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ABSTRAC T

Evapotranspiration (ET) is considered a key variable in the understanding of the Amazonian tropical forests and their response to climate change. Remote-Sensing 
(RS) based evapotranspiration models are presented as a feasible means in order to provide accurate spatially-distributed ET estimates over this region. In this work, 
the performance of four commonly used ET RS models was evaluated over Amazonia using Moderate Resolution Imaging Spectroradiometer (MODIS) data. RS models 
included i) Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), ii) Penman-Monteith MODIS operative parametrization (PM-Mu), iii) Surface Energy Balance System 
(SEBS), and iv) Satellite Application Facility on Land Surface Analysis (LSASAF). These models were forced using two ancillary meteorological data sources: i) in-situ 
data extracted from Large-Scale Biosphere-Atmosphere Experiment (LBA) stations (scenario I), and ii) three reanalysis datasets (scenario II), including Modern-Era 
Retrospective analysis for Research and Application (MERRA-2), European Centre for Medium-range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-Interim), 
and Global Land Assimilation System (GLDAS-2). Performance of algorithms under the two scenarios was validated using in-situ eddy-covariance measurements. For 
scenario I, PT-JPL provided the best agreement with in-situ ET observations (RMSE = 0.55 mm/day, R = 0.88). Neglecting water canopy evaporation resulted in an 
underestimation of ET measurements for LSASAF. SEBS performance was similar to that of PT-JPL, nevertheless SEBS estimates were limited by the continuous cloud 
cover of the region. A physically-based ET gap-filling method was used in order to alleviate this issue. PM-Mu tended to overestimate in-situ ET observations. For 
scenario II, quality assessment of reanalysis input data demonstrated that MERRA-2, ERA-Interim and GLDAS-2 contain biases that impact model perfor-mance. In 
particular, biases in radiation inputs were found the main responsible of the observed biases in ET estimates. For the region, MERRA-2 tends to overestimate daily net 
radiation and incoming solar radiation. ERA-Interim tends to underestimate both variables, and GLDAS tends to overestimate daily radiation while under-estimating 
incoming solar radiation. Discrepancies amongst these reanalysis inputs generally explain the ob-served discrepancies in model spatial and temporal patterns.

1. Introduction

The Amazon forest accounting for approximately one-half of the 
global tropical forest area (Malhi et al., 2008) is one of the world’s most 
extensive natural ecosystems. It is a major source of global evapo-
transpiration (Harper et al., 2014) and accounts for about 15% of global 
terrestrial photosynthesis (Malhi, 2011). It is a main actor in the global 
water and carbon cycle (Werth and Avissar, 2002). Relatively small 
changes in the structure, composition and functioning of these forests 
have shown the potential to affect regional and global climate as

pointed out in observational and modelling studies (von Randow et al., 
2004). In this context, evapotranspiration being able to link the ter-
restrial, water, carbon and surface energy exchanges stands out as being 
a key variable in understanding the functioning of these forests and 
their response to the changing climate (Cox et al., 2000).

Nevertheless, estimation of tropical evapotranspiration is hindered 
by the lack of continuous and spatially dense ground-based measure-
ments in the region. Although understanding of Amazonian forest 
processes has greatly advanced through the establishment of a network 
of eddy covariance flux towers across the Brazilian Amazon, providing
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continuous measurements of energy water and carbon fluxes in the 
context of the Large-Scale Biosphere Atmosphere (LBA) program (Araujo 
et al., 2002), these measurements are temporally limited and represent 
point-scale information only. Remote sensing driven models are 
presented as an alternative feasible means to overcome this issue and 
provide spatially distributed ET information at regional and global scale 
(Mu et al., 2011; Fisher et al., 2008; Miralles et al., 2011).

Remote sensing driven models generally require three categories of 
inputs: land surface variables, surface radiation and surface meteor-
ology inputs. At regional and global scale, land surface variables could 
be obtained from MODIS sensor while surface radiation/meteorology 
inputs are commonly derived from reanalysis models. Uncertainty from

these coarser reanalysis data was proved to impact the quality of the 
derived ET and its potential biases (Badgley et al., 2015). In particular, 
how differences in these input datasets, in conjunction with model 
uncertainty, contribute to variability in ET estimates is still a matter of 
debate (Vinukollu et al., 2011).

In the present study, four different remote sensing based evapo-
transpiration models were considered for daily evapotranspiration re-
trieval in the Amazonian tropical forests. Models considered are: a daily 
adapatation of the Priestley-Taylor monthly evapotranspiration algo-
rithm (PT-JPL) described in Fisher et al. (2008). PM-Mu which is a 
Penman-Monteith based model using the parametrizatoion presented in 
(Mu et al., 2011). Surface Energy Balance System (SEBS) (Su, 2002)

Nomenclature

PET Potential evapotranspiration (mm/day)
ET Actual evapotranspiration (mm/day)
λE Latent heat flux (W/m2)
λEc Canopy transpiration (W/m2)
λEs Soil evaporation (W/m2)
λEI Interception (W/m2)
αpt Priestley-Taylor coefficient (1.26) (-)
fwet Relative surface wetness (0–1) (-)
Δ Slope of saturation-to-vapor pressure curve (PaK−1)
γ Psychometric constant (PaK−1)
fg Green canopy fraction (0–1) (-)
fM Plant moisture constraint (0–1) (-)
fSM Soil moisture constraint (0–1) (-)
fT Plant temperature constraint (0–1) (-)
fAPAR Fraction of PAR absorbed by green vegetation cover (-)
PAR Photosynthetically Active Radiation (Wm−2)
fAPARmax Maximum Fapar (-)
fIPAR Fraction of PAR intercepted by fc (-)
fc Vegetation fraction cover (-)
RH Relative humidity (-)
VPD Water vapour deficit (Pa)
ea Air vapour pressure (Pa)
es Saturation vapour pressure (Pa)
Topt Optimum plant growth temperature (ºC)
Tmax Daily maximum temperature (ºC)
NDVI Normalized Difference Vegetation Index (-)
NDVImax Yearly maximum NDVI (-)
LAI Leaf Area Index (-)
SAVI Soil Adjusted Vegetation Index (-)
Rn Net radiation (W/m2)
Rnc, Rns Canopy and soil net radiation (W/m2)
H Sensible heat flux (W/m2)
G Soil heat flux (W/m2)
ρ Air density (kgm−3)
cp Specific heat at constant pressure (J kg−1 K−1)
ra

