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Abstract

Rice is the most important food crop in Asia and rice exports can significantly contribute
to a country’s GDP. Vietnam is the third largest exporter and fifth largest producer of
rice, the majority of which is grown in the Mekong Delta. The cultivation of rice plants
is important, not only in the context of food security, but also contributes to greenhouse
gas emissions, provides man-made wetlands as an ecosystem, sustains smallholders
in Asia and influences water resource planning and run-off water management. Rice
growth can be monitored with Synthethic Aperture Radar (SAR) time series due to the
agronomic flooding followed by rapid biomass increase affecting the backscatter signal.
With the advent of Sentinel-1 a wealth of free and open SAR data is available to monitor
rice on regional or larger scales and limited data availability should not be an issue from
2015 onwards. We used Sentinel-1 SAR time series to estimate rice production in
the Mekong Delta, Vietnam, for three rice seasons centered on the year 2015. Rice
production for each growing season was estimated by first classifying paddy rice area
using superpixel segmentation and a phenology based decision tree, followed by yield
estimation using random forest regression models trained on in-situ yield data collected
by surveying 357 rice farms. The estimated rice production for the three rice growing
seasons 2015 correlates well with data at the district level collected from the province
statistics offices with R2s of 0.93 for the Winter-Spring, 0.86 for the Summer-Autumn
and 0.87 for the Autumn-Winter season.
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1. Introduction

The Mekong Delta, often referred to as "Vietnam’s Rice Bowl", is the biggest rice
producing region in Vietnam with the majority of its land area used for cultivating paddy
rice. In 2015 Vietnam was the the worlds third biggest exporter and fifth largest producer
of rice (FAOSTAT, 2015). Accurate and timely information about the rice production5
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is vital in the context of food security, trade policy, land and water management and
budgetary planning. Rice production and trade affect people on a global scale, as rice
feeds half of the constantly growing population, especially in developing regions in
Asia, Latin America and Africa (Kuenzer & Knauer, 2013; Fairhurst & Dobermann,
2002; Alexandratos & Bruinsma, 2012; Khush, 2005; United Nations, 2015). The world10

market price of rice is highly linked to the export from the 12 biggest rice exporters,
which are responsible for 90% of the global rice trade (Muthayya et al., 2014). To
alleviate the effects on food security in rice importing countries caused by the volatile
rice market, intiatives like the FAO Rice Market Monitor, the GEOGLAM Crop Monitor
and Asia-RiCE provide information on crop status, early warning on crop damage15

and factors influencing expected rice production. In spite the importance of this topic
decision and policy makers still heavily rely on data published by national statistics
offices, collected through samples, aggregated to administrative units and published six
months to a year after the relevant harvest has been performed. The Mekong Delta is a
coastal floodplain and subject to natural hazards such as floods, droughts and saltwater20

intrusion, which destroy rice crops and impact farmers livelihoods and food security.
Remote sensing based rice production estimations can aid in the timely delivery of
relevant information to decision and policy makers regarding rice production, trade and
food security.

Rice is one of the few crops that can be grown under the condition of agronomic25

flooding. This management practice refers to a constant or periodic water layer covering
the soil in which the plants grow, for the purpose of weed and pest control. In the
Mekong Delta rice fields are usually flooded prior to transplanting rice seedlings from
a nursery into the fields. The growth of rice plants can be divided into the vegetative,
reproductive and ripening phase (De Datta, 1981) and each phase coincides with a30

change in plant morphology. These changes affect the wave-plant-water interaction of
electromagnetic waves in the visible light as well as the microwave spectrum, resulting
in a unique temporal signal of rice areas when observed with multispectral or SAR
sensors. Detecting this temporal signal in remotely sensed time series has been the
most frequently applied method to map rice areas with multispectral and microwave35

sensors (Kuenzer & Knauer, 2013; Mosleh et al., 2015; Dong & Xiao, 2016).
More than 90% of the global rice production is grown in Asia, where rice is often

cultivated in areas with high precipitation and frequent cloud cover. Frequent cloud
cover has been listed as a challenge for remote sensing of rice with multispectral sen-
sors, which therefore require acquisitions with a high temporal frequency to accurately40

measure the flooding events of rice fields (Xiao et al., 2006). Active microwave sen-
sors are much less affected by cloud cover and due to their all-weather, day and night
imaging capabilities and have been used since the 1990s to map rice areas. Studies
using time series data from C- and X-band sensors have shown their potential for rice
mapping, the European Remote Sensing satellites (ERS) 1 and 2 (Aschbacher et al.,45

1995; Kurosu et al., 1995; Patel et al., 1995; Chakraborty et al., 1997; Le Toan et al.,
1997; Panigrahy et al., 1997; Liew et al., 1998b; McNairn & Brisco, 2004; Diuk-Wasser
et al., 2006), Radarsat (Liew et al., 1998a; Panigrahy et al., 1999; Ribbes, 1999; Shao
et al., 2001; Li et al., 2003; Choudhury & Chakraborty, 2006; Yonezawa et al., 2012;
Yang et al., 2016; Zhang et al., 2016), Envisat ASAR (Advanced Synthetic Aperture50

