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Abstract

Recent development has identified the benefits of using hyper-temporal satel-
lite time series data for land cover change detection and classification in South
Africa. In particular, the monitoring of human settlement expansion in the
Limpopo province is of relevance as it is the one of the most pervasive forms
of land-cover change in this province which covers an area of roughly 125
000km2. In this paper, a spatio-temporal autocorrelation change detection
(STACD) method is developed to improve the performance of a pixel based
temporal Autocorrelation change detection (TACD) method previously pro-
posed. The objective is to apply the algorithm to large areas to detect the
conversion of natural vegetation to settlement which is then validated by
an operator using additional data (such as high resolution imagery). Im-
portantly, as the objective of the method is to indicate areas of potential
change to operators for further analysis, a low false alarm rate is required
while achieving an acceptable probability of detection. Results indicate that
detection accuracies of 70% of new settlement instances are achievable at a
false alarm rate of less than 1% with the STACD method, an improvement
of up to 17% compared to the original TACD formulation.
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1. Introduction

The most pervasive form of land-cover change in South Africa and many
other developing countries around the world is human settlement expansion.
In many cases, new human settlements as well as existing settlements expand
informally and these expansions occur in areas that were previously covered
by natural vegetation. Informal or unplanned settlements usually are formed
as people move closer to employment opportunities, or in response to envi-
ronmental and/or market forces. These settlements occur in various locations
and often lack basic services such as electricity, running-water, water-borne
sewage and refuse removal. The spatial layout is often unplanned and infor-
mally developed by the inhabitants of the settlements themselves [1]. Figure 1
shows an informal settlement in the Limpopo province of South Africa which
developed between the years 2003 and 2009 in an area that was initially
mostly covered by natural vegetation. The development of these settlements
need to be detected so that they can be mapped in detail and accommodated
during planning sessions undertaken by regional and local government.

Detailed mapping of settlements are usually done by analysts digitizing fea-
tures from aerial photography or high resolution satellite images at 1:10 000
scale. The feature data sets need to be updated regularly (at least every two
years) to support spatial planning, especially where it concerns new settle-
ments. Updating maps over large areas using manual photo-interpretation
to scan the entire area is slow and costly. Due to constraints in cost and
resources experienced by most mapping agencies, feature datasets can be
up to a decade old, while only a small percentage of the area actually ex-
perienced change. Methods that can rapidly indicate areas having a high
probability of change is thus very valuable to analyst as this can be used to
direct their attention to high probability change areas for further evaluation
using, for example, higher resolution imagery of the area. By using such a
targeted approach, an increase in mapping efficiency of up to ten times has
been observed compared to a complete re-extraction [2]. We therefore focus
on the development of automated change detection methods based on hyper-
temporal satellite imagery to ultimately try to improve the productivity of
detailed mapping efforts.
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Satellite time series data has proven to be an effective data source for change
detection [3, 4, 5, 6] and in particular, time series analyses of hyper-temporal
satellite data has been successfully applied for land cover change detection in
South Africa specifically related to the monitoring of human settlement ex-
pansion. In [7], a Neural network based post classification change detection
approach was used to detect when land cover conversion takes place from
natural vegetation to settlement classes. In [8], MODIS time-series data was
modeled as a triply modulated cosine function and an Extended Kalman fil-
ter was used to track the parameters of the model and declare change based
on parameter behavior. In [9], the use of Page’s cumulative sum (CUSUM)
test was proposed as a method to detect new settlement. It should be noted
that these aforementioned methods make limited use of spatial information
and are predominantly pixel based.

An autocorrelation function (ACF) change detection method was recently
demonstrated to detect the development of new human settlements in South
Africa [10]. This method uses MODIS time-series data, which have previ-
ously been shown to be separable (distinguishable) for the natural vegetation
and settlement land cover classes considered in this study [11]. The method
uses the ACF of a MODIS time-series to provide an indication of the level of
time-series stationarity (by considering the stability of the time-series mean
and variance over time) which is then consequently used as a measure of land
cover change.

