the two error metrics diverge,

with the metric based on the NMM03 MDT approximately 2 cm larger than

the lower bound at L = 50, corresponding to spatial scales of 400 km. This is

in line with our expectation that, without employing gravity data, the errors

in the NMM03 MDT will be greater than in the GMDT at the largest spatial

scales. The analysis below confirms this to be the case.

Because the differences between the lower and upper error bounds are

due to long wavelength differences between the GOCE and NMM03 MDTs,

the difference between the two error bounds almost vanishes when current

speeds are considered. Figure 3b demonstrates that magnitude of the residual

between the currents obtained from the unfiltered GMDT and the NMM03

MDT is almost identical to the noise in the GMDT current field suppressed

by the filter. In other words, for a given truncation the difference between the

NMM03 and GMDT currents is much smaller than the amplitude of the noise

in the GMDT currents. Note also that the change due to the correction for

the filter-induced error is extremely small, which shows that the attenuation

of the currents by the filter is small in comparison to the noise removed by

the filter.

Using the error metrics Eη
L =< ηL−ηR > and EU

L =< UL−UR > (Figure

3, green), we find the point at which the reduction in MDT and current speed

omission error, resulting from increasing L, is outweighed by the deleterious

impact of the filter, which grows as the noise increases. In fact, this only just

starts to become a problem after L = 220, and so we take η
220

and U220 as

our best possible estimates of the MDT and geostrophic currents with the
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data and filtering method used (see Figure 4).

INSERT FIG 4 HERE

3.2. Assessment of the informal GMDT error

To provide as assessment of the informal error metrics derived above, we

now consider to what extent the informal GMDT errors can be accounted

for in terms of the errors in the constituent fields. Assuming these errors to

be independent, the MDT error budget can be written thus:

ση =
√

σ2

N + σ2

H , (2)

where σN is the geoid error and σH is the MSS error.

The formal geoid errors for the GTIM3 gravity model were evaluated

from the variance-covariance matrix at truncations L=10 to 250 in 10 degree

intervals as described in Appendix A. Figure 5 (cyan) shows that the area

mean formal geoid errors over the North Atlantic increase with truncation

from a few millimetres at L=10 to 15 cm at L=250.

While the CLS11 MSS is supplied with a formal error field, for our analysis

we require an estimate of MSS error as a function of L. This was obtained in

a manner analogous to the method used to obtain the informal MDT error

estimates: EH
L =< HL −HR

L >, where HR is a reference MSS. Here we use

the DTU10 MSS, which is computed from a combination of 17 years (1993–

2009) of satellite altimetry from a total of 8 satellites (Andersen and Knudsen,

2009). The North Atlantic mean of EH
L is shown in Figure 5 (magenta). At

L = 250 its value is 1.7 cm, close to the North Atlantic mean formal error of

1.9 cm (magenta square).

INSERT FIG 5 HERE
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Figure 5b compares the sum of the geoid and MSS errors (green) with

the upper (red) and lower (blue) informal estimates of GMDT error derived

above. The lower informal estimate and the error sum are in close agree-

ment. This serves as confirmation of both the GTIM3 formal error and the

retrospective informal GMDT error estimate. The difference between the

two informal GMDT error estimates is an measure of the reference MDT

(NMM03) error, which, as expected, grows with increasing spatial scale.

4. Assessment of GOCE currents

4.1. Comparison after filtering

Having obtained an optimum estimate of the MDT and associated sur-

face currents using the GOCE data and filtering method, we now compare

the results with a range of independent MDTs which use a combination of

satellite and in-situ data. In addition to the NMM03 MDT we compare the

GMDT against two further products: (i) The CLS09 MDT refers to the pe-

riod 1993–99. It uses in-situ drifter and hydrographic data together with

altimetric sea level anomaly data and information from an MDT derived

from an ocean model to refine an initial geodetic MDT estimate based on

a MSS and a GRACE geoid (Rio et al., 2011). (ii) The Maximenko et al.

