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Abstract 
Remote sensing applications in biodiversity research often rely on the establishment of 

relationships between spectral information from the image and tree species diversity 

measured in the field. Most studies have used normalized difference vegetation index 

(NDVI) to estimate tree species diversity on the basis that it is sensitive to primary 

productivity which defines spatial variation in plant diversity. The NDVI signal is influenced 

by photosynthetically active vegetation which, in the savannah, includes woody canopy 

foliage and grasses. The question is whether the relationship between NDVI and tree species 

diversity in the savanna depends on the woody cover percentage. This study explored the 

relationship between woody canopy cover (WCC) and tree species diversity in the savannah 

woodland of southern Africa and also investigated whether there is a significant interaction 

between seasonal NDVI and WCC in the factorial model when estimating tree species 

diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed 

tree species in 68 plots of 90m X 90m across the study area. Within each plot, all trees with 

diameter at breast height of >10cm were sampled and Shannon index - a common measure 

of species diversity which considers both species richness and abundance - was used to 
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quantify tree species diversity. We then extracted WCC in each plot from existing fractional 

woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial 

regression model was used to determine the interaction effect between NDVI and WCC 

when estimating tree species diversity. Results from regression analysis showed that (i) WCC 

has a highly significant relationship with tree species diversity (r2 = 0.21; p < 0.01), (ii) the 

interaction between the NDVI and WCC is not significant, however, the factorial model 

significantly reduced the error of prediction (RMSE = 0.47, p <0.05) compared to NDVI 

(RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result 

justifies our assertion that combining NDVI with WCC will be optimal for biodiversity 

estimation during the senescence period.  

1. Introduction 
Savannah ecosystems are characterized by co-occurrence of woody and herbaceous 

lifeforms (du Toit et al., 2003; Sankaran et al. 2005) and a high assemblage of floral and 

faunal diversity with important roles in the system (Shackleton, 2000; du Toit et al., 2003). 

In particular, tree species provides multiple benefits to the savannah ecosystem by 

maintaining nutrients in the system (Treydte et al., 2007), providing breeding sites for birds 

(Seymour and Dean, 2010), supporting large faunal species (Hempson et al. 2015) and also 

acts as a safety net against poverty in the neighbouring communities delivering goods such 

fuelwood, timber and medicinal products (Shackleton et al. 2007; Matsika et al., 2012). 

Therefore, the loss of tree species diversity impacts negatively on the functioning of the 

ecosystem and the benefits it provides. In southern African savannah, trees are heavily 

impacted upon by elephants (Druce et al., 2008) and human activities (Shackleton, 2000). 

South Africa’s National Park, for instance, have developed Threshold of Potential Concerns 

(TPCs) which serves as a monitoring system to detect changes that may impact on key 

elements of biodiversity (Gillson and Duffin, 2007; Druce et al., 2008). The success of such 

monitoring systems depends on the availability of spatially detailed and updated 

information on the distribution patterns and abundance of species (Turner et al. 2003). 

Remote sensing data meet these needs as it covers large geographic areas on a regular 

interval and at varying levels of spatial details (Jetz et al., 2016; Kerr and Ostrovsky, 2003). 

Recently, ecologists have embraced remote sensing science in order to study biodiversity 
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and prepare conservation responses to potential threats (Jetz et al., 2016; Pereira et al., 

2013). 

The application of remote sensing in biodiversity research often relies on establishing 

relationships between spectral information from the image and tree species diversity 

measured in the field (Gould, 2000; Parviainen et al., 2010; Hernandez-Stefanoni et al., 

2012). Studies have shown that the success of remote sensing application in biodiversity 

estimation depends highly on the spectral resolution of the data (Thenkabail et al. 2003; 

Rocchini et al. 2007; Nagendra et al. 2010; Cho et al. 2012). Remote sensing systems e.g. 

Landsat program collects essential spectral information in the visible, near infrared and 

middle infrared regions which relates to plant properties including leaf pigment, water 

content and plant internal structure (Hernandez-Stefanoni et al., 2012; Nagendra et al. 

2010). Consequently, the Landsat program has performed comparably or better than high 

spatial but limited spectral resolution multispectral sensors such as Quickbird and IKONOS 

when estimating forest characteristics (Thenkabail et al. 2003; Rocchini et al. 2007). For 

instance Thenkabail et al. (2003) observed that Landsat Thematic Mapper plus explain 

floristic structure better than IKONOS in Dzanga–Sangha Dense Forest Reserve, Central 

African Republic and attributed the higher explanatory power from Landsat to two 

shortwave infrared bands not present in IKONOS. 

However, most studies e.g. Gould, (2000); Parviainen et al., (2010); Wood et al., (2013) 

testing Landsat data for estimating tree species diversity have focused only on the red and 

near infrared bands present in most remote sensing devices. Vegetation indices particularly 

the NDVI is derived from these two bands and often showed a positive relationship with 

species diversity in different biomes (Gould, 2000; He et al., 2009; Parviainen et al., 2010). 

Our previous study (Madonsela et al. 2017) also observed a significant relationship between 

mean NDVI and tree species diversity in the savannah biome. In essence, vegetation indices 

are formulated to suppress spectral reflectance from non-vegetative features while 

enhancing the spectral content from vegetation (Viña et al., 2006). Moreover, the NDVI is 

sensitive to essential environmental factors such as rainfall which impact on biodiversity 

(Pau et al. 2012; Seto et al. 2004; Box et al. 1989). The amount of energy available in an 

ecosystem detectable with NDVI as primary productivity defines spatial variation in plant 

diversity (Parviainen et al. 2010; Witman et al. 2008). It is therefore not surprising that NDVI 
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has frequently been successful in estimating tree species diversity in different biomes at 

various scales (Oindo and Skidmore, 2000; Gould, 2000; Pau et al. 2012; Madonsela et al. 

