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A B S T R A C T

Originally developed to classify multispectral and hyperspectral images, spectral mapping methods were used to
classify Light Detection and Ranging (LiDAR) data to estimate the vertical structure of vegetation for Fuel Type
(FT) mapping. Three spectral mapping methods generated spatially comprehensive FT maps for Cabañeros
National Park (Spain): (1) Spectral Mixture Analysis (SMA), (2) Spectral Angle Mapper (SAM), and (3) Multiple
Endmember Spectral Mixture Analysis (MESMA). The Vegetation Vertical Profiles (VVPs) describe the vertical
distribution of the vegetation and are used to define each FT endmember in a LiDAR signature library. Two
different approaches were used to define the endmembers, one based on the field data collected in 1998 and
1999 (Approach 1) and the other on exploring spatial patterns of the singular FT discriminating factors
(Approach 2). The overall accuracy is higher for Approach 2 and with best results when considering a five-FT
model rather than a seven-FT model. The agreement with field data of 44% for MESMA and SMA and 40% for
SAM is higher than the 38% of the official Cabañeros National Park FTs map. The principal spatial patterns for
the different FTs were well captured, demonstrating the value of this novel approach using spectral mapping
methods applied to LiDAR data. The error sources included the time gap between field data and LiDAR acqui-
sition, the steep topography in parts of the study site, and the low LiDAR point density among others.

1. Introduction

Vegetation structure can be directly measured using Light Detection
and Ranging (LiDAR) data (Gajardo et al., 2014), which is an essential
parameter for many environmental issues such as ecosystem function
and forest fire monitoring, among others. This type of information is
generally defined by metrics that provide information about compo-
nents of vegetation structure like height, crown width, and crown base
height. This paper explores a new application to extract information
from LiDAR data, using spectral mapping methods originally developed
to classify multispectral or hyperspectral images. Among the spectral
mapping methods, Spectral Mixture Analysis (SMA) (Smith et al.,
1990a,b), Spectral Angle Mapper (SAM) (Kruse et al., 1993), Multiple
Endmember Spectral Mixture Analysis (MESMA) (Dennison and
Roberts, 2003; Roberts et al., 1998) have successfully mapped vegeta-
tion. These methods require identification of pure spectral signatures
(i.e., endmembers) to characterize each class, which can be extracted

from a field survey, a library, or from the actual image. Taking ad-
vantage of the penetration capability of LiDAR data, this study builds
Vegetation Vertical Profiles (VVP) to characterize different structural
patterns that we treat as “endmembers”.

To demonstrate the usefulness of spectral mapping, these methods
were tested in the context of wildfires that have become major natural
hazards across global landscapes. Among the factors that drive fire ig-
nition and propagation (i.e., fuel condition, weather, and topography)
(Pyne, 1996) managers can only control fuel accumulation (Pyne,
1996). Therefore, having an accurate and updated spatial distribution
of fuels is essential to assess fire risk and behavior and to plan man-
agement activities (Burgan and Shasby, 1984). Depending on the fire
propagation element, its height, and fuel density, Fuel Types (FTs) are
grouped into vegetation classes based on their predicted fire behavior.
Among the ones widely used in USA, Scott and Burgan (2005) extended
the Northern Forest Fire Laboratory (NFFL; Albini, 1976) classification.
In Europe, the Prometheus project (Prometheus, 1999) defined seven
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FTs adapting the NFFL system to Mediterranean vegetation.
The complexity of fuels, in terms of their structure and dynamics,