Radar) (Bouvet et al., 2009; Bouvet & Le Toan, 2011; Karila et al., 2014; Nguyen et al.,
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2015), TerraSAR-X (Lopez-Sanchez et al., 2011; Pei et al., 2011; Asilo et al., 2014;
Nelson et al., 2014), COSMO-SkyMed (Asilo et al., 2014; Nelson et al., 2014; Corcione
et al., 2016; Busetto et al., 2017; Boschetti et al., 2017; Phan et al., 2018) and more
recently Sentinel-1 (Clauss et al., 2017; Torbick et al., 2017; Onojeghuo et al., 2018;55

Nguyen et al., 2016; Son et al., 2017). These studies focussed on mapping rice areas,
which are flooded prior to transplanting or seeding and achieved accuracies between
78% and 98%.

The backscatter signal over rice crops is sensitive to changes in above-ground plant
biomass at the C- and L-band wavelengths, due to the penetration of the leaf canopy60

by the microwaves (Aschbacher et al., 1995; Le Toan et al., 1997; Inoue et al., 2002).
This behavior can be exploited to monitor rice growth and estimate rice yield, which
is correlated to the above-ground biomass (De Datta, 1981). The complex interaction
of electromagnetic waves with the rice plant in its various growing stages leads to
a backscatter signal consisting of multiple backscatter mechanisms, such as volume65

scattering from the canopy, double and multiple bounces between plants, soil and water
(Le Toan et al., 1997). A number of modelling approaches have been studied to use
the resulting backscatter signal to calculate biophysical parameters of the rice plant and
estimate rice yield. Multivariate regression (Li et al., 2003) and neural networks (Chen
& Mcnairn, 2006; Jia et al., 2013) have been used to predict rice yield and biomass,70

plant height and age has been correlated to C-band σ0 with polynomial regression
(Chakraborty et al., 2005), rice ear weight derived from a rice canopy scattering model
has been used to predict rice yield with a linear regression model (Zhang et al., 2017)
and SAR backscatter has been used as input parameter to estimate rice yield with the
DNDC (Salas et al., 2007) and ORYZA2000 (Shen et al., 2009) models. While it has75

been noted that SAR backscatter is influenced by biophysical plant variables besides the
weight of the grains (i.e. yield) and linear models might be unsuitable to fully explain
the backscatter-yield relation, multiple empirical models have been successfully applied
to estimate rice yields (Zhang et al., 2017; Li et al., 2003; Chen et al., 2011).

Estimating rice production, the product of yield and harvested area, from remote80

sensing data requires the mapping of rice area and estimation of rice yield for the mapped
area. In this study we propose to combine a previously published, Sentinel-1 time series
based, rice mapping procedure (Clauss et al., 2017) with rice yield predictions based on
seasonal random forest regression models to estimate the rice production in the Mekong
Delta, Vietnam, for three rice growing seasons centered on the year 2015. The objectives85

of this study are, to:

• estimate rice production in the Mekong Delta in 2015 using empirical models

• study the potential of Sentinel-1 time series for rice production estimation at the
regional scale

• estimate the transferability of seasonal regression models by predicting rice pro-90

duction for years differing from their training data

3



2. Materials and Methods

2.1. Study Area
The Mekong Delta (MKD) covers an area of circa 40,000 km2 and is located between

8.5◦–11.5◦N and 104.5◦–106.8◦E where the Mekong River empties into the South China95

Sea. It is Vietnam’s second most populous administrative region, with a population
of 17,600,000, and the source for half of Vietnams yearly rice production (General
Statistics Office of Vietnam, 2017b). The Mekong Delta consists of 13 provinces,
including the independent municipal city of Can Tho, further sub-divided into 133
urban and rural districts, provincial cities and towns (see figure 1). The Delta is a flat100

plain with fertile soils originating from alluvial sediments transported by the Mekong
River. Large parts of the plain where subject to regular flooding by the single-peak
pulse of the Mekong River. The current flooding regime, especially of agricultural
areas, is controlled by multiple dams, dykes, sluices and regulatory measures being
implemented upstream (Kuenzer et al., 2013b,a). Fields under controlled flooding105

schemes are flooded every three to four years in-between rice cycles to cover the soil
with a new layer of sediment (Nguyen et al., 2012). The Delta as a whole is in an
anthropocene state and subject to challenges of urbanization, agricultural intensification,
anthropogenic water management, land subsidence salinization, sea-level rise, climate
change and natural hazards, such as typhoons, flooding and drought (Renaud et al.,110

2013; Erban et al., 2014; Van Khanh Triet et al., 2017). In 2016 disasters caused by
natural hazards lead to 264 deaths, 5,400 destroyed houses and 527,700 kilohectare
(kha) of damaged rice crops (General Statistics Office of Vietnam, 2017b).
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Figure 1: Overview of the Mekong Delta, its administrative units and locations of the field surveys. The
inset globe indicates the location of Vietnam (red) and the study area (blue star). The climate chart shows
the temperature (from (Saha et al., 2014)) and precipication (from (Funk et al., 2015)) in Soc Trang in 2015.
Background is the median backscatter of all Sentinel-1 acquisitions in 2015 at VH polarization. Administrative
boundaries of second and third tier units from (Hijmans et al., 2015).