2017).  

The success of Landsat-derived NDVI in estimating tree species diversity raises the question 

whether tree species diversity is more related to woody canopy cover (i.e. a proxy for 

woodland productivity) or to the entire productivity trees and grass represented by the 

NDVI? The research question is informed by the fact that NDVI signal is influenced by 

photosynthetically active vegetation which, in savannahs, includes woody canopy foliage 

and grasses. Individually, tree productivity has been shown to be positively related to NDVI 

(Wang et al. 2004). The question therefore sought to establish the predictive performance 

of woody vegetation without grass influence. WCC represents the percentage of horizontal 

vegetated area of the trees (Gonsamo et al. 2013; Naidoo et al. 2015) and is the simplest 

measure of vegetation structure (Mathieu et al. 2013). While the question of woody cover – 

tree species diversity has been investigated in North American savannah (Peterson and 

Reich, 2008), this study extend the question to investigate the interaction between 

structural variables (woody cover) and NDVI when estimating tree species diversity.    

In this study, the woody canopy cover was derived from winter L-band Synthetic Aperture 

Radar image which interact with vegetation structure i.e. tree trunk and canopy branches. 

Detailed LiDAR woody cover maps were used as calibration and test data to develop 

Random Forest model for extrapolating woody cover to the southern African savannah with 

SAR data (Naidoo et al. 2015). Essentially the tree canopy cover used in this study 

represents structural information of woody vegetation. Meanwhile the NDVI signal is 

influenced by tree canopy foliage, underlying grass and canopy background and tends to 

vary with changes in vegetation phenology. The question is whether combining NDVI from 

different phenological periods with woody canopy cover in a factorial model improves the 

estimation of tree species diversity in the savannah woodland. The aim of the study is to 

investigate whether there is a significant interaction between seasonal NDVI and woody 

cover when estimating tree species diversity. The study will also investigate whether there is 

a significant relationship between woody canopy cover and tree species diversity across 

savannah woodland belt.  
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2. Study area 
The study area stretches across the KwaZulu-Natal (KZN), Mpumalanga and Limpopo 

provinces of South Africa, within the broader savannah woodland belt (Figure 1). The area 

falls within two land management regimes; i) the Kruger National Park (KNP) and Hluhluwe-

Imfolozi (HIP) Park which are public nature reserve entities with a mandate to conserve 

savannah biodiversity and ii) the communal areas adjacent these conservation areas. Typical 

of the savannah biome, the study area is characterized by the co-occurrence of two 

lifeforms; the continuous herbaceous layer interspersed by woody vegetation cover (Scholes 

and Archer, 1997; Sankaran et al., 2005). Fire and rainfall in particular and herbivory are key 

mechanisms that maintain balanced distributional patterns between these two lifeforms in 

the savannah in general (Sankaran et al., 2005; Bond et al., 2003). Geologically, the western 

part of the area is dominated by granite substrate while gabbro substrate dominates in the 

eastern part. Tree-grass density ratio tends to be defined by these geological structures. 

Gabbro substrates is characterized by shallow to moderately deep, dark clay soils with high-

bulk, nutritious grasses and support few scattered trees mainly Acacia spp. (du Toit et al., 

2003).  

On the contrary, granite substrate is defined by nutrient-poor, shallow to moderately deep 

sandy soils with gently undulating terrain and it hosts broad-leaved deciduous tree species 

upslope while fine-leaved species occupy downslope. The granitic substrates are 

characterized by high species diversity and notable tree species includes Combretum spp, 

Acacia nigrescens, Spirostachys africana and Sclerocarya birrea (du Toit et al. 2003; Eckhardt 

et al., 2000). The northern portion of the study area is also characterized by the dominance 

of Colophospermum mopane (Makhado et al., 2013; Eckhardt et al., 2000). Meanwhile, the 

KZN part of the study area is characterized by mountainous terrain with different habitat 

types supporting a large number of plant species. Typical savannah species includes 

Dichrostachys cinerea and various species of Euclea and Acacia (Dumalisile, 2009). The area 

is characterized by north-south rainfall gradient. The mean annual precipitation ranges from 

750mm in the southern portion of KNP to 440mm in the north with notable variations 

around the mean from year to year (Makhado et al., 2013; Eckhardt et al., 2000).   
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Figure 1 Study area stretching across three provinces of South Africa. The black dots represent the 
sampling plots 

3. Material and Methods 

3.1 Remote sensing data 

Four Landsat-8 Operational Land Imager (OLI) satellite images captured in 2016 (28th of 

March, 29th of April, 31st of May and 24th of July) were downloaded from the United States 

Geological Surveys (USGS) portal (https://earthexplorer.usgs.gov/). These images were 

collected in different dates in order to examine the interaction of NDVI and woody canopy 

cover across different phenological periods. The end of March represents the end of peak 

productivity (Grant and Scholes, 2006); April represents transition to senescence 

(Madonsela et al., 2017); May represents advanced senescence when most trees starts to 

drop off leaves and grass will be at their senescent stage (Scholes et al. 2003; Cho et al. 

2010); July corresponds to dry season in southern African savannah (du Toit et al. 2003; 

Kaszta et al., 2016). NDVI was computed from each Landsat image and the Landsat-derived 

https://earthexplorer.usgs.gov/
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NDVI of March, April, May and July are referred to as NDVIMarch, NDVIApril, NDVIMay and 

NDVIJuly respectively. 

