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Abstract: Updated and harmonized land cover (LC) data is essential for wildfire estimation in fire-prone areas as is the 

case in southern Europe. CORINE Land cover (CLC) and ESA Climate Change Initiative Land Cover (CCI-

LC) maps have been analyzed and compared their performance in the estimation of wildfire occurrence in 

Europe at regional and local scales for the period 2010-2014. LC maps legends were harmonized and 

similarities and discrepancies were compared. Overall agreement between the two maps for the whole Europe 

was ~75%. Forest and agriculture showed the largest agreement, while shrubland and grassland the lowest. 

Quantity and allocation disagreements were calculated including exchange and shift components (Pontius Jr. 

and Santacruz, 2014) which provided detailed information about the contribution of each class to the overall 

disagreement. Spatial discrepancies were found in areas where grassland and shrubland were the dominant 

classes as in United Kingdom or East Turkey. Land Use and Coverage Area frame Survey (LUCAS) was used 

as ground truth for validation purposes. The agreement with LUCAS was slightly higher for CCI-LC (59%) 

than for CLC (56%). Generalized Linear Models (GLM), based on presence-absence of wildfires, were used 

to estimate wildfire occurrence at 3x3 km grid cell resolution from both LC maps at the European scale. LC 

interfaces and climatic variables (temperature and precipitation) where used as explicative variables while 

fires from European Forest Fire Information System EFFIS (2010-2014 period) were used as response 

variable. Wildfire occurrence was also estimated with the two maps at local scale in a test region (Zamora, 

Spain) using a more precise location of the response variable (x, y fire ignition points). At the European scale 

models obtained within the two maps showed similar results. CCI-LC model sensitivity was 77.26%, 

specificity 25.89% and omission error 22.74% while CLC model sensitivity was 75.68%, specificity 29.99% 

and omission error 24.32%. However, CLC performed slightly better in terms of the percent correct 

classification (62%). In the test region the models achieved better results in terms of specificity (66.07% and 

68.93% for CCI-LC and CLC models respectively) and percent correct classification (~68% for CLC model).  

At local scale CLC model performed better than CCI-LC model. Wildfire occurrence estimation was more 

accurate at local scale because of the differences in the spatial accuracy of the response variable used. 
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1. Introduction 

Wildfires are one of the key natural hazards world-

wide, as they impact the environment, destroy property 

and cause human lives losses. The Euro-Mediterranean 

region is particularly prone to wildfires with an increase 

in catastrophic episodes over the past decade (Pausas and 

Fernández-Muñoz, 2012). Recent events in Portugal 

(2017) and Greece (2018) caused together over 150 

fatalities and near 500,000 ha of area burned (Lekkas et 

al., 2018). This increase in wildfire frequency and 

severity (Seidl et al., 2014) combined with progressive 

development of the wildland-urban interface (WUI) puts 

more communities at risk resulting in an increase in both 

the difficulty and cost of fire suppression. On the other 

hand, forest resources are a vital source of carbon storage, 

wildlife biodiversity and water conservation. Hence, 

managing and preserving forest from wildfires is a 

priority in conservation policies, including accurately 

monitoring, updating and managing of wildfire risk 

conditions. The estimation of those conditions needs the 

identification and mapping of the potential contributing 

factors at the appropriate spatial and temporal scale, and 

also their integration in wildfire predictive systems 

(Chuvieco et al., 2010). 

Land use (LU), land cover (LC) and climate 

changes identified in the last decades are having a strong 

influence in fire cycles, contributing to the increase in fire 

size and frequency of large fires. Fuel characteristic (size, 

moisture, accumulation and arrangement) are changing 

due to climate and management transformations with a 

clear trend to foster favorable conditions both for fire 

ignition and fire propagation (Chuvieco, 2009; Pausas 

and Fernández-Muñoz, 2012). Accurate and updated 

information on land use and land cover (LULC) changes 

are essential for understanding past and future trends in 

wildfire occurrence, not only because LULC maps 

provide key data to understand the quantity, arrangement, 

status and spatial distribution of forest vegetation types, 

that could derive information on fuels characteristics 

(Lynch et al., 2015), but also because they can be used as 

a proxy of socio-economic factors related with human 

activities that can be considered potential ignition 

sources. As demonstrated by Gallardo et al. (2015) and 

Vilar et al. (2016a) the contact areas between specific LC 

classes or LC interfaces, can be used to represent various 

anthropogenic activities on the territory that may directly 

or indirectly relate with wildfire occurrence. LC data 

source used to derive the interfaces should be consistent 

in space and time so temporal and spatial variations can 

be unequivocally assigned to real changes and not to 

inconsistencies in the LC data sources.  (Gallardo et al., 

2015)  

LC maps have been frequently used as an input 

for diverse global applications related to e.g. 

environmental analysis, climate change (Verburg et al., 

2011), biodiversity assessment (Tsendbazar et al., 2016), 

food security (Fritz et al., 2010; Pérez-Hoyos et al., 2017), 

disaster management or emergency response (Li et al., 

2017), etc. However, to our knowledge, no previous 

studies have compared different LC maps in the context 

of wildfire estimation and modeling. The CORINE 

programme was initiated in the European Union in 1985 

and currently coordinated by the European Environment 

Agency (EEA https://www.eea.europa.eu/) in the 

framework of EU Copernicus programme 

(https://land.copernicus.eu/pan-european/corine-land-

cover) produces LC maps for the whole Europe since 

1990. Map´s updates were made available in 2000, 2006, 

2012 and 2018 allowing multitemporal analysis of LULC 

changes at regional scales. For almost three decades, CLC 

has been widely used for diverse applications including 

landscape planning (Burkhard et al., 2009) and policy-

making (Jokar Arsanjani et al., 2016). CORINE has been 

also used as LC source for modeling wildfire occurrence. 

In Martinez et al. (2009) the authors estimated wildfire 

risk in Spain including agricultural and forest classes as 

well as interfaces from CLC 1990 and CLC 2000. 

Rodrigues et al. (2014) included in their wildfire 

estimation models forest land cover derived from CLC 

1990 and 2000 in Spain. Oliveira et al. (2012) used as LC 

data source the CLC 2000 to analyze fire occurrence in 

Mediterranean Europe. In Modugno et al. (2016) the 

variable Wildland Urban Interface (WUI) was obtained 

from CLC 2006 for mapping large fires patterns in 

Europe. Vilar et al. (2016a) modeled wildfires in two time 

points for southern European countries by using LC 

interfaces obtained from CLC 1990 and 2000. 

ESA Climate Change Initiative (CCI) was 

developed to face climate change challenge at global 

level. Land cover (CCI-LC) information (Defourny et al., 

2016) was derived as part of this initiative including 

yearly updated global LC maps (1992 to 2015) obtained 

from MERIS and SPOT satellite images at 300 m spatial 

resolution. CCI-LC also delivers 3-epoch series of global 

LC maps (1998-2002, 2003-2007, 2008-2012). Up to 

now, only few studies have used CCI-LC for wildfire 

estimation applications. Forkel et al. (2017) proposed a 

new flexible data-driven fire modeling approach to 

estimate burned area globally including LC classes from 

CCI-LC as part of the predictive dataset. 

Previous works analyzed and compared CLC or 

CCI-LC maps with other global LC sets for various 

purposes as to perform accuracy assessments for other 

products or to check their usefulness for specific 

applications related to landscape, biodiversity or cropland 

monitoring. Pérez-Hoyos et al. (2012) compared global 

LC products CLC, GLC2000 (Bartholomé and Belward, 

2005), MODIS Land Cover (Friedl et al., 2002) and 

GlobCover (Leroy et al., 2006) in Europe. These products 

were developed for different purposes and they had 

different technical characteristics. With the comparison 

and quality monitoring the authors aimed to assess their 

usefulness. They compared the LC maps by using 

Boolean and fuzzy theory approaches and obtaining 

overall accuracies ranging from 35 to 57% depending on 

the compared LC map pairs. Tsendbazar el at. (2017) 

integrated global Globcover 2009, CCI-LC 2010, 

https://www.eea.europa.eu/
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


MODIS-2010 (Friedl et al., 2010) and Globeland30 

(Chen et al., 2015) LC datasets within the aim to derive 

user-specific maps for characterizing mosaic classes for 

land system modeling and biodiversity assessment. They 

obtained an overall correspondence of 80% between the 

integrated global LC map with the reference LC sample 

sites. Pérez-Hoyos et al. (2017) compared the global 

datasets FAO-GLC share (Latham, 2014), Geowiki 

IIASA-Hybrid (See et al., 2015), Global Land Cover 

2000, Global Land Cover by National Mapping 

Organizations (Tateishi et al., 2014), GlobCover, 

Globeland30, CCI-LC 2010 and 2015, and MODIS Land 

Cover product for cropland monitoring by using a 

Boolean approach. The study was global but the authors 

focused the analysis in countries with high risk of food 

insecurity, where crop monitoring is important for early 

warning. They found that the cropland information varied 

considerably depending on the LC analyzed source. FAO-

GLC share and Globeland30 provided more adequate 

results. Regardless the large numbers of comparative 

assessments made for a variety of purposes only few 

works have compared CLC and CCI-LC datasets. 