(2009) MDT (MAX11 for brevity) is also a synthesis of a large-scale geodetic

MDT, derived from a GRACE geoid and a MSS, and small-scale informa-

tion provided by drifter, NCEP wind and altimetry data. MAX11 covers the

period 1992–2002 and the version used here is dated January 7, 2011. For

consistency, the MAX11 MDT is also adjusted to the 1993–99 period in the

same way as NMM03.
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INSERT FIG 6 HERE

The geostrophic surface current fields obtained from the drifter-based

MDTs (DMDTs) are shown in Figure 6 (top row) and look similar to each

other and to the GMDT. Figure 6 (bottom row) shows the differences between

GMDT and DMDTs. With the exception of the lower reaches of the Gulf

Stream, the GMDT generally gives stronger current speeds than MAX11.

Overall, the CLS09 and NMM03 DMDTs give stronger currents and resolve

more detail than the GMDT. Exceptions to this occur for the sub-polar

boundary currents which appear weaker than in the GMDT, especially for

CLS09.

INSERT TABLES 1,2,3 HERE

This first impression is confirmed by the values given in Table 1 where

we see that for the Florida Current, which marks the initiation of the Gulf

Stream (position 1), the GMDT estimate of 42 cm s−1 is much less than the

66–72 cm s−1 speeds given the DMDTs. For position 2, along the boundary

following path of the Gulf Stream, the GMDT speed of 51 cm s−1 is less

than the 62–95 cm s−1 range given by the DMDTs, while for position 3, the

GMDT speed of 61 cm s−1 exceeds the 47 cm s−1 given by MAX11, but is

15–27 cm s−1 lower than the other two DMDTs.

East of 55◦W, the strong zonal flow of the Gulf Stream breaks down

and makes its way north and then east through a series of smaller scale

structures including the Mann Eddy, which mark the beginning of the NAC.

This detail is most clearly resolved in the CLS09 and NMM03 products. In

comparison, while some of the finer-scale structure can be discerned in the

GMDT currents, it is much weaker than in either of these DMDTs. The same
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is true of the MAX11 MDT where, despite the inclusion of drifter data, the

detail is also attenuated relative to the other DMDTs. CLS09 and NMM03

give the current speed at the northern edge of the Mann Eddy (position 4) as

53 and 50 cm s−1 respectively. The speed given the GMDT is 6-9 cm s−1 less

than this, but greater than the 31 cm s−1 given by MAX11. Where the NAC

flows eastward (position 5) we find that the GMDT gives a similar current

speed (9 cm s−1) to that of the DMDTs (7-10 cm s−1).

To set these point values in context, Figure 7a shows the current speeds

along the entire northward-flowing warm path (plotted in Figure 4d as curve

intersecting circles 1–5). Downstream of location 2 the current speeds given

by the GMDT follow quite closely those of the CLS09 and NMM03 prod-

ucts, with the MAX11 currents being much weaker. The attenuation of the

finer-scale structure of the NAC relative to CLS09 and NMM03 can be seen

downstream of location 4.

Considering the section from position 1 to position 3, we find that the

GMDT has an average speed of 60 cm s−1, 68–70% of the speed given by

CLS09 and NMM03, but 110% of the MAX11 speed (see Table 2). The

average speed for the GMDT along the sections defined by positions 3 and 4

is 38 cm s−1, which is 92–99% of the speeds given by the CLS09 and NMM03

MDTS, while for the section defined by positions 4 and 5 it is 14 cm s−1,

which is 65–69% of the strength given by CLS09 and NMM03.

