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Abstract 28 

The recent launch of the Sentinel-1A and Sentinel-1B synthetic aperture 29 

radar (SAR) satellite constellation has provided high-quality SAR data with 30 

fine spatial and temporal sampling characterizations (6~12 revisit days at 10 31 

m spatial resolution). When combined with high-resolution optical remote 32 

sensing, this data can potentially be used for high-resolution soil moisture 33 

retrieval over vegetated areas. However, the suitability of different vegetation 34 

index (VI) types for the parameterization of vegetation water content in SAR 35 

vegetation scattering models requires further investigation. In this study, the 36 

widely-used physical-based Advanced Integral Equation Model (AIEM) is 37 

coupled with the Water Cloud Model (WCM) for the retrieval of field-scale 38 

soil moisture. Three different VIs (NDVI, EVI, and LAI) produced by two 39 

different satellite sensors (Moderate Resolution Imaging Spectroradiometer 40 

(MODIS) and Landsat) are selected to examine their impact on the 41 

parameterization of vegetation opacity, and subsequently, on soil moisture 42 

retrieval accuracy. Results indicate that, despite the different sensitivity of 43 

estimated surface roughness parameters to various VIs (i.e., this sensitivity is 44 

highest when utilizing MODIS EVI and lowest in the LAI-based model), the 45 

optimum roughness parameters derived from each VI exhibit no discernible 46 

difference. Consequently, the soil moisture retrieval accuracies show no 47 

noticeable sensitivity to the choice of a particular VI. Generally, meadow and 48 

grassland sites with small differences in VI-derived roughness parameters 49 

exhibit good performance in soil moisture estimation. With respect to the 50 

relative components in the coupled model, the vegetative contribution to the 51 

scattering signal exceeds that of soil at VI about 0.8 [-] in NDVI-based models 52 

and 0.6 [-] in EVI-based models. This study provides insight into the proper 53 
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selection of vegetation indices during the use of SAR and optical imagery for 54 

the retrieval of high-resolution surface soil moisture.  55 

Keywords: Sentinel-1; SAR; surface soil moisture; Advanced Integral 56 

Equation Model; Water Cloud Model; vegetation water content; Heihe River 57 

Basin. 58 

 59 

1. Introduction 60 

Soil moisture is a crucial nexus in the exchange of water, energy and 61 

carbon between the land surface and the lower atmosphere (Seneviratne et al., 62 

2010). Water content within the surface and root-zone soil controls the 63 

partitioning of precipitation into runoff and infiltration, the partitioning of 64 

incoming radiation into latent and sensible heat fluxes, and CO2 uptake by 65 

plants via transpiration. Based on its importance in linking these cycles, soil 66 

moisture is recognized as an Essential Climate Variable (GCOS, 2010), and 67 

knowledge of its spatial variation over heterogeneous regions is widely 68 

considered essential for understanding the effect of climate change on 69 

hydrological processes.  70 

A new constellation of synthetic aperture radar (SAR) satellites, Sentinel-71 

1A (launched in April 2014) and Sentinel-1B (launched in April 2016), 72 

provide free and publicly open SAR access with high spatial and temporal 73 

resolutions (6~12 revisit days at 10 m spatial resolution). As such, the 74 

Sentinel-1 constellation represents a major advance in the development of an 75 

operational soil moisture mapping capability at the field- to plot-scale level 76 

(Lievens et al., 2017; Li et al., 2018; Santi et al., 2018; Bao et al., 2018; 77 

Paloscia et al., 2013). In the past, SAR remote sensing has been widely used 78 

to estimate surface soil moisture (SSM) over bare soil surfaces using physical 79 
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models (e.g., the Integral Equation Model (IEM; Fung et al., 1992), the 80 

Advanced Integral Equation Model (AIEM; Chen et al., 2003) and the Integral 81 

Equation Model for Multiple Scattering (Álvarez-Pérez, 2001)), empirical 82 

models (e.g., Dubois et al., 1995 and Oh et al., 1992), and semi-empirical 83 

models (e.g., Chen et al., 1995; Oh et al., 2002; Shi et al., 1997). For soils with 84 

moderate to dense vegetation cover, the direct scattering of vegetation, as well 85 

as the attenuation of upward soil scattering, cannot be neglected. In these 86 

circumstances, the accurate retrieval of SSM requires the coupling of 87 

vegetation and bare-soil scattering models. Common vegetation scattering 88 

models include the Water Cloud Model (WCM, Attema et al., 1978) and the 89 

Michigan Microwave Canopy Scattering Model (MIMICS, Ulaby et al., 1990). 90 

The latter has been demonstrated to be suitable for use in forests (McDonald 91 

et al., 1990).  92 

Based on information from optical imagery, the above-mentioned 93 

vegetation scattering processes can be parameterized using various vegetation 94 

indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), 95 

Enhanced Vegetation Index (EVI), or the Leaf Area Index (LAI) – thereby 96 

introducing the synergistic use of SAR and optical remote sensing data for the 97 