The Delta is located in the monsoon climate zone, Am according to the Köppen-
Geiger classification (Peel et al., 2007), with monthly mean minimum temperatures115

exceeding 20◦C throughout the year. Precipitation is on average 1800mm per year and
characterized by a rainy season from June–December, caused by the SW monsoon, and
a dry season from December–May, caused by the NW monsoon (see figure 1 - inset
climate chart). This climate in combination with the water available from the Mekong
River for agronomic flooding enables the year-round cultivation of rice plants with up120

to three harvests per field and year.
The cultivation of rice in the Delta is grouped into three growing seasons, according

to sowing and harvesting dates:

• Hè-Thu (Summer-Autumn season)
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• Thu-Ðông (Autumn-Winter season)125

• Ðông-Xuân (Winter-Spring season)

The specific transplanting and harvest dates are governed by local water management
practices and irrigation plans as well as the farmers selection of rice variety and fertilizer
input. Availability of irrigation water is dependant on dykes that are usually controlled
at the commune level. This results in heterogenous crop calendars with spatial varia-130

tions. The sowing and harvest dates for rice are not defined in the statistical yearbooks
where seasons are grouped by their harvesting dates. Due to inconsistency in existing
definitions used for the rice seasons and lack of a definitive source we defined the tem-
poral boundaries for each season. We define rice grown between 1st of November of the
previous year and 31st of March to belong to the Winter-Spring season (WS), between135

1st of March to 31st of August to the Summer-Autumn season (SA) and between 1st
of July and 31st of January the following year to the Autumn-Winter season (AW).
Based on existing rice season definitions for the Mekong Delta we defined the seasons
with a temporal overlap to ensure the identification of all heading and flooding events
when analyzing the time series. For Autumn-Winter this study follows the definition140

of Mùa (Main Wet Season), which ensures Thu-Ðông is captured as well. The season
boundaries are comparable to the season definitions used in previous studies on rice
seasonality in the Mekong Delta (Nguyen et al., 2015; Sakamoto et al., 2006; Son et al.,
2014; Sakamoto et al., 2007; Son et al., 2017; Phan et al., 2018).

The prevalent rice cultivation technique in the Mekong Delta is the transplanting145

of rice seedlings from seedbeds into the flooded paddy fields. The selection of rice
variety by the farmers is largely governed by irrigation water availability, influences of
salinization and the cropping intensity of the paddy, i.e. the number of rice harvests per
year (Nguyen et al., 2012). The transplanting of seedlings into flooded soils creates a
distinct temporal pattern in SAR backscatter time series due to the double bounce effect150

between water surface and rice tillers (Le Toan et al., 1997; Wang et al., 2005). Paddy
fields form relatively homogenous clusters in the Mekong Delta, which lends itself to
analysis with SAR satellite data.

2.2. Sentinel-1 SAR time series
We created time series from images acquired by the Synthethic Aperture Radar155

sensors aboard the Sentinel-1A and Sentinel-1B satellites which have been launched on
2014-04-03 and 2016-04-22, respectively. Both satellites carry active microwave sen-
sors and measure backscatter at the C-band wavelength. After an In-Orbit Commission
Review regular publication of Sentinel-1A datasets started on 2014-10-03, with the first
Mekong Delta image acquired three days later. Each of the polar-orbiting satellites has160

a revisit time of 12 days at the equator, interleaved by six days, enabling at least one
Sentinel-1 acquisition of every point on earth every six days in their current, two satellite
constellation with coverage increasing from the equator towards the poles (Sentinel-1
Team, 2013). However, this theoretical maximum coverage is not achieved in large
parts of the world due to the capacity of the on-board storage and the data downlink.165

The actual coverage is constantly increasing, with a large rise in available data after the
inclusion of the European Data Relay Satellite EDRS-A to improve data downlink.The
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default operation mode over land areas is dual-polarized, vertically transmitted and hor-
izontally received (VH) and vertically transmitted and received (VV), Interferometric
Wide Swath (IW) with 250 km swath width. Images in the default, high resolution170

mode, have a geometric resolution of 5 m by 20 m. The standard products delivered to
users via the Copernicus Open Access Hub (https://scihub.copernicus.eu/) are at Level-
1C processing level and are Single-Look Complex (SLC), containing amplitude and
phase information, and Ground Range Detected (GRD), without phase information. In
the GRD format the data is delivered at 10 m pixel spacing, after applying a 4 by 1175

multi-looking pre-processing (Sentinel-1 Team, 2013).
We used all available Sentinel-1 scenes acquired over the Mekong Delta in Inter-

ferometric Wide Swath, at high resolution, dual polarization, i.e. the default operation
mode, delivered in Ground Range Detected format. For the 2015 rice growing seasons
the time series was built from 111 Sentinel-1A acquisitions. Creation of the time series180

for the 2017 rice growing seasons was performed using 319 acquisitions. The increase
in temporal density of the time series is owed to the availability of Sentinel-1B data in
2017 as well as increased imaging and downlink capabilities due to the use of the first
European Data Relay Satellite (EDRS-A) (Sentinel-1 Team, 2018).