makes field surveys challenging and expensive. Remote sensing
methods provide the necessary temporal, spectral and spatial coverage
for FT mapping. Most of the studies done today are based on medium to
high spatial resolution and low temporal resolution passive multi-
spectral remote sensing images (Riaño et al., 2002; van Wagtendonk
and Root, 2003) and few use hyperspectral data (Jia et al., 2006;
Lasaponara et al., 2006). However, these passive remote sensing data
products are based on vegetation optical properties that are not directly
related to its vertical structure, which is the key attribute to dis-
criminate FTs. For instance, Riaño et al. (2002) found problems using
Landsat-TM data to discriminate among shrub FTs that differed only in
shrub height. They also could not distinguish canopy FTs with and
without an overstory. LiDAR data has been used before to classify FTs
(García et al., 2011; Riaño et al., 2003; Hermosilla et al., 2014) and
canopy fuel properties (e.g. Erdody and Moskal, 2010; Riaño et al.,
2003, 2004; Zhao et al., 2011; Andersen et al., 2005), but the novelty of
this study relies on the method used to analyze LiDAR data. This is the
first study to apply spectral mapping methods to map FTs or other types
of forest properties from LiDAR data. Spectral-based signatures record
the reflectance of the object in many contiguous narrow spectral bands
in the optical domain (400–2500 nm). However, instead of using
spectral bands, these spectral mapping methods are applied to the
LiDAR VVPs that are based on the energy at each height interval. The
specific objectives are to create a LiDAR signature library that is used to
define FTs and to build a spatially comprehensive FTs map for Caba-
ñeros National Park based on the Prometheus classification.

2. Study site

Cabañeros National Park (Fig. 1) is situated in the western part of
the southern plateau of Spain. Cabañeros covers approximately
41,000 ha. It has complex topography with 900–1400m elevation
above sea level in the mountainous areas and 500–700m in the valley.

It is a warm temperate inland Mediterranean climate, ranging from
13 °C to 16 °C mean annual temperatures and 500–850mm/year annual
rainfall. Winter is cold and rainy, spring and fall are wet and short, and
summer is hot and dry. However, climatic conditions vary locally due to
topography.

Drought tolerant evergreen holm oak (Quercus ilex L.) and cork oak
(Q. suber L.), and semi-evergreen oak gall oak (Q. faginea Lam.) dom-
inate Cabañeros. The complex topography together with variable cli-
matic conditions results in varying vegetation types distributed across
the study site. Large grazed pastures characterize the low elevation, low
relief fields, while tall grass species are dispersed with holm oak (i.e., in
woodlands or “dehesas”). Steeper mountainous areas contain Q. faginea
and Q. pyrenaica Willd. High elevations or deep valley soils with high
water levels include Q. pyrenaica and the deciduous tree Sorbus tormi-
nalis (L.) Crantz. Q. ilex and Q. suber grow in drier areas and Heliophilae
species dominate degraded areas such as perennial shrubs, rock roses
(Cistus ladanifer L., Cistus populifolius L.) and low growing perennial
shrub heather (Erica australis L., Erica umbellata Loefl. ex L. and Erica
arborea L.).

3. Data and methods

3.1. Field data collection

Field campaigns during the years 1998 and 1999 collected data over
a hundred plots distributed across Cabañeros. Each plot within a
200× 200m area, represents a homogeneous FT following the
Prometheus system (Prometheus, 1999). The Prometheus system is
mainly based on the type and the height of the fire propagation ele-
ment, adapted to Southern European vegetation. The system defines
seven FTs described in Table 1.

The number of selected plots (200× 200m) per FT was propor-
tional to the surface area occupied by each FT (Table 2). The center of
each plot was recorded using a GARMIN-12-Map GPS. This instrument
had a Root Mean Square Error of 43m, calculated after measuring the

Fig. 1. Riaño et al (2002) (a) and CLM (b) FT maps. Coordinates in latitude/longitude: Upper left corner: 39.59 N, 4.74W; Lower right corner; 39.27 N, 4.19 E.
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same location on 17 different days and compared to an ASHTECH-Z-
Surveyor dual frequency geodesic GPS. The ASHTECH-Z-Surveyor has
an estimated error of less than 1m, if measured for 20min observation
time. Each sampling plot recorded the dominant vegetation species,
density, coverage, height, elevation, slope, solar incident angle, loca-
tion, and acquisition date. Four plots were outside the National Park
boundary, so they were removed from this analysis. During the year
2000, ASHTECH-Z-Surveyor registered 128 additional plots that were
used for validation.

3.2. LiDAR preprocessing

Spanish National Plan of Aerial Orthophotography (PNOA) (http://
www.ign.es/PNOA/vuelo_lidar.html) collected small footprint discrete
return-recording LiDAR data in 2009 using a Leica ALS60 sensor. The
data has a point density of ∼0.5 pts/m2 with a vertical accuracy better
than 0.20m. The raw data points are in 2× 2 km tiles of unclassified
points in LAS binary format and UTM Zone 30 ETRS 1989 projection. A
bare earth Digital Elevation Model (DEM), provided by PNOA at 5 m
spatial resolution, was used to normalize the height of LiDAR returns to
heights above ground.