retrieval of surface soil moisture. Multiple studies have focused on differences 98 

in SSM estimation accuracy associated with the use of different VIs over a 99 

single land cover type using different SAR data sets, including TerraSAR-X 100 

and COSMO-SkyMed (Hajj et al., 2016), Radarsat-2 (Bai et al., 2016) and 101 

Experimental SAR (Lievens et al., 2011). However, relatively few studies 102 

have evaluated the robustness of different VIs for soil moisture retrieval over 103 

a wide range of land cover types. 104 

In the present study, we selected the physically-based AIEM and WCM 105 

models to derive a coupled (soil/vegetation) microwave scattering model and 106 
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utilized five different VI products to investigate their performances (as a 107 

proxy for vegetation opacity) in the coupled model. The five VIs differ with 108 

respect to both index type (NDVI, EVI, and LAI) and satellite source 109 

(Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat). 110 

They are utilized to examine if discrepancies in their spatial/temporal 111 

resolutions and sensor type will have a discernible impact on the accuracy of 112 

soil moisture retrieval results.  113 

This paper is organized as follows. Section 2 introduces all data sets 114 

utilized for high-resolution soil moisture retrieval, including Sentinel-1 SAR 115 

imagery, optical remote sensing products for VIs derivations, and in-situ 116 

observations collected from the Heihe Watershed Allied Telemetry 117 

Experimental Research (HiWATER) program. This HiWATER program 118 

conducted in Heihe River Basin of Northwestern China is designed to be a 119 

comprehensive experiment to improve the observability of hydrological and 120 

ecological processes, to build a watershed observing system, and to enhance 121 

the applicability of remote sensing in integrated eco-hydrological studies and 122 

water recourse management at the basin scale (Li et al., 2017).  123 

The parameterization of the coupled model, as well as metrics for 124 

evaluating soil moisture retrievals are also introduced in Section 2. The impact 125 

of VI selection on surface roughness parameter estimation during model 126 

establishment and its consequent impact on soil moisture retrieval accuracy 127 

are presented in Section 3. Following this, Section 4 reports on the sensitivity 128 

of roughness parameter to different VIs and the relative contribution of soil 129 

scattering within the coupled model when applying different VIs. Finally, 130 

major findings are presented in Section 5. 131 

 132 

2. Materials and methodology 133 
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2.1 Data sets for soil moisture retrieval 134 

2.1.1 Sentinel-1 SAR data 135 

The Sentinel-1 satellites are equipped with C-band SAR instruments and 136 

have produced global observations since October 2014. Here, Level 1 ground 137 

range detected (GRD) Sentinel-1 interferometric wide (IW) observations with 138 

a VV polarization signals were used to retrieve soil moisture estimations, as 139 

this polarization has been proven to be less sensitive to volume scattering of 140 

vegetation cover than VH (Baghdadi et al., 2017; Patel et al., 2006; Chauhan 141 

et al., 2016). VH polarization records are only included for comparative 142 

purposes. The incidence angle of Sentinel-1 ranges between 30°~48°, and our 143 

study period is October 2014 to December 2017 (constrained by the temporal 144 

coverage of available in-situ measurements). All Sentinel-1 data were 145 

accessed through the Google Earth Engine (GEE) platform and pre-processed 146 

using the Sentinel-1 Toolbox to derive backscatter coefficients (σ°) in decibels 147 

(dB). The five processing steps can be summarized as follows (Hird et al., 148 

2017): 149 

1) Apply orbit file; applies the restituted orbit file to update orbital 150 

metadata;  151 

2) GRD border noise removal; removes low-intensity noise and invalid 152 

data on edges of GRD scene;  153 

3) Thermal noise removal; removes additive noise in sub-swaths to 154 

reduce discontinuities between sub-swaths for scenes in multi-swath 155 

acquisition modes (applied to images produced after July 2015);  156 

4) Radiometric calibration; computes backscatter intensity using sensor 157 

calibration parameters in the GRD metadata; 158 

5) Terrain correction (orthorectification); converts data from ground 159 

range geometry, which does not take terrain into account, to σ° using the 160 
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SRTM 30-meter DEM for high latitudes (greater than 60° or less than -60°). 161 

A refined Lee speckle filter (Lee et al., 1999) with a 3 × 3 window size was 162 

subsequently applied to the time series of backscattering coefficients. 163 

 164 

2.1.2 In-situ network observations 165 

The in-situ observations in the present study were collected from the 166 

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 167 

program in the Heihe River Basin of Northwestern China. Between 2012 and 168 

2017, HiWATER utilized simultaneous airborne, satellite-borne, and ground-169 

based remote sensing experiments designed to address scaling issues 170 

associated with eco-hydrological processes via process study, modelling, and 171 

observation (Li et al., 2013; Li et al., 2017). As such, it provides multiscale 172 

data sets of meteorological elements and land surface parameters that facilitate 173 

the estimation of soil moisture over heterogeneous land surfaces (Liu et al., 174 