2.3. Reference Data185

Three reference datasets have been collected for training the regression models and
assessing the accuracy of the estimated rice production. The first reference dataset
was collected by performing field surveys and questionnaires at rice fields throughout
the Mekong Delta. In total 357 field surveys were conducted between 2017-10-10
and 2018-01-24 covering 48 districts (see table 1). Special consideration was given190

to the distribution of the survey points, to ensure a minimum distance between each
point as well as a distribution covering all provinces and rice cropping schedules in the
Mekong Delta. Prior knowledge about rice production per district was used to stratify
the survey locations. At each survey point the GPS coordinate of the field edge, a close-
up photo of the rice plant, showing the growing stage, and a photo in each cardinal195

direction, to show the surrounding land-cover, was collected (see figure 2). At each
location a questionnaire was conducted with the farmer to gather the transplanting date
of the current season, transplanting and harvest dates of the previous two seasons, rice
yield of the previous seasons, planted rice variety and which seasons they grow rice
in. Additionally information was collected about issues with soil, droughts, floods or200

salinity intrusion during any of the growing seasons and if they transplant salt tolerant
varieties during any of the seasons.
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Table 1: Collected field surveys per province.

Province Number of surveys Start of survey End of survey

An Giang 54 2017-10-11 2017-10-18
Bac Lieu 28 2017-10-12 2017-10-21
Ben Tre 3 2017-12-23 2017-12-23
Ca Mau 15 2017-10-12 2017-10-14
Can Tho 16 2017-12-22 2017-12-22
Dong Thap 42 2017-10-11 2017-10-25
Hau Giang 13 2017-10-17 2017-10-17
Kien Giang 57 2017-10-10 2017-10-13
Long An 67 2017-12-23 2018-01-24
Soc Trang 28 2017-10-12 2017-10-15
Tien Giang 9 2017-12-22 2017-12-22
Tra Vinh 12 2017-12-18 2017-12-18
Vinh Long 13 2017-12-19 2017-12-26
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Figure 2: Example of photos taken during the field survey in An Giang province on 2017-10-17 at 10.4117◦N
105.3077◦E. Picture taken of close-up of the rice plant (C), view North (N), East (E), South (S) and West
(W) from the location where the surveyor noted the GPS coordinates.

For assessing the accuracy of the production estimations data about the rice produc-
tion per growing season and administrative unit was collected from statistics offices in
Vietnam.The second reference dataset was collected from the General Statistics Office205

of Vietnam (GSO) containing rice production volumes at the province level published in
the Statistical Yearbook of Vietnam 2015 (General Statistics Office of Vietnam, 2016)
and on the GSO website (General Statistics Office of Vietnam, 2017a). The third refer-
ence dataset contains district level data and was compiled from the province’s statistics
offices, which collect and sample rice production volumes and report them to the GSO210

for aggregation into the Statistical Yearbook of Vietnam. The Statistical Yearbook of
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each province has been published as a printed book in Vietnamese language, covering
the last 5 years and had to be collected in person at the province’s statistics offices.
In total 13 yearbooks were collected and the rice production volume at district level
transcribed and translated.215

2.4. Rice production estimation
We estimated rice production from Sentinel-1 data by applying a superpixel segmen-

tation, calculating the time series at the object level, splitting the time series according
to the rice cropping calendar, classifying rice areas and performing a regression analysis
for each season. An overview of the processing workflow is given in figure 3.220
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(1) Data selection and 
pre-processing     (2) Segmentation (3) Time series extraction
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Creation of the object based time series with the steps 1) Data selection and pre-
processing, 2) Segmentation and 3) Time series extraction is described in detail in a
previous publication (Clauss et al., 2017) and is presented here in summarized form.
This study utilized Sentinel-1 data provided as an analysis ready data cube by the Google
Earth Engine (GEE - https://earthengine.google.com/) team, which co-locates a petabyte225

scale satellite data archive with vast processing capabilities (Gorelick et al., 2017). The
Sentinel-1 data cube contains scenes pre-processed to the backscatter coefficient σ0

