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Abstract. Woody canopy cover (CC) is the simplest two dimensional metric for assessing the 

presence of the woody component in savannahs, but detailed validated maps are not currently 

available in southern African savannahs. A number of international EO programs (including in 

savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide 

mapping of woody canopy cover. However, previous research has shown that L-band Synthetic 

Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern 

African savannahs.  This study’s objective was to evaluate, compare and use in combination L-

band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits 

of using LandSAT compared to ALOS PALSAR.  Additional objectives saw the testing of LandSAT-
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5 image seasonality, spectral vegetation indices and image textures for improved CC modelling.  

Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded 

the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the 

year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 

and 0.72).  The derivation of spectral vegetation indices and image textures and their 

combinations with optical reflectance bands provided minimal improvement with no optical-

only result exceeding the winter SAR L-band backscatter alone results (R2 of ~0.8).  The 

integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV 

backscatter data does provide a significant improvement for CC modelling at the higher end of 

the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based 

CC modelling be recommended for South African regions.  

 

Keywords: Woody canopy cover, SAR, LandSAT-5, textures, spectral vegetation indices, 

Random Forest 

 

1 Introduction  

Savannahs are mixed tree-grass communities which cover half of the African continent and one 

fifth of the global land surface1.  The woody component has considerable impact on natural 

and anthropogenic processes, for instance on the fire regime, biomass production, nutrient 

cycling, soil erosion and the water cycle2 while providing numerous ecosystem resources, such 

as fuelwood, building material and non-timber products3.  At regional scale, the quantification 

of carbon captured in woody plants plays an important role in understanding the global carbon 
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cycle and fluxes between sinks and sources4.  Monitoring regional woody resources is essential 

to its sustainable management, which are threatened by deforestation or degradation (e.g. 

fuelwood extraction), but also by bush encroachment 5,6.  

The woody component can be represented by a variety of structural parameters such as 

height, fractional cover, above ground biomass, basal area or canopy volume.  Woody canopy 

cover is the simplest two dimensional metric for quantifying the woody component. It can be 

defined as the percent area vertically projected on a horizontal plane by woody plant 

canopies7, and is often referred to as fractional canopy cover (CC hereafter).  In heterogeneous 

Southern African savannahs, CC varies considerably across structural classes, e.g. from tall 

closed forests to short closed, bush encroached shrubs to sparsely distributed tall trees with a 

short shrub understory8. In South Africa and southern Africa there is no locally calibrated and 

validated detailed (<1ha) maps of CC, despite it being recognised as an essential biodiversity 

variable9. 

Remote sensing is the most appropriate tool for assessing woody structure across large 

areas.  This is due to its ability to sense the high spatio-temporal variability, species diversity 

and phenological status, over large geographical scales – a defining but challenging set of 

characteristics typical of African Savannahs10. Synthetic Aperture Radar (SAR) sensors are 

particularly suited and extensively used for woody structural mapping, because of their 

capacity to capture within-canopy properties11,12-13, and lack of sensitivity to cloudy or hazy 

conditions.  A combination of polarisation (e.g. Horizontal-Vertical or HV polarisation), 

scattering interactions (e.g. volumetric scattering), wavelength and dielectric constant of the 

vegetation permits such an interaction by SAR backscatter. In terms of wavelength, the longer 

L-band (15 to 30cm) has been proven to be most effective both in forests and savannahs14,15,16, 
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because L-band microwaves can penetrate deeper into the vegetation and interact with the 

main branches and trunks16.  X-band was considered the least effective for predicting CC in 

savannahs15 while C-band did yield positive results15,17 though not as effective as L-band data. 

Although not known to be adept in sensing three dimensional vegetation structure (e.g. 

aboveground biomass), multi-spectral optical sensors are well suited for mapping two 

dimensional structure such as canopy cover at various spatial scales in tropical forests, 

savannahs, and shrublands/grasslands19,21,22.  While the SAR technology senses the canopy 

geometry, the mapping of canopy cover with optical sensors relies mostly on the contrast 

between the “greenness” of tree canopies and the background with the absorption peaks of 

the red and reflectance peaks of the green channels playing a big role in detecting this 

chlorophyll related “greenness”. Thus, identifying the time period during the annual vegetation 

cycle at which a maximum contrast is achieved between green tree canopy and dry grass is 

important23.  In addition, textural image products, which provide information regarding the 

local variance, can be used as a measure of the canopy roughness, gaps, and associated 

shadow.  Optical sensor technologies - mostly LandSAT-based - have been adopted into 

successful national programmes for monitoring woody canopy cover changes.  These include 

the Australian Statewide Landcover and Trees Study (SLATS)21, the Australian National Carbon 

Accounting System – Land Cover Change Program (NCAS-LCCP)20, the LandSAT Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) for monitoring North American forest 

disturbance25, and the Amazon Deforestation Monitoring Project (PRODES)18.  Such monitoring 

programme is not yet in place for the savannahs of Southern Africa.  Techniques, generally 

ranging from parametric methods (e.g. multi-linear regression17,21) to the more specialized such 

as non-parametric machine learning algorithms15,21,47 (e.g. decision trees) and linear and non-
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linear spectral unmixing19,49, of coarser optical pixels, have been implemented for extracting 

fractional canopy cover at the regional scale.  