The command “groundfilter” from FUSION v.3.42 software (devel-
oped at the U.S. Forest Service Pacific Northwest Research Station),
generated a bare-earth surface after filtering ground and non-ground
points from the raw data. The function uses an algorithm based on
Kraus and Pfeifer (1998). Vegetation returns are removed using a
weighting function with appropriate coefficients estimated with suffi-
cient interactions. Finally, the VVP was computed to describe the ver-
tical distribution of the vegetation at a 0.5 m vertical resolution, as the
proportion of canopy returns for each height bin within a 30m pixel
grid.

3.3. Spectral mapping methods to generate the FTs map

This study tested three spectral mapping methods, originally de-
veloped to classify vegetation for hyperspectral images, to generate FT
maps from LiDAR data: Spectral Mixture Analysis (SMA; Smith et al.,
1990a,b), Spectral Angle Mapper (SAM; Kruse et al., 1993), and Mul-
tiple Endmember Spectral Mixture Analysis (MESMA; Roberts et al.,
1998; Dennison et al., 2004). Each classifier method is based on defined

pure spectral components or endmembers. Usually these endmembers
are spectral signatures from vegetation reflectance in the optical do-
main (400–2500 nm). Instead, here the VVPs are used to define the
LiDAR endmembers. The two unmixing procedures tested the hypoth-
esis that at pixel scales most pixels are a mix of fuel types. We classified
each pixel based on the dominant fuel type. The SAM classifier was
selected based on the assumption that each fuel type is characterized by
a different VVP shape, independent of the absolute values at each
height interval. The SAM procedure calculates the angle between two
spectral signatures to determine how similar are their shapes.

SMA and MESMA model each pixel as a linear combination of the
fraction of each endmember and assigns the class with the highest
fraction from the models having the lowest error. The main difference
between them is that in MESMA the numbers and types of endmembers
can vary at the pixel level (Roberts et al., 1998). By contrast, SAM is a
vector comparison method. It considers each pixel as an n-dimensional
vector. A small angle between the endmember and the pixel signal in-
dicates high similarity and assigns the endmember to the class with the
smallest angle. MESMA constrains the maximum allowable RMSE to
2.5%. The minimum and maximum allowable endmember fractions fall
between −0.05 and 1.05. SMA and SAM are implemented in EVI/IDL
software and MESMA in ENVI/IDL VIPER Tools, an add on package
(Roberts et al., 2007).

3.4. Endmember selection

Two approaches defined the VVP signature that represents each FT
i.e., endmember. The first is based on the fieldwork collected in 1998
and 1999. Each field plot is defined by one VVP signature using regions
of interests (i.e. mean value of the 30-m pixels within the 200× 200m
plot). Three metrics were selected to represent the VVP endmember,
using the VVP signatures from the field plots: (1) Count-based
Endmember Selection (COB: Roberts et al., 2003), the maximum
number of VVP signatures that can be modeled within a class (inCOB)
determines the endmember; (2) Endmember average RMSE (EAR:
Dennison and Roberts, 2003), in which the minimum RMSE within a
class determines the endmember; and (3) Minimum Average Spectral
Angle (MASA: Dennison et al., 2004), the lowest average spectral angle
determines this endmember. The final endmember for a FT was one
with high inCOB and low MASA and EAR values. The second approach
we used identified each FT through visual exploration of the VVP
profiles obtained from the image. The most distinct profiles were se-
lected; they were grouped based on the characteristic of each FT in
terms of fuel height, and distance between the ground surface and ca-
nopy fuels. Several VVP profiles per FT were selected in a final step,
among the possible VVP patterns; SAM was used to evaluate their dis-
similarity and ranked the match for each endmember against the
others. A score of 1 indicates a perfect match and a score of 0 means
they are totally different. At the end one VVP profile was chosen to
characterize each FT.

Table 1
The seven fuel types defined by Prometheus system.