Waldner et al. (2015) identified and collected national to 

global LC maps (including CLC and CCI-LC) in order to 

identify the priority areas for cropland mapping. 

Tsendbazar et al. (2014) found correspondences 

regarding the forest areas comparing CCI-LC with 

regional datasets i.e. CLC. Forest and urban areas of 

regional maps were mostly confused with croplands and 

mosaic croplands, shrublands, grassland and sparse 

vegetation classes of the global maps.  

In this work CLC and CCI-LC data sources available 

for Europe were compared and their performance for 

wildfire occurrence estimation in Europe at two spatial 

scales was analyzed. The comparison was made using a 

Boolean approach (Herold et al., 2008) on a per pixel 

basis. Similarities and differences between both products 

for the year 2012 were analyzed in terms of quantity and 

allocation comparison. Land Use and Coverage Area 

frame Survey (LUCAS) available also for 2012 was used 

as reference data for validation. Wildfire estimation was 

accomplished at 3x3km grid cell resolution combining 

climatic variables and LC interfaces obtained from CLC 

and CCI-LC data sources by means of General Linear 

Models (GLM) (see methodological approach in Fig. 1). 

With this work we try to confirm or discard the hypothesis 

that differences between LC maps exist and how these 

differences can affect wildfire occurrence models at 

different scales 

 

 

 

 

 

2. Materials and methods 

2.1. Study area 

The study area comprises European Economic Area 

(EEA) 39 countries where CLC information was available 

for 2012 (CLC12 v.18.5.1). It covers 6,075,176 km2 with 

~609,646,000 total inhabitants 

(https://w3.unece.org/PXWeb/en). ~30% of the territory 

is covered by forest (woodlands) from which coniferous 

forest represents 48%, broadleaf forests 34% and mixed 

forest 17%. More than 30% of the territories are 

agriculture lands. Urban areas represent ~3%. Woodlands 

prevail in the northern parts of Europe where topography 

is dominated by mountains and hilly areas, i.e. woodlands 

in Finland or Sweden account for more than 60% of the 

area of these countries (also in Slovenia). On the contrary, 

in some countries ~50% of their total area is covered by 

croplands (Denmark or Hungary). Natural and 

agricultural grasslands dominate the landscape in Ireland 

(63%) and United Kingdom (>40%), while Malta and the 

Benelux have large urban areas in relation to their total 

territory (EEA, 2017). Fig.2 shows the study area and the 

LC maps CLC and CCI-LC from the year 2012 (CCI-

LC12 and CLC12 from now on) used in this work.  The 

area selected for the local analysis is Zamora, a Spanish 

province (NUTS3 level) located in north-west of Spain 

(black polygon in Fig. 2).    

Wildfires affect mostly to southern Europe. Portugal, 

Spain, Italy, Greece and southern France are the five most 

affected countries/regions accounting for ~85% of the 

total annual burnt area each year (San-Miguel-Ayanz, 

2012). In central and northern Europe wildfires are not so 

frequent but can occur in dry years. For instance, in the 

summer of 2018 a heat wave affected the northern 

hemisphere, leading to unusual drought conditions and 

high temperatures in north Europe. This led to an increase 

of fire breaks in some countries being e.g. three times 

more than average in Sweden. Recent studies based on 

temperature records concluded that human-caused 

climate change doubled the odds of 2018 summer’s 

European heat wave 

(https://www.worldweatherattribution.org/). According 

to the European Fire Database 

(http://effis.jrc.ec.europa.eu/about-effis/technical-

background/european-fire-database/) most fires in 

southern European countries are related with human 

activity due to deliberate actions (>50% of the known 

fires), negligence or accident (~35%) and only ~5 % are 

due to natural causes (usually dry storm lightning). In 

northern Europe the percentage of fires caused by natural 

causes is slightly higher (~8%). and human-caused fires 

are mostly related with accidental or negligent actions 

(>70%). In central Europe the causes are similar to 

southern countries and the incidence of natural fires is 

very low (<1%). 

 

 

 

 

https://www.worldweatherattribution.org/
http://effis.jrc.ec.europa.eu/about-effis/technical-background/european-fire-database/
http://effis.jrc.ec.europa.eu/about-effis/technical-background/european-fire-database/
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Fig. 1. Methodological approach explaining the steps followed in the comparison of CCI-LC12 and CLC12, its validation 

using LUCAS12 and estimation of wildfire occurrence at European and local scale from LULC interfaces and climatic 

variables at 3x3 km grid cell resolution using GLM. WUI, FAI and FGI stand for Wildland-Urban, Forest-Agricultural and 

Forest-Grassland Interfaces. TOC refers to Total Operating Characteristic. 

 

 
 

Fig. 2.  Study area EEA39 countries. CCI-LC12 (a) and CLC12 (b) maps. Highlighted in black the limits of the local study 

site (Zamora, Spain).  



2.2. Input Data 
 

2.2.1. Land cover datasets 
 

In this study CLC12 and CCI-LC12 maps were 

compared. Both products are based on Earth Observation 

(EO) data. CCI-LC12 uses as main input the global 

archive (2003-2012) of the MERIS-ENVISAT images 

(Bontemps et al., 2015) at 300 m resolution. Observations 

acquired by the SPOT Vegetation (SPOT-VGT) were 

used to extent the temporal coverage of the project over 

the period 1998-2002 (Defourny et al., 2016). MERIS 

surface reflectance archive data were pre-processed 

to correct for radiometric, geometric and 

atmospheric effects and as for cloud screening (Li 

et al., 2016). Supervised and unsupervised 

classification algorithms were combined in an 
automated procedure to derive LC classes (Defourny et 

al., 2016). A total of 22 classes were defined using United 

Nations Land Cover Classification System (UN-LCCS) 

(Di Gregorio et al., 2016).  

CLC12 belongs to Copernicus land cover products 

(http://land.copernicus.eu/paneuropean/corine-land-

cover/clc-2012). For this analysis CLC12 v.18.5.1 was 

used covering 39 EEA (Fig 2.). This product used high-

resolution satellite image coverages (IRS ResourceSat-

1/2, SPOT-4/5, RapidEye constellation) acquired 

between 2011 and 2012 as input data source to update 

CLC2006 following the “change mapping first approach” 

(Büttner et al., 2014). Computer Assisted 

Photointerpretation (CAPI) was the prevailing 

methodology applied to derive information from the 

satellite images. National teams started the analysis by 

identifying all changes larger than 5 ha in their respective 

countries. During this process the errors detected by the 

teams in CLC2006 map were corrected providing a 

CLC2006 revised dataset. Then CLC12 was produced by 

combining the CLC2006 revised dataset (v. 18.5) and the 

changes occurred between CLC2006 and CLC12. CLC12 

is both available in raster (100 and 250 m resolution) and 

vector formats. Table 1 shows the characteristics of each 

LC product. 
LUCAS 2012 database 

(http://ec.europa.eu/eurostat/web/lucas/data/primary-

data/2012), based on statistical calculations that interpret 

observations in the field, was used for the available 

countries within the study area as the ground truth to 

compare with the two LC analyzed dataset. LUCAS uses 

a standardized survey methodology with a sampling plan, 

defined classifications, data collection processes and 

statistical approaches to obtain harmonized and unbiased 

estimates of LULC. The first survey was done in 2001 

within the aim to provide early crop estimates for the 

European Commission. In 2006 the sampling 

methodology changed to extend the LC surveyed types 

and it was introduced a three-year survey frequency 

(2006, 2009, 2012). From 2006 the survey is a two-phase 

sampling method being the first phase a systematic 

ground sampling with points spaced 2 km in the four 

cardinal directions (~1 million points). Each point (circle 

of a 1.5 m of radius and also 20 m for specified classes) 

of this first phase sample is photo-interpreted and 

assigned to one of the seven pre-defined land cover 

classes (Martino et al., 2009). In LUCAS 2012 ~270,260 

points were visited in situ covering EU-27 member states. 