(sigma0 or sigma nought) after application of an orbit file, thermal noise removal,
radiometric calibration and orthorectification. In order to limit the effects of look angle
and orbit direction the data was filtered to the orbit direction with most observations,230

which for the Mekong Delta is the ascending orbit (figure 3 - 1). Overlapping swaths
introduce noise into the time series due to differing look angles, which were reduced
by applying pixel-wise filtering and masking to the most common look angle at the
swath boundaries. The basis for the segmentation procedure, shown in figure 3 - 2,
are multi-temporal metrics that have been calculated for all 2015 rice growing seasons235

using Sentinel-1 scenes from 2014-11-01 to 2016-01-31. We calculated the median and
standard deviation of the VH polarized data and the 10th percentile of the VV polarized
data, since these provide the necessary contrast between temporarily flooded fields and
other land cover (Clauss et al., 2017). The resulting image was then segmented with the
Simple Linear Iterative Clustering (SLIC) superpixel algorithm (Achanta et al., 2012)240

using a compactness value of 75, which balances space proximity and pixel values of
the segments, and a mean segment size of 2 ha. The superpixel segments were then
used to extract median σ0 values at VH polarization for each segment and Sentinel-1
acquisition in the data cube, arriving at a spatially averaged, per object, instead of per
pixel, time series (figure 3 - 3). By changing the temporal extent of the data cube245

this procedure was used to extract three object based Sentinel-1 time series - one each
for the 2014 to 2015 Winter-Spring, the 2015 Summer-Autumn and the 2015 to 2016
Autumn-Winter rice growing season (figure 3 - 4).

The segmentation based, σ0 VH Sentinel-1 time series have then been used to
calculate the rice production for each 2015 rice growing season (figure 3 - 5). Estimating250

the rice production as a product of yield and area further requires the classification of
sown rice area and the estimation of the rice yield. The rice area classification procedure
used in this study is almost identical to the one published in (Clauss et al., 2017) with the
exception that in this study a seasonal time series was used for the classification instead
of a whole year and we consequently arrive at three rice area classifications - one255

for each rice growing season. Classifying rice areas is performed using a phenology
based decision tree, which uses key growing stages of the rice plant as basis for the
decision nodes. Backscatter time series at C-band wavelength and VH polarization
exhibit distinct minima during the flooding of the rice fields and maxima at the heading
stage (Le Toan et al., 1997). Minima and maxima of the full time series were used to260

differentiate rice areas from vegetation that does not experience agronomic flooding as
well as from land cover that shows little backscatter variation over time, such as built-
up areas, mangrove and bare soil. Local minima and maxima in the temporal signal
are calculated within a 90 day window to detect a singular flooding event followed
by rapid biomass growth, which helps to discern rice fields from natural wetlands and265

sporadically flooded areas. The temporal distance was chosen based on the shortest
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reported growth duration for a single rice crop in the study area. The result are three
classifications exhibiting the rice growing areas per 2015 rice growing season.

Rice yield for the 2015 rice growing seasons was estimated using the seasonal time
series and a random forest regression model. The regression model was fitted on the270

yield reference data from the field surveys and time series extracted at these fields.
Seasonal models were trained on reference data from the 2017 rice growing seasons.
Therefore the time series from the Sentinel-1 data cube was extracted in the same
manner as described for the 2015 rice growing seasons adapting the temporal slicing
to the three 2017 rice growing seasons covered in the reference dataset. Instead of the275

whole Mekong Delta these time series have been extracted only at the locations of the
field surveys. To ensure the use of a spatially averaged time series for the model fitting
process, the reference data points have been manually moved into the center of the
corresponding rice fields and data was extracted using the median inside a 50m circular
buffer around the points for each image. Three groups of Sentinel-1 backscatter time280

series were derived, each group belonging to a rice growing season and each time series
coded to the yield recorded in the farmer survey.

To ensure a compatible regression feature space for the selected years and the tempo-
ral transferability of the models we decided to calculate time series features that are able
to describe time series of varying temporal density. Selection of the time series features285

for the regression models was guided in part by analysis of published regression results,
expert knowledge and the usage of the Python package tsfresh for time series feature
extraction based on scalable hypothesis (Christ et al., 2016). For each time series we
calculated the features: standard deviation, mean, max, 10th, 25th, 50th, 75th and 90th
percentile as well as the difference between the 90th and 10th and the 75th and 25th290

percentile, respectively. The percentiles have also been calculated after the time series
was shifted, or lagged, by 10, 20, 30, 40 and 50 days. After performing a fourier trans-
formation of the original time series the minimum, maximum and mean of the imaginary
parts and the phase angle were calculated. The time series and yield reference data was
split into 70% reserved for model training and 30% for testing the performance with295

cross-validation. This split was performed individually for each season, providing six
independent training and test datasets. We trained three random forest regression mod-
els with the training data, calledRFWS for the Winter-Spring season model,RFSA for
Summer-Autumn andRFAW for the Autumn-Winter rice growing season. We used the
random forest module implemented in scikit-learn in version 0.19.1 (Pedregosa et al.,300

2011), set the number of trees to 500, the parameter of minimum sample size for a
node split to 6, used bootstrapping and default implementation values for the remaining
parameters. To estimate the model performance we calculated R2, root mean squared
error (RMSE) and mean absolute error (MAE) for each model comparing the predicted
yield to the surveyed yield of the test split.305

Yield for the 2015 rice growing seasons was predicted using the 2015 segment based
time series and the random forest regression models RFWS , RFSA and RFAW for the
according season. Rice yields were only predicted for those segments previously clas-
sified as rice. With this procedure we arrived at three datasets containing the classified
rice area and predicted yield for each season and the complete Mekong Delta. Rice pro-310

duction was calculated by multiplying the predicted yield with the area of the according
segment object. These production values were then summed up at the district level to
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arrive at district level rice production estimations for three 2015 rice growing seasons.
In addition to testing the regression model performance with withheld reference data

from the field surveys the accuracy of the rice production estimations has been assessed315

using independent reference data collected by Vietnam’s statistics offices. Seasonal
production estimations were aggregated at the district level to compare them to the
district level data published by the statistics offices in each province and calculated
R2 and RMSE. After aggregating the production estimations at the province level we
compared them to the province level data published by the GSO. To test differences320

between the province and district level reference datasets we aggregated the district
level data from the statistics offices of the provinces to the province level and compared
it to the province level dataset published by GSO, also calculating R2 and RMSE.