2016; Xu et al., 2013). Fig. 1 shows the distribution of HiWATER in-situ sites 175 

with the Heihe Basin. The climate of the study area is semi-arid and prominent 176 

land cover/uses in the basin include: meadow, grassland, desert, forest, and 177 

cropland (see Table 1 for details). 178 

 179 
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 180 

Fig. 1. The location of: (a) the Heihe River Basin in Northwestern China and 181 

(b) sub-basins/ground networks of interest within its (c) upper, (d) lower, (e) 182 

and middle reaches. 183 

 184 

All 19 in-situ sites (see Fig. 1(b, c, d, and e)) were equipped with a set of 185 

automatic weather system and measured all components of the surface energy 186 

and water balances and associated near-surface atmospheric states. Observed 187 

variables include: precipitation, wind speed, air temperature, vapor pressure, 188 

net radiation, soil moisture, and temperature of the vertical soil profile (at 2, 189 

4, 10, 20, 40, 80, 120, and 160 cm below the surface) at 10-mininute intervals. 190 

To better match the C-band penetration depth of the Sentinel-1 mission, the 191 

soil moisture and temperature measurements from the first layer (4-cm 192 

observations were used if 2-cm observations were missing) were used in this 193 

analysis. Soil moisture sensors included 200 SPADE and 150 Hydra Probe II 194 

instruments, which have instrument errors of 0.032 and 0.011 m3m−3, 195 

respectively. Land surface temperature (LST) sensors (SI-111) were 196 
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calibrated using a BDB blackbody calibrator at a constant temperature of 197 

23 °C and a water-ice mixture at 0 °C. The instrument error of SI-111 was 198 

within 0.15 °C. Additionally, soil samples were collected, and soil properties 199 

such as texture, bulk density and thermal and hydraulic parameters were 200 

analyzed in laboratory. This information was used as input for the Dobson 201 

model to estimate the soil dielectric constant (as introduced in Section 2.3). 202 

Following careful quality control, data sets collected as part of the HiWATER 203 

program have been made publicly available to the scientific community 204 

through the official project website (www.heihedata.org) (Li et al., 2017).  205 

 206 

Table 1 Attributes of 19 HiWATER in-situ sites 207 

 Site name Longitude 
(°E) 

Latitude 
(°N) 

Land 
use 

Temporal 
coverage 

Sample 
number 

(VV+VH) 

Sample 
number 

(VV) 

SSM range 
(m3m-3) 

Dashalong 98.9406 38.8399 Meadow 2013-2017 122 89 [0.06,  0.56] 
Ebao 100.9151 37.9492 Grassland 2013-2016 71 69 [0.08,  0.32] 

Yakou 100.2421 38.0142 Meadow 2015-2017 153 107 [0.07,  0.43] 
Heiheyaogan 100.4756 38.827 Grassland 2015-2017 101 100 [0.01,  0.15] 

Huazhaizi 100.3201 38.7659 Desert 2013-2017 81 80 [0.00,  0.23] 
Huangmo 100.9872 42.1135 Desert 2015-2017 28 14 [0.02,  0.03] 
Hunhelin 101.1335 41.9903 Forest 2013-2017 30 15 [0.02,  0.13] 

Jinyangling 101.116 37.8384 Meadow 2013-2017 55 53 [0.06,  0.66] 
Zhangyeshidi 100.4464 38.9751 Wetland 2013-2017 0 0  

Arou 100.4643 38.0473 Grassland 2013-2017 238 173 [0.07,  0.54] 
Daman 100.3722 38.8555 Cropland 2013-2017 245 178 [0.03,  0.50] 

Sidaoqiao 101.1374 42.0012 Forest 2013-2017 30 15 [0.08,  0.35] 
Bajitangebi 100.3042 38.915 Desert 2013-2015 14 13 [0.04,  0.15] 
Huyanglin 101.1239 41.9932 Forest 2013-2015 6 0 [0.01,  0.04] 

Huangzangsi 100.1918 38.2254 Cropland 2013-2015 0 0 [0.06,  0.31] 
Huangcaogou 100.7312 38.0033 Grassland 2013-2015 12 11 [0.10,  0.29] 

Luodi 101.1326 41.9993 Bare land 2013-2015 6 0 [0.00,  0.01] 
Nongtian 101.1338 42.0048 Cropland 2013-2015 2 0 [0.06,  0.06] 