Landsat-8 OLI is a multi-spectral sensor with eight spectral bands in the visible, near infrared 

and shortwave infrared regions of electromagnetic spectrum. Landsat-8 OLI record data at 

moderate spatial resolution of 30m and has a revisit capacity of 16 days. The 12-bit 

quantization of data has improved the signal-to-noise radiometric performance of the 

sensor over its predecessors, thus increasing its usefulness for landcover mapping (Pervez et 

al., 2016). The Landsat-8 images were downloaded with geometric correction already 

completed. The Mpumalanga and Limpopo images were atmospherically corrected using 

the ATCOR-2 software since the area exhibit gently undulating slopes (Richter and Schläpfer, 

2012). The KZN Landsat scenes necessitated the use of ATCOR-3 software since the region is 

mountainous. ATCOR-3 allows for integration of DEM which is useful for the correction of 

shadow and topographic effects on the image depicting mountainous areas (Richter and 

Schläpfer, 2012). 

In addition, a woody fractional cover map derived from LIDAR and Synthetic Aperture Radar 

(SAR) data was used to extract the woody canopy cover from each field plot. The canopy 

cover represents the percentage of horizontal area covered by the vertical projection of 

woody canopy elements (Gonsamo et al., 2013). The dataset was produced with the 2010 L-

band ALOS PALSAR mosaics released by the Japanese Space Agency JAXA, according to the 

methods detailed in Naidoo et al. (2015) and the National Terrestrial Carbon Sink 

Assessment (2015). Extensive LiDAR tracks were processed to develop a canopy height 

model of all woody vegetation above 1m. Detailed LiDAR woody cover maps were derived 

from the canopy height model at 25m pixel size, and were used as calibration and test data 

to develop a Random Forest model for extrapolating the woody cover to the South African 

biome with the dual-polarized (HV, HH) SAR data. The woody fractional cover map was 

produced at 25m resolution and with a root mean square error of 13.53%. 

3.2 Field data collection 

Field data were collected from the 2nd till the 27th of November 2015 in KwaZulu-Natal and 

again on the 1st till the 19th of March 2016 across Kruger National Park stretching between 

Mpumalanga and Limpopo provinces. The principal aim of the field campaign was to identify 
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tree species within randomly placed sampling plots and quantify local species diversity (α-

diversity) in the region using the common measure of diversity i.e. Shannon index. Prior to 

field excursion we defined the size of field sampling plots using semi-variogram analysis in 

ENVI 4.8 software. Essentially semi-variogram quantifies the spatial variability of natural 

phenomenon occurring in space (Fu et al., 2014; Gringarten and Deutsch, 2001). Semi-

variogram is computed as follow:-  

𝑦(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖)

𝑁(ℎ)

𝑖=1

− 𝑧(𝑥𝑖 + ℎ)]2 

where y(h) is the semi-variance at a given distance h; z(xi) is the value of the variable Z at location xi; 
h is the lag distance and N (h) is the number of pairs of sample points separated by h. 

Semi-variance steadily increases as the distance from one location to the next increases till 

it reaches the range where it starts to level off (Jongman et al., 1995; Gringarten and 

Deutsch, 2001). Semi-variogram plot is generated by computing variance at different lag 

distances and a theoretical model such as spherical or exponential model is fitted to provide 

information about spatial structure (Fu et al., 2014). Our study applied semi-variogram 

analysis to resampled WorldView-2 derived NDVI image to define the scale of spatial 

variability in tree species richness. The choice to use NDVI was based on the observation 

that variability in NDVI is related to species diversity (Gould, 2000).   

In our analysis, the Worldview-2 image – covering only a small part of the study area - was 

firstly resampled to 10m spatial resolution to be compatible with average tree canopy size in 

the savannah (Cho et al., 2012) and then we generated NDVI image. In ENVI software v4.8 

the semi-variogram analysis computed the squared difference between neighbouring pixel 

values in order to quantify variability.  The analysis conducted on Worldview-2 derived NDVI 

image showed that the scale for tree species variability in the savannah woodland lies at a 

range of 90m (Figure 2). Although semi-variance kept increasing beyond the range, the 

increase was not consistent and the range of 90m resulted in plot sizes that are feasible to 

work on within limited resources. Moreover, the study intended to use Landsat data with 

30m pixel resolution, hence the plot size of 90m X 90m was considered adequate to 

ascertain correspondence between field data and spectral data.  
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The plot size of 90m X 90m was therefore chosen to capture spatial variation in tree species 

diversity. Stratified random sampling was used to define the placement of sampling plots. 

The stratification of sampling plots followed four dominant geological formations (granite; 

siliciclastic; gabbros; granulite) that were observed to have marked influence over 

vegetation patterns in the study area (du Toit et al., 2003). Plots of 90m x 90m were 

designed ensuring that corners of each plot correspond to Landsat pixels by following pre-

defined GPS points of each corner. Within the plots all trees with diameter at breast height 

(DBH) above 10cm were recorded with Global Positioning System and species identified. 

Eventually we collected 5859 trees belonging to 106 tree species. The field campaign visited 

50 plots distributed across the study area and collected tree species data. Further 26 plots 

collected under similar conditions in the previous study (Naidoo et al., 2015) were added to 

our field data. However some of these field plots (8 plots) were located on clouded parts of 

the March and April images and therefore not usable. In total 68 field plots were used in the 

analysis. We also extracted mean annual rainfall for each plot from the interpolated rainfall 

data produced by South African National Parks Scientific Services.  

 

Figure 2 Semi-variogram analysis showing the scale of tree species variability in the savannah 
woodland 

3.3 Data analysis 

We quantified α-diversity within each plot using the Shannon index (H’) which is common 

measure of diversity in ecological literature (Colwell, 2009; Morris et al., 2014) and was 

preferred to ensure consistency of our findings with previous studies. H’ considers both 

species richness (i.e. number of different tree species) and abundance (i.e. number of 
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individual trees within species) when quantifying species diversity (Shannon and Weaver, 

1949; Morris et al., 2014) and these aspects of diversity are considered to have a bearing on 

the reflectance spectra captured by remote sensing device (Oldeland et al. 2010; Madonsela 

et al. 2017). Moreover, Shannon index is considered to be sensitive to vegetation structure 

(Oldeland et al. 2010). Therefore Shannon index should relate well with spectral data and 

vegetation structural variables.  H’ is computed as follows:- 

   

𝐻′ = − ∑ 𝑝𝑖In(𝑝𝑖)

𝑠

𝑖=1

 

where 𝑝𝑖 is the proportional abundance of species 𝑖 relative to the total abundance of all species S in a 

plot; In(𝑝𝑖) is the natural logarithm of this proportion. 