Cover Shrubs mean height Difference between shrubs and trees

Fuel name Fuel Type grass shrub trees

Ground fuels F1 > 60%
Surface fuels F2 > 60% <50% 0.30-0.60 m
Medium-height shrubs F3 > 60% <50% 0.60-2.00 m
Tall shrubs F4 > 60% <50% 2.00-4.00 m
Tree stands with clear surface fuels F5 < 30% >50%
Tree stands with medium surface fuels F6 > 30% >50% >0.5m
Tree stands with heavy surface fuels F7 > 30% >50% <0.5m

Table 2
Number of plots per FT during the fields campaigns 1998–1999 and 2000.

FT 1998-1999 2000

1 14 12
2 6 10
3 26 31
4 17 34
5 14 15
6 17 17
7 6 9
Total 100 128
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3.5. Validation

In the first phase, a 7-FT map was generated using the two end-
member approaches and the three spectral mapping methods. The field
work collected in 1998–1999 and in 2000 found that FTs 2 and 7 were
under represented within the study area and consequently they were
dropped. Therefore, a second phase applied the three classification
methods to the five dominant FTs. Congalton and Green’s (1999) ac-
curacy assessment was used to validate the FT maps using the field plots
collected in 2000 in confusion matrixes. In addition, results were
compared to two available FT maps of the park (Fig. 1) to evaluate the
spatial coherence of the FTs. Riaño et al. (2002) generated a Pro-
metheus FT classification map using Landsat-TM, ancillary topographic
variables and only 1998–1999 field plots, shown in Table 2. The Cas-
tilla-La Mancha region (CLM) (Spain) delivered an official FT product in
2016 obtained from Digital Orthophotos and field plots sampled in
2016 from the 2009 PNOA LiDAR data used in this study. Prometheus
was not directly used because CLM applied the Rothermel (1972)
classification thus; the equivalence between these two FT classifications
is shown in Table 3, which made it possible to make a direct compar-
ison.

The Riaño et al. (2002) FT map discriminated the seven Prometheus
FTs. The CLM map shows that FT3 and FT7 were not present. The FT2
and FT3 are similar classes (i.e. shrub FTs with average heights below
or above 0.6 m), therefore, this study assumes that FT2 in CLM’s map
corresponds with FT3 in Riaño’s map for validation purposes. Confusion
matrixes evaluated the accuracy of these maps compared to the 2000
field data shown in Table 2. The perimeter of Riaño’s map is smaller
than CLM’s map because it was created when the northwest area was
not yet included within the National Park. Therefore, Riaño’s perimeter
was used to compare their map to our results whereas CLM’s perimeter
compared between CLM’s map and our results.

4. Results

Approach 1 selected the endmember that represented each FT using
the statistics inCOB, MASA and EAR applied to the different VVPs
within a FT (Fig. 2). It is important to note that the largest number of
VVP (%) represents the smallest plant sizes and the numbers decline as
plants size get bigger.

FT1 concentrates most of the returns from very low heights. FTs
associated with shrubs (i.e. FT2, FT3 and FT4) present similar VVP
profiles with high percentages of returns from very low heights and
some at medium height and a few at high height intervals. The differ-
ences among them are that FT2 has the highest percentages of returns at
the lowest heights and the lowest percentage at medium heights,
whereas the opposite occurs in FT4. FT3 has intermediate patterns
between FT2 and FT4. The main characteristic of FTs associated with
tree stands (i.e. FT5, FT6 and FT7) is the presence of returns at tall
height intervals. The percentage of tall heights is least in relation to
other height intervals, but never zero, as occurs in FTs associated with
grasses and shrubs. The differences among these tree stand FTs is that
the percentage of returns is small at low heights, and increases at

medium height intervals from FT5 to FT7.
The differences among endmembers are more noticeable following