In the original formulation of the ACF approach [10], a single pixel’s en-
tire time-series for a single band (spanning eight years) was used as input.
A change metric was then calculated by considering the properties of the
ACF of the time-series. When the resulting change index was compared to
a threshold value, a per-pixel based change alarm resulted. In this paper,
the aforementioned method is extended to incorporate spatial information
by not only considering the change index for a single pixel but also that
of its surrounding pixels to determine whether a change should be declared.
The proposed Spatio Temporal ACF change detection (STACD) method uses
temporal only ACF change metrics as calculated using the approach in [10]
on a per pixel basis and compares this temporal ACF change index with that
of pixels in its neighborhood to increase performance. It is important to note
that, the method is adapted to be able to easily incorporate multiple MODIS
bands. The idea behind the Spatio-Temporal extension to the classic ACF
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change detection method is that when a single threshold is used over a large
area (as was done in [10]) there will inevitably be areas that are more non-
stationary due to, for example, drought in arid areas, large scale commercial
agriculture, etc. This will result in large areas showing up as change in re-
gional maps that are not necessarily the type of anthropogenic changes that
are of interest. The spatio-temporal extension to the ACF change detection
method mitigate these changes by considering the change properties of the
pixel neighborhood.

The objective of this paper is to develop a robust change detection method
that is able to detect the formation of new informal settlements in areas that
are typically covered by diverse natural vegetation. The detected changes
should then be used to alert operators to areas of possible changes which
could thereafter be validated, and the necessary maps updated, using high
resolution imagery. Although the false alarm rate of the method can be set to
any percentage depending on the requirement of the operator, in our use case
the false alarm rate requirement was very low (< 1%) as the area on which
the change algorithm is run is large and the validation of a large number of
false alarms could be very costly and time consuming.

2. Data Description

2.1. MODIS data

The time series data used in this study was derived from MODIS data.
The MODIS instrument data are converted systematically into terrestrial,
atmospheric and oceanic products. The first seven bands (covering spectral
bands in the visible, near infrared and shortwave infrared range [12]) are
typically used for land applications and are often referred to as the MODIS
land bands. The specific land product that was used was the MCD43A4
product [13]. This specific product have been used in various land cover
change detection applications [7, 8, 9] and is produced using data acquired
from the MODIS sensor on-board the Aqua and Terra satellites and provides
one composited sample (consisting of 16 days of acquisition) every 8 days.
This product has a spatial resolution of 500m and is BRDF-corrected. The
time period that was considered is 2001/01 to 2008/01 resulting in a time-
series containing 315 MODIS observations. Quality Control (QC) flags where
not explicitly used in the preprocessing of the time series data but it should be
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noted that the study area that was considered does not have prolonged time-
periods of cloud cover which results in the data not containing significant
missing values (typically less than 4% of samples). In the rare occurrence
of missing values, cubic spline interpolation was used to infer these missing
values [14].

2.2. Study Area

The study area is located in northern South Africa and is mostly covered by
natural vegetation which predominantly consist of grassland, savanna and
shrub-land. A large number of informal settlements are however rapidly
expanding throughout the area. The study area covers an approximate 25000
km2 having an upper left coordinate of (23◦20′12.09′′S ; 28◦35′25.18′′E) and
a lower right coordinate of (25◦00′14.59′′S ; 30◦06′58.30′′E). A total of 1497
examples of natural vegetation 500m MODIS pixels were identified within the
study area. Each of these pixels were evaluated using SPOT5 high resolution
data to ensure that none of them have experienced any land cover change
during the study period. Examples of confirmed settlement developments
(i.e. change from natural vegetation to settlement) were obtained by means
of visual interpretation of high resolution Landsat and SPOT images in 2000
and 2008 respectively. All settlements identified in 2008 were referenced back
to the same physical area in 2000 and all the new settlement polygons were
mapped. A total of 30 occurrences of settlement development were identified
and the corresponding MODIS pixels (n=117 ) were so identified. At least
70% of the total area within a pixel had to have changed for inclusion into
the change dataset. Figure 2 shows the location of the Limpopo province as
well as the ground truth pixels used in the study.