3. Results

Results of the rice area classification, yield estimation and production estimation325

are shown in figure 4. We estimated a total rice production of 9,521,757 tonnes for the
Winter-Spring, 7,266,215 tonnes for the Summer-Autumn and 5,627,803 tonnes for the
Autumn-Winter season. Throughout all seasons most rice was produced in the Kien
Giang province. An Giang and Dong Thap are the second and third biggest producers in
the Summer-Autumn and Autumn-Winter seasons, whereas in the Winter-Spring season330

Long An and An Giang are the second and third largest producers, respectively. The
sown area estimates are similar for the Winter-Spring and Summer-Autumn seasons with
1,564,234 hectare and 1,575,348 hectare, respectively, which is about twice the area
classified for the Autumn-Winter seasons at 746,019 hectare. The regression models
indicate the highest yields with the least spatial variation for the Winter-Spring season335

(figure 4 - top left) with a mean of 6.34 tonnes per hectare, the Summer-Autumn season
exhibits the largest spatial variety in estimated yields with the lowest yields in the central
areas of the Delta (figure 4 - center left) and an average yield of 5.24 tonnes per hectare.
At the province level the models reported the highest average yields in Bac Lieu for both
the Winter-Spring and Summer-Autumn seasons, whereas Kien Giang had the highest340

average yield in the Autumn-Winter season.
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Figure 4: Estimated rice yield and production at district level for the 2015 rice growing seasons in the Mekong
Delta, Vietnam.
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Our estimated rice production for the year 2015 correlates well with the data pub-
lished by the statistics offices at the district level withR2s of 0.93 for the Winter-Spring,
0.86 for the Summer-Autumn and 0.87 for the Autumn-Winter season. The RMSE in
tonnes per season at the district level was 24,846 for Winter-Spring, 25761 for Summer-345

Autumn and 14,221 for Autumn-Winter.

production (t) production (t)production (t)

(t) (t) (t)

Figure 5: Comparison of estimated rice production at district level and production reference data from
province statistics offices for the 2015 rice growing seasons.

Aggregated to the province level the estimated rice production correlates well to
the GSO published data for the Winter-Spring, but not the other two seasons. The R2s
and RMSE in tonnes are 0.92 and 184,332 for Winter-Spring, 0.46 and 521,229 for
Summer-Autumn and 0.06 and 447,994 for Autumn-Winter.350

Comparing the reference datasets from the GSO and the official statistics at the
district level aggregated to the province level we can see good correlation for the Winter-
Spring and Autumn-Winter season but significant differences for the other Summer-
Autumn season. The correlation coefficient R2 and RMSE in tonnes for the Winter-
Spring season are 0.99 and 25,986, 0.99 and 4,153 for the Autumn-Winter season and355

0.65 and 419,414 for the Summer-Autumn season, respectively. Furthermore the GSO
reference dataset exhibits more missing data than the district level data and contains no
rice production data for 5 of the 13 provinces in the Autumn-Winter growing season
(see table 2).
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Table 2: Rice production in tonnes reference data collected from the Province Statistics Offices (PSO) and
General Statistics Office (GSO) at the province level for Winter-Spring (WS), Summer-Autumn (SA) and
Autumn-Winter(AW ) season. Missing values are indicated by NaN.

Province WSPSO WSGSO SAPSO SAGSO AWPSO AWGSO

An Giang 1804409 1804400 1277644 2250100 19230 19200
Bac Lieu 339226 339200 327033 326000 390184 380200
Ben Tre 87555 87600 67110 71800 119416 119400
Ca Mau NaN NaN 148986 152100 313104 313100
Can Tho 647251 645300 427948 762800 334911 NaN
Dong Thap 1443150 1443200 1168870 1941300 753241 NaN
Hau Giang 618460 618500 436040 674600 235522 NaN
Kien Giang 2173921 2224500 1565481 2135200 283256 283300
Long An 1535960 1569700 1039710 1331000 18018 18000
Soc Trang 892427 952400 1015824 1197800 150689 144500
Tien Giang 541012 541000 624868 803400 178506 NaN
Tra Vinh NaN 469300 408070 408100 476510 476500
Vinh Long 425545 437000 339892 657700 317794 NaN

The performance of each seasonal regression model using cross-validation is shown360

in figure 6, comparing surveyed rice yields to predicted yields using the seasonal model
on the test split of the reference data. All models show a good performance predicting
the yield on the withheld test split. The Winter-Spring model (RFWS) has a R2 of
0.83, a RMSE of 0.58 and a MAE of 0.46. For the Summer-Autumn model (RFSA) we
report a R2 of 0.82, a RMSE of 0.72 and a MAE of 0.55. The Autumn-Winter model365

(RFAW ) achieved a R2 of 0.80, a RMSE of 0.46 and a MAE of 0.39.
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Figure 6: Cross-validation of the random forest regression models comparing reference and predicted yield
(t/ha) for the Winter-Spring (RFWS ), Summer-Autumn (RFSA) and Autumn-Winter (RFAW ) season.