Approach 2 (Fig. 3) than Approach 1. Nevertheless, the general FTs
characteristics associated with grass, shrubs or tree stands are similar in
both approaches. The grass FTs presents all returns at very low heights,
shrub FTs show high percentage of returns at low and medium heights,
and neither (i.e. grass and shrub FTs) show any returns at tall height
intervals. Meanwhile, FTs associated with tree stands present returns
along all height intervals and the percentage at very low height inter-
vals is much less than in the other FTs. The difference among shrub FTs
is clearer in Approach 2 than in Approach 1. The percentage of returns
at medium height intervals increases from FT2 to FT4. The differences
among tree stand FTs are even more remarkable than in Approach 1.
Low returns at low heights, almost no returns in medium heights and
high percentage of returns at tall height intervals characterize FT5.
Similarly to FT5, FT6 shows low returns at low heights, but it presents
more returns at medium heights and lower percentage of returns at tall
height intervals. FT7 has many more returns at medium heights than
the other two tree stand FTs but a lower percentage at tall height in-
tervals. The similarity ranking showed that the endmembers selected
are sufficiently distinct, especially when using the approach 2 (Table 4).
Approach 1 shows higher similarity between FT5 and FT3, followed by
FT7 and FT5.

Considering Approach 1 for endmember selection, seven-FTs tends
to overestimate FT7, especially using SMA (Fig. 4). The highest accu-
racy is found with FT1 associated with grass. However, including just
the five dominant FTs the accuracy improves for all three mapping
methods. The SMA five-FT map tends to overestimate FTs related to tree
stands (i.e. FT5 and FT6), while SAM and MESMA tend to under-
estimate them. FT1 had the highest accuracies for all three methods, but
with a clear overestimation in MESMA.

Considering Approach 2 (Fig. 5), seven-FT maps tended to over-
estimate FT7, especially using SMA and SAM, but this overestimation is
less than that for Approach 1. FT1 also produces the best accuracy. The
Five-FT maps improved accuracy noticeably in all three mapping
methods, especially with SMA. SMA and SAM capture the spatial dis-
tribution of all FTs, while MESMA tends to overestimate FT1.

In seven-FT classifications (Tables 6 and 7), FT7 is clearly over-
estimated, especially in SMA Approach 1. The least overestimation with
MESMA is Approach 2. FT1 had the best accuracy in both approaches.
FTs 5 and 6 are underestimated. FTs related to shrubs presented more
errors among each other. Approach 2 shows least overestimation of FT1
and underestimation of FTs 5 and 6. Five-FT classifications in Tables 8
and 9 show that FTs related to trees are overestimated with the SMA
Approach 1. SAM and MESMA tend to overestimate FTs related to
shrubs. FT1 had the highest accuracy although it is clearly over-
estimated using MESMA, in Approach 2. The best results are found
using SMA method and Approach 2 for endmember selection. Most
errors occur within the shrub classes and within tree classes, while
errors between grass, shrubs and tree classes are negligible.

5. Discussion

This research adapts LiDAR data to widely applied techniques used
to classify vegetation from multispectral and more commonly with
hyperspectral airborne imagery. Specifically, it tested three different
spectral mapping methods, SMA, SAM and MESMA. The agreements
obtained using three different datasets for validation (i.e. Riaño’s map,
CLM’s map, and field data) demonstrate the potential efficacy for each
of these techniques with LiDAR data. One of the main problems in using
currently available FT maps for validation is that they are based on
optical data metrics from satellite data (such as NDVI) that are only
indirectly related to the vertical fuel structure. For instance, the
Landscape Fire and Resource Planning Tools program (LANDFIRE)
provides fuel data at US national level primarily based on assumptions
between vegetation indices and height using Landsat and ecological

Table 3
Prometheus and Rothermel FT classifications equivalence.

Prometheus Rothermel

FT1 Models 1 (short grass), 2 (medium grass) and 3 (tall grass)
FT2 Model 5 (shrub height lower than 0.6m)
FT3 Model 6 (shrub height between 0.6-1.2 m)
FT4 Model 4(dense shrub with mean height higher than 2m)
FT5 Models 8 and 9 (closed timber liter)
FT6 Model 10 (litter with presence of herbaceous and shrub

understory)
FT7 Model 7 (dense shrub under tree canopy)
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models. The LANDFIRE program does not incorporate LiDAR, because it
is not available at the national scale, although Peterson et al. (2015) has
developed a tool (CHISLIC) to automatically integrate LiDAR into
LANDFIRE that provides accurate local maps of FT.