The sampling plots used to collect the tree species data in the field were overlaid on each 

Landsat-8 NDVI image. We then extracted the mean statistics from each NDVI image 

corresponding to each plot. The sampling plots were further used to extract mean woody 

canopy cover from the SAR derived woody cover map. Subsequently, factorial design model 

was used to analyse interactive effects between NDVI and woody cover when estimating 

tree species diversity. In essence factorial design model defines the effect of each predictor 

variable on the response variable. The model also defines the effect of interaction of 

predictors on the response variable (Gottipati and Mishra, 2010; Dahbi et al., 2015).  

In this study, we firstly established 30 random permutations of the original data and then 

split two-thirds of the data for calibrating the models and used the remainder for evaluating 

the predictive ability of the models. The study investigated the interaction effect between 

seasonal NDVI and woody canopy cover when modelling tree species diversity using 

factorial model. Variance partitioning analysis (VPA) was applied to show the explanatory 

power of each predictor variable in the factorial model. VPA involved calculating analysis of 

variance and partitioning the proportion of the sum of squares attributable to each 

predictor variable and their interaction (NDVI*WCC) relative to the total sum of squares 

(Watling et al., 2015). We also implemented linear regression model to explore the 

relationship between WCC and tree species diversity. The strength of the relationship was 

assessed using coefficient of determination (r2) and p-value statistics and the model 

performance was evaluated using the root mean square error (RMSE). The best regression 
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models i.e. models with maximum r2 and the lowest RMSE from 30 bootstrapped iterations, 

were used to produce tree species diversity maps. The maps covers only the Kruger National 

Park and this was done deliberately to avoid areas that are affected by human activities.   

4. Results 

4.1 Relationship between woody canopy cover and tree species diversity 

The results of linear regression models shows that woody canopy cover had a significant but 

lower relationship with Shannon index (r2 = 0.13; p < 0.05) when compared to end of wet 

season NDVIMarch (r2 = 0.24; p < 0.01) or transition to senescence NDVIApril (r2 = 0.19; p < 

0.01) (Table 1). However, these results were negatively influenced by mono-species stand in 

the northern part of the study area dominated by Colophospermum mopane. For instance, 

two sample plots located in the northern part of KNP (plot 18 and 19) were exclusively 

occupied by Colophospermum mopane resulting in the lack of diversity. In addition, plot 7 

and 13 had high tree species diversity yet woody canopy cover was very low (less than 13% 

woody canopy cover) presumably because of elephant damage. The removal of these plots 

as outliers, improved the relationship between woody canopy cover and tree species 

diversity by 8% (r2 = 0.21; p <0.01) (Table 2). Consequently, the woody canopy cover model 

explained 21% of tree species diversity, although the improvement was still lower than the 

variance explained by NDVIMarch. The NDVIMarch model explained 33% of tree species 

diversity after the removal of outliers.  

In the April date which represents the transition to senescence, the NDVIApril model still had 

a higher explanatory power (r2 of 0.27; p < 0.01) than woody canopy cover model (r2 = 0.21; 

p <0.01) (Table 2). However, the woody canopy cover model performed approximately the 

same as senescence season NDVI model (NDVIMay) when estimating tree species diversity (r2 

of 0.21 and 0.20 respectively). Moreover, woody canopy cover model performed better 

than dry season NDVI model (NDVIJuly) (r
2 of 0.21 and 0.13 respectively) signalling a decline 

in NDVI performance with changes in phenology.  

Meanwhile, the scatterplots show that there is positive linear relationship between the 

predictor variables (woody canopy cover and seasonal NDVI) and Shannon index (Fig. 3a, b, 

c, d and e). This relationship between the predictor variables and Shannon index is partly 
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controlled by the general rainfall gradient observed in the study area. For instance, woody 

canopy cover, NDVI and Shannon diversity index all shows an increase with increasing mean 

annual rainfall (Fig. 4a, b and c). It is therefore not surprising that both woody canopy cover 

and the NDVI had a significant relationship with Shannon index given that they are sensitive 

to abiotic factors e.g. rainfall impacting on tree species diversity. 

 

Table 1 Relationship observed between Shannon index of diversity and woody canopy cover 
(WCC) and NDVI from different phenological period prior the removal of outliers. All computations 
were drawn from 30 bootstrapped iterations. 

Response variable Predictor variables Average r2  95%CI P-value Average 
RMSE 

Shannon index WCC 0.13 ±0.025 0.012 0.537 

 NDVIMarch 0.24 ±0.018 0.003 0.497 

 NDVIApril 0.19 ±0.026 0.006 0.518 

 NDVIMay 0.13 ±0.030 0.013 0.533 

 NDVIJuly 0.06 ±0.024 0.021 0.554 

CI = confidence interval 

Table 2 Relationship observed between Shannon index of diversity and woody canopy cover 
(WCC) and NDVI from different phenological period after the removal of outliers.  All 
computations were drawn from 30 bootstrapped iterations after removing outliers. 