The main information collected was related to LULC 

(with a classification comparable to other statistical 

standards i.e. those used by FAO), with 8 LC categories 

and 4 LU, (subdivided then in classes and subclasses), soil 

data and water management.  

 

2.2.2.  LC Interfaces 
 

In this work, as in Gallardo et al. (2015) and Vilar et al. 

(2016a), we considered the interfaces between forest and 

other land covers, and we used them as indirect drivers of 

the anthropogenic activity on the territory that may cause 

a wildfire ignition. It has been reported that human 

activities common in some LC interfaces can lead to 

wildfire ignitions either by accident, negligence or 

deliberate actions (i.e. wildfires caused by using 

agricultural machinery, pasture burning, recreational 

activities close to urban areas, etc). For this analysis three 

LC interfaces were defined from both CCI-LC12 and 

CLC12 maps: Forest - Agricultural Interface (FAI), 

Forest - Grassland Interface (FGI) and Wildland - Urban 

Interface (WUI). As it will be further described in section 

2.3, CLC12 was first resampled to 300 m for LC 

comparison with CCI-LC. From both maps the LC 

interfaces were obtained, defined as 1 pixel (300x300 m) 

to each side of the contact among uses that formed each 

interface type. LC interfaces were then referred to 3x3 km 

reference cell grid in this study. Interfaces were overlaid 

with the cell grid and the area occupied by each LC 

interface by cell was calculated in order to derive final 

density values by cell.  

 

2.2.3. Climate data 
 

Mean temperature (T) and precipitation (P) over the study 

region were obtained from the European land-only daily 

high-resolution gridded data set available in the so-called 

E-OBS data files platform 

(https://www.ecad.eu/download/ensembles/download.ph

p). This data set was elaborated under the ENSEMBLES 

project framework (http://www.ensembles-eu.org/) and 

contains daily precipitation, minimum, maximum and 

mean surface temperature since 1950 at 0.25° by 0.25° 

and 0.5° by 0.5° on a regular latitude-longitude grid and 

0.22° by 0.22° and 0.44° by 0.44° on a rotated pole grid  

(Van den Besselaar et al., 2011). The regular 0.25° grid 

was chosen for this analysis. Mean temperature and 

precipitation variables were referred to the 3x3 km 

reference cell grid as previously describe for the LULC 

interfaces (see previous section).

 

http://land.copernicus.eu/paneuropean/corine-land-cover/clc-2012
http://land.copernicus.eu/paneuropean/corine-land-cover/clc-2012
http://ec.europa.eu/eurostat/web/lucas/data/primary-data/2012
http://ec.europa.eu/eurostat/web/lucas/data/primary-data/2012
https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
http://www.ensembles-eu.org/
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Table 1       

CCI-LC12 and CLC12 and LUCAS12 main characteristics. 

 

 CCI-LC12 CLC12 

Spatial 
resolution 

300 m 100, 250 m 

Minimum 
Mapping Unit 

5 ha 25 ha 

Data source MERIS FR1/RR2 global SR composites IRS P6 LISS III4, SPOT 
and RapidEye; CLC2006 

Date of satellite 
data 

2012 2011-2012 

Classification 
scheme/legend 
categories 

UN-LCCS3 based: 22 class  44 class on level 3  

LC 
classification 
method 

Unsupervised 
spatio-temporal 

clustering; machine 
learning classification 

Computer Assisted 
Photointerpretation (CAPI)  

Thematic 
accuracy (data 
provider) 

~74%  ≥ 85% 

Spatial 
coverage 

Global 39 EEA countries 

Reference (Defourny et al., 2016)  
http://maps.elie.ucl.ac.be/CCI/viewer/download/

ESACCI-LC-PUG-v2.5.pdf   

http://land.copernicus.eu/p
an-european/corine-land-

cover/clc-2012  

Update 
frequency 

Annually 1998-2015. 
3-epoch series of 5-year periods (1998-2002, 2003-

2007, 2008-2012) 

1990-2000-2006-2012 

1FR: Full Resolution (300m) 
2RR: Reduce Resolution (1000m) 
3UN-LCCS: United Nations Land Cover Classification System 
4IRS P6 LISS III: European Spatial Agency (ESA) mission ResourceSat 23.5m spatial resolution (LISS III) 

(https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/resourcesat-1) 
 

 

 

2.2.4. Wildfire data 
 

Fire data used for the analysis at European scale was 

obtained from the Rapid Damage Assessment (RDA) 

product from EFFIS (http://effis.jrc.ec.europa.eu/) were 

fire perimeters of burnt areas for the period 2010-2014 

were selected. This period contained the years were the 

LC maps were elaborated. A 5-year period seemed 

sufficient for gathering the needed fire data range for 

modeling. Other works have used varied time-periods e.g. 

11 years (Vilar et al., 2016a), 8 years (Oliveira et al., 

2012) or 4 years (Padilla and Vega-García, 2011). EFFIS 

monitors burnt area in Europe since de 90’s, producing 

the first burnt area map in 2000 on the basis of IRS WiFS 

images (San-Miguel-Ayanz J., 2009). Nowadays the 

MODIS sensor is used for continuous monitoring and 

mapping fires of ~40ha or larger (San-Miguel-Ayanz, 

2012). Fires are mapped using a semi-automatic 

procedure including a combination of band thresholds and 

ancillary information from CLC, the active fire detection 

product and a fire news application. At local level fire 

ignitions (x, y coordinates, 2010-2014 period) for the 

Zamora province (Spain) were used (General Directorate 

of Environment, Castile and Leon, Spain. 

https://www.jcyl.es/). Response variables were obtained 

as the presence-absence of fires by 3x3km grid cell. 

Fig. 3 illustrates the response variable (wildfire 

presence-absence) at European scale from the EFFIS fire 

perimeters, the period 2010-2014 and referred to 3x3km 

grid cell. A zoom window in Fig. 3 also shows the 

response variable used for the local study, the fire ignition 

points (x, y) from the same time period referred to 3x3km 

grid cell. 
 

  

 

 

 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/resourcesat-1
http://effis.jrc.ec.europa.eu/
https://www.jcyl.es/


 
 

 
Fig. 3. Wildfire occurrence from the period 2010-2014 (EFFIS). Response variable for the analysis at European scale, 

presence (red)-absence of wildfire ignitions by 3x3km grid cells. (a) Window detail of the European scale response variable 

located in North-West Spain, province of Zamora; (b) Response variable at local scale (province of Zamora, Spain), presence 

(brown)-absence of wildfire ignitions (x, y) by 3x3km grid cells. 

 

2.3. Land cover maps’ comparison 
 

As a first step, CCI-LC12 was cropped to the 

extent of CLC12 and CLC12 was resampled using nearest 

neighbor to match CCI-LC12 300 m resolution. This 

method uses the value of the closest pixel to assign to the 

output pixel value. The legends of the CCI-LC12 and 

CLC12 maps were harmonized into 8 common classes as 

shown in table 2. LUCAS12 cover classification was also 

adapted to the same classes (Table 2). 

 The legend aggregation and harmonization are 

crucial steps in map comparison (Pérez-Hoyos et al., 

2017). In this study decisions were made both to 

aggregate and to find equivalences between the analyzed 

LC datasets and the final common legend.    

 CCI-LC12 and CLC12 maps were first contrasted 

using a non-site specific approach, so the total area of 

each LC category from both maps where compared 

without regard to their spatial location. After this analysis 

a site-specific comparison was applied by spatial overlay 

of the two maps. A cross-tabulation matrix was produced 

in order to quantify spatial agreement or disagreement 

between the two maps. CLC was taken as reference map. 