wc Aerodynamic resistance to wet canopy evaporation
(sm−1)

rs
wc Surface resistance to wet canopy evaporation (sm−1)

ra
t Aerodynamic resistance to wet canopy transpiration

(sm−1)
rs

t Surface resistance to wet canopy transpiration (sm−1)
rs

s Surface resistances to soil evaporation (sm−1)
ra

s Aerodynamic resistance to soil evaporation (sm−1)
Ta Air temperature (ºC or K)
glsh Leaf conductance to sensible heat flux (ms−1)
glew Leaf conductance to evaporated water (ms−1)
gbl Leaf-scale boundary layer conductance (ms−1)
Gs

b Canopy-boundary-layer conductance (ms−1)
Gs

cu Cuticular conductance (ms−1)

gs
cu Leaf cuticular per unit of LAI (ms−1)

Gs
st Stomatal conductance (ms−1)

CL Mean potential stomatal conductance (ms−1)
m T( )min Multiplier to limit CL by Tmin (-)
m VPD( ) Multiplier to limit CL byVPD (-)
T Tminclose minopen Lower and upper threshold for Tmin

VP VPD , Dclose open Lower and upper threshold for VPD
rblmax, rblmin Maximum and minimum values of rs

s (adjusted to air
and pressure values) (sm−1)
P Pressure (Pa)
α Albedo (-)
SRin, LRin Incoming shortwave and longwave radiation (W/m2)
εa Air emissivity (-)
εs Soil emissivity (-)
ε Surface emissivity (-)
σ Stephan Boltzmann constant (Wm−2 K−4)
Tann Annual Temperature (ºC)
Ws Wind speed (m·s−1)
u* Friction velocity (m·s−1)
z Height above the surface (m) (Ta, Ws) measurement)
d0 Zero plane displacement height (m)
L Monin-Obukhov Length (m)
θa, θo Air and land surface potential temperature (K)
k Von Karman’s constant (0.41)
g Acceleration due to gravity (ms−2)
θv Virtual potential air temperature (K)
l Length scale of leafs over viscous boundary layers occur

(0.027)
Λ Evaporative fraction (-)
Λr Relative evaporative fraction (-)
Hwet, Hdry Sensible heat at wet and dry limits (W/m2)
λEwet Latent heat flux at wet limit (W/m2)
fAW Available water fraction (-)
fPET ET/PET (-)
AW Actual plant-available water (m3/m3)
AWC Available water capacity of the soil (m3/m3)
Tsk Skin temperature (K)
Lv Latent heat of vaporisation (J·kg−1)
ra Aerodynamic resistance (sm−1)
rs Stomatal resistance (sm−1)
qsat Specific humidity at saturation (kg·kg−1)
q Specific humidity (kg·kg−1)
Rootsm Root zone soil moisture (m3/m3)
Soilsm Surface soil moisture (m3/m3)
rsmin Minimum stomatal resistance (sm−1)
h Canopy height (m)
Rn24 Daily net radiation (W/m2)
eaTmax Air vapour pressure obtained at Tmax (Pa)
wwp Soil moisture content wilting point (m3/m3)
wfc Soil moisture content wilting point (m3/m3)
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where fwet is given by RH4, fwet is assumed to be zero for RH values less 
than 0.7. ea and es were obtained at midday conditions (i.e. at Tmax 

conditions). Preliminary analysis showed that using ea at this time in-
stead of daily ea improved the results. fSM is calculated as RHVPD/1000, fg 
and fM are given by the following ratios fAPAR /fIPAR, APARf /fAPARmax re-
spectively. fAPAR is given by 1.3632·SAVI -0.048 and fIPAR by NDVI-
0.05. SAVI is calculated as 0.45·NDVI + 0.132 as in Ershadi et al.
max −T Topt )2). In  Fisher et al. (2008), Topt(2014). fT is calculated as exp(−( Topt

was estimated as the air temperature of the annual peak of canopy 
activity. Nevertheless, due to in-situ data scarcity for the present study
Topt was fixed at a constant value of 25 °C. This value has been applied 
previously for global evapotranspiration modelling across different
types of biomes (Yuan et al., 2010; García et al., 2013). Rn is partitioned 
into Rns and Rnc which are calculated as Rn exp(−0.6LAI) and R − Rn ns  

respectively. Although PT-JPL model (Fisher et al., 2008) was originally 
developed for monthly time scale, previous studies showed that it can 
also be applied successfully considering daily inputs (Yao et al., 2017; 
García et al., 2013). With this daily assumption, G was considered 
negligible in the present study.

2.2. Penman-Monteith (PM-Mu)

    Mu et al. (2011) follows Penman-Monteith logic (Monteith, 1965).
λE is partitioned into λEI , λEc and λEs which are given by Eqs. (4)–(6).
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t
fwet is the same as PT-JPL. For interception, ra

wc and rs
wc are obtained as a 

function of Ta, LAI and glsh and glew respectively. For transpiration, ra is 
calculated as a function of Ta and gbl (assumed equal to glsh). rs

t is a 
function of Gs

b (assumed equal to glsh), Gs
cu (derived from adjusting a 

constant gs
cu to actual air and pressure values) and Gs

st (derived from the 
product of LC m  Tmin( )m  V( PD) adjusted to actual air and pressure va-
lues). m Tmin( ) and m VPD( ) multipliers limit CL considering Tminclose and 
VPDclose lower thresholds (inhibition of transpiration) and Tminopen and 
VPDopen upper thresholds (no inhibition of transpiration). For soil eva-
poration, ra