Response variable Predictor variables Average r2  95%CI P-value Average 
RMSE 

Shannon index WCC 0.21 ±0.015 0.0040 0.487 

 NDVIMarch 0.33 ±0.019 0.0001 0.454 

 NDVIApril 0.27 ±0.022 0.0008 0.464 

 NDVIMay 0.20 ±0.019 0.0048 0.492 

 NDVIJuly 0.13 ±0.019 0.0119 0.513 

CI = confidence interval 
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Figure 3 Scatterplot showing linear relationship between predictor variables (woody canopy cover and NDVI) and Shannon index after removing outliers. 
The scatterplots were selected from the best regression models (maximum r2 with the lowest RMSE from 30 bootstrapped iterations).
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Figure 4 Linear relationship between mean annual precipitation and a) woody canopy cover b) NDVIMarch and c) Shannon index. The rainfall data covers 
only the Kruger National Park. 
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4.2 Factorial regression model 

The factorial regression models performed better than NDVI or woody canopy cover model 

when estimating tree species diversity (Table 1 and 3). However the results in table 1 and 3 

were affected by outliers and the improvements seen with factorial models did not reduce 

the root mean square error (p >0.05). It was only the combination of NDVIMarch and woody 

canopy cover in a factorial model that had improved the estimation of Shannon index (r2 = 

0.28; p <0.01) and significantly reduced the RMSE (p < 0.05) when compared to woody cover 

model (r2 = 0.13; p <0.05). However the same combination had a higher error of prediction 

than NDVIMarch model in Table 1 (average RMSE of 0.508 and 0.497 respectively and the 

difference was not statistically significant (p > 0.05)).  

Post the removal of outliers, factorial model improved estimation of Shannon index while 

significantly reducing the error of prediction (p <0.01) (Table 5). In particular the 

combination of NDVIMay with woody canopy cover in a factorial model had a higher 

relationship with Shannon index (r2 = 0.30; p <0.01) than NDVIMay model (r2 = 0.20; p <0.01) 

or woody cover canopy model (r2 = 0.21; p <0.01). In addition the same factorial model 

significantly reduced the error of prediction (p <0.05) compared to NDVIMay or woody cover 

model (Table 7 and 8).   

However, combining NDVIJuly and woody canopy cover in a factorial model did not 

significantly reduce the error of prediction when compared to woody canopy cover model (p 

>0.05) although it had improved the estimation of Shannon index (r2 = 0.29; p< 0.01). 

Nonetheless, the same factorial model had significantly lower prediction errors when 

compared to NDVIJuly model (p <0.01) (Table 7 and 8). Combining either NDVIMarch or 

NDVIApril with woody canopy cover in a factorial model did not significantly reduce the error 

of prediction when compared to either NDVIMarch model or NDVIApril model (p > 0.05). 

Nonetheless, the same factorial models had significantly lower prediction errors when 

compared to woody canopy cover model (p <0.001) (Table 7 and 8).   

The factorial model results present three observations; i) at the end of wet season or during 

the transition to senescence the NDVI model is optimal for estimating tree species diversity 

in southern African savannah; ii) during the senescence period combining NDVIMay and 

woody canopy cover significantly improve the estimation of tree species diversity in 
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southern African savannah than either NDVI or woody canopy cover model; iii) woody 

canopy canopy cover is optimal for estimating tree species diversity during dry season in the 

savannah.  

Concurrent with these observations variance partitioning revealed that NDVIMarch and 

NDVIApril  had a higher explanatory power than woody canopy cover in the factorial model 

both at the end of wet season (NDVI had r2 of 0.27 while WCC had r2 of 0.08)  and during 

transition to senescence (NDVI had r2 of 0.22 while WCC had r2 of 0.10) (Table 6). 

Meanwhile, NDVIMay and woody canopy cover had approximately equal explanatory power 

in the model during the senescence period (r2 of 0.15 and r2 of 0.12 respectively). During the 

dry season tree canopy cover had a slightly higher explanatory power than NDVIJuly (r2 of 

0.14 and r2 of 0.10 respectively) (Table 6). The interaction between NDVI and woody canopy 

cover had the lowest explanatory power in the factorial model across all phenological 

periods. Table 4 presents variance partitioning prior the removal of outliers.  

 

Table 3 Results of factorial regression model (involving NDVI and woody canopy cover (WCC)). All 
the statistics were drawn from 30 bootstrapped iterations prior the removal of outliers. 

Response 
variable 

Factorial models  Average 
r2  

CI P-
value 

Average 
RMSE 

CI 

Shannon X0 + X1WCC + X2NDVIMarch + X3WCC*NDVIMarch 0.28 ±0.018 0.004 0.508 ±0.024 
 X0 + X1WCC + X2NDVIApril + X3WCC*NDVIApril 0.24 ±0.019 0.021 0.519 ±0.025 
 X0 + X1WCC + X2NDVIMay + X3WCC*NDVIMay 0.20 ±0.017 0.032 0.533 ±0.023 
 X0 + X1WCC + X2NDVIJuly + X3WCC*NDVIJuly 0.19 ±0.019 0.044 0.538 ±0.026 

CI- confidence interval 
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Table 4 Regression coefficients and contribution (r2) of each component of factorial regression 
(involving NDVI and woody canopy cover (WCC)) after variance partitioning. All the statistics were 
drawn from 30 bootstrapped iterations prior the removal of outliers. 