The novelty of this research is two-fold, first it creates a general

LiDAR signature library for defining FTs and second it uses LiDAR VVP
for classifications via spectral mapping methods. Although more accu-
rate FT maps could be developed using a combination of optical and
LiDAR data (e.g., Garcia et al. 2011; Peterson et al., 2015), the principle
goal of this research was to develop and test whether spectral methods

Fig. 2. Endmember selection (i.e. selected Vegetation Vertical Profiles (VVP)) using Approach 1 for FT1 (a), FT2, FT3 and FT4 (b), FT5, FT6 and FT7 (c), and all FTs
(d).

Fig. 3. Endmember selection (i.e. selected Vegetation Vertical Profiles (VVP)) using Approach 2 for FT1 (a), FT2, FT3 and FT4 (b), FT5, FT6 and FT7 (c), and all FTs
(d).
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could be adapted for analyzing LiDAR data and to demonstrate its po-
tential to produce improved FT maps.

While previous studies have shown that LiDAR data can dis-
criminate vertical fuel structures (García et al., 2011; Riaño et al., 2003;
Hermosilla et al., 2014), these approaches require training on local
conditions, creating a challenge to replicate them at multiple sites over
a broader scale. In contrast, the approach demonstrated here using
LiDAR signatures could be easily applied to other areas to allow FT
maps to be produced across a broader scale. This method benefits the
upcoming spaceborne LiDAR opportunities, including the GEDI instru-
ment expected on the International Space Station by November 2018, to
generate and systematically update FT maps. The availability of this
data for timely FT maps will provide information for better decision-
making and risk mitigation. The LiDAR FT signature library was gen-
erated using field data that identified unique FT patterns related to
structural differences. Results show that using VVP to define

endmembers is a promising option for classifying FTs accurately and
comprehensively. Densities at each height interval determine the
number of non-ground points relative to the total number of returns at
each pixel. However, differences using the two approaches to dis-
criminate endmembers show the importance of careful selection of
endmembers to produce good performance using these methods.

Accuracies found in the validation process were better for Approach
2 than for Approach 1. MESMA performed better with Approach 1,
while SMA and SAM had higher accuracies using Approach 2. The main
spatial patterns for the different FTs within the study site were well
captured for all of the five-FT classifications. This makes our approach
potentially operational for forest managers. The seven-FT class maps
were less accurate and clearly over or underestimated some FTs.
However, the two additional FT classes included in the seven-FT maps
were poorly represented in this study site, which may have influenced
these results. Also it is important to note that the degree of agreement
with field data was 44% for MESMA and SMA and 40% for SAM, as
reported in Table 5, is higher than the 38% agreement between field
data and the official CLM FT map, although the differences are not
statistically significant.

To further evaluate the accuracy of the results presented here, it is
important to consider the error sources. There is a time gap of ap-
proximately nine years between field data collection and LiDAR ac-
quisition. Although Cabañeros is dominated by mature forest, aban-
donment of lands in the area has increased the percentage of shrubs. In
addition, vegetation changes are expected due to small forest fires that
have occurred in the area. This time lag could be especially relevant
among shrubs FTs, as they are likely larger now than during field
measurements and also among the tree stand FTs due to changes in
understory conditions. Another issue is the complex topography in the
north part of the study site that can affect LiDAR signals (Valbuena
et al., 2011). For instance, ground returns in steep areas may be mis-
taken with vegetation returns, or very dense vegetation could be
identified as ground (Riaño et al., 2007). The better spatial accuracy of
today’s GPS systems would likely improve the accuracies reported here.

The comparison between Riaño’s and CLM’s maps were analyzed
pixel by pixel, which contributes to coregistration errors. Correlation

Table 4
Similarity ranking for endmembers evaluated with SAM using Approach 1 and
Approach 2. A score of 1 indicates a perfect match and a score of 0 means they
are unrelated.