Given the sensitivity of optical sensors to photosynthetically active vegetation and the 

sensitivity of SAR backscatter to vegetation structure, their possible integration may yield 

improved woody structure estimates via the provision of complementary information which 

neither sensor type could provide alone.  The integration of SAR and optical technologies has 

been successfully applied in previous studies26,27,47 in dense forested environments, savannahs 

and plantations.  None of these studies has taken into account the effects of phenology on 

optical imagery, especially in savannah environments with complex tree and grass phenological 

seasonal changes.  With this in mind and to support the development of a national system for 

monitoring CC in South African savannahs, the objective of this study was to evaluate how well 

CC could be retrieved, at the 30m spatial resolution, using multi-temporal datasets of SAR (L-

band ALOS PALSAR) and optical (LandSAT-5 TM) sensor data, both independently and in 

combination.  There were two main sets of research questions.  The first set of questions 

focused on how the accuracy of CC predictions compared when using LandSAT versus L-band 

dual-polarised SAR input data, whether the integration of additional optical predictor features 

(e.g. textures and vegetation indices) or the integration of optical LandSAT and L-band SAR data 

produced any noticeable improvements in CC modelled predictions.  The second research 

question sought to ascertain the season(s) in which LandSAT-5 data predicted CC with the 

highest accuracies.  This question is related to the fact that savannah vegetation undergoes 

distinct seasonal phenological changes during which the green fractional cover of grasses and 

woody plants varies considerably10.  We hypothesized that the season when trees are 

completely covered in green foliage, while grasses are dry (Autumn/Spring), should be the best 
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period to retrieve CC.  The identification of phenologically optimised optical imagery may 

improve CC estimation, when integrated with SAR data. CC derived from very high resolution 

airborne LiDAR data were used as training and validation of the models. 

  

2 Study Area 

The region under study includes the southern portion of the Greater Kruger National Park 

Region, South Africa [23° 39’S to 25° 19’S, 30° 57’E to 32° 11’E].  This region consists of 

communal rangelands (Bushbuckridge Municipality District), private game reserves (Sabi Sands) 

and national or provincial parks (southern Kruger National Park, Andover) (Figure 1).  The 

 

Fig. 1. The Southern Kruger National Park study area and coverage of remote sensing datasets. 
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region covers an extensive range of geologies (e.g. granite, basalt, gabbro), vegetation types 

(Clay Thorn Bushveld, Mixed Bushveld, Sweet Lowveld Bushveld and Open Grassland29), rainfall 

(mean annual precipitation of 1200mm in the west to 550mm in the east), management 

regimes (communal and protected) and disturbance regimes (fire, elephant damage, grazing 

and browsing patterns of herbivores, fuelwood harvesting).  The general topography is flat to 

gently undulating with an average elevation of 400m42. The area undergoes short, dry winters 

and possesses a wet season (convective rainfall) with an annual rainfall between 235mm to 

1000mm.  Temperatures are mild (average of 22°C) with no occurrence of frost. 

 

3 Materials and Methodology 

3.1 Remote Sensing Data 

HH/HV ALOS PALSAR L-band intensity scenes and multi-seasonal LandSAT-5 (bands 1-5, 7) 

scenes were collected.  The L-band imagery (2 images for each year) was acquired in winter 

(25th of August and 23rd September (very early spring while landscape is dry and leaf-off) 2008; 

14th and 31st August 2010) when the environment was dry and the trees devoid of leaves17 

(table 1). This will reduce possible backscatter error associated with soil moisture.  LandSAT-5 

scenes were inventoried (U.S Geology Survey LandSAT Earth Explorer portal) between 2007 and 

2011 (to match the LiDAR dataset available in 2008 and 2010, with an acceptable difference of 

plus and minus one year) and acquired in various seasons to assess the potential effects of 

differential phenology between trees and grasses, specifically, spring (September-November), 

summer (December-March), autumn (April-May) and winter (June-August) (table 1).  In 

summer, both tree leaves and grasses are green while in autumn, grasses are dry with trees 

remaining green but beginning to lose leaves.  In winter, most trees have lost leaves and 
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grasses are dry while in spring, grasses are fairly dry while the trees first undergo a green flush 

of leaves10. Only LandSAT-5 imagery with an overall scene cloud cover of ≤6% was considered.  