Phenological 
period 

Effects Coefficients CI Average 
r2  

CI P-value 

March Intercept 0.409245 ±0.191    

 WCC 0.001164 ±0.004 0.03 ±0.009 0.7156 
 NDVI 1.502159 ±0.340 0.18 ±0.035 0.4463 
 WCC*NDVI 0.008538 ±0.006 0.07 ±0.023 0.6405 
       
April Intercept 0.493235 ±0.175    

 WCC 0.006618 ±0.003 0.03 ±0.012 0.7345 

 NDVI 1.321504 ±0.348 0.15 ±0.026 0.4590 
 WCC*NDVI 0.003845 ±0.007 0.06 ±0.022 0.6938 
       
May Intercept 0.515435 ±0.182    
 WCC 0.011234 ±0.004 0.05 ±0.015 0.6472 
 NDVI 1.206113 ±0.389 0.11 ±0.017 0.5171 
 WCC*NDVI -0.002435 ±0.007 0.04 ±0.021 0.7186 
       
July Intercept 0.023622 ±0.162    
 WCC 0.026949 ±0.003 0.09 ±0.012 0.2011 
 NDVI 2.762607 ±0.438 0.07 ±0.011 0.2565 
 WCC*NDVI -0.040507 ±0.009 0.03 ±0.006 0.4385 

CI- confidence interval 

 

Table 5 Results of factorial regression model (involving NDVI and woody canopy cover (WCC)). All 
the statistics were drawn from 30 bootstrapped iterations post the removal of outliers. 

Response 
variable 

Factorial models  Average r2  CI P-value Average 
RMSE 

CI 

Shannon X0 + X1WCC + X2NDVIMarch + X3WCC*NDVIMarch 0.38 ±0.018 0.000 0.441 ±0.014 
 X0 + X1WCC + X2NDVIApril + X3WCC*NDVIApril 0.34 ±0.019 0.001 0.449 ±0.014 
 X0 + X1WCC + X2NDVIMay + X3WCC*NDVIMay 0.30 ±0.019 0.004 0.466 ±0.017 
 X0 + X1WCC + X2NDVIJuly + X3WCC*NDVIJuly 0.29 ±0.020 0.007 0.476 ±0.018 

CI- confidence interval 
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Table 6 Regression coefficients and contribution (r2) of each component of factorial regression 
(involving NDVI and woody canopy cover (WCC)) after variance partitioning. All the statistics were 
drawn from 30 bootstrapped iterations post the removal of outliers. 

Phenological 
periods 

Effects Coefficients CI Average 
r2  

CI P-value 

March Intercept -0.431219 ±0.116    
 WCC 0.020927 ±0.002 0.08 ±0.009 0.3787 
 NDVI 2.836309 ±0.222 0.27 ±0.017 0.1269 
 WCC*NDVI -0.021416 ±0.004 0.03 ±0.006 0.5767 
       
April Intercept -0.133380 ±0.076    
 WCC 0.020699 ±0.001 0.10 ±0.010 0.3401 
 NDVI 2.392799 ±0.146 0.22 ±0.016 0.1660 
 WCC*NDVI -0.018818 ±0.003 0.02 ±0.005 0.6314 
       
May Intercept -0.087983 ±0.093    
 WCC 0.024542 ±0.002 0.12 ±0.013 0.2632 
 NDVI 2.259555 ±0.215 0.15 ±0.013 0.2272 
 WCC*NDVI -0.024217 ±0.004 0.03 ±0.004 0.5422 
       
July Intercept -0.405418 ±0.070    
 WCC 0.035941 ±0.001 0.14 ±0.011 0.0671 
 NDVI 3.674045 ±0.191 0.10 ±0.011 0.1155 
 WCC*NDVI -0.057939 ±0.004 0.05 ±0.003 0.2390 

CI- confidence interval 
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Table 7 Results from ANOVA where we compared prediction errors (RMSE) between NDVI model and factorial model. The average RMSE (aRMSE) was 
obtained from 30 bootstrapped iterations post the removal of outliers. Each time the factorial model runs it combined tree canopy cover and NDVI from 
March, April, May or July respectively. 

aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  

NDVIMarch 
model 

Factorial 
model 

P-value NDVIApril 
model 

Factorial 
model 

P-value NDVIMay 
model 

Factorial 
model 

P-value NDVIJuly 
model 

Factorial 
model 

P-value 

0.454 0.441 0.1021 0.464 0.449 0.1136 0.492 0.466 0.0121 0.512 0.476 0.0011 

 

Table 8 Results from ANOVA where we compared prediction errors (RMSE) between woody canopy cover (WCC) model and factorial model. The average 
RMSE (aRMSE) was obtained from 30 bootstrapped iterations post the removal of outliers. Each time the factorial model combined tree canopy cover 
and NDVI from March, April, May or July respectively.   

 

aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  aRMSE aRMSE  

WCC 
model 

Factorial 
model 

P-value WCC 
model 

Factorial 
model 

P-
value 

WCC 
model 

Factorial 
model 

P-value WCC 
model 

Factorial 
model 

P-value 

0.487 0.441 0.0000 0.487 0.449 0.0000 0.487 0.466 0.0345 0.487 0.476 0.2986 
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4.3 Tree species diversity maps 

The tree species diversity maps show diversity pattern that is consistent with our knowledge 

of the area. Granite substrate hosts high tree species diversity while gabbro substrate has 

low tree species diversity (du Toit et al. 2003; Cho et al. 2012) and our models predicted a 

similar pattern of tree diversity (Figure 5). This diversity pattern is clearly discernible in 

figure 5a, b and c with contrasting diversity patterns between granite and gabbro substrate. 