4. Discussion

We presented a study estimating rice production in the Mekong Delta for three rice
growing seasons centered around the year 2015. Rice production was estimated us-
ing Sentinel-1 time series, random forest regression, extensive field survey data and a370
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rice area classification method based on superpixel segmentation and a phenological
decision tree. The regression models showed good agreement in cross validation and
the estimated production correlates well with official data from the province’s statistics
offices. However, there are a number of potential error sources in this study that need to
be discussed to appreciate the performance and transferability of the applied methods375

- namely the potential of rice area misclassification as a result of the superpixel seg-
mentation or phenological decision tree classifier, potential bias and limitations of the
empirical models and reliability of the reference data.

This study estimates rice production as the product of classified rice area and pre-
dicted yield per growing season, therefore a misclassification of rice area will influence380

the final production estimation. Even though the estimated rice production correlates
well with the reference datasets it is possible that under- and overestimation of rice
area compensate each other within an administrative unit. We aimed to reduce the
influence of this error source by using reference data from the smallest administrative
unit available to us. There is also the chance, that a misclassification of rice area was385

compensated by an over- or underestimation of the yield. Given the unavailability of a
systematic reference dataset of rice area and yield for the Mekong Delta at the district
level or lower we are unable to quantify this potential error source. To our knowledge
there is no reference dataset available that would allow the assessment of rice area
mapping accuracy in the Mekong Delta for the year 2015, let alone for individual rice390

cropping seasons. There is also the chance of introducing noise into the backscatter
time series by the process of spatial averaging and the segmentation procedure failing to
capture field boundaries and rice area omission errors due to key phenological growing
stages not being captured in the temporal signal. The former could be reduced by using
a higher resolution dataset as the basis for the segmentation, which was unavailable395

to us at the required scale, and the latter was a potential issue in 2015 but time series
density improved significantly from 2016 onwards due to reduced revisit time, with
the launch of Sentinel-1B, and increased data downlink (see Clauss et al. (2017) for
extended discussion on the rice area classification method).

The random forest regression models performed well compared to the test split of400

the yield data and enabled rice production estimation with good agreement compared
to government data. Apart from the influence of the reliability of the training data these
empirical models can be a source of error and should be applied with caution. Firstly,
we trained one model for each rice growing season and predicted rice yield of the same
season but for a different year. This method worked in the Mekong Delta and we suspect405

the this is in part due to a relatively stable cropping calendar and the application of such
a method might fail when applied to different rice growing regions. Secondly, we
are unable to assess whether these empirical models are able to predict rice production
under adverse conditions such as floods and droughts caused by extreme weather events.
The training data does not contain sample points of fields affected by potentially yield410

reducing conditions and we suspect the models might be unable to accurately predict
the rice production for such areas. Outliers in the production estimation for the 2015
Autumn-Winter rice season might be explained partly by to onset of the 2015-2016 El
Niño, at the end of 2015, and the resulting extreme temperature events in April 2016
(Thirumalai et al., 2017).415

Our production estimation relies on rice yield data collected during field surveys
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with questionnaires and rice production data published by the province’s statistics of-
fices. Errors in the first will propagate into the random forest regression models, while
errors in the latter will influence the validity of the accuracy estimation. The yield
data collected during the field surveys was self-reported by the farmers, a method that420

has been criticized, especially in the health and social sciences, as potentially biased
(Hofmann et al., 2005). Performing yield measurements has the potential of providing
more reliable yield data at the field level, but comes at the cost of the necessity of mul-
tiple field visits, destructive sampling and increased labour. The collection of such a
dataset would be of interest for the wider scientific community working in the Mekong425

Delta but is out of scope of this study. Furthermore, the reliability of the reference
data from government sources might have a larger impact on assessing the accuracy
of rice production estimations. Rice production data at the province level is published
by the GSO by collecting district level data from the province’s statistics offices and
aggregating it to the province level. We summed up the rice production per season and430

district, as published by the province’s statistics offices, to the corresponding provinces
and found disagreement with the province level data published by the GSO, especially
in the Autumn-Winter and Summer-Autumn seasons. For Summer-Autumn we found a
difference in the reported values, whereas for the Autumn-Winter season many districts
reported rice production but the GSO dataset indicates missing data for the Can Tho,435

Dong Thap, Hau Giang, Tien Giang and Vinh Long provinces (see table 2). We ulti-
mately decided to use district level data to assess the reliability of the rice production
estimation to avoid errors of over- and underestimation due to the larger area of the
provinces and data at the commune level (third tier) not being available to us. The
production estimation shows good agreement with the reference data but we would like440

to stress the need for more comprehensive and more reliable reference data regarding
rice yield, area and production at the district and commune level.