3. Methodology

3.1. Temporal ACF Change detection (TACD) method

The Temporal ACF change detection (TACD) method proposed in [10]
uses a two stage approach. Firstly, the band, lag and threshold selection is
done using a simulated change dataset together with a no-change dataset.
Second, the aforementioned parameters are used in an unsupervised manner
to detect change. Assume that a MODIS time-series is expressed as

X = {Xn}n=Tn=1 , (1)
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where Xn is the observation from an arbitrary spectral band at time n and T
is the number of time-series observations available. The ACF for time-series
X can then be expressed as

R(τ) =
E[(Xn − µ)(Xn+τ − µ)]

var(X)
, (2)

where τ is the time-lag and E denotes the expectation. The mean of X is
given as µ and the variance, which is used for normalization, is defined as
var(X). The mean and variance of the time-series of X in (2) is required
to remain constant through time to determine the true ACF of the time-
series. The inconsistency of the mean and variance typically associated with
a change pixel’s non-stationary time-series becomes apparent when analyzing
the ACF of the time-series. An example of this is shown in figure 3, where
MODIS band 1, 3 and 4 time-series is shown for a change and no-change
pixel together with their corresponding ACF. The change metric was defined
in [10] as the temporal correlation at a specific lag (τ) given as

R(τ) = δτ . (3)

Using a change threshold (δ∗τ ), a change or no-change decision was made
as

Change =

{
true if R(τ) ≥ δ∗τ
false if R(τ) < δ∗τ

The value of τ as well the threshold value (δ∗τ ) was determined by using sim-
ulated change and no-change datasets after which the resulting parameters
were used to run the algorithm in an unsupervised manner for the entire
study area [10].

3.2. Spatio Temporal ACF change detection (STACD) method

An important note on the TACD method is that although any band can
be used by the method, the method is not inherently adaptable to multi-
band data. Second, the method only uses a single time series (using one of
the MODIS spectral bands) for each pixel as input and outputs a change /
no-change decision, thus only using information related to a single pixel as in-
put and not utilizing any spatial information. Some natural vegetation types
are more stationary than others on intra-annual / seasonal and inter-annual
basis. The diverse regional distribution of this background stationarity may
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thus result in false alarms if a single threshold was applied to the change met-
ric for an entire region on a per-pixel basis and no spatial context is used.
Third, the TACD method requires the use of simulated change to determine
the autocorrelation lag (τ value in (3)), which is an additional parameter
that needs to be estimated and could potentially have a negative effect on
the accuracy if not estimated correctly.

In this section, an extension to the TACD is proposed to address the afore-
mentioned shortcomings. First, a modification to the change index value (as
given in (3)) is made as

δbx,y =
k∑
τ=1

R(τ, x, y, b) =
k∑
τ=1

E[(Xx,y,b
n − µ)(Xx,y,b

n+τ − µ)]

var(X)
, (4)

Where b is the MODIS band, Xx,y,b is the time-series of band b at pixel
location (x,y), τ is the ACF lag and k is the total number of lags to be
summed. From (4) it is evident that the new change metric uses a summa-
tion of the first k lags of R(τ). By using the summation, the method is not
as sensitive to the selection of a specific value of τ . The specific value of k
was calculated by sweeping all possible values of k and evaluating the overall
accuracy. It was found that adding more than 23 lags did not increase the
overall accuracy. Consequently a value of k = 23 was used in this study. It
was found that there was only a marginal reduction in accuracy compared
to the case where the value of τ is explicitly specified. The k value was fixed
and the same value was used throughout the study. This implied that the
specific value of τ no longer needed to be estimated, thus making the method
more general. A new change index which incorporates both spatial as well
as multiple spectral bands was then formulated as follows:

Consider a neighborhood of pixels around a pixel located at position (x, y)
with radius N as

Xb
N,x,y =

 δ
(b)
(x−N)(y−N) ... δ

(b)
(x+N)(y−N)

... δ
(b)
xy

...