However, both WCC and factorial models over-predicted tree species diversity in the 

northern part of KNP which is known to possess low species diversity and support the 

dominance of Colophospermum mopane (Makhado et al., 2013). Over-predictions 

associated with factorial models were exacerbated by changes in phenology towards 

senescence and dry season (Figure 5d-e). 
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Figure 5 Tree species diversity from the best (a) woody canopy cover (WCC) model, (b) factorial model involving NDVIMarch and WCC 
(c) factorial model involving NDVIApril and WCC (d) factorial model involving NDVIMay and WCC and (e) factorial model involving 
NDVIJuly and WCC 
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5. Discussion 
The results of our study indicate that Landsat derived NDVI, particularly at the end of the 

growing season (March), has a higher relationship with tree species diversity when 

compared to woody canopy cover. During this period the NDVI signal is influenced by woody 

canopy foliage and also by green herbaceous vegetation which would maintain high green 

biomass (Grant and Scholes, 2006; Ramoelo et al. 2015). In essence the NDVI signal captures 

total vegetation productivity within savannah woodland and therefore has a higher 

explanatory power than woody canopy cover. These results support the argument 

presented by Parviainen et al. (2010) and Witman et al. (2008) that the amount of energy 

available in an ecosystem detectable with NDVI as total primary productivity defines spatial 

variation in plant diversity. Furthermore, the transition to senescence (April) also seen the 

NDVI maintaining a higher relationship with tree species diversity when compared to woody 

canopy cover and again this was attributed to grass biomass impacting on the overall NDVI 

signal. Grass maintains its green biomass post the end of wet season in March (Grant and 

Scholes, 2006). However, during the transition to senescence the NDVI model had lower 

predictive power compared to March date (r2 = 0.27 and r2 = 0.33 respectively) and this 

indicates the declining influence of grass and some early senescing tree species e.g. Acacia 

nigrescens (Madonsela et al., 2017) on the NDVI signal.  

It was during the senescence period (May) that the NDVI model predicted tree species 

diversity in approximately the same way as woody canopy cover. This was not surprising 

given that the senescence period is characterized by senescent grass (Scholes et al. 2003; 

Cho et al., 2010) and therefore the NDVI signal was largely influenced by woody canopy 

foliage and the background. It is possible that the performance of NDVI might have been 

affected by the background conditions. NDVI does not consider canopy background 

conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation 

(Huete and Jackson, 1988).  However, the fact that NDVI performed similarly to woody 

canopy cover and that grass was already senescent (Scholes et al. 2003; Cho et al. 2010) 

indicates that the influence of woody canopy foliage was more dominant on the NDVI 

signal.  Meanwhile, the dry season (July date) NDVI model had lower predictive power (r2 of 

0.13) compared tree canopy cover (r2 of 0.21) and this was expected given that during dry 
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season deciduous trees drops their canopy foliage (Tomlinson et al. 2013). These results 

indicate NDVI sensitivity to seasonal variations in the savannah woodland. As the season 

and vegetation phenology changes, the ability of the NDVI model to estimate tree species 

diversity declines effectively presenting NDVI as a phenology constrained predictor of tree 

species diversity.  

Moreover, the fact that NDVI is sensitive to photosynthetically active vegetation which is 

directly related to rainfall as also observed by Scanlon et al. (2002), Parviainen et al. (2010) 

and Pau et al. (2012) makes it susceptible to inter-annual rainfall instability. Research 

(Archibald and Scholes, 2007) has observed that in African savannah large variation in NDVI 

signal emanates from grass vegetation due to inter-annual variation in grass phenology as a 

result of rainfall variability. Therefore, the use of NDVI for regularly estimating tree species 

diversity would always be confronted by this variation in NDVI signal which may lead to 

under- or over-estimation of tree species diversity particularly during the wet season. 

Meanwhile, the results from factorial regression showed that the interaction between NDVI 

and WCC is not significant in explaining tree species diversity. The interaction between NDVI 

and WCC had the lowest explanatory power in explaining tree species diversity (r2 of 0.02 – 

0.04). Nonetheless, results from factorial model have shown that combining NDVIMay with 

WCC significantly improves the estimation of tree species diversity. Although the 

combination of either NDVIMarch or NDVIApril with woody canopy cover in a factorial model 

had also improved the estimation of tree diversity, it was not significantly better than NDVI 

model. NDVIMay is largely influenced by tree canopy foliage and is not susceptible to grass 

induced variability since the senescence period (May) is characterized by senescent grass 

(Scholes et al. 2003; Cho et al., 2010). WCC, on the other hand, carries information related 

to vegetation structure and variance partitioning showed that WCC and NDVIMay were 

equally essential in explaining tree species diversity. However, in March or April date 

variance partitioning showed that the NDVI alone was sufficient to explain tree species 

diversity. These observations justify our assertion that combining NDVIMay with WCC should 

be considered as an alternative for biodiversity estimation during the senescence 

phenological period. Furthermore, these observations present an opportunity to counter 

the aforementioned limitations likely to be confronted when using Landsat derived NDVI for 

biodiversity estimation during wet season. Moreover, wet season is also accompanied by 
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persistent cloud cover making it difficult to obtained cloud-free image in southern African 

savannah (Kaszta et al. 2016). The low temporal resolution of Landsat sensor exacerbate the 

issue thus making it necessary to explore alternative phenological period to obtain satellite 

imagery for studying tree species diversity.     

However, woody canopy cover showed a significant positive relationship with tree species 

diversity (Figure 3a) and this was consistent with observation made Peterson and Reich 

(2008) in North American savannah. Contrary to NDVI where variation may actually be 

induced by grass phenology, changes in WCC are indicative of disturbance regimes or 

absence thereof. For instance, Asner et al. (2009) observed that the exclusion of herbivory 

in African savannah is associated with an increase in woody canopy cover and diversity of 

woody vegetation structure. It is not clear if the increase in woody cover impacts negatively 

or positively on tree species diversity. However, in the absence of herbivory effects or fires 

in the exclosures where Asner et al. (2009) made these observations, the diversity of woody 

vegetation structure should be assumed to indicate the presence of high tree species 

richness with diverse structural arrangements. Concurrent with this assertion Peterson and 

Reich (2008) observed that the absence of fire disturbances lead to high WCC in North 

American savannah accompanied by high tree species richness.   