INSERT FIG 7 HERE

Considering next the predominately southward flowing cold route (plotted

in Figure 4d as curve intersecting circles 6–9) we find current speeds which

overall most closely resemble those given by the MAX11 MDT (see Figure
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7b). Next most similar are the CLS09 currents, with those from NMM03

being much noisier. Considering some key locations along this path, for the

East Greenland Current (position 6), the GMDT gives a current speed of 25

cm s−1, close to MAX11 (26 cm s−1) and CLS09 (22 cm s−1), but less than

the 38 cm s−1 given by NMM03. For the West Greenland Current (position

7) the GMDT current speed of 12 cm s−1 is a little greater than the 9 cm s−1

speeds given by MAX11 and CLS09, but less than the 21 cm s−1 given by

NMM03. For the Labrador current (position 8) the GMDT estimate of 28

cm s−1 is lower than the 38–45 cm s−1 range given by the DMDTs. Finally

at the southern tip of the Labrador current (position 9), while the 21 cm s−1

current speed given by the GMDT is greater than the speeds given by CLS09

(12 cm s−1) and MAX11 (20 cm s−1), it is again less than the 31 cm s−1 given

by NMM03. Considered over the entire sub-polar path, the GMDT has an

average speed of 16 cm s−1. This is somewhat greater than the average speeds

for CLS09 and MAX11, but only 87% of the speed given by NMM03.

4.2. Comparison without filtering

The optimum GMDT estimate considered thus far is determined by find-

ing the degree and order L and number of filter iterations Imin that minimise

the RMS difference with the reference MDT over the entire basin. The large

area is used to reduce the sensitivity of the filter to a particular choice of ref-

erence MDT. However, because the noise is relatively uniformly distributed

across the basin, its reduction through filtering more strongly influences the

RMS difference than the attenuation of currents which occupy a much smaller

area of the domain. Thus the final, filtered solution may not be optimum if

our concern is just the regions where the currents are strongest and where
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the signal to noise ratio is much better. Therefore, finally we consider the

current speeds along the warm and cold paths that can be obtained from the

GOCE data without filtering.

Taking the region of complex structure of the NAC as our reference, visual

inspection of Figure 2 suggests a threshold value of L ≈ 170 beyond which the

amplitude of the noise starts to exceed the amplitude of the signal. A more

quantitative assessment whereby we compute the RMS difference between

the DMDTs and the unfiltered GMDTs for L = 0, ..., 250 along the warm

and cold paths confirms L = 170 as approximately the optimum unfiltered

truncation. Figure 8 also shows that the roughness of the GMDT current

speed curve is comparable to that of the DMDTs. In fact, for the subpolar

path it is still less.

The most dramatic change is found for position 1 where the current speed

of 83 cm s−1 is now greater than the range given by the DMDTs. This shows

that the attenuation due to filtering is most severe at the initiation of the Gulf

Stream between positions 1 and 2. Following the sub-tropical path we see

that only upstream of location 2 is the unfiltered L = 170 GMDT substantial

less than CLS09 or NMM03. Downstream of this location the GMDT is very

close to CLS09 and NMM03. Without filtering, the GMDT is now 20 and 31

cm s−1 less than CLS09 and NMM03 estimates at position 2 and 7 cm s−1

less than the CLS09 at position 3. The GMDT has an average speed of 75

cm s−1 along the Gulf Stream path defined by positions 1 and 3, 86-88%

of the speeds given by CLS09 and NMM03, but substantially greater than

the MAX11 speed (see Table 3). On the northern flank of the Mann Eddy

(position 4) the GMDT estimate of 54 cm s−1 is close to the 50 cm s−1 and
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53 cm s−1 estimates of NMM03 and CLS09. Along the section, defined by

positions 3 and 4 the GMDT average speed of 42 cm s−1 is slightly greater

than the speeds given by CLS09 and NMM03 and much greater than the

speed given by MAX11. The speed of the eastward flowing NAC (position

5) is now 14 cm s−1, somewhat greater than the 7–10 cm s−1 range given by

the DMDTs, and the average speed along the section defined by positions 4

and 5 is 20 cm s−1, the same as that given by CLS09.