FT1 FT2 FT3 FT4 FT5 FT6 FT7

Approach 1
FT1 1.00 0.00 0.49 0.35 0.55 0.00 0.54
FT2 1.00 0.00 0.00 0.00 0.50 0.00
FT3 1.00 0.49 0.72 0.00 0.48
FT4 1.00 0.47 0.00 0.48
FT5 1.00 0.00 0.69
FT6 1.00 0.00
FT7 1.00

Approach 2
FT1 1.00 0.00 0.00 0.00 0.00 0.00 0.00
FT2 1.00 0.00 0.11 0.00 0.00 0.45
FT3 1.00 0.00 0.00 0.00 0.00
FT4 1.00 0.00 0.00 0.00
FT5 1.00 0.00 0.00
FT6 1.00 0.00
FT7 1.00

Fig. 4. Seven-FT (a, b, c) and five-FT (d, e, f) classifications using Approach 1 with SMA (a, d), SAM (b, e) and MESMA (c, f).
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procedures to adjust adjacent pixels may improve the results
(Ranganath and Shiva, 1985), but this issue is beyond the scope of this
research. In addition, all of our validation maps have errors. Riaño’s
map is based on optical data that was only indirectly related to vege-
tation structure. CLM’s map was based on the same LiDAR used for this
analysis, together with optical data but their field work was collected in
2016. Therefore, this seven years gap between LiDAR and fieldwork in
the validation data also affects the accuracy of their results. Despite all
of these discrepancies, the confusion matrix for these two maps in
comparison to the 2000 field data showed similar accuracies to those
shown in Table 5, with accuracies of 42% and 38% for Riaño’s and
CLM’s map respectively.

The LiDAR data has a very low point density of just 0.5 point/m2,
which probably misses shrubs and trees, underestimating their height
(Evans et al., 2009). A higher density LiDAR point data provides more
accurate VVP and is expected to considerably improve the precision of
the results (García et al., 2011). Lastly, VVP is calculated by the pro-
portion of bins by height strata which may be problematic because
taller canopies reduce the number of returns from lower height strata.
Other approaches may solve this issue, such as, calculating canopy
cover by strata, defining profile curves like L moments, using skew and

kurtosis or using the FUSION profiling tool to improve correlations.
Another factor with regard to the LiDAR data is that the pixel grid size
(i.e. 30m) was selected to make it coincident with one of the com-
parison dataset (i.e. Riaño’s map). Due to this low point density of the
LiDAR data, a bigger data grid would be more appropriate to ensure
that enough points fall within each pixel. Even if the total number of
returns within a pixel is sufficient within a 30m grid, once this pixel is
stratified into height intervals the total number of returns per stratum is
low. Adoption of larger grid cells may result in higher fuels variability
within each cell.

The methodology applied here is based solely on LiDAR data.
Previous results have discriminated FTs using LiDAR data combined
with optical remote sensing data (Marino et al., 2016; Jakubowski
et al., 2013; Mutlu et al., 2008). The synergy of structural information
from LiDAR together with spectral information from passive remote
sensing data could improve the accuracy of the results. For instance, a
grass FT (e.g. FT1) of the same height as a shrub FT (e.g. FT2) may have
the same VVP signal however they are likely to be spectrally different.
In contrast, two different shrub FTs may have the same spectral sig-
nature but different VVP profiles because their heights are different
(Gajardo et al., 2014).

6. Conclusions

Originally developed to classify passive remote sensing data, the
present study demonstrated the usefulness of several spectral mapping
methods (i.e. SMA, SAM, and MESMA) applied to LiDAR data. The
correlations were found using three different datasets for validation
(i.e. Riaño’s map, CLM’s map and field data) corroborating the potential
to retrieve FTs. A LiDAR signature library was developed to char-
acterize FTs using the VVP from two different approaches. One based
on field data and the second based on exploring spectral patterns in
VVP. The Approach 2 for endmember selection rendered the highest
overall accuracy, using maps of five-FTs and SMA as the spectral
mapping method. This study is the first to apply spectral methods to
characterize LiDAR data into FT classes. The results are promising,
however given several sources of errors (e.g. time gaps between field

Fig. 5. Seven-FT (a, b, c) and five-FT (d, e, f) classifications using Approach 2 with SMA (a, d), SAM (b, e) and MESMA (c, f).

Table 5
Classification accuracy (%) considering the three spectral map methods, the
two endmember selection approaches and the three datasets for validation.