From this matrix overall spatial agreement (OA) was first 

derived by dividing the sum of the entries of the main 

diagonal by the total number of pixels taken (Story and 

Congalton, 1986). The off-diagonal values represent the 

assignation errors (Chuvieco, 2002). To determine the 

individual category agreements omission and commission 

errors were calculated: (1) omission of X errors were 

defined as the pixels that belong to a category X but were 
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classified in a different category. They were calculated by 

going down the columns for each category and summing 

the incorrect classifications and dividing them by the total 

number of pixels of the reference map for each category. 

In other words pixels that were not correctly classified as 

category X were omitted from the correct category; (2) 

commission of X errors were defined as the pixels that 

were predicted to be in a category X but did not belong to 

that category. They were calculated by going across the 

rows for each category, summing all the incorrect 

classifications and dividing them by the total number of 

classified pixels for each category.  

Quantity and allocation disagreement, 

exchange and shift components were also calculated from 

the cross-tabulation matrix (Pontius Jr., 2019; Pontius Jr. 

and Millones, 2011). Quantity disagreement informs on 

the amount of difference between two maps that is due to 

the less than perfect match in the proportions of the 

categories (Equation 1). On the other hand, allocation 

disagreement provides the amount of difference between 

two maps that is due to the less than optimal match in the 

spatial allocation of the categories, given the category 

totals in the maps (Equation 2).  

 

𝑞𝑔 = |(∑ 𝑝𝑖𝑔
𝐽
𝑖=1 ) − (∑ 𝑝𝑔𝑗

𝐽
𝑗=1 )|  (1) 

𝑎𝑔 = 2𝑚𝑖𝑛[(∑ 𝑝𝑖𝑔
𝐽
𝑖=1 ) − 𝑝𝑔𝑔, (∑ 𝑝𝑔𝑗

𝐽
𝑗=1 ) − 𝑝𝑔𝑔]

 (2) 
 

Where the first summation in the equation 1 is the 

proportion of the category g in the reference map and the 

second summation in the proportion of the category g in 

the comparison map. In equation 2, first argument within 

the minimum function is the omission of category g and 

the second argument is the commission of category g. The 

multiplication by two and the minimum function are 

needed because allocation disagreement for category g 

comes in pairs, where commission of g is paired with 

omission of g, so the pairing is limited by the smaller of 

commission and omission (Pontius Jr. et al., 2004). 

Exchange is a transition from category i to category j 

in some observations and a transition from j to i in an 

identical number of other observations. In other words, 

exchange exists for a pair of pixels when one pixel is 

classified as category i in the first map and as category j 

in the second map and, at the same time, the paired pixel 

is classified as category j in the first map and as a category 

i in the second map (Pontius Jr. and Santacruz, 2014). The 

total exchange for a category is the sum of all exchanges 

that involve that category. If there are more than two 

categories, shift can happen, being the allocation 

difference that is not exchange i.e. the difference after 

subtracting quantity difference and exchange from the 

overall difference. See Pontius Jr and Millones (2011) for 

further details. To obtain these quantity and allocation 

disagreement components diffeR v. 0.0-4 package was 

used (Pontius Jr. and Santacruz, 2015) for R 

(RCoreTeam, 2017). 

For validation and accuracy assessment purposes 

LUCAS12 was used as reference ground truth data (Fig. 

4). LUCAS12 points were overlaid to CCI-LC12 and 

CLC12. Then, cross-tabulation matrices between 

LUCAS12 point sampling  and the two maps were 

produced, obtaining overall agreement, omission and 

commission errors, as well as quantity and allocation 

disagreement, exchange and shift components.  

 

2.4. Modeling wildfire occurrence at 

European and local scales using CCI-LC12 

and CLC12 maps 
 

Wildfire occurrence for the year 2012 was modeled 

by GLM using LULC Interfaces derived from both CCI-

LC12 and CLC12 maps plus climatic variables (mean 

temperature and precipitation) as predictors. EFFIS fires 

and x, y fire events were used as response variable 

(presence-absence) for the European and the local model 

respectively. Response variables were overlaid to LC 

classes and LC interfaces to explore differences in 

wildfire frequency per class/interface in both maps. Then 

models were calculated at 3x3km grid cell resolution. 

GLM are extensions of linear regression models that 

support dependent variables with non-normal 

distributions such as binomials (Guisan et al., 2002). The 

predictor variables Xj (j=1,…,p) are combined to produce 

a linear predictor LP which is related to the expected 

value µ=E(Y) of the response variable Y through a link 

function g() (Equation 3): 

 

𝑔(𝐸(𝑌)) = 𝐿𝑃 = 𝛼 + 𝑋𝑇𝛽    (3) 

where α is a constant called the intercept, 

X=(X1,…,Xp) is a vector of p predictors and 

β={β1,…, βp} is the vector of p regression 

coefficients (one by predictor). The distribution of 

Y used in this work was binomial with a logit link 

function. 
As usually occurs in fire risk modeling studies, in this 

work the number of cells with absence of fire was 

substantially larger than the cells with presence of fire. To 

solve this unbalance a sample of the data from absence-

fire cells is commonly used for model building (Preisler 

et al., 2004). As a consequence, a deterministic offset 

term of –log π is introduced into the model. π denotes the 

response-specific sampling rate. When π=1, π is also 1, 

and when π=0, π= π, the decided sampling rate for the 

non-fire cells. In this work a sample of 1% of the absence-

fire cells was considered appropriate to retain enough 

covariate information on the non-ignitions so this offset 

was included into the model (further details in Preisler et 

al. (2004)). After sampling the non-fire cells, 75% of 

16517 3x3 km cells randomly selected within the study 

region was used to calibrate the model and remaining 

25% was used for validation purposes. Models were fit 

using car (Fox, 2011) mgcv package 1.8-22 (Wood, 2017) 

and ROCR (Sing et al., 2005) packages for R 

(RCoreTeam, 2017).  

 



Table 2  
    

Correspondence between original CCI-LC12, CLC12 and LUCAS12 legend categories and the harmonized legend. 

 

Code Land cover 

class 

CCI-LC12 CLC12 LUCAS12 

1 Agriculture Cropland, rainfed (10); Herbaceous cover 

(11), Tree or shrub cover (12) 

Agricultural areas 

(2) 

Cropland (B00) 

Cropland, irrigated or post-flooding (20) 

Mosaic cropland (>50%)/ natural veg. 

(<50%) (30) 

Mosaic natural veg. (>50%)/cropland (<50%) 

(40) 

2 Forest Tree cover, broadleaved, evergreen, closed to 

open (>15%) (50) 

Forest (3.1) Woodland (C00) 

Tree cover, broadleaved, deciduous, 

closed/open (60) (61) (62) 

Tree cover, needleleaved, evergreen, 

close/open (70) (71) (72) 

Tree cover, needleleaved, deciduous, 

close/open (80) (81) (82) 

Tree cover, mixed leaf type (90) 

Mosaic tree and shrub (>50%)/hervaceous 

cover (<50%) (100) 

Tree cover, flooded, fresh or brakish water 

(160) 

Tree cover, flooded, saline water (170) 

3 Grassland Mosaic herbaceous cover (>50%)/tree, shrub 

(<50%) (110) 

Natural grassland 

(3.2.1) 

Grassland (E00) 

Grassland (130) 

4 Wetland Shrub or herbaceous cover, flooded, 

fresh/saline/brakish water (180) 

Wetlands (4) Wetland (H00) 

5 Settlement Urban areas (190) Artificial surfaces 

(1) 

Artificial land 

(A00) 

6 Shrubland Shrubland (120) 

• Evergreen shrubland (121) 

• Deciduous shrubland (122) 

Moors and 

heathland (3.2.2) 

Shrubland (D00) 

Sclerophyllous 

vegetation (3.2.3) 

Transitional 

woodland shrub 

(3.2.4) 

7 Sparse 

vegetation, bare 

areas, 

permanent snow 

and ice 

Lichens and mosses (140) Open spaces with 

little or no 

vegetation (3.3) 

Bare land/lichens 

and moss (F00) Sparse vegetation (tree, shrub, herb.) (<15%) 

(150) 

• Sparse shrub (<15%) (152) 

• Sparse herbaceous cover (<15%) (153) 

Bare areas (200) 

• Consolidated Bare areas (201) 

• Unconsolidated bare areas (202) 

Permanent snow and ice (220) 

8 Water bodies Water bodies (210) Water bodies (5) Water areas (G00) 
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Fig. 4. LUCAS12 map (adapted classification). In light grey countries with no LUCAS data. Window detail of LUCAS 

sampling points located in North-West of Iberian Peninsula superimposed to (a) CCI-LC12 and (b) CLC12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The lowest Akaike’s Information Criterion (AIC) value 

selected the best model (Akaike, 1973). Adding 

independent variables step by step assessed their individual 

contribution to the model performance. Regression models 

assume that the predictor variables are not correlated. 