Several years were considered to assess the possible model inconsistencies which may results 

from high inter-annual rainfall variability, and associated variability of greenness and 

phenology. Extensive airborne 2008 and 2010 LiDAR dataset (total coverage of c.a. 35000 ha 

and 10000 ha respectively) were acquired for this study (table 1; figure 1) by the Carnegie 

Airborne Observatory (CAO) Alpha sensor28 during April-May of 2008 and 2010.  

Table 1: LandSAT-5, ALOS PALSAR and LiDAR data inventory 

Sensor scene ID Season Date of Acquisition 

LandSAT-5 TM LT51680772007047JSA00 Summer 16/02/2007 
LandSAT-5 TM LT51680772007143JSA00 Autumn 23/05/2007 
LandSAT-5 TM LT51680772007175JSA00 Winter 24/06/2007 
LandSAT-5 TM LT51680772007223JSA00 Winter 11/08/2007 
LandSAT-5 TM LT51680772008034JSA01 Summer 03/02/2008 
LandSAT-5 TM LT51680772008098JSA01 Autumn 07/04/2008 
LandSAT-5 TM LT51680772008242JSA00 Winter 29/08/2008 
LandSAT-5 TM LT51680772008274JSA02 Spring 30/09/2008 
LandSAT-5 TM LT51680772009084JSA00 Summer 25/03/2009 
LandSAT-5 TM LT51680772009132JSA00 Autumn 12/05/2009 
LandSAT-5 TM LT51680772010023JSA00 Summer 23/01/2010 
LandSAT-5 TM LT51680772010119JSA00 Autumn 29/04/2010 
ALOS PALSAR ALPSRP137816680 Winter 25/08/2008 
ALOS PALSAR ALPSRP142046680 Spring 23/09/2008 
ALOS PALSAR ALPSRP242696680 Winter 14/08/2010 
ALOS PALSAR ALPSRP245176680 Winter 31/08/2010 

CAO LiDAR CAO 2008 Autumn April-May 2008 
CAO LiDAR CAO 2010 Autumn April-May 2010 

 

3.2 LiDAR Data Processing 

Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw LiDAR point clouds using REALM (Optech Inc., Vaughn, Canada) and 

TerraScan/TerraMatch (Terrasolid Ltd., Jyvaskyla, Finland) software.  Canopy height models 
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(CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM. The LiDAR 

fractional woody cover metric were created by first applying a height threshold of 0.5m to 

generate a binary product of “no woody canopy” versus “woody canopy”, which was then 

aggregated at 25m pixel size (CC in percent). The height LiDAR data were validated against field 

height measurements of approximately 800 trees (R2 = 0.93, standard error 0.73m)31, as well as 

the CC LiDAR data against field CC measurements for 37 sites (R2=0.79; Root Mean Square 

Error=12.4%)15. 

3.3 SAR Data Processing 

The level 1.1 PALSAR intensity datasets were processed in GAMMATM SAR for multi-looking, 

radiometric calibration (from raw digital numbers to sigma nought backscatter), geocoding and 

topographic normalization.  Multi-looking factors of 2 and 8 was applied to the range and 

azimuth, respectively, to best remove unwanted speckle. This was sufficient to have the 

majority of the speckle removed, while preserving image detail.  A 20m DEM derived from 1:50 

000 South African topographic maps was used for the geocoding and topographic 

normalization.  As a final step the imagery was resampled, via bicubic-log spline interpolation 

function, by using a DEM oversampling factor of 1.6, to achieve a fixed spatial resolution of 

12.5m to create images with a finer spatial detail.   

3.4 LandSAT-5 Optical Data Processing and Derived Products 

The LandSAT imagery underwent atmospheric correction with the use of ATCOR 2 which 

converted the raw digital number data to top of canopy (TOC, assuming flat terrain) reflectance 

using a Modtran-5 radiative transfer code.  The default post May 2003 calibration file was used.  

Dry rural, fall (spring) rural, mid-latitude summer and winter rural atmospheric models were 
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utilised with the visibility distance set between 9.0km and 59km depending on the season and 

year (historical Skukuza visibility data obtained from http://weatherspark.com).   

The TOC reflectance data were used as the main optical input variables to be tested.  