Approach 1 Approach 2

7FT 5FT 7FT 5FT

Riano's map SMA 26 35 39 47
SAM 24 38 36 45
MESMA 27 41 32 37

CLM's map SMA NA 35 NA 55
SAM NA 41 NA 54
MESMA NA 45 NA 45

Fieldwork SMA 25 40 36 44
SAM 28 40 28 40
MESMA 31 44 18 25
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data and LiDAR acquisition, the steep topography, and the low LiDAR
point density) concurrent data sources should be considered for im-
proving accuracies. Nonetheless, the accuracies obtained in this study
for field work using SMA, MESMA, and SAM are higher than the official
CLM map of fuel types.
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Table 6
Confusion matrices between the three spectral map methods for seven-FT classifications using the Approach 1 for the endmember selection and the 2000 fieldwork.

SMA_FT1 SMA_FT2 SMA_FT3 SMA_FT4 SMA_FT5 SMA_FT6 SMA_FT7 Accuracy

F_FT1 5 2 3 1 0 0 1 41.67
F_FT2 2 3 4 1 0 0 0 30.00
F_FT3 2 7 14 2 2 0 2 48.28
F_FT4 0 4 20 4 1 0 5 11.76
F_FT5 0 3 5 1 0 0 6 0.00
F_FT6 0 5 3 0 0 0 9 0.00
F_FT7 1 3 0 0 0 0 5 55.56
Total 24.6

SAM_FT1 SAM_FT2 SAM_FT3 SAM_FT4 SAM_FT5 SAM_FT6 SAM_FT7 Accuracy

F_FT1 9 0 2 1 0 0 0 75.00
F_FT2 3 3 2 2 0 0 0 30.00
F_FT3 2 9 11 4 2 0 1 37.93
F_FT4 0 11 3 8 2 5 5 23.53
F_FT5 3 5 1 1 0 0 5 0.00
F_FT6 1 4 2 2 1 0 7 0.00
F_FT7 1 4 0 0 0 0 4 44.44
Total 27.78

MESMA_FT1 MESMA_FT2 MESMA_FT3 MESMA_FT4 MESMA_FT5 MESMA_FT6 MESMA_FT7 Accuracy

F_FT1 11 0 1 0 0 0 0 91.67
F_FT2 4 1 3 2 0 0 0 10.00
F_FT3 5 7 15 0 1 0 0 53.57
F_FT4 0 11 3 8 2 5 5 23.53
F_FT5 5 5 1 0 0 0 4 0.00
F_FT6 1 4 2 2 1 0 7 0.00
F_FT7 1 4 0 0 0 0 4 44.44
Total 31.20

Table 7
Confusion matrices between the three spectral map methods for seven-FT classifications using Approach 2 for the endmember selection and the 2000 fieldwork.

SMA_FT1 SMA_FT2 SMA_FT3 SMA_FT4 SMA_FT5 SMA_FT6 SMA_FT7 Accuracy

F_FT1 10 1 1 0 0 0 0 83.33
F_FT2 3 2 5 0 0 0 0 20.00
F_FT3 5 0 22 0 0 0 2 75.86
F_FT4 2 3 17 5 0 1 6 14.71
F_FT5 3 1 2 0 1 1 7 6.67
F_FT6 0 1 3 0 3 0 10 0.00
F_FT7 1 1 2 0 0 0 5 55.56
Total 35.71

SAM_FT1 SAM_FT2 SAM_FT3 SAM_FT4 SAM_FT5 SAM_FT6 SAM_FT7 Accuracy

F_FT1 9 0 2 1 0 0 0 75.00
F_FT2 3 3 2 2 0 0 0 30.00
F_FT3 2 9 11 4 2 0 1 37.93
F_FT4 0 11 3 8 2 5 5 23.53
F_FT5 3 5 1 1 0 0 5 0.00
F_FT6 1 4 2 2 1 0 7 0.00
F_FT7 1 4 0 0 0 0 4 44.44
Total 27.78

MESMA_FT1 MESMA_FT2 MESMA_FT3 MESMA_FT4 MESMA_FT5 MESMA_FT6 MESMA_FT7 Accuracy

F_FT1 12 0 0 0 0 0 0 100.00
F_FT2 8 1 1 0 0 0 0 10.00
F_FT3 25 0 3 0 0 0 0 10.71
F_FT4 9 4 15 2 0 0 4 5.88
F_FT5 6 1 4 0 2 1 1 13.33
F_FT6 3 2 5 0 4 1 2 5.88
F_FT7 2 1 3 0 1 1 1 11.11
Total 17.60
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the Cabañeros FTs map for comparison with this study.
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