Shenshawo 100.4933 38.7892 Desert 2013-2015 12 11 [0.02,  0.08] 
 208 

2.1.3 Vegetation indices 209 

http://www.heihedata.org/
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Five different vegetation indices (VIs) were utilized to account for 210 

vegetation condition and to investigate their impact on estimating soil moisture 211 

in our coupled scattering model. The VIs include products from MODIS 212 

(namely MODIS NDVI, http://dx.doi.org/10.5067/MODIS/MOD13Q1.006; 213 

MODIS EVI, http://dx.doi.org/10.5067/MODIS/MOD13Q1.006; and MODIS 214 

LAI http://dx.doi.org/10.5067/MODIS/MCD15A3H.006) and Landsat 8 215 

(namely Landsat 8 NDVI and Landsat 8 EVI; Vermote et al., 2016). On the 216 

other hand, VI from the recently launched Sentinel-2 was not used as its 217 

temporal overlap (limited to only 2016-2017) with in-situ observations is not 218 

yet sufficient. All VIs were extracted through the GEE platform, and the pixel 219 

QA band was used to mask clouds from surface reflectance (SR) data. 220 

To minimize the impact of different temporal interpolation methods on VI 221 

dynamics and soil moisture retrievals, we used VI products with temporal 222 

resolutions as uniform as possible, i.e., a 16-day product. In addition, the only 223 

MODIS LAI products available from the GEE platform are a 4-day and yearly 224 

product. Therefore, we used the former dataset in this analysis. Temporal gaps 225 

in the VI products were filled using a nearest-neighbor approach. All VI data 226 

used in the analysis were based on MODIS version 6 products. The specific 227 

characteristics of these data sets, including their product name (or calculation 228 

equation), spatial repeat, and temporal resolutions, are given in Table 2.  229 

 230 

Table 2 The specific characteristics of the five VI data sets considered  231 

VI Product name/ 
Calculation equation 

Spatial 
resolution 

Temporal 
repeat 

MODIS NDVI MOD13Q1 
 250 m 16 day 

Landsat 8 NDVI 
𝜌𝜌nir − 𝜌𝜌red
𝜌𝜌nir + 𝜌𝜌red

 30 m 16 day 
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MODIS EVI MOD13Q1 
 250 m 16 day 

Landsat 8 EVI 2.5(𝜌𝜌nir −
𝜌𝜌red

𝜌𝜌nir + 6𝜌𝜌red − 7.5𝜌𝜌blue 
) 

 
30 m 16 day 

MODIS LAI MCD15A3H 500 m 4 day 
* 𝜌𝜌nir, 𝜌𝜌red and 𝜌𝜌blue denote SR of near-infrared, red and blue bands in Landsat 8. 232 

 233 

2.2 Microwave scattering model and soil moisture retrieval 234 

In this study, the first-order radiative transfer model WCM (Attema et al., 235 

1978) was used to simulate the backscattered radar signal over vegetated sites. 236 

This semi-empirical model is widely applied in its simplified form due to its 237 

efficient performance (Zribi et al., 2011; Gherboudj et al., 2011; Paloscia et al., 238 

2013). For a given polarization, the WCM considers the radar signal as the 239 

linear sum of contribution from the vegetation (σveg
o ), the soil (σsoil

o ) – as 240 

attenuated by vegetation (τ2σsoil
o ): 241 

              σsim
o   =  σveg

o   +  τ2σsoil
o      (1) 242 

                                 σveg
o   = AV1cosθ (1 – τ2)     (2) 243 

  τ2 = exp (– 2BV2 / cosθ)     (3) 244 

where V1 and V2 are vegetation descriptors that indicate direct canopy 245 

backscattering and vegetation attenuation respectively; θ is the radar incidence 246 

angle; A and B are the fitted model coefficients which depend on the vegetation 247 

descriptor and radar configuration, and τ2  is the two-way vegetation 248 

attenuation.  249 

As commonly assumed in applying (1-3), multiple soil-vegetation 250 

scatterings are neglected here and the parameter V1 is set equal to V2. This 251 

simplifies Eqs. (1-3) to: 252 
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    σsim
o  = AV cosθ (1 – τ2) + τ2σsoil

o  .    (4) 253 

The soil contribution σsoil
o  is simulated using the physically-based 254 

microwave scattering model AIEM, which is widely reported to perform well 255 

over bare soil surfaces (Wu et al., 2004; He et al., 2017; Zeng et al., 2017). The 256 

AIEM forward model requires input parameters describing: 1) sensor 257 

configuration: radar frequency (~5.405 GHz for Sentinel-1 C band); incidence 258 

angle (range from 30°~48° as specified by Sentinel-1), and polarization mode 259 

(VV); 2) surface parameters: soil dielectric constant, root mean square (RMS) 260 

height (s), correlation length (cl), and the auto-correlation function ACF. 261 

Here, the Dobson dielectric mixing model was used to determine the 262 

relationship between dielectric constant 𝜀𝜀𝑚𝑚 and soil moisture 𝑚𝑚𝑣𝑣 , in the 263 

following form: 264 

𝜀𝜀𝑚𝑚𝛼𝛼 =  1 + 𝜌𝜌𝑏𝑏
𝜌𝜌𝑠𝑠

(𝜀𝜀𝑠𝑠𝛼𝛼 − 1) + 𝑚𝑚𝑣𝑣
𝛽𝛽𝜀𝜀𝑓𝑓𝑓𝑓𝛼𝛼 −𝑚𝑚𝑣𝑣    (5) 265 

where 𝜌𝜌𝑏𝑏 is soil bulk density; 𝜌𝜌𝑠𝑠 is characteristic specific density, and 𝜀𝜀𝑠𝑠 and 266 