The nature of the relationship between woody vegetation cover and tree species diversity 

has never been established in southern African savannah. In South American savannah 

Pellegrini et al. (2016) observed that the removal of disturbances in Brazilian Cerrado led to 

an increase in total woody cover at the expense of endemic tree species adapted to open 

savannah. Contrary to observation by Pellegrini et al. (2016) our study observed a positive 

relationship between WCC and tree species diversity suggesting the possibility that the two 

variables may be linearly related in the southern African savannah. The linear relationship 

between WCC and tree species diversity can be explained partly by the rainfall gradient 

which has been observed to have a positive effect on both WCC and tree species diversity in 

the savannah (Sankaran et al. 2005; Shackleton, 2000). In this study WCC ranged between 6 

– 78% and the increase in WCC was often accompanied by high tree species diversity. The 

question is how much change in woody canopy cover is within the resilience limits of 

savannah tree species diversity. Knowledge of the lower and upper thresholds in WCC 

within which tree species diversity thrive should facilitate the use of woody canopy cover for 
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estimating tree species diversity. This assertion is made based on i) the observation made in 

the present study that woody canopy cover has a positive relationship with tree species 

diversity and ii) the observation made by Pellegrini et al. (2016) and Peterson and Reich 

(2008) that changes in savannah woody canopy cover impact on the tree species diversity.     

Moreover, our study noted that woody canopy cover embodies the interplay of multiple 

environmental gradients influencing tree species diversity in the savannah woodland. For 

instance, we observed that the northern part of KNP, characterized by low mean annual 

precipitation (<450mm) and high temperatures (Makhado et al., 2013), has woody canopy 

cover that is below the 40% average woody vegetation cover. Parallel to this observation, 

the northern part of KNP has low tree species diversity supporting mainly the dominance of 

Colophospermum mopane. Meanwhile the southern portion of KNP has a mean annual 

precipitation of 750mm (Makhado et al., 2013; Eckhardt et al., 2000) and the granite 

substrate allows for woody vegetation with its deep-rooted system to have competitive-

edge over grass in terms of access to soil moisture (Colgan et al., 2012). Associated with 

these environmental conditions were moderate to high woody canopy cover ranges (40% to 

70%) and relatively high tree species diversity. However, low woody cover was also 

observed in the southern part of KNP which could be associated with elephant damage 

known to impact on woody vegetation in the savannah (Cumming et al. 1997; Druce et al. 

2008).  

The overall impression from these observations is that woody canopy cover may be useful 

for screening potential diversity hotspots in the southern African savannah. Noteworthy 

though, WCC model tends to over-predict tree species diversity in mono-species stand such 

as the northern part of KNP which is dominantly occupied with Colophospermum mopane. 

Over-prediction of tree species diversity in mono-species stand was also observed with NDVI 

models. However, WCC and NDVI in factorial models tended to perform better when these 

mono-species stands were removed as outliers. This suggests that remote sensing models 

based on vegetation productivity and canopy cover will be more suitable for species diverse 

savannahs. The tree species diversity maps showed diversity patterns that are consistent 

with our knowledge in southern part of KNP. Granite substrate hosts high tree species 

diversity while gabbro substrate has low tree species diversity (du Toit et al. 2003; Cho et al. 

2012) and our models predicted a similar pattern of tree species diversity (Figure 5b and c).      
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In addition, further research on the utility of WCC and Landsat-8 derived NDVI for 

estimating tree species diversity in the savannah woodlands should integrate environmental 

variables which are known to impact tree species distribution. In this study, the highest 

average variance in tree species diversity explained by our models (WCC, NDVIMarch and the 

combination of the two in a factorial model) ranged between r2 of 0.21 – 0.38. This can be 

improved with the integration of environmental variables known to impact species diversity 

e.g. rainfall and geology (Shackleton, 2000 and du Toit et al. 2003). It has been shown in 

previous studies that integrating environmental variables together with remote sensing 

variables improves the estimation of plant species (Malahlela et al. 2015). 

However, the results of our study are consistent with the observation of Peterson and Reich 

(2008) in North American savannah where an increase in woody canopy cover was 

accompanied by high species richness. However, our results contrast with those of Pellegrini 

et al 2016 in South American savannah. We attributed these contrasting observations 

between our study and that of Pellegrini et al. (2016) to different climatic conditions 

prevailing in these savannahs. South American savannah is characterized by mesic 

conditions with mean annual precipitation of 2500mm which is 750mm above Africa’s 

wettest savannahs (Lehmann et al. 2011; Pellegrini et al. 2016). Such mesic conditions 

combined with the absence of disturbance regime in South American savannah might be 

responsible for the transition to closed forest with increasing woody cover displacing 

savannah endemics (Pellegrini et al. 2016). Meanwhile, our observation and that of 

Peterson and Reich (2008) relates to semi-arid savannahs. In light of the above, our results 

suggest that woody canopy cover has a positive relationship to savannah tree species 

diversity in semi-arid savannahs. However, the above question of how much change in 

woody canopy cover is within the resilience limits of savannah tree species diversity has to 

be investigated in order to ascertain our observation. 

6. Conclusion 
In conclusion the study showed a significant positive relationship between WCC and tree 

species diversity in southern African savannah. The tree species diversity map produced 

from WCC model showed diversity patterns that are consistent with our knowledge of the 

area. The ability of WCC to explain tree species diversity highlights the explanatory power of 
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vegetation structural variables. In this study vegetation structural variable was derived from 

SAR and LiDAR data in a form of WCC. This also opens up opportunities to further 

investigate the possibility of using data from SAR and LiDAR sources in biodiversity research. 

Moreover, the study also showed that the interaction between NDVI and WCC is not 

significant, however, the factorial model improved the estimation of tree species diversity 

and significantly reduced the error of prediction (p <0.05) when compared to NDVI or WCC 

model during the senescence period. Furthermore, the study showed that i) in spite of 

challenges the NDVI is useful for explaining tree species diversity during wet season and ii) 

combining NDVIMay and WCC in a factorial model improves the estimation of tree species 

diversity and may counter the challenges associated with wet season.  
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