δ
(b)
(x−N)(y+N) ... δ

(b)
(x+N)(y+N)

 , (5)

where δ
(b)
xy is the change index as calculated in (4) for band b pixel (x, y). A
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new change metric (γx,y) is proposed that first calculates the mean value of
Xb
N,x,y (excluding the center pixel) as

sx,y,b =

∑
Xb
N,x,y − δ

(b)
xy

(2N + 1)2 − 1
, (6)

and then calculates the Euclidean distance between the center pixel and mean
value

γx,y =

√∑
b

(δ
(b)
xy − sx,y,b)2. (7)

The new change metric (γx,y) is thus a Euclidean distance in multidi-
mensional space between the mean change metric for all the pixels in the
neighborhood and the center pixel. Thus, when a neighborhood of pixels are
inherently non-stationary, the average change index for all pixels in the neigh-
borhood will subsequently also be high and the calculated Euclidean distance
change index will in effect be normalized with reference to the neighborhood.
This spatial adaptation allows locally adaptive scaling so that settlement ex-
pansion (or other anthropogenic land cover transformations), are highlighted
relative to the natural change the larger region may be experiencing. This
results in a much more robust framework with a reduced false alarm rate com-
pared to the original formulation that did not consider spatial information.
It follows that, when comparing the change metric (γx,y) with a threshold
value, large areas of change that are not typical for the change relevant in
this study, will have a reduced Euclidean distance and therefore a smaller
chance of being declared as change. Figure 4 shows a scatter plot and distri-
bution heat-map of Xb

N,x,y for b = {3, 4} and N = 15. The center pixel δxy
corresponds to the change pixel time-series shown in figure 3. It can be seen
that there is a significant distance between δxy and the mean of the majority
of the change index values.

4. Results

The evaluation that was done on the results of the method was done in
relation to the Change detection accuracy (CDA) (defined in this study as
the percentage of known change pixels detected as change) as well as the
false alarm rate (defined in this study as the percentage of known unchanged
pixels detected as change). The accuracy assessment was done using ground
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Table 1: Change Detection Accuracy (CDA), False Alarm Rate (FAR) and overall accuracy
(OA) results for the temporal ACF Change detection (TACD) algorithm given for each of
the MODIS bands. The number of pixels (n) used in the change dataset as well as the
no-change dataset is also given in the CDA and FAR column respectively.

Band
CDA

(n = 117)
FAR

(n = 1497)
OA

1 34% 1% 67%

2 6% 1% 52%

3 33% 1% 66%

4 33% 1% 66%

5 4% 1% 52%

6 9% 1% 54%

7 13% 1% 56%

Table 2: Spatio-Temporal ACF Change detection (STACD) algorithm’s Change De-
tection Accuracy (CDA) (n = 117) as a function of the value of neighborhood size
(N = {3, 5, 10, 15, 20}) at a False Alarm rate of 1% (n = 1497). Overall accuracy in
each instance is given in brackets.

Band N=3 N=5 N=10 N=15 N=20

1 44% (72%) 50% (75%) 51% (75%) 47% (73%) 44% (72%)

2 9% (54%) 9% (54%) 9% (54%) 9% (54%) 9% (54%)

3 41% (70%) 43% (71%) 39% (69%) 32% (66%) 29% (64%)

4 39% (69%) 39% (69%) 42% (71%) 39% (69%) 36% (68%)

5 14% (57%) 13% (56%) 14% (57%) 12% (56%) 12% (56%)

6 18% (59%) 19% (59%) 15% (57%) 16% (58%) 17% (58%)