𝜀𝜀𝑓𝑓𝑓𝑓 are relative permittivities of soil solids and Gouy-layer water. Parameters 267 

α and β are optimized constants and the latter is assumed to be soil-texture 268 

dependent. In-situ measurements of bulk density, silt, clay, sand percentages, 269 

and soil surface temperature/moisture at each site were fed into this model to 270 

estimate soil surface dielectric values required as input by the AIEM. Based 271 

on previous measurements of surface roughness parameters acquired during 272 

simultaneous ASAR observations (Chen et al., 2017), the s and cl in the study 273 

area were constrained between [0, 3.0] cm and [0, 20.0] cm, respectively. The 274 

increments for these two parameters were set as 0.2 cm and 2 cm, respectively. 275 

For each iteration of s and cl combinations, the vegetation parameters A and B 276 

were calibrated by minimizing the cost function J constructed by root-mean-277 

square error (RMSE) of the simulated vegetation backscattering coefficients 278 
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σsim
o  (evaluated against observations from Sentinel-1, σobs

o ) in VV and VH 279 

polarizations.  280 

 J = �1
n
∑ (σsim

o − σobs
o )2 .   (6) 281 

Consequently, the optimum surface roughness parameters s and cl were 282 

selected based on the minimization of backscatter RMSE (across all iterations). 283 

For each site, we used the K-fold (K=10) cross validation method that takes the 284 

mean of the K-fold validation results to estimate model parameters and 285 

evaluate algorithm accuracy. The flowchart of this retrieval process is shown 286 

in Fig. 2.  287 

 288 

Fig. 2.  Flowchart of our soil moisture retrieval process. 289 

 290 

2.3 Soil moisture accuracy metrics 291 
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In addition to the commonly-used root mean square error (RMSE) and 292 

Pearson product-moment correlation coefficient, we also applied mutual 293 

information (MI, Cover and Thomas, 1991) to assess the accuracy of soil 294 

moisture estimation. MI is a nonparametric measure of correlation (here 295 

defined strictly as the lack of independence) between two random variables, 296 

and represents the reduction of entropy (uncertainty) in either variable given 297 

knowledge of the other. It is a more rigorous measure compared to commonly-298 

used metrics such as Spearman’s rank correlation coefficient and Pearson 299 

correlation coefficient - the latter being an approximation of MI under certain 300 

conditions (Nearing et al., 2015).  301 

Here, we calculate the MI content between retrieved soil moisture and in-302 

situ measurements in each site. Estimated MI is normalized by the entropy of 303 

the corresponding in-situ measurements to remove the effect of inter-site 304 

variation on the magnitude of difference, and the normalized MI (NMI) 305 

represents the fraction of uncertainty in ground observations that is resolvable 306 

given knowledge of the soil moisture retrievals or simulations (Nearing et al. 307 

2013). For details on MI estimation, please refer to Qiu et al. (2014; 2016). 308 

 309 

3. Results 310 

3.1 Intercomparison of different VIs over in-situ sites 311 

We first compare the five VIs collected from 19 in-situ sites. All were 312 

extracted at their original spatial resolution and without any spatial resampling 313 

procedures. Seen from the temporal evolution of the extracted VI values at 314 

individual site (please see Section 4.1), the dynamics of VIs from dataset with 315 

different scales are generally very consistent. Direct VI comparisons are shown 316 

in Fig. 3, with point density indicated by color shading. It is clear from Fig. 317 
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3(a, h) that, for the same VIs from different instruments (Landsat 8 and 318 

MODIS), all points are evenly scattered along the 1:1 line – with no apparent 319 

systematic bias. For different VIs acquired from the same instrument (Fig. 3(b, 320 

f)), this 1:1 agreement persists for low-vegetation points. However, a sigmoid 321 

shape is observed at high levels of vegetation, suggesting that EVI is more 322 

responsive to vegetation variations than NDVI during the peak of growing 323 

season. This pattern persists for different VIs acquired from different sensors 324 

(Fig. 3(c, e)), except that the points are more scattered. This is in line with our 325 

prior expectations and justifies the selection of EVI as a VI candidate in our 326 

comparison study. 327 
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 328 

Fig. 3. Scatterplots comparing five VIs collected from 19 in-situ sites, with 329 

points density indicated by color shading. 330 

 331 

3.2 Impact of VIs selection on surface roughness parameter estimations 332 

As the inclusion of VH polarization in the cost function has slightly 333 

reduced the soil moisture retrieval accuracy (compare Fig. 5 in Section 3.3 and 334 