Along the East Greenland Current (position 6) the GMDT gives a current

speed of 32 cm s−1, greater than CLS09 (22 cm s−1) and MAX11 (26 cm s−1)

and only a little less than NMM03 (38 cm s−1). Similar relative magnitudes

are found at position 7. At position 8 on the Labrador Current the GMDT

speed (42 cm s−1) lies within the 38–45 cm s−1 range given by the DMDTs,

while at position 9 the GMDT speed (25 cm s−1) is again greater than CLS09

(12 cm s−1) and MAX11 (20 cm s−1), but less than NMM03 (31 cm s−1).The

average sub-polar current speed of 23 cm s−1 given by the GMDT is, however,

substantially greater than the average speeds given by all of the DMDTs.

The NMM03 MDT stands out as being particularly noisy along this path

suggesting errors due to the lack of in-situ data.

INSERT FIG 8 HERE

5. Concluding discussion

It is possible to use in-situ drifter data to determine a high resolution

MDT without the need for gravity data (Niiler et al., 2003). However, such

an approach is likely not reliable at large spatial scales. Therefore, in-situ

drifter data is commonly used to improve the finer-scale resolution of an
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initial geodetic MDT estimate which can be considered more accurate at large

spatial-scales (e.g. Rio et al., 2011; Maximenko et al., 2009). However, the

space/time sampling of the ocean by drifters is sparse, drifters are prone to

failure (Grodsky et al., 2011), and assumptions and corrections are required

to isolate the geostrophic component of the surface current speeds measured

by drifters. Therefore, drifters are far from an ideal way to estimate the

time-mean circulation of the ocean. Thus, with respect to the ocean, the

purpose of the GOCE mission can be thought of as being to relive as far as

is possible the reliance on drifters to provide the finer-scale structure of the

mean circulation.

The limiting factor in this endeavor is the growth in MDT noise as we

push the geodetic MDT towards higher resolution. According to the informal

estimates derived in this study the unfiltered GOCE MDT error for L =

200 ≈ 100km when averaged over the North Atlantic basin is about 5 cm,

which translates to a 15 cm s−1 current speed error. Comparison with the

formal geoid error obtained from the error covariance matrix supplied with

the GOCE geoid and an informal estimate of the CLS11 MSS error suggests

that almost all of the GMDT error is contributed by the geoid. This is

somewhat higher than the hoped for nominal mission accuracy of 1 cm at

scales of 100 km.

Although, almost all of the noise can be removed by filtering, this is at the

expense of attenuating the MDT gradients associated with the strong current

systems and finer scale structures. With the diffusive filtering method used

here this attenuation is much less than with conventional isotropic spatial

average filtering. However, it is still significant.
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To quantify the attenuation we compared the current speeds obtained

from the filtered GMDT with those from drifter-based MDTs. This compar-

ison can also be thought of as an assessment of the additional signal that is

contributed by the drifter data. In spite of the attenuation due to filtering,

the current speeds from the GOCE MDT are almost everywhere superior

to (stronger than) those obtained from the Maximenko et al. (2009) MDT,

showing the care that must be taken in combining the geodetic and in-situ

data if any benefit is to be gained from the latter. Given this relative lack

of power in the MAX11 MDT, we consider CLS09 and NMM03 as more

appropriate benchmarks against which the GMDT should be assessed.

The greatest attenuation of the filtered GMDT occurs for the Florida

Current, with the current speed nearly half that obtained from the drifter-

based products. However, this constricted and tightly curving current is

unusual. Along the main path of the Gulf Stream the filtered GMDT currents

are around 70% the strength of the currents given by NMM03 and CLS09.

In other words, assuming the full signal is present in the unfiltered GMDT

(a point we shall come back to), filtering attenuates the signal by about 30%

along the path of the Gulf Stream.