Additional vegetation indices and image textures were derived from the best performing 

LandSAT seasonal image for further analyses.  This included a number of grey-level co-

occurrence textural indicators (GLCM)39, and spectral vegetation indices which are known to be 

sensitive to vegetation structure (table 2)32-38 and, for some of these, to be less sensitive to 

environmental factors, such as soil background or atmospheric conditions, or saturation 

effects.  GLCM texture parameters, such as variance and entropy, were selected as they were 

reported to be strongly correlated with vegetation structure24,40 and in some case even better 

correlated than spectral indices41.  Preliminary results (not shown) showed that variance,  

Table 2: Reflectance, indices and textural optical products derived from LandSAT-5 data 

 

    
TOC= Top of Canopy; NIR = Near Infrared; MIR = Middle Infrared 

Type Product Formulae or desciption if not applicable Reference

Band 1 (450-520nm) - Blue 

Band 2 (520-600nm) - Green

Band 3 (630-690nm) - Red

Band 4 (760-900nm) - NIR

Band 5 (1550-1750nm) - MIR

Band 7 (2080-2350nm) - MIR

Vegetation Index Enhanced Vegetation Index (EVI) Huete et al. (1997)

Vegetation Index Modified Simple Ratio (MSR) Sims & Gamon (2002)

Vegetation Index Non-linear Vegetation Index (NLI) Goel & Qin (1994)

Vegetation Index Soil-Adjusted Vegetation Index (SAVI) Huete (1988)

Vegetation Index Simple Ration (SR) Jordan (1969)

Vegetation Index Normalised Difference Vegetation Index (NDVI) Rouse et al. (1974)

Vegetation Index Moisture Vegetation Index (MVI band 7) Sousa & Ponzoni (1998)

GLCM Textures
Variance, Entropy, Dissimilarity & Contrast (3 X 3 

window)
Applied to bands 1-7 Haralick et al. (1973)

Reflectance Raw TOA reflectanceRaw TOC reflectance 
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entropy, dissimilarity and contrast textures, derived from the bands 1 to 5 and 7, were more 

correlated with CC.  

3.5 Modelling Algorithms, Modelling Scenarios, Model Validation and CC Mapping 

 A fixed grid of 105m X 105m cells (best trade-off between mapping details and model 

performance17,42), with a 50m spacing to avoid spatial autocorrelation of CC31, was used to 

extract mean SAR, optical and LiDAR CC values.  Cells occupying water bodies, roads, rivers, 

informal settlements and clouds (in the LandSAT imagery) were excluded from the analysis. A 

random forest machine learning algorithm30 was applied in the R rattle software with 35% of 

the data being used for model training and 65% for model validation.  Due to its use of multiple 

decision trees, bagging and internal cross-validation mechanisms, RF is considered as a major 

improvement over other traditional decision tree types. The algorithm is easy to implement 

and is robust as it only requires two main user-defined inputs (number of trees built in the 

‘forest’ and the number of possible splitting variables for each node43).   

Before its final implementation, efforts were made to test the RF generalisation by 

introducing an additional independent test dataset for model tuning before validation.   During 

the tuning phase, the total number of trees (‘ntree’) in the forest and the RF tree complexity 

were varied to test their influence on accuracy whilst trying to limit the RF complexity.  RF tree 

complexity included the minimum number of terminal nodes (‘nodesize’) and the maximum 

number of terminal nodes that the trees can have in the forest (‘maxnodes’)30.  After repeating 

the process three times, results showed that an ‘unpruned’ (i.e. no limitation on a tree’s depth 

and number of terminal nodes) tree architecture with 200 trees within the forest, yielded 

optimum results.  Hence, the RF models were created with ‘ntrees’ = 200 and ‘mtry’ = square 
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root of # model predictors (a rule of thumb for ‘mtry’44) with the trees being allowed to grow 

unpruned. 

For the modelling process, several scenarios were assessed. The LandSAT images were first 

tested individually in order to ascertain the best season for predicting CC. Multi-seasonal 

LandSAT scenarios were also tested by combining all available seasonal images for each year.  

Seven additional scenarios using combined reflectance, texture and vegetation indices were 

assessed, but this was only performed for the best performing optical scenario mentioned 

above.  Due to the large number of vegetation indices and textures used in this study, which 

may display high degrees of co-linearity, a RF variable importance measure called the 

permutation accuracy or %IncMSE (percentage increase in mean squared error) was considered 

to select only the top three indices and texture variables for inclusion in the modelling 

scenarios.  %IncMSE records the percentage increase in the mean squared errors in the model 

when a particular variable is assigned random values while the remaining variables are left 

unchanged44.  The higher the resultant error, the more important that particular variable is to 

the model.  2008 and 2010 L-band SAR dataset-only scenarios served as the scenario of 

comparison for the optical-only tests. 