Fig. A1 in the Appendix), all analyses were conducted using only the VV 335 

polarization record. In addition, the observation sample size could greatly 336 
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affect the soil moisture retrieval - since insufficient sample size could lead to 337 

erroneous model parameter estimation. Therefore, we set the threshold of 338 

sample number for each site to be 15 (in VV polarization). Sites with fewer 339 

observations generally failed to converge to a unique A, B, sig and cl solution. 340 

The observation sample size for the MODIS NDVI product at each site are 341 

listed in Table 1. Sample sizes for other MODIS VI products (EVI and LAI) 342 

are very similar but decrease significantly for Landsat 8.  343 

Using the above-mentioned five VI products in the coupled AIEM and 344 

WCM models (introduced in Section 2.3), we estimated the optimum surface 345 

roughness parameters for each site by minimizing the cost function in Eq.(5). 346 

Final optimized parameters were obtained by taking the mean of the 6 347 

candidate parameter sets (i.e., s, and cl) achieving the lowest value of the cost 348 

function in Eq. (5). Optimized s, cl and effective roughness (s3/cl2) values are 349 

summarized in Fig. 4, with different land use types separated by vertical dash 350 

lines. Parameters estimated by different VI products are indicated by different 351 

marker symbols, and annual mean vegetation cover conditions are captured 352 

using color shading.  353 

As Landsat 8 VI observations are much temporally sparser than MODIS 354 

observations at some sites, they did not always provide sufficient observation 355 

numbers (>=15) for parameter estimation and soil moisture retrieval. Thus, 356 

even with identical number of sites, some Landsat 8 results are missing in Fig. 357 

4. For meadow and grassland types (i.e., sites with comparatively higher 358 

vegetation cover, generally exhibit lower optimum RMS height, and 359 

consequently, lower effective roughness) the variation of optimum correlation 360 

length is comparatively less sensitive to variations in VIs (Fig. 4b). Overall, 361 
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variations in surface roughness parameters between each land use group are 362 

more significant than those seen between various VI products. 363 

 364 

 365 

 366 
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 367 

Fig. 4. Surface roughness parameters estimated by each VI product for all 368 

sites, with different land use types separated by dashed vertical lines. VI type 369 

is indicated by different marker, while annual mean VI values are indicated 370 

by color shading. Surface roughness parameters include: (a) optimum RMS 371 

height (s, cm), (b) optimum correlation length (cl, cm), and (c) effective 372 

roughness (cm) 373 

 374 

3.3 Impact of VIs selection on soil moisture estimations accuracy 375 

Using the estimated optimum surface roughness parameters, we retrieved 376 

soil moisture from the coupled model and evaluated them against in-situ 377 

observations in terms of RMSE, Pearson correlation coefficient, and 378 

normalized mutual information (NMI). These results are shown in Fig. 5. Each 379 

site is marked with an identical color, so that differences in ranking (among all 380 

sites) between each VI data set can be clearly observed.  381 
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There is no significant difference in soil moisture estimation accuracy 382 

associated with different VIs calculated from MODIS products. The RMSE 383 

rankings among all sites are quite close between different VIs - indicating 384 

barely discernible differences in SM retrieval accuracy (Fig. 5a). SM retrieval 385 

performance does differ somewhat between VI products derived from Landsat 386 

8 versus MODIS observations - likely due to the reduced temporal sampling 387 

of Landsat 8 VI products. As some sites lacking sufficient observation samples 388 

from Landsat 8 VI, the coupled model cannot be established and soil moisture 389 

retrievals are missing. It is worth noting retrievals at certain sites (e.g., the 390 

desert and the grassland site Heiheyaogan shown as the second site in the 391 

grassland column in Fig. 4c) with an observable discrepancy in VI-derived 392 

effective roughness parameters, and very limited soil moisture variability 393 

(SSM range <0.23 m3m-3 in Table 1), perform poorly for all three evaluation 394 

metrics. Specifically, the Heiheyaogan site exhibits a Pearson R of 395 

approximately 0.2 and demonstrates the lowest observed NMI.  396 

In addition, soil moisture retrieval accuracy based on microwave scattering 397 

model is closely related to vegetation cover conditions. For instance, meadow 398 

sites with lower LAI demonstrate generally higher Pearson R and higher NMI 399 

(Fig. 5(b, c)) than grassland sites with higher LAI. On the other hand, the small 400 

temporal variability of soil moisture at the Ebao and Heiheyaogan grassland 401 

sites (SSM ranges are 0.24 to 0.14 m3m-3 respectively, please see Table 1) 402 

results in lower RMSE than in the meadow sites (Fig. 5a). Besides this analysis 403 