s and rs
s are a function of Ta, P, VPD, rblmax and rblmin. In

addition, fwet and soil moisture constraint RH
VPD
200 are also considered in

the λEs calculation. glsh, glew, CL, rblmax , rblmin, Tminclose, Tminclose, 
VPDminclose and VPDminclose are biome constant values. They were ex-
tracted from Mu et al. (2011) considering Evergreen Broadleaf Forests
(EBF) class. Rn is calculated as (1 )α SRin− + (εa εs )− σ (Ta + 273.15)4. εa as a 
function of Ta and εs assumes a constant value of 0.97 (Mu et al., 2011). Rn 
is partitioned into Rns and Rnc considering fc. Rnc is calculated as fc Rn and 
Rns is calculated as ( c1 )f Rn− − G. For the temperature
conditions of the Amazonian forests (Tann > 25 °C and daily tempera-
ture amplitude < 5 °C) Mu et al. (2011) parametrization assumes a zero 
value for G. Daily ET is considered as the sum of daytime ET and 
nighttime ET. Both daytime and nighttime used the same algorithm 
with daytime and nighttime inputs respectively. For nighttime, tran-
spiration is assumed negligible (Mu et al., 2011).

2.3. Surface energy balance system (SEBS)

In SEBS (Su, 2002), λE is obtained as a residual term of the surface 
energy balance. Accuracy in ET estimates is therefore set by accuracy in 
deriving H. H is calculated by simultaneous solving of Eqs. (7)–(10).
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Inclusion of Eq. (10) was shown to provide a better parametrization
for tall vegetation (Timmermans et al., 2013). z0m was assumed a 
constant value of 2.5 (Brutsaert, 2005). d0 was calculated as a function of 
tree height (Su et al.,2001). Ψm and Ψh are given by Brutsaert (1999). H 
estimates at this stage, are scaled between hypothetical dry and wet
limits based on the relative evaporation (Eq. (11)). λE can be finally 
derived by inverting Λ (Eq. (12)). λEwet is obtained as a residual value of 
the wet limiting case
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Rn is given by ( α1 )SRin− + εLRin − εσLST and G is assumed as 0.34 
nexp(−0.46R L ).A ThisI new G parametrization was shown to re-duced 
turbulent error estimation in comparison to Su (2002) formula-tion 
(Timmermans et al., 2013). SEBS was forced considering hourly input 
values at satellite time overpass. Constant evaporative fraction through 
the day was assumed to upscale instantaneous ET values to

which parametrizes the interaction atmosphere-surface as a one-source 
model) and a daily adaptation of the LSASAF evapotranspiration op-
erative algorithm (Ghilain et al., 2011).

In order to account for the impact of uncertainty in coarse me-
teorological data two different scenarios are considered: in-situ me-
teorological forcing and reanalysis meteorological forcing. Remote 
sensing data are provided by the MODIS sensor and reanalysis data by 
three different reanalyses: MERRA-2, ERA-Interim and GLDAS-2. In-situ 
meteorological data and eddy covariance data are obtained from the 
LBA network. In particular, the main research objectives of the current 
study are: 1) validate and inter-compare the performance of the se-
lected algorithms at daily scale considering in-situ and reanalysis me-
teorological forcing, 2) evaluate the main sources of uncertainties of the 
selected algorithms, 3) assess the impact of uncertainties in meteor-
ological inputs on ET estimation by intercomparing ET spatial patterns 
driven by the three renalyses and the four models considered.

2. Evapotranspiration algorithms

2.1. Priestley-Taylor jet propulsion laboratory (PT-JPL)

In PT-JPL algorithm actual ET is derived by scaling the Priestley –
Taylor PET (Priestley and Taylor, 1972) considering different eco-
physiological, atmospheric and soil constraints. λE is partitioned into 
λEI , λEc and λEs which are given by Eqs. (1)–(3).
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ra is calculated in a similar way to SEBS by considering the iterative 
solving of u* H and L (Ghilain et al., 2011). Ψm and Ψh are given by 
Beljaars and Viterbo, (1994). rs is calculated as a function of LAI, SRin, 
Rootsm, Soilsm, ea, es, and rsmin following Jarvis (1976) approach 
adopted from van den Hurk et al. (2000). For the particular case of bare
ground, a simplified formulation is used depending only on Soilsm and
rsmin. (Ghilain et al., 2011). In this study, λE was calculated as λ cE fc + λEs 
(1 − fc ). EBF and bare soil classes (Ghilain et al., 2011) were se-lected in 
order to derive λEc and λEs. For z0m a value of 2.5 and 0.001
were considered for forests and bare soil (Brutsaert, 2005). z0h was

obtained as z0.1 m0 and d0 as h2
3
(Brutsaert, 2013). For bare soil a height

of 0.01m was considered.

2.5. Evapotranspiration algorithms data requirements

Evapotranspiration models considered in this study differ in the 
required input data and the parametrization of λE employed. In Table 1 
are listed the required inputs and parameters. PT-JPL is the least-data 
demanding model. PM-Mu and LSASAF are the most complex and most 
demanding models as a result of aerodynamic and surface resistances 
explicit description. In PM-Mu, however no soil moisture is required. 
SEBS being less complex than PM-Mu/LSASAF is dependent to LST 
observations. Additional soil information is needed in order to provide 
estimates for cloudy days.

Differences in model λE parametrization arise from differences in 
the approach considered for ET estimation (scaling PET for PT-JPL, 
Penman-Monteih logic for PM-Mu, residual scheme for SEBS and SVAT 
scheme for LSASAF), differences in the evapotranspiration components 
modelled (λEI , λEc and λEs are considered for PT-JPL and PM-Mu, λEc 

and λEs are considered for LSASAF and λE is considered for SEBS) and 
differences in explicit model parametrizations (Rn, Rn partition, ra and 
rs).