Therefore, multicollinearity analysis was applied before 

running GLM (Robinson and Schumacker, 2009) by means 

of Spearman correlation among variables and by Variance 

Inflation Factor (VIF). VIF can distinguish the degree of 

multicollinearity when variables are uncentered (Freund et 

al., 2003). Spearman correlations higher than 0.7 and/or 

VIF higher than 10 (Hair et al., 1995) confirmed 

multicollinearity and so the predictors were not included in 

the analysis.  

To evaluate prediction accuracy of the models, Total 

Operating Characteristic (TOC) was used (Pontius Jr. and 

Si, 2014). As Receiver Operating Characteristic (ROC) 

(Fawcett, 2006) TOC compare the reference variable to the 

calculated variable by diagnosing each observation as either 

presence or absence. A threshold of 0.5 resolved the 

diagnosis in this work. If a predicted observation is greater 

than or equal to the threshold, then the observation is 

diagnosed as presence, absence otherwise (Pontius Jr. and 

Si, 2014). TOC allows having the information of the 

contingency table for all defined thresholds in a plot. The 

vertical distance from the horizontal axis to the TOC curve 

equals to “hits” while the vertical distance from the TOC 

and the “hits + misses” lines indicates “misses”. The 

horizontal distance from the maximum boundary to the 

TOC curve indicates “false alarms” while the horizontal 

distance to the minimum boundary means “correct 

rejections” (see Pontius Jr. and Si, (2014) for further 

details). To obtain TOC curves TOC v. 0.0-4 package was 

used (Pontius et al., 2015) for R (RCoreTeam, 2017). The 

Area Under the Curve (AUC) metric was also calculated, 

which indicated the probability that a randomly chosen 

wildfire presence case exceeds the one of randomly 

choosing an absence. It ranges from 0 to 1, where larger 

AUCs indicate stronger positive association (Pontius Jr. and 

Parmentier, 2014). AUC=1.0 means that all wildfire 

presences have prediction values greater than the prediction 

values of all wildfire absences (perfectly correct); AUC=0.5 

indicates a random association and AUC=0.0 means that all 

wildfire presences have prediction values that are less than 

the prediction values of all the wildfire absence 

observations (perfectly wrong). The classification 

percentage of the true wildfire presences (sensitivity) and 

true wildfire absences (specificity) as well as false wildfire 

absences (omission error) were also calculated.  

 

 

 

 

 

 

 

 

 

3. Results 

3.1. Land cover maps’ comparison  

As it is shown in Fig. 2, agriculture and forest areas are 

mostly coincident in the two maps. However, some areas in 

CCI-LC12 are dominated by grassland while in CLC12 by 

agriculture or shrubland (e.g. UK or Ireland). 

Fig. 5 shows the percentage of total surface 

covered by each of the 8 LC classes in the two maps 

and percentage of LUCAS sample points.  

Agriculture, shrubland, sparse vegetation and 

settlement classes covered a larger area in CLC12 

than in CCI-LC12 while the contrary occurs in forest 

and grassland. The most noticeable relative 

differences between maps happened in grassland, ~5 

% and in shrubland, ~6 %. LUCAS12 percentage %. 

LUCAS12 percentage of sample points in agriculture, 

forest and grassland categories were larger than in the other 

LUCAS categories. The percentage of LUCAS sampling 

points in grassland was larger (>20%) than CCI-LC12 or 

CLC12 percentage in surface. Fig. 6 shows the spatial 

location of grassland and shrubland classes in the two maps. 

In CCI-LC12 grasslands were more abundant in United 

Kingdom and central Europe compared with CLC12. On 

the contrary, shrubland class was more abundant in CLC12 

map, with large areas located in the northern and 

southern countries 

Fig. 7 shows the spatial agreement and 

disagreement between CCI-LC12 and CLC12 after 

pixel comparison analysis (non-class specific) while 

table 3 shows the cross-tabulation matrix with the 

information per LC classes. 

 

 
Fig. 5. Percentage of LC by class for CCI-LC12, CLC12 

maps and LUCAS12.  

 

 

 

 



 

 

 

 
 

Fig. 6. Grassland and shrubland LC classes in CCI-LC12 and CLC12. (a) CCI-LC12 grassland (b) CLC12 grassland (c) CCI-

LC12 shrubland (d) CLC12 shrubland  

 



 

 
 

 
Fig. 7. Agreement and disagreement between CCI-LC12 and CLC12 maps 

 

 

In Northern Europe disagreements were mainly located 

in Iceland and Norway, due to the exchange found between 

the grassland (CCI-LC12) and shrubland (CLC12) classes. 

Also, in United Kingdom and Ireland the total area of 

disagreement was high, due to the presence of grasslands in 

CCI-LC12 classified as agriculture in CLC12. The same 

happened in the Netherlands and northern France. In East 

Turkey the disagreement was also important due to the 

larger presence of agriculture and grassland in CCI-LC12 

compared to CLC12 where those areas were classified as 

shrubland or sparse vegetation categories. In the Iberian 

Peninsula the disagreements were mostly due to the larger 

presence of shrubland in CLC12 compared to CCI-LC12. 

Cross-tabulation matrix between CCI-LC12 and 

CLC12 (reference). Diagonal cells (in bold) contain the 

percentage of pixels (off the total extent) classified as the 

same category in the two maps. OA shows the general 

agreement between the two maps. Commission and 

omission errors by category are also included. All shown 

values are in percentage. 

The overall agreement (OA) between both land cover 

sources was 74.72%. By individual categories, agriculture, 

forest and water bodies presented lower discrepancies. 

Regarding categories that have been classified in other 

categories (omission errors) shrubland presented the 

highest error (>90%), being under estimated related to 

CLC12. As also seen in Fig. 2 shrublands in CLC12 

corresponded to forest or grassland categories in CCI-

LC12. On the other hand, agriculture, forest and water 

bodies presented smaller omission errors. In relation to 

categories that were classified in a category but did not 

belong to that category (commission errors) grassland 

presented the largest error (>80%). In this case, CCI-LC12 

grassland mostly corresponded to CLC12 agriculture class  

 



 

Table 3 Cross-tabulation matrix between CCI-LC12 and CLC12 (reference). Diagonal cells (in bold) contain the percentage 

of pixels (off the total extent) classified as the same category in the two maps. OA shows the general agreement between the 

two maps. Commission and omission errors by category are also included. All shown values are in percentage. 

 

 

  

  

 
 

Fig. 8. Quantity, exchange and shift components (%) derived from cross-tabulation matrix between CCI-LC12 and CLC12 

by land cover class 

 

 

(Fig. 2). Agriculture, settlement and water bodies presented 

lower commission errors.  

Fig. 8 shows the results of quantity, shift and 

exchange components (%) derived from CLC12 and 

CCI-LC12 cross tabulation matrix. 
Overall quantity disagreement, exchange and shift were 

74.34%, 10.08% and 9.82% respectively. Quantity 

disagreement was larger than exchange and shift (allocation 

difference) in all classes but especially in shrublands with 

maximum values over ~35 %. This means that the different 

number of pixels by category was the main source of 

disagreement between LC maps. Exchange component was 

larger in forest and agriculture categories, meaning that 

pixels transited from different categories between maps but 

maintaining the same number. Shift component was larger 

in grassland and sparse vegetation bare areas, permanent 

snow and ice classes. That means that some pixels from 

those classes were both in different categories and spatial 

locations in the two maps. In shrubland category there was 

no shift, meaning that all of the allocation difference was 

due to exchange. 

  Agriculture Forest Grassland Wetland Settlement Shrubland Sparse veg. Water bod. 