on the original SSM time series, we also conducted evaluations using short-404 

term SSM anomalies (i.e. variations relative to a 32-day moving average 405 

window). Relative to our original results, these anomaly-based results reveal a 406 
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slight decrease in Pearson R. However, overall sensitivity to VI selection 407 

remained low.  408 

 409 

 410 

 411 
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 412 

Fig. 5. Accuracy of soil moisture estimation derived from five VI data sets, 413 

based on (a) RMSE, (b) Pearson correlation coefficient, and (c) Normalized 414 

MI. Each site is marked with a unique symbol color. 415 

 416 

Apart from the aggregated performance from all eligible sites, we also 417 

examined retrieved SSM dynamics at individual sites. For instance, the 418 

temporal evolution of retrieved SSM at the Jinyangling site for all five VIs are 419 

shown in Fig. 6. The seasonality of SSM time series from five VIs are similar 420 

and, in general, properly captured by all five SSM retrievals. On the other hand, 421 

the short-term variabilities of SSM retrievals occasionally deviate from that of 422 

observations, as the rapid fluctuation of point-scale SSM cannot be adequately 423 

captured by pixel-scale SSM retrievals. The discrepancy observed in Fig. 3 424 

consequently lead to differences in SSM retrievals seen in Fig. 6. Specifically, 425 

as opposed to NDVI (Fig. 6a), VI types less prone to saturation at high 426 
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vegetation levels, such as EVI and LAI, do not result in the levelling off in 427 

SSM retrievals (especially during June to July of 2016 in Fig. 6(b, c)). In 428 

addition, SSM retrieval differences between different sensors for the same VI 429 

(i.e., MODIS NDVI vs. Landsat 8 NDVI and MODIS EVI vs. Landsat 8 EVI) 430 

are less substantial than differences between different VI from the same sensor. 431 

 432 

 433 

 434 
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 435 

Fig. 6.  The temporal evolution of SSM retrieved for the Jinyangling site based 436 

on: (a) NDVI, (b) EVI, and (c) LAI acquired from different sensors and in-situ 437 

observations. 438 

 439 

Therefore, all five coupled models can retrieve similar optimum surface 440 

roughness parameters (except for the grassland site Heiheyaogan in the LAI-441 

constructed model, see Fig. 4 for details), and consequently, achieve similar 442 

soil moisture estimation accuracy. Unlike previous investigations based on 443 

single land use types (Lievens et al., 2011; Bai et al., 2016), this study cannot 444 

generally recommend any single VI for soil moisture retrieval in the coupled 445 

microwave models – as the optimal VI choices varies across different land 446 

cover types. It should also be noted that the overall performance of the coupled 447 

model varies from site to site. These variations are related to changes in data 448 

sample size and the range of observed SSM at each site.  449 

It should be noted that our overall SSM retrievals accuracies are relatively 450 

low (e.g., correlation values tend to be below 0.4 [-]). This suggests that our 451 

algorithm actually captures only bulk seasonal patterns, which are likely to be 452 
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highly correlated across different VIs. It is possible that other, more accurate, 453 

approaches could reach slightly different conclusions regrading sensitivity to 454 

VI choice. For instance, instead of using a physically-based AIEM, Bao et al. 455 

(2018) employed a best-fitting regression method to directly estimate soil 456 

moisture measurement using different VIs. They retrieved more accurate soil 457 

moisture retrievals and found slightly higher sensitivity to VI choice.  458 

 459 

4. Discussion 460 

4.1 Sensitivity of surface roughness parameters to different VIs 461 

Above (Section 3.2), we examined the impact of VI selection on optimum 462 

roughness parameter estimations. In this section, we will examine the 463 

grassland site Ebao in greater detail to further investigate the sensitivity of 464 

calibrated surface roughness parameters to VI dataset choice. First, the 465 

temporal evolution of the five VI sets in Ebao is shown in Fig. 7. These time 466 

series reflect similar seasonal phasing, although MODIS-based LAI exhibits 467 

much less temporal variation during low-biomass seasonal periods.  468 
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 469 

Fig. 7. The temporal variation of all five VI data sets at the Ebao grassland site. 470 

 471 

Then, RMSE of the backscattering coefficient in the coupled AIEM and 472 

WCM models established by different VI data sets are shown in Fig. 8. The 473 

RMSE surface is masked (in white) for cases in which the optimization of the 474 

cost function J could not converge to a unique solution for parameters A and 475 

B. We can see that different combinations of surface roughness parameters (i.e., 476 

different combinations of correlation length and RMS height) can result in 477 

identical performance for the coupled model. This convincingly demonstrates 478 

the ill-posed nature of the soil moisture inversion problem for microwave 479 

scattering modeling. In addition, it is seen that errors in the coupled models - 480 

associated with different VIs - have different sensitivities to variations in s and 481 

cl. Generally, this sensitivity is highest when the model parameterized by 482 

MODIS EVI and the lowest for the LAI-based model.  483 
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 484 