At higher latitudes, the benefits derived from using drifter data are not

as obvious. In fact, the boundary currents of the subpolar gyre are weaker in

CLS09 and MAX11 than they are in the filtered GMDT, while those obtained

from the NMM03 MDT appear incoherent along the path of the subpolar

currents. These differences between the GMDT and drifter-based MDTs may

be explained by the relative paucity of drifter data at higher latitudes and

demonstrate the importance of the denser, more uniform sampling provided
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by geodetic approach.

While the filtered GMDT solution may provide the best foundation for

a synthesis with drifter data, if our aim is just to obtain the best estimate

of the current speeds in the major current systems, then, given the better

signal to noise ratio where currents are strong, it may be more appropriate to

determine current speeds without filtering the GMDT. We find that with no

filtering, truncating the GMDT at L = 170, corresponding to a resolution of

118 km, gives the closest match to the drifter-based current speeds along the

paths of the major current systems of the North Atlantic. If we go beyond

this, any increase in signal is outweighed by the increase in noise.

Comparing the unfiltered L = 170 GMDT with CLS09 and NMM03, we

find that 86% of the Gulf Stream strength can be recovered from the geodetic

approach using the GOCE data. Without filtering, the current strength of

subpolar boundary currents are much stronger than those given by the CLS09

and MAX11 MDTS and are comparable or larger than those given by the

NMM03 MDT, while still remaining much smoother. The error analysis

allows us to assign an error of 9 cm s−1 to the unfiltered currents at L = 170.

In summary, our analysis shows that using GOCE we can come close

to capturing the full resolution of the ocean’s steady-state circulation. The

limiting factor is still filtering which attenuates the gradients associated with

strong currents and finer-scale features. If drifter data is to be combined with

a geodetic GOCE MDT then its contribution will be primarily to restore the

signal lost by filtering. As the attenuation is related to the degree of filtering

required, which, in turn, is dependent on geoid commission error, this error

component should diminish as more GOCE data are collected and the geoid
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error is reduced. But even with just one year of observations in many regions

GOCE improves upon what can be achieved with GRACE and drifter data.

Appendix A. Error propagation

The full error variance-covariance matrices for each gravity model are pro-

vided to the user community by the HPF (Pail et al. (2011); obtained from

http://eo-virtual-archive1.esa.int/). Ultimately we are concerned to see how

these formal errors are expressed in the MDT. To achieve this we must express

the gravity field errors in terms of geoid error. To do this we use the error

propagation tools developed by Balmino (2009). (The error propagation tools

described in Balmino (2009) are obtained from https://earth.esa.int/web/guest/software-

tools.)

The theoretical description of the error propagation performed by the

covhsmp routine to obtain the geoid error field is as follows: Let the gridded

geoid be given by

N(λ, θ) = YTX, (3)

where λ is longitude and θ is geocentric latitude and

X = {Clm;Slm} (4)

are the spherical harmonic coefficients of degree l and order m of the earth

gravity model, and

Y = {flmPlm(sin θ) cosmλ; flmPlm(sin θ) sinmλ} (5)

are the usual spherical harmonic functions with

flm =
GM

rγ

(

R

r

)l

(6)
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where GM is Earth’s gravitational mass constant, R is Earth’s mean radius,

γ is normal gravity at the computation point and r is radial distance. Then

the corresponding error variance field is given by:

σ2

N (λ, θ) = YTΓY, (7)

where Γ is the variance-covariance matrix of the GTIM3 gravity model with

ordering consistent with Y.
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Table 1: Current speeds (cm s−1) at nine locations marked in Figure 4.

MDT 1 2 3 4 5 6 7 8 9

GMDT (d/o=220; no filter) 147 79 60 68 6 64 20 62 44

GMDT (d/o=220; filtered) 42 51 61 44 9 25 12 28 21

GMDT (d/o=170; no filter) 83 64 81 54 14 32 15 42 25

CLS09 72 84 88 53 9 22 9 38 12

MAX11 66 62 47 31 7 26 9 45 20

NMM03 68 95 76 50 10 38 21 41 31

Table 2: Average d/o=220 filtered GMDT current speeds along sections with end-points

marked in Figure 4. GMDT current speeds in cm s−1 and expressed in percent of drifter-

based MDT current speeds.