Commission 

error 

CCI-LC12 Agriculture 26.28 1.87 0.95 0.07 1.12 1.39 0.74 0.08 19.14 

 Forest 2.66 20.67 0.53 0.40 0.24 3.56 0.48 0.18 28.03 

 Grassland 4.72 0.41 1.35 0.31 0.19 1.24 0.66 0.03 84.82 

 Wetland 0.06 0.39 0.03 0.87 0.01 0.32 0.08 0.03 51.46 

 Settlement 0.26 0.03 0.00 0.00 1.59 0.01 0.00 0.01 16.68 

 Shrubland 0.15 0.11 0.09 0.01 0.01 0.55 0.06 0.00 44.14 

 Sparse veg. 0.24 0.07 0.14 0.07 0.07 0.51 2.56 0.04 30.93 

 Water bod. 0.10 0.19 0.01 0.21 0.03 0.05 0.04 20.85 2.95 

 

Omission 

error 23.76 12.95 56.34 55.12 51.33 92.80 44.69 1.78 OA: 74.72 



 

Regarding comparison of the two maps with 

LUCAS12, Tables 4 and 5 show the confusion matrix with 

the information per LC classes.  

Cross-tabulation matrix between CCI-LC12 with 

LUCAS12 (reference). Diagonal cells (in bold) contain the 

percentage of pixels (off the total extent) classified as the 

same category in the two maps. OA shows the general 

agreement between the two maps. Commission and 

omission errors by category are also included. All shown 

values are in percentage. 

Cross-tabulation matrix between CLC12 with 

LUCAS12 (reference). Diagonal cells (in bold) contain the 

percentage of pixels (off the total extent) classified as the 

same category in the two maps. OA shows the general 

agreement between the two maps. Commission and 

omission errors by category are also included. All shown 

values are in percentage. 

 

 

 

 
Table 4 Cross-tabulation matrix between CCI-LC12 with LUCAS12 (reference). Diagonal cells (in bold) contain the 

percentage of pixels (off the total extent) classified as the same category in the two maps. OA shows the general agreement 

between the two maps. Commission and omission errors by category are also included. All shown values are in percentage 

 

  
  

Agriculture Forest Grassland Wetland Settlement Shrubland 
Sparse 

veg. 

Water 

bod. 

Commission  

error  

CCI-

LC12 
Agriculture 24.73 1.36 1.30 0.02 0.44 0.14 0.19 0.06 12.44 

 

  Forest 6.97 24.56 1.61 0.41 0.38 0.33 0.09 0.32 29.18  

  Grassland 11.05 3.20 5.96 0.12 0.91 0.12 0.11 0.13 72.41  

  Wetland 0.15 0.41 0.12 0.30 0.01 0.00 0.01 0.05 71.17  

  Settlement 2.06 0.64 0.39 0.01 1.54 0.03 0.06 0.04 67.83  

  Shrubland 2.08 1.79 0.67 0.09 0.07 0.63 0.17 0.05 88.59  

  Sparse veg. 1.03 0.23 0.08 0.01 0.05 0.02 0.07 0.03 95.64  

  Water bod. 0.46 0.57 0.12 0.06 0.07 0.00 0.02 1.30 50.32  

  
Omission 

error 
49.04 25.03 41.83 71.16 55.66 50.26 90.89 34.33 OA: 59.08 

 

 

Table 5 Cross-tabulation matrix between CLC12 with LUCAS12 (reference). Diagonal cells (in bold) contain the percentage 

of pixels (off the total extent) classified as the same category in the two maps. OA shows the general agreement between the 

two maps. Commission and omission errors by category are also included. All shown values are in percentage 

 

  

  
Agriculture Forest Grassland Wetland Settlement Shrubland Sparse veg. Water bod. 

Commission 

error 

CLC12 Agriculture 26.22 0.89 0.11 0.02 0.69 0.28 0.01 0.03 7.18 

  Forest 6.97 23.13 0.29 0.30 0.79 2.93 0.05 0.21 33.30 

  Grassland 15.87 2.10 0.70 0.17 1.81 0.81 0.05 0.09 96.75 

  Wetland 0.17 0.28 0.02 0.41 0.01 0.11 0.00 0.04 60.48 

  Settlement 1.98 0.45 0.03 0.01 2.15 0.12 0.01 0.03 55.03 

  Shrubland 1.78 0.93 0.50 0.16 0.13 1.93 0.09 0.03 65.17 

  Sparse veg. 0.99 0.16 0.04 0.01 0.14 0.13 0.03 0.02 97.78 

  Water bod. 0.50 0.41 0.01 0.05 0.13 0.05 0.02 1.43 45.08 

  Omission error 51.88 18.43 58.79 63.64 63.38 69.59 86.66 23.61 OA: 56.00 

 

 

 

 

 



 

As shown in Tables 4 and 5, the overall agreement 

between the two LC maps and LUCAS12 reference data 

was slightly higher for CCI-LC12 (59.08%) compared to 

CLC12 (56%). By individual categories, agriculture and 

forest presented lower discrepancies. In both validation 

assessments sparse vegetation demonstrated the largest 

omission error followed by wetlands in the CCI-LC12 map 

and by shrublands in the CLC12 map. As table 2 indicates, 

LUCAS12 sparse vegetation category contained a mixture 

of bare land, lichen and mosses, which may explain the high 

discrepancies found including the large commission error 

percentage in both maps. The sparse vegetation class 

resulted again in the largest percentages of commission 

errors in both maps, followed by shrubland in CCI-LC12 

and by grassland in CLC12 map. As seen in table 2, the 

harmonization process in CCI-LC12 resulted in the 

shrubland category containing evergreen and deciduous 

shrubland species, while the transitional woodland shrub 

category was also included in CLC12, which is very similar 

to the forest class as it is mixed. On the other hand, CCI-

LC12 grassland also included mixed cover type (mosaic 

herbaceous cover plus tree, shrub, table 2), which led to less 

omission and commission errors (but still relatively large) 

compared to CLC12 in the assessment with LUCAS12. In 

relation to the settlement class, which did not include any 

mixed categories in the harmonization process, omission 

and commission errors were >50% in both maps, where 

commission errors were higher in the CCI-LC12 map while 

omission errors were higher in the CLC12 map. This result 

was contrary as expected, because it was assumed that 

higher commission and omission errors would occur 

between thematically close categories such as grassland, 

shrubland or agricultural land covers.  

Fig. 9 illustrates the results of quantity, shift and 

exchange components (%) between CCI-LC12 and CLC12 

versus LUCAS12 reference data. Overall quantity 

disagreement, exchange and shift were 32.34%, 20.62% 

and 9.86% in CCI-LC12 and 77.07%, 10.68% and 5.19% 

in CLC12 respectively. As seen, overall quantity 

disagreement percentage was notably lower in CCI-LC12 

than in CLC12, while exchange and shift percentages were 

larger, meaning that the disagreements in CCI-LC12 were 

mostly due to differences in allocation while in CLC12 

were due to differences in the quantity of pixels. In CCI-

LC12 quantity disagreement was larger for settlement and 

agriculture classes while greater exchange happened in 

agriculture, forest and also in grassland classes. Shift 

happened in agriculture and forest. There was almost no 

shift in sparse vegetation class. Regarding CLC12 exchange 

was larger in settlement and forest classes. There was no 

shift in sparse vegetation and agriculture classes. 

Comparing both assessments, shrubland class in CCI-LC12 

was more accurate in terms of allocation (lower exchange 

and shift values) and quantity than CLC12, however 

allocation accuracy was higher in CLC12 for forest and 

grassland classes.  

 

  

 

 

 
 

 

Fig. 9. Quantity, exchange and shift components (%) derived from cross-tabulation matrix between CCI-LC12 and LUCAS 

12 (a) and CLC12 and LUCAS12 (b) by land cover class 

 



3.2. Modeling wildfire occurrence at European 

and local scales using CCI-LC12 and 

CLC12 maps 
 

Fig. 10 shows LC interfaces derived from CCI-LC12 

and CLC12 maps (homogenized legend). Spatial data 

analysis was performed using ArcGis 10.2.1 (2011). As it 

can be observed, FGI was more abundant in CCI-LC12 

map, being mostly located in northern countries (UK and 

Ireland) and mountain areas in central and southern Europe. 

WUI occupied also larger areas in UK and central Europe 

in the CCI-LC12 map. The FAI has a similar distribution in 

both maps. The percentage area of each LC interface was 

80.95% FAI, 14% FGI and 5.05% WUI for the interfaces 

derived from CCI-LC12; and 83.67% FAI, 9.16% FGI and 

7.17% WUI for the ones obtained from CLC12. 