3. Data

3.1. In-situ data

We used data from the LBA experiment available at ORNL 
Distributed Archive Active Centre (ftp://daac.ornl.gov/data/lba/car-
bon_dynamics/CD32_Brazil_Flux_Network/). A general description of 
the datasets can be found in Saleska et al. (2013). Only EBF stations 
(associated value of 2 in the International Geosphere-Biosphere Pro-
gramme (IGBP) classification) were selected. In Table 2 and Fig. 1 
characteristics and location of the sites are provided. In-situ station 
eddy-covariance fluxes were used to validate model ET estimates. 
Hourly λE flux was converted to mm/hour and summed to daily values 
(mm/day). Daily values were excluded as missing data if less than 20 
(out of 24) measurements were not available. Lack of energy balance 
closure was observed in the in-situ measurements (hourly energy bal-
ance closure for the stations was 78% (Fig. S1 supplementary mate-
rial)). In order to account for this issue, two common non-closure 
techniques (Bowen Ratio (BR) Twine et al. (2000) and Energy Residual 
(ER) (Li et al., 2008)) were applied. Daily corrected evapotranspiration 
values were obtained by summing corrected hourly values (mm/h). 
Daily corrected values were filled as missing data if the ratio of cor-
rected/uncorrected values was less than 0.5 or more than 2 as in Ershadi 
et al. (2014). In addition, in-situ surface radiation (Rn, SRin, LRin,) and 
surface meteorology inputs (Ta, ea, Ws, P) were used for forcing 
evapotranspiration models. Hourly inputs were averaged over daily, 
daytime/nighttime time intervals in order to accommodate to models 
requirements. A minimum SRin threshold of 10 W/m2 was used for 
separating daytime and nighttime conditions.

Table 1
List of required data and parameters for evapotranspiration models as used in the present study. Static fields are indicated with an asterisk (*). Models were forced
considering the temporal resolution indicated.

Model PT-JPL PM-Mu SEBS LSASAF

Surface Radiation Rn24 SRin, SRin, LRin, Rn24 SRin, LRin

Surface Meteorology Tmax, eaTmax Ta, Tmin, Tann, ea, P Ta, ea, Ws, P Ta, ea, Ws, P,
Land Surface Variables NDVI, NDVImax α , LAI, fc* LST, ε*, α , LAI, h*, fc ε, α , LAI, h, fc
Soil Variables Soil texture Rootsm, Soilsm
Roughness Parameters* z0m z0m
Biome parameters* glsh, glew, CL, rblmax, rblmin, Tminclose, Tmaxclose, VPDminclose, VPDmaxclose rsmin

Temporal resolution Daily Daytime+Nighttime Hourly+Daily upscaling Daytime

daily ET values (Gibson et al., 2011). High sensitivity to Rn24 in SEBS 
estimates is expected from this assumption. For daily inputs in Λ cal-
culation G was considered negligible. SEBS estimates on cloudy days
(no LST data) was accomplished by considering fAW = (f fPET ) re-
lationship (Campbell and Norman, 1998). fAW is given by AW /AWC 
ratio and fPET by ET/PET ratio. AW for each day is calculated by de-
crementing AW of the previous day by the water loss of the day (daily 
ET amount). AWC is derived from soil texture values. Water available 
for transpiration was assumed to be supplied from a soil layer of 
0–289 cm thickness according to root distribution in EBF forests (Van
den Hurk et al., 2000). On clear days, AW pools are updated (i.e. fAW 
calculated from fPET ). On cloudy days, fPET can be calculated by in-
verting previous relationship. ET can be therefore calculated as
fPET PET . PET is calculated as the maximum ET estimated value by SEBS 
(i.e. Λ equal to 1). Further details of this gap filling technique are 
provided by Anderson et al. (2007). In order to facilitate notation for the 
rest of the paper, not gap filled SEBS model (clear days only) is named as 
SEBS and gap-filled model (clear and cloudy days) is named as SEBS-GF.

2.4. Satellite application facility on Land surface analysis (LSASAF) 
algorithm

LSASAF algorithm is based on a simplified SVAT scheme adapted to 
use remote sensed data and atmospheric model data as inputs (Ghilain et 
al., 2011). In original formulation, λE is calculated at a hourly scale and 
aggregated at a daily scale. In this study, in order to reduce the 
computational time associated model was forced directly considering 
daily inputs. In particular, daytime forcing was considered as nighttime 
model λE values were negligible. At this daytime scale G was assumed to 
have a zero value. Preliminary analysis showed that calculating G as in 
Ghilain et al. (2011) resulted in an overestimation of in-situ values 
(values is left). In addition, neglecting daytime G is also assumed in PM-
Mu model for the study region conditions. In LSASAF algorithm, λE is 
calculated by iteratively solving the surface energy budget



3.3. Satellite data

Land surface variables were derived from MODIS remote sensing 
data. h was derived from Simard et al. (2011), global canopy height
product. fc was derived from Broxton et al. (2014) in which vegetation 
fraction cover was derived from a MODIS multi-temporal analysis. ε
was calculated by weighting εv and εs by fc as in Sobrino et al. (2008). 
MODIS LST was derived from the split-window algorithm presented in
Gomis-Cebolla et al. (2018). α and NDVI were obtained from Multi-
Angle-Implementation-Atmospheric-Correction (MAIAC) suite products 
(dataportal.nccs.nasa.gov). In order to avoid the lack of data due to 
continuous cloud coverage of the region monthly α and NDVI values 
were used to force the models. Missing monthly data was filled with the 
monthly climatological mean for the period 2000–2016. LAI was de-
rived from NDVI as in Fisher et al. (2008). For remote sensing data, same 
spatial resampling as reanalysis input data was considered. For regional 
scale implementation, tropical forests were delineated con-sidering a 
vegetation mask derived from MCD12C1 product. Pixels flagged as EBF 
were intersected with a geographical vector covering the political 
regions of Amazonia

4. Validation strategy

4.1. Algorithms validation

Model performance was validated under two scenarios. In scenario 
I, models were forced using radiation and meteorology inputs from in-
situ stations, land surface variables from remote sensing data and 
Rootsm and Soilsm (LSASAF) from MERRA reanalysis due to the lack of 
stations soil moisture measurements. For scenario II, radiation, me-
teorology and with soil moisture inputs were retrieved from reanalysis 
(MERRA, ERA or GLDAS). Gridded soil properties (SEBS-GF) were de-
rived from HWSD database and land surface variables were derived 
from remote sensing data. For each scenario, ET models estimates were 
validated using in-situ ET observations. In scenario I, due to SRin data 
scarcity, LSASAF could be only run for K34, K83 and RJA stations and 
PM-Mu used Rn for K67 station. SEBS also used station Rn (due to the 
continuous lack of SRin and LRin measurements at LST time observa-
tions). The small number of available LST observations also limited 
SEBS model for CAX station. In scenario II, SEBS was not considered for 
validation (instead, SEBS-GF was used).