Fig. 8. At the Ebao grassland site, RMSE surface (as a function of s and cl) for 485 

backscattering coefficient estimates (units: dB) provided by the coupled AIEM 486 

and WCM models associated with different VI data sets. 487 

 488 

4.2 Contribution of bare soil to observed scattering with different VIs  489 

Using five different VI products, the soil and vegetation backscattering 490 

contributions (σveg
o , τ2σsoil

o ) of five-established coupled models are investigated 491 

in this section. To better facilitate inter-model comparisons, we plotted the 492 

ratio of the soil backscattering contribution (τ2σsoil
o ) to total scattering signal 493 

(σveg
o + τ2σsoil

o ) as a function of VI for all eligible sites in Fig. 9. The relationship 494 

at each site are fitted with an exponential regression with high goodness of fit 495 

(all R2 > 0.8). To improve the readability of figure after curve fitting, only one-496 

tenth of the data at each site are randomly selected and plotted. Sites with less 497 

than 60 sample data are not considered.  498 
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Results in Fig. 9 demonstrate that, for VV polarization within the incidence 499 

angle of 30°~48° (typical case for Sentinel-1 SAR imagery over the study area), 500 

the contribution of soil to the total backscattering coefficient decreases with 501 

increasing VI, as expected. In addition, regardless of product type, the 502 

demarcation value for vegetation’s contribution exceeds soil’s contribution 503 

(ratio of 0.5 [-]) is approximately 0.8 for NDVI (Fig. 9(a, b). This is in line 504 

with numeric simulations of the coupled IEM and WCM model for a grassland 505 

site in French (Baghdadi et al., 2017). This threshold value of VI decreases to 506 

0.6 [-] for EVI (both MODIS and Landsat 8 products) and increases to above 507 

2.0 [-] for LAI. The desert site Huazhaizi shows very little variation in 508 

vegetation cover and is thus excluded from consideration. 509 

 510 

 511 

Fig. 9. The ratio of soil contribution to total scattering ( τ2σsoil
o

σveg+τ2σsoil
o

0 ) for all eligible 512 

sites using 5 different VI products. All sites are fitted with a regression 513 
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equation in an exponential form [a*exp(bx)+c*exp(dx)] with high goodness of 514 

fit (all R2 > 0.8). Sites with less than 6 samples are not plotted. 515 

In addition, the impact of SSM range on soil’s contribution to the scattering 516 

model can also be observed in Fig. 9. It is noted by comparing the curvatures 517 

of different sites, that the sensitivity of soil contribution to VI is higher in sites 518 

with a smaller SSM range (e.g., Heiheyaogan) than sites with a larger SSM 519 

range (e.g., Dashalong and Arou). This variation in the sensitivity of soil 520 

contribution is noticeable across five different VI data sets. 521 

 522 

5. Summary and conclusion 523 

In this study, we applied a coupled microwave scattering model (consisting 524 

of AIEM and WCM) to retrieve soil moisture from Sentinal-1 SAR images in 525 

the Heihe River Basin. Five separate vegetation products (MODIS NDVI, 526 

Landsat 8 NDVI, MODIS EVI, Landsat 8 EVI, and MODIS LAI) are used as 527 

vegetation descriptor in the model to investigate their effectiveness in 528 

retrieving soil moisture.  529 

Comparison of the selected five VIs over all in-situ sites showed no 530 

systematic bias in any VI data set, while EVI and LAI are more responsive to 531 

vegetation variation in the high VI range, and consequently reduced the 532 

levelling off phenomenon observed in soil moisture retrieval based on NDVI 533 

during peak growing season. Despite their discrepancies, optimum surface 534 

roughness parameters (including RMS height, correlation length and effective 535 

roughness) derived from all five VI data sets do not show any noticeable 536 

difference except for one grassland site with very limited SSM variability. In 537 

terms of retrieved soil moisture accuracy, sites with distinctly different VI-538 
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derived roughness parameters showed the lowest accuracy in terms of RMSE, 539 

Pearson correlation and NMI. 540 

A detailed comparative study was conducted in site Ebao to examine the 541 

sensitivity of surface roughness parameters to different VIs. It is observed that 542 

sensitivity is highest in the coupled model established by MODIS EVI, while 543 

lowest in the LAI-based model. Furthermore, in different VI-established 544 

models, the threshold at which the vegetation contribution dominates the total 545 

scattering signal differs significantly. The demarcation value at which point 546 

vegetation’s contribution exceeds that of the soil is approximately 0.8 [-] for 547 

NDVI (regardless of what sensor is used for NDVI) (Fig. 9(a, b)). This value 548 

decreases to 0.6 [-] for MODIS EVI and Landsat 8 EVI products.  549 

It should be addressed that this work is based on the assumption of equal 550 

V1 and V2 parameters in the WCM. A detailed analysis based on utilizing a 551 

combination of different VIs as vegetation descriptors for V1 and V2 should be 552 

considered for future study. 553 
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