 

The fire data described in section 2.2.4 was overlaid on 

the two LC maps and derived interfaces so the frequency of 

wildfire occurrence by each LC class and LC interfaces 

CCI-LC12 and CLC12 was obtained (Table 6). 

In CCI-LC12 over 70 % of wildfires were located in 

areas classified as forest and agriculture while in CLC12 the 

proportion was only 35%. In this map wildfire presence was 

mainly coincident with shrubland (40%). Wildfire 

occurrences happened two times more in the forest class in 

CCI-LC12 than in CLC12 while frequency was four times 

higher in the shrubland CLC12 class than in CCI-LC12. In 

relation to the LC interfaces wildfire occurrences were 

more frequent in CLC12 derived interfaces. In this map 

higher frequency occurred in the FGI while in CCI-LC12 

the higher frequency was observed in FAI. 

 

 

 

 
 

Fig. 10.  LULC Interfaces FAI (Forest-Agricultural), FGI (Forest- Grassland), WUI (Wildland Urban Interface) from (a) CCI-

LC12 and (b) CLC12 maps.  

 

 

3.2.1. European wildfire occurrence model 
 

Multicollinearity tests of the predictors (LC interfaces 

and climatic data) and the responses variables showed an 

absence of multicollinearity effects, so all predictors were 

included in the GLM analyses. LC interfaces were 

standardized for a better comparison of the estimated 

coefficients (zFAI, zFGI and ZWUI named variables). 

Table 6 shows the summary of the results of the fitted GLM 

at the European level.  

All terms were statistically significant for both CCI-

LC12 and CLC12 based models. Temperature (T) 

contributed the most in both models, followed by WUI in 

CCI-LC12 and FGI in CLC12 models. Wildfire occurrence 

was positively related to all predictors except for WUI. The 

relationships were as expected except for WUI and 

precipitation (P). Fig. 11. shows the TOC graph, which was 

similar for both models. It indicated that the 0.5 threshold 

was close to random (the so-called uniform line). Also, the 

vertical distance from the horizontal axis to the TOC curve 

(hits) was slightly larger for 0.3 than for 0.5 threshold in 

both maps, indicating 0.3 threshold provided a better 

classification fit. The model validation provided also an 

AUC of 0.52 for the CCI-LC12 and 0.51 for the CLC12. In 

both cases values were close to random association. 

Sensitivity and specificity were 77.26 and 25.89% for the 

CCI-LC12 and 75.68 and 29.99% for the CLC12, 

respectively. Regarding the omission error it was 22.74% 

for the CCI-LC12 and 24.32% for the CLC12. The percent 

correct classification was 61.6% and 62.2% for CCI-LC12 

and CLC12 models, respectively. 

 

 

 



 

Table 6 Percentage of wildfire occurrence by LC class and 

by LC interface for CCI-LC12 and CLC12 maps. 

 

LC 

class/Interface 

CCI-

LC12 CLC12 

Agriculture 28.52 17.31 

Forest 44.33 17.59 

Grassland 12.71 14.00 

Wetland 2.34 2.53 

Settlement 0.08 0.36 

Shrubland 10.87 40.31 

Sparse veg. 0.98 7.71 

Water bod. 0.18 0.20 

FAI 1.87 1.87 

FGI 1.67 4.19 

WUI 0.94 1.60 
 

Table 7 Estimated coefficients in the study site and their in 

CCI-LC12 and CLC12. Coefficients indicate odds of a 

wildfire to occur. European level. All p-values are less than 

10-11. 
   

 CCI-LC12 CLC12 

 Estimated  

coefficient 

Estimated  

coefficient 

(Intercept) -15.142 -16.318 

zFAI 0.318 0.393      

zFGI 0.283 1.292         

zWUI -1.549 -0.388         

T  2.205 2.008       

P 0.747 0.852 
 

 

 

 

 

 
 

 

Fig. 11. Total operating characteristic (TOC) for CCI-LC12 (a) and CLC12 (b) models. European scale. Thresholds labeled 

in red triangles. 

 

 

3.2.2. Local wildfire occurrence model 
 

Table 8 shows the summary of the results at local level. 

At local level using a more accurate location of the 

response variable (fire ignition coordinates) results show 

for both LC sources that FAI and precipitation (P) were 

statistically significant and positively related to wildfire 

occurrence. The positive relationship with P was contrary 

as expected. Fig. 11 shows the TOC for both models. The 

vertical distance from the horizontal axis to the TOC curve 

(hits) was larger for ~0.3 than for the other selected 

thresholds. However, the distance to the uniform line was 

larger for 0.5 threshold than the others, describing a less 

random association, also compared with the European 

models. The model validation showed an AUC of 0.56 for 

the CCI-LC12 and 0.57 for the CLC12. In this case 

sensitivity and specificity were 52.43 and 66.07% for the 

CCI-LC12 and 66.67 and 68.93% for the CLC12, 

respectively. Omission errors were 47.57% for the CCI-

LC12 and 33.33% for the CLC12. The percent correct 

classification was 59.5% and 67.8% for CCI-LC12 and 

CLC12 models, respectively. 

 



Table 8. Estimated coefficients in the study site and their significance in the CCI-LC12 and CLC12 at local level. Coefficients 

indicate odds of a wildfires to occur. 

 

 CCI-LC12 CLC12 

 Estimated 

coefficient 

Prob(>|z|) Estimated coefficient Prob(>|z|) 

(Intercept) -5.74667     0.0372 *   -3.36162     0.207277     

zFAI 0.24436     0.0079 ** 0.40809     0.000123 *** 

zFGI -0.03436     0.6001     -0.05501     0.489810     

zWUI 0.21085     0.1170     0.10698     0.128707     

T  0.22835     0.1808     0.05835     0.725337     

P 2.06808     1.4e-05 *** 1.84779     6.37e-05 *** 

Asterisks indicate significance levels of estimated coefficients: ‘***’ P < 0, ‘**’ P < 0.001, ‘*’ P < 0.01, ‘.’ P < 

0.05, ‘’ P < 0.1, P < 1. 
 

 
 

Fig. 12. Total operating characteristic (TOC) for CCI-LC12 (a) and CLC12 (b) models. Local scale. Thresholds labeled in 

red triangles. 

 

 

4. Discussion 

A comprehensive comparison between CCI-LC12 and 

CLC12 datasets available for Europe and further validation 

using LUCAS survey has been accomplished and large 

differences in various LC classes that are critical in wildfire 

occurrence modeling and also in many other applications 

has been demonstrated. The year 2012 selected for 

comparison ensured not time inconsistencies that might 

affect the assessment. Spatial and thematic homogenization 

between the two data sources was also thoroughly 

addressed in order to guarantee the comparability. 

According to Pérez-Hoyos et al. (2017) the spatial 

resolution of the original datasets is a key issue for map 

comparison, as higher it generally implies a better land 

cover characterization because it is able to better represent 

smaller features that are mostly in heterogeneous 

landscapes. In this study the nearest neighbor technique was 

used to resample CLC (100 m) to CCI-LC pixel size (300 

m), which might result in a loss of detail in the CLC map. 

Nonetheless, following Baboo et al. (2010) this method is 

appropriate for resampling categorical data such as LC 

because it does not alter the original values, even if some 

pixel values may be duplicated or lost.  

Legend harmonization required some assumptions to 

aggregate the original into common LC categories. This 

was also a crucial step because it implied a simplification, 

mainly for mixed classes (Pérez-Hoyos et al., 2017). 

Comparison results between CCI-LC12 and CLC12 



 

showed that agriculture, forest and water bodies were the 

most coincident classes. Larger disagreements were found 

in the settlement class with a ~16% of commission and 

~50% of omission errors. Tsendbazar et al. (2014) 

compared global land cover datasets with regional high 

quality maps for urban and forest classes. In the case of 

Europe, they compared CLC 2006 and CCI-LC 2005, 

obtaining a similar correspondence (in relative terms) to our 

work, ~83.4% and ~51% for forest and urban classes 

respectively. Largest dissimilarities between CCI-LC12 

and CLC12 were found in shrubland and grassland. This 

result was expected, as larger errors happened between 

close thematic classes as the above-mentioned, because 

similar spectral signals might have led to classify the covers 

in one or another type (CCI-LC derived map). Also, if the 

covers had comparable characteristics related to color, 

texture, etc. (CLC derived map using CAPI method to 

photo-interpret). Overall differences were mainly due to 

quantity disagreements in the analyzed covers. Grassland 

class showed larger disagreements in terms of allocation.  