The SAR datasets were then integrated with the five best performing seasonal LandSAT-5 

images and the combined multi-seasonal LandSAT-5 datasets for each year to quantify the 

improvement gained from combining SAR and optical data.  The scenarios were assessed and 

compared using the coefficient of determination (R2), Root Mean Square Error (RMSE) and 

Standard Error of Prediction (SEP).  SEP refers to the standard deviation of the prediction errors 

and is a measure of the unexplained variation of a model.  XY scatterplots derived from 

observed CC (LiDAR-derived) versus predicted CC (RF model-derived) were included to highlight 

12



 

the main accuracy differences between, optical-only, SAR-only and integrated SAR and optical 

scenarios.  Finally, for the expecting discussion on vegetation phenology, monthly EVI values 

was derived from 8-day composite 500m MODIS MCD43 BRDF-corrected surface reflectance 

data46, between 2005 to end of 2012, which was selected over tree dominated and grass 

dominated environments (with the help from LiDAR). A multi-temporal EVI difference product 

between these grass and tree dominated environments was also derived for discussion.   

  

4 Results 

4.1 Individual and multi-seasonal LandSAT-5 reflectance compared to SAR 

When examining the individual seasonal LandSAT-5 reflectance accuracies (table 3), the season  

Table 3: Individual seasonal, multi-seasonal LandSAT-5 and individual SAR RF modelled CC validation results 
 

* Variable depending on LiDAR coverage per year and cloud cover; ¹ 2008 LiDAR dataset for reference dataset; ² 
2010 LiDAR dataset for reference dataset  
 

Dataset 
Acquisition 

Date Season of Imagery R² RMSE (%) SEP (%) Total No. Obs* 

In
d

iv
id

u
al

 L
an

d
SA

T-
5

 T
M

 

16/02/2007¹ Summer 0.47 12.64 52.02 8804 

23/05/2007¹ Autumn 0.34 13.96 58.46 8804 

24/06/2007¹ Winter 0.32 14.25 58.76 8804 

11/08/2007¹ Winter 0.32 14.10 58.69 8733 

03/02/2008¹ Summer 0.53 11.84 49.24 8804 

07/04/2008¹ Autumn 0.46 12.89 52.64 8010 

29/08/2008¹ Winter 0.37 13.60 56.73 8804 

30/09/2008¹ Spring 0.40 13.19 53.2 8339 

25/03/2009¹ Summer 0.44 12.76 52.86 8804 

12/05/2009¹ Autumn 0.50 12.04 49.6 8697 

23/01/2010² Summer 0.64 14.77 46 2098 

29/04/2010² Autumn 0.65 13.55 44.43 3201 

M
u

lt
i-

se
as

o
n

al
 

La
n

d
SA

T-
5

 
TM

 

2007¹ All available images 0.58 11.27 47.23 8733 

2008¹ All available images 0.64 10.53 43.31 8010 

2009¹ All available images 0.57 11.36 46.92 8697 

2010² All available images 0.72 12.84 39.75 2098 

SA
R

 25/08/2008¹ Winter 0.80 7.88 32.08 8804 

14/08/2010² Winter 0.81 10.17 33.16 3201 
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which yielded the highest model accuracies varied between years; summer was best in 2007 

and 2008, and autumn in 2009 and 2010.  Amongst all the individual datasets, the April 2010 

LandSAT-5 reflectance (autumn) dataset yielded the highest model accuracies.  The winter 

datasets (2007, 2008) yielded the poorest modelled CC results. Overall the performance of 

single LandSAT datasets was poor with a SEP varying between 44 and 58%.  Combining all the 

multi-seasonal images for each year improved the accuracies by an RMSE of ~1-2% and SEP of 

~4-6% compared to the best individual seasonal image for that year.  However, both individual 

seasonal and combined multi-seasonal image yielded significantly lower accuracies than those 

of the individual SAR images.  For instance, the 2008 and 2009 SAR models had a SEP of 15 and 

10% lower, compared to the best LandSAT season of that specific year.  Moreover, both SAR 

models produced consistent results, with a similar R2 and SEP. 