5. Conclusions

Our study showed that rice production can be estimated per growing season using
Sentinel-1 SAR time series and random forest regression models. A prerequisite to rice445

production estimation is the ability to accurately classify rice areas and the availability of
reliable reference data to train empirical models. The ability to estimate rice production
in a timely, transparent and evidence-based manner is important in the context of food
security and trade policy and valuable to decision and policy makers as well as to the rice
farmers themselves. The reliance on national datasets regarding rice production has long450

been identified as an issue due to the time delay in their publishing as well as the amount
of labour they consume. Remote sensing based production estimation, potentially in
conjunction with national reference datasets, can aid in making information about the
amount of rice produced available faster and on larger scales.

We showed that time series from the free and open Copernicus Sentinel-1 data455

archive can be used to map rice areas and estimate rice production. The Copernicus
Sentinel-1 constellation alleviates the often cited issue of unavailability of dense time
series or the cost of ordering such datasets. Using the co-location architecture of SAR
time series data and vast amounts of processing power available through cloud process-
ing initiatives, such as the Google Earth Engine, allows for a comparatively cheap and460
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fast estimation of rice production at regional or larger scale. Estimating rice production
at larger scales is currently limited less by cost or availability of earth observation data or
processing infrastructures but the collection of reliable reference data to train empirical
models and estimate their performance.

The methods applied in this study enabled us to predict rice production for three rice465

growing seasons in the Mekong Delta for the year 2015 withR2s of 0.93 for the Winter-
Spring, 0.86 for the Summer-Autumn and 0.87 for the Autumn-Winter season compared
to reference data at the district level. Three points were identified that could potentially
improve the performance of the rice production estimation: the performance of the
rice area classification, amount and reliability of yield reference data used to train the470

empirical models and availability of large scale reference data regarding rice production
to accurately assess the accuracy of the prediction. Our study has shown that Sentinel-1
SAR time-series have the potential to estimate rice production at the local scale using
empirical models by estimating the rice production in the Mekong Delta for the year
2015 using empirical models per growing season trained on 2017 reference data. Further475

studies need to be conducted to evaluate the performance of such approaches at larger
scales and in different study areas, which require the availability of large scale, reliable
reference datasets regarding rice area, yield and production.
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Appendix

The importance for each calculated time series feature and seasonal regression model
is listed in table 3. The shortened name perc refers to the value of the percentile given800

in the number following it, diff_perc is the difference between percentile values. lag
refers to the time series lagged by the number of days given. stdDev stands for the
standard deviation. fft_imag and fft_angle refer to the imaginary part and the angle of
the fourier transformed time series of which the minimum (min), maximum (max) and
mean have been calculated.805
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Table 3: Variables of importance for each feature and seasonal random forest regression model.

Feature Winter-Spring Summer-Autumn Autumn-Winter

stdDev 0.013 0.016 0.005
mean 0.005 0.021 0.005
10perc 0.007 0.018 0.009
25perc 0.025 0.019 0.005
50perc 0.055 0.053 0.023
60perc 0.038 0.051 0.012
75perc 0.027 0.023 0.030
90perc 0.020 0.038 0.028
diff_90perc10perc 0.015 0.035 0.006
diff_75perc25perc 0.013 0.014 0.011
lag10_10perc 0.242 0.018 0.030
lag10_25perc 0.033 0.030 0.013
lag10_50perc 0.028 0.036 0.040
lag10_75perc 0.027 0.055 0.099
lag10_90perc 0.019 0.015 0.028
lag20_10perc 0.014 0.024 0.076
lag20_25perc 0.024 0.021 0.031
lag20_50perc 0.009 0.035 0.017
lag20_75perc 0.052 0.019 0.024
lag20_90perc 0.015 0.012 0.032
lag30_10perc 0.014 0.070 0.021
lag30_25perc 0.028 0.029 0.024
lag30_50perc 0.014 0.020 0.034
lag30_75perc 0.019 0.044 0.030
lag30_90perc 0.034 0.013 0.017
lag40_10perc 0.016 0.016 0.022
lag40_25perc 0.008 0.019 0.025
lag40_50perc 0.004 0.020 0.039
lag40_75perc 0.016 0.022 0.029
lag40_90perc 0.005 0.014 0.015
lag50_10perc 0.029 0.029 0.024
lag50_25perc 0.009 0.026 0.013
lag50_50perc 0.015 0.023 0.048
lag50_75perc 0.009 0.039 0.022
lag50_90perc 0.031 0.018 0.022
fft_angle_mean 0.000 0.003 0.000
fft_angle_min 0.046 0.021 0.047
fft_angle_max 0.000 0.000 0.000
fft_imag_mean 0.000 0.000 0.000
fft_imag_min 0.012 0.013 0.018
fft_imag_max 0.010 0.009 0.025
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