LUCAS12 was taken as ground truth for the validation 

exercise, being CCI-LC12 slightly more accurate than 

CLC12. In terms of quantity agreement CCI-LC12 was ~45 

(in percentage points) more accurate than CLC12. 

However, CLC12 showed better allocation agreement 

figures. Forest was the most coincident class for both CCI-

LC12 and CLC12. Agricultural class was under estimated 

in both maps, and also most of the misclassifications 

happened between other classes and agriculture. Although 

LUCAS12 intends to survey a current classification of LC 

types the first aim was to provide early crop estimates (2001 

survey). The validation showed that, for both maps, 

shrubland and grassland classes presented fair to low 

agreements. In the CLC12 map these categories were 

under-estimated (larger omission error values than in CCI-

LC12). At the same time, shrubland was over-estimated in 

the CCI-LC12 map. Nonetheless the sparse vegetation, bare 

areas, permanent snow and ice aggregated class was the 

least coincident, mainly due to the assumption made when 

making the harmonization of the legend because LUCAS 

category include bare areas and lichens and mosses, but 

being absent the sparse vegetation. Büttner and Maucha 

(2006) assessed the thematic accuracy of CLC2000 with 

LUCAS 2001-2002 data. They found ~74% of agreement 

between the two sources. However, their comparison was 

based on 22 out of 44 CLC disaggregated categories, 

finding the highest class-level reliability for the rivers, 

lakes, two urban categories, agro-forestry and permanently 

irrigated land. On the contrary sparse vegetation class 

showed the lowest reliability, indicating the difficulty in 

interpreting this category. Despite the implications of 

legends’ harmonization, also mosaic or mixed classes tend 

to generate disagreements due to low spectral separability 

and mixed vegetation components in the original remote 

sensing data sources (Fritz et al., 2010; Herold et al., 2008). 

Tsendbazar et al. (2016) in their comparison of global land 

cover maps for the year 2005 (Globcover, CCI-LC and 

MODIS) found high confusion errors for mixed trees, 

shrubs, grasses and croplands. Herold et al. (2008) showed 

the limited ability of four global LC maps (IGBP DISCover, 

UMD, MODIS 1-km, and GLC2000) to discriminate mixed 

classes as mosaic of trees, shrubs and herbaceous 

vegetation. Other authors pointed that savannah and 

grasslands are commonly interpreted with a low confidence 

level if the process included visual interpretation (Strahler 

et al., 2006).   

LC interfaces used as driven factors for wildfire 

occurrence showed also important differences depending 

on the LC map used to produce them. As a consequence, 

the frequency of fires located in these areas also changed 

which eventually affected wildfire occurrence modeling at 

European and local scales. At European scale, global 

accuracy of the models using the two different set of 

interfaces (from CCI-LC12 or CLC12) was very similar 

with differences in percent correct classification less than 

1%, however, the relative importance and relationship of 

explicative variables changed. In the European model all 

explicative variables were significant, having the 

temperature the highest influence in wildfire occurrence 

followed by WUI (negatively related) in CCI-LC12 model 

and by FGI in the CLC12 model. According to the 

validation made with LUCAS12, grassland class from 

CLC12 presented less allocation disagreements, so CLC12 

seems to better spatially locate and explain the relationship 

of FGI with wildfire occurrence at the EU level. However, 

larger omission and commission error of grassland in this 

map made that more pixels were classified as shrubland, 

while in the case of CCI-LC12 the grassland misclassified 

pixels were classified as settlement cover instead. In 

relation to the negative relation of WUI with wildfire 

occurrence obtained we would have expected nonetheless a 

positive relationship. This was maybe related with the 

characteristics of the response variable used at European 

scale where small fires that could start in this LC interface 

were not mapped. Other works have included WUI and 

other LC interfaces derived from CLC for wildfire 

modeling at European level obtaining diverse results. In 

Vilar et al. (2016a) the GAM models for the European 

Mediterranean countries showed an increasing trend of FAI 

and FGI and an also increasing trend of WUI till it reached 

a plateau. The authors focused their work on the 

Mediterranean countries where wildfire occurrence has 

similar patterns. In the work presented here the models were 

obtained for the whole Europe, with diverse land cover 

composition and fire trends. Nevertheless, other authors as 

Modugno et al. (2016) found positive or negative 

relationships (depending of the country) between the 

distance to WUI and large fires, analyzing the regional 

patterns of large wildfires in WUI in Europe, noticing the 

strong influence of WUI on wildfires in parts of the 

Mediterranean regions. Oliveira et al. (2012) found a low 

and negative relationship between WUI and fire occurrence 

in their spatial models for the Mediterranean Europe using 

two methodologies (multiple regression and random 

forest). Regarding precipitation it was expected to find a 

negative relationship with the wildfire occurrence, because 

if the precipitation is high then the humidity of the 

vegetation would be also higher, which would not facilitate 

the ignition of a fire. Nonetheless an inverse relationship 

happened, fact that might be related with having larger 



 

amount of vegetation available to be ignited represented by 

the LC interfaces. 

At the local level, only the precipitation and FAI were 

significant and positively related to wildfire occurrence in 

both LC models. This could be related with the different 

spatial accuracy of the response variable (x, y fire ignitions) 

compared with the fire perimeters used in the European 

model. In relation to the positive relationship found at this 

scale between FAI and wildfire occurrence is in agreement 

with the works of Rodrigues et al. (2016) and Martínez-

Fernández et al. (2013). These authors analyzed wildfire 

factors (including FAI obtained from CLC) and modeled 

fire occurrence with different methods (regression and 

Geographically Weighted Regression) in Spain, where this 

study region was located and where they also found a 

positive relationship of FAI with wildfire. When local 

models using interfaces from CCI-LC or CLC are compared 

we find the same pattern than in the European scale 

regarding percent correct classification, with CLC derived 

model showing highest values, however, a this scale the 

difference between the two models is higher (8 %) so the 

election of the LC map is more critical at this scale.  

 Expected results were found when comparing model 

accuracy at the two spatial scales with higher percent 

correct classification and less randomness as a more precise 

response variable was used. Nonetheless model 

performance at both scales could be improved by including 

some other variables that might explain wildfire occurrence 

e.g. fuel moisture content, other socio-economic factors 

related to ignition (roads, railways, population, etc.) as 

analyzed and used in other works in European areas (Vilar 

et al., 2016b); (Rodrigues, 2014). 

 

5. Conclusions 

Land cover data is essential for wildfire occurrence 

estimation as for other applications including 

environmental analysis, global and climate change, food 

security, land management, etc. The analysis of the 

suitability of global and regional land cover data sources is 

needed to obtain the most appropriate estimations. A 

variety of  LC datasets has been used in the literature as one 

of the inputs for wildfire occurrence modeling at local, 

regional and global scales but is still unknown which data 

source might be more appropriate for this specific 

application. In this study CCI-LC and CLC from 2012 have 

been compared. Even though both maps refer to the same 

year each of them derives from different remote sensing 

data and has been obtained using different methodologies. 

In this work per-pixel comparison has been applied to 

spatial and thematic homogenized dataset finding important 

disagreements for key LC in the context of wildfire analysis 

as i.e. grassland and shrubland categories. Selecting LC 

data source will depend on the interest of land and fire 

managers in specific covers. For instance, location and 

extension of grasslands would have an effect on, for 

example, agricultural subsidies policy measurements. On 

the other hand, shrublands are related to forest clearing 

policies or forestation measurements, among others. 

Wildfire occurrence estimators (LC interfaces) have been 

derived from the two maps and used to model occurrence at 

EU and local scales. Differences between models were 

more meaningful at the local scale. At this scale wildfire 

estimators adapted better to the actual context of the 

territory and the performance improved regardless the LC 

map used. Further work would analyze the influence of the 

LC inputs in wildfire occurrence models for regions with 

different characteristics regarding fire incidence as fire size 

or main causality factors.  
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