Metrics considered for validation include: bias, Root Mean Square 
(RMSE), correlation coefficient (R) and Taylor skill score (S) (Eq. (16))
(Taylor, 2001).

= × +
+ × +
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σ σ σ σ R
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( / / ) (1 )model obs obs model

2
0 (16)

where R0 represents the maximum theoretical correlation (R0 =1, in
this study). σmodel and σobs refers to the standard deviation of modelled
and observed values respectively. S varies from zero to one. Higher S
value indicating better performance. In addition, Taylor diagrams were
used in order to compare models results in a comprehensive way. Three
statistics are summarized in a Taylor diagram: standard deviation (STD)
(displayed as the radial distance), correlation coefficient (displayed as
the angle in the polar plot) and centered root mean square difference

Site name Lat (º) Lon (º) Tower
height (m)

Canopy
height (m)

Data availability Reference

Manaus (K34) −2.61 −60.21 50 35 06-1999 to 09-2006
Santarem(K67) −2.86 −54.96 63 35 01-2002 to 01-2006
Santarem (K83) −3.02 −54.98 64 35 06-2000 to 12-2004
Caxiuana (CAX) −1.75 −51.45 51.5 38 01-1999 to 06-2003
Reserva Jaru(RJA) −10.08 −61.93 60 30 03-1999 to 10-2002

Araujo et al. (2002) 
Hutyra et al. (2007) 
Goulden et al. (2004) 
Carswell et al. (2002) 
von Randow et al. (2004)

Fig. 1. Map of the Amazonian tropical forests indicating in-situ stations. In green 
the tropical forests region is delineated (For interpretation of the refer-ences to 
colour in this figure legend, the reader is referred to the web version of this 
article).

3.2. Reanalysis data

Meteorological data at a coarser resolution were obtained by three 
different reanalyses: MERRA-2 (Bosilovich et al., 2015), ERA-Interim 
(Dee et al., 2011) and GLDAS-2 (Rodell et al., 2004). MERRA-2 provides 
data at an hourly scale with a 0.5° × 0.65° spatial resolution while ERA-
INTERIM and GLDAS-2 provide data at a three hourly scale with a 
spatial resolution of 0.75° × 0.75° and 0.25° × 0.25° respectively. 
Surface radiation (Rn24, SRin, LRin,) and surface meteorology inputs (Ta, 
q, Td, Ws, P) were directly provided by the reanalyses. ea was retrieved 
from q fields (MERRA-2 and GLDAS-2) or from Td fields (ERA-IN-
TERIM). Rootsm (ERA-Interim and GLDAS-2) was derived by averaging 
the four-layered reanalysis soil water content taking into account a 
modulating soil temperature function, the root distribution and fixed 
values of wwp (0.171 m3/m3) and wfc (0.323 m3/m3) (van den Hurk et 
al., 2000). Soilsm is computed in a similar approach but considering only 
the first soil layer. Rootsm and Soilsm (MERRA-2) were computed by 
inverting root-zone and soil wetness derived from MERRA-Land (Reichle 
et al., 2011) considering previous fixed wwp and wfc values. Hourly and 
three hourly forcing inputs were averaged in order to obtain daily and 
daytime/nighttime values. Same in-situ SRin threshold was considered 
for daytime and nighttime partition. For SEBS model, inputs at satellite 
time overpass were derived by linear interpolation between closest time 
acquisitions. For SEBS-GF, gridded soil properties (wwp and wfc) were 
obtained from Harmonized World Soil Database (HWSD)(FAO, 2012). 
They were indexed according to texture class (Anderson et al., 2007). 
Forcing inputs were spatially interpolated, considering a Gaussian 
interpolation between nearest neighbours, to a 1 km scale for validation 
purposes and at 5 km for regional scale implementation. In order to 
facilitate notation for the rest of the paper, MERRA, ERA and GLDAS are 
used as an abbreviation of MERRA-2, ERA-Interim, and GLDAS-2.

Table 2
Description of the LBA tower sites used.



only pixels from the vegetation mask described in Section 3.3. Four 
additional models (apart from models considered) were included for the 
comparison. In particular, GLEAM (Miralles et al., 2011; Martens et al., 
2017), MERRA-Land (Reichle et al., 2011), ERA-INTERIM and GLDAS-2. 
GLEAM calculates ET via a PT approach considering a soil moisture 
stress computation and a Gash analytical model of rainfall interception 
loss (Miralles et al., 2011). MERRA-Land is an offline replay of MERRA 
with model-generated precipitation corrected using rain-gauge and with 
model parameter changes (Reichle et al., 2011). Surface fluxes in ERA-
INTERIM are based on land surface model TESSEL forced by at-
mospheric analysis and short range forecasts (van den Hurk et al., 2000). 
GLDAS consists of multiple off-line land surface models. For the study 
NOAH Land model was considered.