7 31% (65%) 29% (64%) 28% (64%) 23% (61%) 21% (60%)

9



truth dataset with a spatial distribution over the Limpopo province shown
in figure 2. As the requirement is to have a False alarm rate less than 1%,
the change detection accuracy at a 1% False alarm rate was considered. The
results for both the TACD method as well as the STACD method is presented
in tables 1 and 2. In table 2 the neighborhood size parameter (N) was varied
between 3 and 20. It is clear that the inclusion of spatial information has
improved the CDA for each of the MODIS bands regardless of the value of
N . The maximum CDA was achieved using band 1 with a value of N = 10.
Multiple band combinations as well as vegetation indices including NDVI and
EVI where also considered, but it was found that no significant improvement
was achievable over that of using only band 1. Band 1 is the Red band in
the visible spectrum range 620-670nm and is known to be very sensitive to
changes in vegetation. This is not to say that band 1 will always perform
better, but only that for our specific land cover conversion case (natural
vegetation being converted to human settlement) and study area, using only
band 1 gave the best results. As land cover heterogeneity and land cover
type and change dynamics will vary significantly between applications, it is
advised that different values of N as well as various band combinations be
considered when applying the algorithm to different scenarios. It is clear that
the STACD algorithm has a better performance for the Limpopo dataset with
an improved overall CDA accuracy of nearly 17% compared to the best result
using the original TACD formulation when considering a false alarm rate of
< 1%. This also compared well to NDVI differencing [4] which achieved a
32% CDA at the same false alarm rate in this study area. At first glance
a 51% change detection accuracy could be regarded as being relatively low
but it should be noted that this figure should be seen in context of the the
low false alarm rate (1%) (overall accuracy of 75%), which is nearly a 10%
improvement compared to the original method (table 1).

In addition, new informal settlements very often affect a group of con-
tiguous pixels and even if only one of these pixels are declared as change,
an operator would be alerted and the surrounding area would be analyzed
using high resolution imagery. Figure 5 shows the distribution of the number
of MODIS pixel contained in each of the 30 settlement polygons identified.
It was found that more than 73% of new or expanding settlements affected
more than one MODIS pixel, thus increasing the probability of detection of
the new settlement instance. To illustrate this point, the combination giving
the best result (as shown in table 2) with b = 1 and N = 10 was applied
over the entire study area, the pixels identified as change by the method was
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compared to the confirmed settlement polygons in the test dataset. It was
found that 70% of the settlements in the test dataset were found to have at
least one MODIS pixel indicated as having changed and was correctly iden-
tified by the method as a new or expanding settlement instance (1% false
alarm rate and overall accuracy of 85%). Figure 6 shows an example of an
informal settlement expansion with a size of approximately 6 MODIS pixels
that occurred in the Limpopo province between 2005 (top image) and 2008
(bottom image). The known change polygon (shown in blue), is the total
extent of the change whereas the detected change (shown in red) is the pixels
detected as change by the algorithm. Even though three of the pixels (50%)
were not flagged by the method as having changed, it is clear to an operator
investigating this scene that a change has occurred and that this settlement
expansion instance has successfully been identified.

It should also be noted that, traditionally, spatial temporal methods can
be extremely time consuming and do not scale particularly well when ex-
tended regionally, for this reason the method propose in this paper used a
computationally efficient two step approach. Firstly the ACF change index
is calculated for all pixels in the area of interest, this involves simply comput-
ing the ACF of each time series and computing the sum over the first k lags
(equation )). The second step uses a sliding window (based on the window
size N) over each of the pixels and calculating the mean of the neighborhood
and euclidean distance from the pixel in question to that calculated mean.
The low computational complexity of steps one and two allows the method
to be very scalable and allows the method to be applied to large areas.