MDT 1–3 3–4 4–5 6–9

GMDT (cm s−1) 60 38 14 16

CLS09 (%) 70 92 69 104

MAX11 (%) 110 140 98 108

NMM03 (%) 68 99 65 87

Table 3: Average d/o=170 unfiltered GMDT current speeds along sections with end-

points marked in Figure 4. GMDT current speeds in cm s−1 and expressed in percent of

drifter-based MDT current speeds.

MDT 1–3 3–4 4–5 6–9

GMDT (cm s−1) 75 42 20 23

CLS09 (%) 88 101 100 153

MAX11 (%) 138 154 144 159

NMM03 (%) 86 109 94 128
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Figure 1: The mean dynamic topography (MDT) of the North Atlantic, based on the

CLS01 mean sea surface and the 3rd generation GOCE time-wise gravity model, with

truncations of the spherical harmonic expansion of the MDT ranging from L = 30 to 250

in intervals of 20.
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Figure 2: The mean geostrophic surface current speeds of the North Atlantic, obtained

from the MDTs shown in Fig. 1
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Figure 3: (a) Informal mean dynamic topography (MDT) error estimates (as described in

text): Full MDT error (red dashed), upper bound on MDT commission error (red), lower

bound on MDT commission error plus filter induced error (blue dashed), lower bound on

MDT commission error (blue), and the full error for the optimally filtered MDT (green).(b)

Repeating (a) for geostrophic current speeds.
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Figure 4: (a,b) The GOCE MDT for L = 220, and associated geostrophic surface current

speed field. (c,d) The optimally filtered GOCE MDT for L = 220, and associated current

field. (e,f) The difference between the filtered and unfiltered fields, i.e. what the filter

removes.
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Figure 5: (a) North Atlantic mean formal errors for the geoid obtained from the third

GOCE timewise gravity model (cyan). An informal estimate of the CLS11 MSS error

based on the RMS difference between it and the DTU10 MSS (magenta). The area mean

over the North Atlantic of the supplied CLS11 formal error field is marked by the solid

square. (b) Upper (red) and lower (blue) bounds on the GMDT commission error (repeated

from Figure 3a). The quadratic sum of the geoid and MSS errors (green).
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Figure 6: North Atlantic geostrophic surface current speeds obtained from the (a) CLS09

MDT, (b) the MAX11 MDT and (c) The NMM03 MDT. (d–f) The residual upon sub-

tracting the GOCE MDT from the drifter-based MDTs.
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Figure 7: (a) Current speeds along the warm path marked in Figure 4d with current

speeds given by the GOCE MDT shown in Figure 4d (black), the CLS09 MDT (yellow),

the MAX11 MDT (magenta) and the NMM03 MDT (cyan). (b) Repeating (a) but for the

cold sub-polar path marked in Figure 4d. The vertical lines correspond to the positions

marked on Figure 4d.

34



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cu
rr

en
t s

pe
ed

 [m
/s

]

0 1000 2000 3000 4000 5000 6000 7000 8000

distance [km]

1 2 3 4 5(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cu
rr

en
t s

pe
ed

 [m
/s

]

0 1000 2000 3000 4000 5000 6000

distance [km]

6 7 8 9(b)

Figure 8: (a) Current speeds along the warm path marked in Figure 4d with current speeds

given by the unfiltered L = 170 GOCE MDT shown in Figure 2h (black), the CLS09 MDT

(yellow), the MAX11 MDT (magenta) and the NMM03 MDT (cyan). (b) Repeating (a)

but for the cold sub-polar path marked in Figure 4d. The vertical lines correspond to the

positions marked on Figure 4d.
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