5. Results

5.1. Forcing scenario I

In Fig. 2 validation results considering all stations are presented 
using scatterplots. It is worth noting at this point that some discrepancy 
between metrics derived considering uncorrected and corrected ET 
estimates is expected. Models considered perform at R values ranging 
from 0.5 to approximately 0.9. S values range from 0.7 to 0.9 and RMSE 
values lie between 0.55–1.25 mm/day. PT-JPL provides the highest R 
values range (0.65–0.88) in comparison to PM-Mu (0.56–0.74), SEBS 
(0.56–0.77), SEBS-GF (0.58–0.76) and LSASAF (0.53–0.69). In excep-
tion of LSASAF, best agreement between in-situ observations and 
models estimates is found when considering corrected ET measure-
ments (i.e. an increase in R and S values and a decrease in RMSE). In 
particular, maximum absolute deviations are obtained for LSASAF 
using these values. LSASAF generally tends to underestimate in-situ ET 
observations. For PT-JPL, PM-Mu, SEBS and SEBS-GF overestimation is 
generally observed for the uncorrected case. Bias values are decreased 
when considering ET corrected values. Best performance amongst 
models is obtained for PT-JPL (RMSE = 0.55 mm/day, R = 0.88 and 
S = 0.91) followed by SEBS (similar RMSE and S but lower R), SEBS-GF

Fig. 2. Scatterplots of model ET estimate against in-situ ET uncorrected observations. Bias, RMSE, R, and S metrics were calculated considering observations from all
the stations. Metrics derived considering corrected ET values (Bowen Ratio/Energy Residual) are presented between parenthesis.

(CRMSD) (displayed as the distance to observation point which is given 
by R = 1, STD = 1 and CRMSD = 0 coordinates).

4.2. Reanalysis quality assessment and sensitivity analysis

Quality of reanalysis input data used in Scenario II was assessed by 
comparing reanalysis forcing inputs against in-situ forcing inputs. Same 
metrics used for model validation were considered. In addition, the 
effect of reanalysis input uncertainty on model output was evaluated 
using Global Sensitivity Analysis Sobol’ method (Sobol, 2001; Saltelli et 
al., 2010). This method is based on ANOVA (analysis of variance) 
decomposition. Output model uncertainty (which results from propa-
gating input variables uncertainty into the model) is decomposed into 
percentages that can be attributed to the independent contribution of 
input variables (Sobol first index) and interactions among inputs vari-
ables (Sobol second index). A total percentage can be computed gath-
ering these two effects (Sobol total index). These percentages serve to 
identify the key input variables that drive model variance (i.e. the 
higher the percentage the higher the effect is). In order to perform this 
analysis, for each model mean monthly input values were perturbed 
using previous calculated input uncertainties (RMSE derived from 
quality assessment). This is the case for surface radiation and meteor-
ology inputs. For Rootsm and Soilsm (no RMSE calculated) a 15% of 
variation was considered (obtained from the discrepancy amongst re-
analysis soil moisture estimates). Land surface variables (α and NDVI) 
were perturbed a 10% and LST was perturbed in a ± 3 K range. A 
minimum of 20,000 samples were considered in order to perform the 
analysis. For each month, the derived percentages will serve to identify 
the input variables that explains most of the model uncertainty.

4.3. Spatial patterns comparison

Models ET comparison at a regional scale (Amazonian tropical 
forests) was performed by assessing discrepancies in annual cumulative 
ET spatial patterns (year 2004) using difference maps and monthly 
zonal mean values. Spatial mean values were calculated considered



Fig. 3. Taylor diagrams for the LBA in-situ stations. Models are represented by colors and evapotranspiration corrections by shapes (triangle – ET (uncorrected ET
values), square – BR (Bowen Ratio) and circle – ER (Energy Residual)).

Fig. 4. Time series of ET model monthly mean values. In-situ ET observations 
are represented by the shadowed area (lower, intermediate and upper limit 
indicating uncorrected, BR and ER ET observations respectively).

October the deviation is reduced to the increase in ET estimates. In this 
same period overestimation is found for PM-Mu. Amongst the models 
considered the major coincidence is found for PT-JPL and SEBS. 
Nevertheless, due to the lack of LST input data a complete year of es-
timates is not reached for SEBS (July-October providing the maximum 
number of observations).

5.2. Forcing scenario II

5.2.1. Reanalysis quality assessment and sensitivity analysis
In Table 3 metrics (bias, RMSE and R) derived from the comparison 

of in-situ forcing inputs against reanalysis forcing inputs are resumed. 
Metrics were calculated with a number of available points ranging from 
500 to 4000 depending on model and forcing variable considered. 
Generally, instantaneous values (at satellite time overpass) provide 
greater deviations from in-situ observations than averaged values 
(daytime, nighttime and daily). Main difference amongst radiation in-
puts is observed for the bias metric (similar RMSE and R values for the 
three reanalysis). MERRA tends to overestimate Rn24, SRinday and 
SRinhour while underestimating LRinday and LRinhour. Same behaviour is 
obtained for GLDAS although it tends to underestimate SRinday. ERA

and PM-Mu. SEBS model especially suffers from the lack of input LST 
observations due to the continuous cloud cover of the region (minimum 
N value). On the contrary, PT-JPL being the least-data demanding is the 
less prone to suffer from the lack of input data issue (maximum N 
value). The gap-filling technique used is showed to alleviate in part this 
problem, nevertheless it is observed that SEBS-GF tends to under-
estimate SEBS values. Worst performance is obtained for LSASAF 
(RMSE = 1.50 mm/day, R = 0.55 and S = 0.77)

Individual stations validations results were compared using Taylor 
Diagrams (Fig. 3). The bias metric is also included for comparison. 
Models are represented by colors and evapotranspiration corrections by 
shapes (triangle – ET (uncorrected ET values), square – BR (Bowen 
Ratio) and circle – ER (Energy Residual)). Models generally perform at 
R values ranging from 0.5 to 0.9 and CRMSD less than 1. For CAX and 
RJA maximum R is obtained at 0.8. In addition, for RJA minimum R 
value is situated at 0.2 and CRMSD can be greater than 1. Considering 
corrected ET values PT-JPL outperform the rest of the models (i.e. the 
blue square and the blue circle are closer to the observation point than 
the rest of the squares and circles respectively). For the uncorrected 
case there is no model that provides a superior performance for all the 
stations. In terms of the bias, it is observed that K34 and RJA contribute 
the most to the underestimation issue of LSASAF. For the rest of the 
models major deviations (positive biases) are obtained for RJA and CAX 
considering uncorrected ET values. A decrease is observed when con-
sidering the corrected case.