5. Conclusion

In this paper, an extension is proposed to the temporal autocorrelation
change detection (TACD)method proposed in [10]. The original formulation
is a threshold based change alarm that uses an ACF of a time-series to infer
a change index. The method proposed in this paper is an extension to the
aforementioned which utilizes spatial context to detect the formation of new
informal settlements in areas that are typically covered by diverse natural
vegetation. This change detection framework is intended to be used as a
tool to alert operators to areas of possible changes between two dates which
could then be validated using a secondary step (such as the use of high
resolution imagery). As the algorithm is intended to be run over potentially
very large areas (regional scale), a primary objective was to ensure that
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a very low false alarm rate should be maintained. It was shown that the
addition of spatial information enabled a much lower false alarm rate (<
1%) to be achieved while detecting 70% of the new or expanding settlements
in the study area. As mentioned previously, one of our major considerations
was to have a very low false alarm rate, as the requirement of a low false
alarm rate is critical in the manual validation of rapidly detected change
areas (i.e when running the method over large areas containing hundreds of
thousands of pixels, the difference between a false alarm rate of only a few
percent could result in hundreds of false alarms that would then have to be
manually validated by an operator which could take a significant amount
of time). By having a constraint on the false alarm that can be tolerated
by an operator (in our case 1%), we calculated the corresponding threshold
at a 1% false alarm rate using a no-change dataset. The implication of
this in an operational environment is that when selecting a threshold value,
only the false alarm rate requirement needs to be specified together with
an example dataset of no-change examples only which are typically easy to
obtain as most areas do not change significantly over time. Although specific
change date information is not provided, this algorithm could still be used
effectively to rapidly determine areas of high change probability between two
dates. An example would be mapping agencies wanting to update maps
between mapping intervals. Although the spatio-temporal autocorrelation
change detection (STACD) algorithm has only been tested for the case of
new or expanding settlement detection the Limpopo province (located in
the most northern part of South Africa), the method can easily be applied
regionally and has been applied across the entire South Africa and is in
the process of being accessed by the official mapping agency (NGI) using
aerial maps. Results of this national validation will be reported in future
publications
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Figure 1: Example of a new settlement development in the Limpopo province of South
Africa. QuickBird image on the left shows the area being mostly covered by natural vege-
tation in 2003, whereas the Quickbird image on the right shows a new informal settlement
in 2009 (courtesy of GoogleTMEarth). The red polygons show the footprint of three 500m
× 500m MODIS pixels.

South Africa
Limpopo 

Figure 2: Provincial map of South Africa showing the location of the the Limpopo province
(left). Zoom in of the Limpopo province showing the ground truth pixels used in this
study are shown on the right. The area corresponding to the example shown in figure 1 is
indicated with the blue circle.
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Figure 3: MODIS band 1,3 and 4 time-series for a pixel that undergone change (top-left)
and no-change (bottom left) respectively. The ACF of the change time-series (top right)
and no-change time-series (bottom right) is also shown.
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Figure 4: Example of the change index values for band 3 (δ3) vs. band 4 (δ4) for a
neighborhood of N = 15 pixels (total of 225 pixels) around the center pixel. This example
shows a center pixel (x, y) undergoing a high degree of change corresponding to the change
time-series shown in Figure 3 .The image on the left shows a scatter plot of δ3 vs. δ4 and
the image on the right shows the corresponding distribution heat-map.

Figure 5: Distribution of the settlement sizes (given as the number of MODIS pixels) of
the test dataset.
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Figure 6: Example of informal settlement expansion in the Limpopo province between 2005
(top image) and 2008 (bottom image). Ground truth information indicate that 6 MODIS
pixels (pixels 1-6) were affected by this change. The blue polygons (pixels 1,2 and 6)
were not detected as change by the proposed detection algorithm where the red polygons
(pixels 3,4 and 5) were detected as having changed. It can be seen that even though
only half of the change pixels were detected (i.e detection accuracy of 50%), this new
settlement instance was detected and could consequently be mapped with high precision
by an operator using high resolution imagery over the area (courtesy of GoogleTMEarth).
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