Table 4: Reflectance, indices and textural LandSAT-5 (Autumn 2010 image) product RF modelled CC validation 
results 
 

 

 

 

 

 

 

* Top 3 vegetation indices/texture metrics used based on %IncMSE 

 

4.2 Optical reflectance, textures and indices compared to and integrated with SAR data results 

The top three texture metrics and spectral vegetation indices were added as additional 

features to the best performing LandSAT-5 reflectance dataset (April 2010) (table 4).  The 

optical reflectance-only scenario yielded the best results, followed by the derived vegetation 

2010 Optical Product(s) R² RMSE (%) SEP (%) Total No. Obs 

Reflectance only 0.65 13.55 44.43 3201 
Textures only* 0.03 23.66 77.96 3201 
Indices only* 0.45 17.22 57.16 3201 

Reflectance +Textures* 0.67 13.30 43.74 3201 
Reflectance + Indices* 0.66 13.52 44.93 3201 
Indices* + Textures* 0.47 17.06 55.87 3201 

Reflectance + Textures* + Indices* 0.68 12.98 43.53 3201 

2010 SAR only1 0.81 10.17 33.16 3201 
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indices, and the textures-only produced by far the poorest results.  However, the combination 

of reflectance and textures yielded better results (albeit small) than the reflectance and indices 

combination which suggested that image textures do provide more additional information in 

comparison to the indices.  Combining all three datasets (reflectance, textures and indices) 

provided the highest overall accuracy, however improvement was marginal compared to the 

optical reflectance-only scenario.  These results were consistent for other years (2007, 2008 

and 2009, not shown).  Combining the best seasonal LandSAT-5 reflectance dataset per year 

(2008 and 2010) with SAR data brought about modest, but significant improvements (improved 

SEP of ~4-5%) in comparison to SAR-only scenarios (table 5).  The addition of three most 

important vegetation indices and textures to the previously mentioned scenario did not 

improve the results. Also, the difference in accuracy between the best seasonal reflectance and 

combined multi-seasonal images, integrated with SAR datasets, were minimal (improved SEP of  

Table 5: Integrated SAR and best performing LandSAT-5 reflectance RF modelled CC validation results 

 

¹Utilized 2008 LiDAR as reference dataset and 2008 SAR as input variables; ²Utilized 2010 LiDAR as reference 
dataset and 2010 SAR as input variables; * Optical Products refers to the Reflectance + Textures + Indices scenario 

in Table 4 

Dataset Acquisition Year Season of Imagery R2 RMSE (%) SEP (%) Total No. Obs 

SA
R

 +
 B

es
t 

La
n

d
SA

T-
5

 
TM

 

2007¹ SAR + Summer 0.84 6.89 28.73 8733 
2008¹ SAR + Summer 0.85 6.84 28.24 8010 
2009¹ SAR + Autumn 0.83 7.09 29.82 8697 
2010² SAR + Autumn 0.88 8.51 26.15 3201 

SA
R

 +
 

O
p

ti
ca

l *
 

P
ro

d
u

ct
s 

 

20102 SAR + Autumn 0.88 8.15 26.90 3201 

SA
R

 +
 M

u
lt

i-

se
as

o
n

al
 

La
n

d
SA

T-
5

 

TM
 

2007¹ All available images 0.85 6.75 28.37 8733 

2008¹ All available images 0.85 6.67 27.34 8010 

2009¹ All available images 0.84 6.91 28.79 8697 

2010² All available images 0.89 8.32 25.64 2098 

SA
R

 2008¹ Winter 0.80 7.88 32.08 8804 
2010² Winter 0.81 10.17 33.16 3201 
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Fig. 2. Regional scale CC map using the best performing RF integrated L-band and single date LandSAT-5 band 
reflectance model (2010 L-band & 2010 Autumn LT5 image; coverage excludes extensive cloud cover). 
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Fig. 3. Predicted CC (RF model derived) versus observed CC (LiDAR-derived) scatterplots for: i) 2008 Multi-seasonal LandSAT-5 Reflectance-only, ii) 2008 SAR-only 
and iii) integrated 2008 Multi-seasonal LandSAT-5 Reflectance and SAR modelled validation results. 
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0.5-1%).  The year 2010 obtained the highest accuracies (R2=0.89; RMSE=8.32%; SEP=25.64% 

for the integrated SAR and multi-seasonal dataset).  The best trade-off between accuracy and 

complexity were given by the 2010 integrated SAR and autumn season reflectance model 

(R2=0.88; RMSE=8.51%; SEP=26.15%), as it used a single SAR and single LandSAT-5 image.  This 

model was used to create the regional CC map (figure 2). 

The observed CC versus predicted CC XY scatterplots (figures 3i-iii) supported the main 

findings from LandSAT-5 reflectance-only, SAR-only and integrated SAR backscatter and 

LandSAT-5 reflectance analyses.  The 2008 multi-seasonal LandSAT-5 reflectance only 

scatterplot (figure 3i) illustrated noticeable overestimation below 25% observed CC mark with 

major underestimation beyond this point, according to the 1:1 line.  In comparison, the 2008 

SAR-only scatterplot (figure 3ii) illustrated drastic improvements in reducing the severity of CC 

overestimation and underestimation.  The integration of the SAR and multi-seasonal 

reflectance scatterplot (figure 3iii) however, yielded a similar trend to the SAR-only scatterplot 

with a slightly tighter clustering of points around the 1:1 line. 