The temporal evolution of the models is compared considering time 
series of monthly mean values (Fig. 4). Values were calculated con-
sidering at least 15 points for each month. In-situ observations are also 
displayed. Variability in these measurements due to the energy balance 
closure issue is represented by the shadowed area. The lower, inter-
mediate and upper limits indicate uncorrected, BR and ER correction ET 
observations respectively. A greater deviation is observed between 
uncorrected and corrected values than between corrections. Models 
generally followed in-situ ET temporal behavior with maximum values 
in September. LSASAF peaks in August, nevertheless it is worth noting 
that K67 and CAX were not able to be included (contrary to the rest of 
the models). Along the year, PT-JPL, SEBS and SEBS-GF always lie in 
the determined range of in-situ ET. PT-JPL and SEBS being closer to the 
corrected rank than SEBS-GF which tends to underestimate SEBS esti-
mates. LSASAF clearly underestimates in-situ ET values. From May to



tends to overestimate instantaneous values while underestimating
daytime and daily values. For temperature inputs (in exception of Taday)
ERA provides the best agreement with in-situ observations amongst
reanalysis. Overestimation is generally found for the three reanalysis
(in exception of Taday for ERA) with maximum deviations for Tmax and
Tahour. Contrary to temperature inputs (in exception of eahour) ERA
provides the worst performance for modelling humidity inputs (max-
imum R value of 0.21). Maximum R values are obtained for GLDAS
however with also maximum RMSE values. In terms of bias, ERA and
GLDAS overestimate eaTmax while underestimate the rest of the inputs.
MERRA only overestimates eanight however with a R value of 0.02. Wind
speed inputs are underestimated for the three analyses. Best agreement
is obtained for ERA (minimum RMSE and maximum R values).

Results of sensitivity analysis are showed in Fig. 5. The mean RMSE 
value of the three reanalysis was considered for perturbing each input 
variable. It is observed that model output variability can be generally 
explained by input radiation variability. For PT-JPL Rn24 is able to 
completely explain model variability. For PM-Mu SRinday (playing the 
major role) followed by eaday and Taday (especially from May to No-
vember) are the key variables driven model output. For SEBS, Wshour, 
SRinhour and LST contribute in a secondary way in comparison to Rn24. 
This input sensitivity is also expected for SEBS estimates on cloudy days 
(SEBS-GF) (PET is directly estimated from Rn24). For LSASAF, model 
output variability can be explained by SRinday followed by Rootsmday, 
eaday and Taday. Taking into account the sensibility of the models to this 
variables, uncertainty in these inputs will be directly translated into

Table 3
Bias, RMSE and R values derived from the comparison of in-situ inputs against reanalysis inputs. The temporal resolution of the inputs is indicated by a subscript (day
refers to daytime, night to nighttime and hour to hourly values at the time of satellite overpass).

MERRA ERA GLDAS

BIAS RMSE R BIAS RMSE R BIAS RMSE R

Radiation inputs (W/m2)
Rn24 9.16 48.77 0.31 −10.36 44.07 0.37 8.65 43.53 0.39
SRinday 10.70 124.17 0.26 −37.54 113.43 0.37 −28.56 109.08 0.37
LRinday −20.08 23.09 0.50 −15.38 18.60 0.68 −19.75 24.50 0.45
SRinhour 141.80 241.47 0.33 94.80 216.05 0.34 126.66 224.54 0.39
LRinhour −16.04 23.55 0.57 1.39 15.55 0.67 −2.12 20.91 0.53

Temperature inputs (K)
Taday 0.38 1.95 0.48 −1.24 2.07 0.61 0.31 1.99 0.58
Tanight 0.75 1.85 0.34 0.10 1.31 0.62 0.60 1.73 0.48
Tahour 0.62 2.94 0.44 0.18 2.30 0.49 1.24 3.32 0.50
Tmax 2.00 2.81 0.50 0.80 2.30 0.41 3.18 4.28 0.38

Humidity inputs (Pa)
eaTmax −168.34 484.73 0.34 196.54 522.38 0.06 262.94 600.50 0.35
eaday −225.95 531.94 0.12 −135.59 539.65 0.05 −148.65 572.80 0.30
eanight 56.32 453.85 0.02 −126.97 484.70 0.05 −179.60 607.90 0.14
eahour −327.23 542.32 0.29 −249.13 533.60 0.21 −524.65 787.30 0.17

Wind speed (m/s)
Wsday −1.29 1.38 0.53 −0.44 0.68 0.60 −0.96 1.06 0.51
Wshour −1.92 2.18 0.34 −0.09 0.93 0.56 −0.77 1.19 0.55

Fig. 5. Sobol sensitivity analysis for the models considered. Temporal resolution of model inputs is indicated by a subscript (day refers to daytime, night to nighttime
and hour to hourly values at the time of satellite overpass).



model uncertainty.

5.2.2. Algorithm validation
In Fig. 6 scenario II validation results are presented using scatter-

plots. A deterioration in model performance from Scenario I is observed 
(R and S metrics have decreased while RMSE has increased). Taking 
into account reanalysis input quality this result was expected. R metrics 
range from 0.2 to 0.3. S metrics range from approximately 0.5 to ap-
proximately 0.7 and RMSE values lie in the range of 1.1–1.7 mm/day. It 
is worth noting here the coincidence between the models R values 
range and the previous R values range derived for the radiation inputs. 
In addition, there is an agreement between overestimation/under-
estimation for the models and the positive/negative bias calculated 
from the reanalysis inputs (Rn24 and SRin). For PT-JPL and SEBS-GF

Fig. 6. Scatterplots of ET derived from the selected models (scenario II) against in-situ measurements considering all stations. For each model, bias, RMSE, R and S,
together with the number of points available for validation are showed. Metrics derived considering Bowen Ratio/Energy Residual method are presented between
parenthesis.