 

5 Discussion 

A previous study demonstrated that L-band ALOS PALSAR data has the potential for accurate 

tree cover mapping in South African savannahs15. Since LandSAT data are freely available and 

routinely used for regional forest monitoring20,21,25, this study sought to compare and integrate 

optical imagery (LandSAT-5) and SAR data (ALOS PALSAR L-band) across various seasons in 

order to determine if it improves the accuracy of woody cover mapping.   

We hypothesized that the season when trees are covered in green foliage, while grasses are 

dry, should be the best period to retrieve CC with LandSAT data, since this is when there would 
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Figure 4: Temporal fluctuations of mean EVI values (extracted from MODIS data) over a predominant grassland site (L1) and a predominant woodland site (L8) between 

the beginning of 2005 and end of 2012. Rainfall measurements between beginning of 2006 and end of 2011 have also been included. The monthly average rainfall data 

was extracted from Graskop, Skukuza and Phalaborwa weather stations, in Mpumalanga, and was provided by the South African Weather Services 
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be the highest spectral contrast between the two life-forms10,23.  RF modelling results indicated 

that summer and autumn seasons yielded the highest accuracies, for particular years, with the 

winter imagery consistently yielding the poorest results.  The fluctuations in tree and grass 

greenness by way of MODIS EVI time series45 were explored to interpret these seasonal results 

(figure 4).  Monthly EVI values (aggregated from 8 day image composites) were extracted from 

500m MODIS MCD43 BRDF-corrected surface reflectance data46 for grass dominated gabbro 

and tree dominated granite landscapes, for the years 2005 to 2013.  Generally, EVI values 

follow a distinct rainfall-driven cyclical but variable pattern for trees and grasses, with EVI 

values peaking during summer (January-February) but falling noticeably to the lowest point in 

each year during the late winter and early spring (July-September).  As evidenced in figure 4, 

trees green up earlier than the grasses which only start greening up after the first rains and 

senesce more rapidly than trees10.  Hence, trees have a longer green period.  In addition, 

savannah trees have a less variable inter-annual phenological cycle since trees use long-term, 

accumulated water reserves, and are constrained by its root system distribution, in contrast to 

grasses that rely on variable short term resources such as summer rainfall.  Rainfall fluctuations 

induce more variable grass phenology which in turn complicates the separation between tree 

and grass.  For instance, in 2009 (wet year) the grass dominated landscape reached a higher 

maximum EVI value compared to the tree dominated landscape, while the opposite was 

observed during a typically dry year in 2007. 

We plotted the grass EVI minus tree EVI graph difference through time to ascertain the 

periods when the difference between tree and grass greenness were the greatest (Figure 5).  

These were the most pronounced during brief moments in late spring or during some autumn 

periods, or in some cases brief summer periods in a dry year (as the case in 2007 and 2010), 
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Figure 5: Temporal differences of mean grass and tree EVI values (extracted from MODIS data) over a predominant grassland site and a predominant woodland site 

between the beginning of 2005 and end of 2012. Red lines indicate the multi-seasonal LandSAT-5 image acquisition dates 
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while peak differences vary greatly between years and even in some cases were small (e.g. 

years 2009 and 2010).  The best performance obtained from the summer Landsat images in 

2007 were most likely caused by dry conditions which resulted in larger differences in the 

spectral characteristics of grasses and trees.  This was not the case when conditions were 

wetter, with greener grasses (e.g. in 2009).  The above patterns were not observed in every 

year but there was a significant trend between the corresponding tree versus grass difference 

in EVI and modelled SEP values of the seasonal LandSAT-5 images (R2 = 0.37; p < 0.05).  The 

poor results obtained with the only spring image available (year 2008) appeared to be linked to 

the image timing which was acquired too early during the spring season while trees had not 

started to flush leaves (Figure 4-5).  In winter, since most of the trees are deciduous and shed 

their leaves when grasses are dry, the EVI contrast is consistently the smallest and expectedly 

produced the poorest results.  This contrasts with the Australian example where the 

dominance of evergreen tree canopies with dry grass, during the prolonged winter periods, 

supported the successful use of Landsat for mapping tree cover in the SLATS and NCAS-LCCP 

programmes20,21.  The brief transitional periods experienced in our South African landscapes 

during which the contrast between green trees (high tree EVI) and dry grass (low grass EVI) is 

high are difficult to target, as none of the historic LandSAT image acquisition dates actually fell 

within the period of largest EVI difference (Figure 5).  In addition, the unavoidable presence of 

clouds, which at times occur irrespective of season, confounds matters further.  

Attempts made to improve on the single date LandSAT-5 modelling results by using multi-

seasonal approaches yielded slightly better SEP (improvement between 1 and 5%).  The 

combination of images acquired at different seasons provided complimentary spectral 

information that is not present in a single season (e.g. the dry grass signal not present in 
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summer seasons).  In addition, the combination of image textures with spectral reflectance 

contributed more towards improving modelling accuracies (improved SEP of 1%) than the 

incorporation of vegetation indices, which may have contained more redundant spectral 

information.  Image textures are sensitive to local brightness variations arising from tree 

canopy structural properties, for instance shadow, which are linked to the woody canopy 

cover40.  However, improvement from textural metrics remained marginal compared to the 10-

13% classification accuracy gain obtained by using texture with LandSAT images for mapping 

western African forests reported in 47. 

None of the best performing LandSAT-5 only models had accuracies that measured up to 

those obtained with a single winter L-band SAR image (R2 = 0.72 versus R2 = 0.81). Again, these 

results are in contrast with47 where one single optical LandSAT image mapped with 73% 

accuracy contrasted forest types, such as evergreen, semi-deciduous, secondary forest, 

savannahs, while ALOS PALSAR-based classification was significantly less accurate with 49%.  

The highest modelled CC accuracies achieved by LandSAT derived optical products (R2=0.72; 

RMSE=~12%) in our study was significantly lower than the CC accuracies achieved in the 

Australian Statewide Landcover and Trees Study (SLATS) Program21 and the Australian National 

Carbon Accounting System – Land Cover Change Program (NCAS-LCCP)20 which mapped 

savannah and forested landscapes with R2>0.79 and RMSE<10%.  The comparatively limited 

accuracies achieved by LandSAT-5 in this work, for a representative, but relatively small area of 

savannahs in South Africa, indicated that the implementation of a CC monitoring system based 

solely on LandSAT-derived data would not be adequate in South African Savannahs.  L-band 

SAR data prove to be a much more effective alternative for reliable and consistent CC mapping 

and monitoring in this open forest environment.   

23



 

The integration of the SAR dataset with the best single season and multi-seasonal LandSAT-

5 reflectance yielded models with the highest accuracies, which corroborates findings in 

previous studies26,27,47.  For instance, the SAR-only and the multi-seasonal LandSAT only models 

explained 81% and 72% of the CC variance, respectively, while a model combining the two 

explained 89% of the variance.  The significant increase in accuracy (7.5% improvement of SEP) 

at the high end of the model performance demonstrated that optical reflectance data provided 

additional information which is complementary to that captured by the SAR backscatter.  

Significant complementarity between SAR and LandSAT data was demonstrated by 48 with the 

combined datasets yielding highly accurate results within the Australian NCAS-LCCP (global 

classification accuracy of 90%). 

 

6 Concluding remarks  

This study provides important insights for monitoring woody cover in South African savannahs 

(35% of land surface, and 95% of forested landscapes). Due to the narrow temporal ‘window’ 

during which trees and grass may differ sufficiently in phenological greenness, CC mapping and 

monitoring in savannahs based solely on Landsat data is not recommended. Extensive cloud 

cover during the summer or even autumn seasons would further compound this problem.  CC 

mapping should in priority rely on L-band SAR datasets, which need to be prioritised for future 

acquisition in the region.  The recent launch of the ALOS PALSAR-2 sensor, or the future launch 

of SAOCOM or NISAR, will ensure long-term provision of L-band SAR data. There was 

significant, yet modest, improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in 

accuracy when optical reflectance bands were combined with the L-band backscatter. When 

available the SAR datasets could be complemented with LandSAT mosaics acquired in 
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summer/autumn, but multi-temporal LandSAT imagery is unlikely to provide improved 

performance, similarly to the use of vegetation indices and texture metrics.  The authors 

recommend that further testing of the performance of LandSAT imagery, alone and in 

combination with SAR data, be conducted in other southern African vegetation types where 

tree canopies are evergreen, such as in commercial plantations, indigenous forests and 

thickets.  It is also recommended that a system based on L-band SAR datasets, with supporting 

airborne LiDAR data for model calibration and validation, should be applied to other bioregions 

(e.g. afromontane and coastal indigenous forests) before a national CC monitoring programme 

can be established in the future.   
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