which uses Rn24 input, ERA forced results always tend to underestimate 
MERRA and GLDAS results (positive bias for MERRA/GLDAS and ne-
gative for ERA). Same conclusion is obtained considering SRin and PM-
Mu and LSASAF. In terms of R, S and RMSE metrics, there is no parti-
cular combination (model + reanalysis) that clearly outperform the rest 
of the combinations (PM-Mu-ERA and LSASAF-MERRA however pro-
vide the best metrics but with little discrepancy from the rest)

Individual stations uncorrected validation results are showed in 
Fig. 7. The bias metric is also included for comparison. Taylor diagrams 
considering corrected ET observations are showed in supplementary 
material (Figs. S2, S3). Nevertheless, same conclusions can be obtained. 
Models are represented by shapes (triangle, square and circle) and re-
analysis by colors. Models generally perform at R values ranging from 
-0.1 to 0.5 and CRMSD greater than 1. On the contrary to scenario I,



there is no combination (model + reanalysis) that provides the max-
imum agreement for all the stations. Nevertheless, in general, PT-JPL-
ERA and LSASAF-MERRA tend to provide the minimum CRMSD values. 
In the case of K34 station, this value is provided by PM-Mu-ERA and 
LSASAF-ERA. In terms of the bias metric, all the stations contribute 
with a positive bias (Fig. 7) to the overall overestimation in Fig. 6 
(uncorrected ET values). Same applies for LSASAF-ERA and LSASAF-
GLDAS, overall underestimation values can be explained by the nega-
tive bias (or small positive bias) of the stations. Only in the particular 
case of SEBS-GF-ERA and LSASAF-GLDAS, RJA station contribute the 
most and the least to the overall bias.

In-situ forced and reanalysis forced ET estimates were compared 
considering the time series of monthly mean values (Fig. 8). In-situ ET

observations were also included for comparison (same shadowed area 
as in Fig. 4). For PT-JPL model, MERRA and GLDAS tend overestimate 
in-situ forced estimates while ERA tend to underestimate these values. 
For MERRA and GLDAS this overestimation also results in an over-
estimation of in-situ observations for both uncorrected and corrected 
values. ERA is still within the range of ET observations values. For PM-
Mu, MERRA provides the major coincidence with in-situ forced esti-
mates. ERA and GLDAS on the contrary tend to underestimate these 
values. This fact however tends to alleviate PM-Mu overestimation issue 
and thus results in a better agreement with in-situ observations. For 
SEBS-GF scenario II estimates generally follow scenario I estimates. A 
positive deviation is found for MERRA and GLDAS. ERA provides the 
maximum (and negative) deviation. For LSASAF, maximum

Fig. 7. Taylor diagrams for individual station considering reanalysis forcing.

Fig. 8. Time series of ET model monthly mean values for each combination (model+ reanalysis) considered. In-situ ET observations are represented by the sha-
dowed area (lower, intermediate and upper limit indicating uncorrected, BR and ER ET observations respectively).



GLDAS) major deviations from the ensemble model are obtained for 
GLEAM and MERRA. In Fig. 11, the temporal evolution of the models is 
displayed using zonal mean values. Input net radiation is also displayed 
for comparison. Taking into account that growth and water use in 
tropical forests is radiation driven (Myneni et al., 2007; Wagner et al., 
2017) the comparison with radiation evolution can serve to indicate 
model performance. Discrepancies amongst model temporal evolution is 
also driven by reanalysis differences. For each reanalysis, models follow 
the same temporal pattern although differing in ET absolute values. 
Models are able to reproduce the temporal evolution of net radiation. 
Major deviation is obtained for PT-JPL-GLDAS. In particular, ERA 
follows a stronger seasonal net radiation evolution in comparison to 
GLDAS and MERRA. Considering the comparison of model temporal 
evolution between the reference models and the four models con-
sidered, the agreement with GLDAS and ERA is greater than with 
GLEAM and MERRA. In GLDAS and ERA the increase in ET values is 
observed for the period of May-December (with a peak in September/
October) while for GLEAM and MERRA this behaviour is observed from 
January to September (with minimum values in September).

6. Discussion

6.1. Forcing scenario I

Rn was shown to control the seasonal variation of λE over the tro-
pical forests in Amazonia (Fisher et al., 2009; Rocha et al., 2009). The 
four models considered rely on radiation inputs for evapotranspiration 
estimation, hence their general agreement with in-situ observations

Fig. 9. Annual cumulative ET (year 2004) spatial patterns (deviation from the ensemble mean).

discrepancy among scenarios is obtained for MERRA. This deviation 
results in a better agreement with in-situ observations. ERA and GLDAS 
tend to follow scenario I estimates, maximum difference between re-
analysis is found from September to October. Analyzing results by re-
analysis, a strong seasonal behavior (similar temporal pattern for all the 
models) is found for ERA in contrast to MERRA and GLDAS.

5.2.3. Spatial patterns
In Fig. 9 the difference maps used for the comparison of model 

spatial patterns are showed. The ensemble (mean value) of all the 
models was considered as truth data. From Fig. 9, it is observed that 
discrepancies amongst reanalysis can induce maximum absolute dif-
ferences greater than 500 mm/year in annual cumulative ET values. 
Maximum negative deviations are obtained for LSASAF-ERA and 
LSASAF-GLDAS followed by LSASAF-MERRA and PM-Mu-ERA and PM-
Mu-GLDAS. Maximum positive deviations are obtained for MERRA and 
GLDAS followed by PT-JPL-GLDAS and SEBS-GF-GLDAS. In addition, 
discrepancy amongst spatial patterns can be explained by differences in 
reanalysis inputs. In particular, it is observed that models driven by the 
same radiation input (PT-JPL/SEBS-GF for Rn24 and PM-Mu/LSASAF for 
SRin) tend to share similar spatial patterns (although some dis-crepancy 
may exist). This leads to the conclusion that differences in ET spatial 
patterns are generally explained by differences amongst re-analysis 
radiation inputs. In Fig. 10, difference maps of Rn24 and SRin are 
showed. Ensemble (mean value) of the three reanalysis was con-sidered 
as truth data. Comparing Figs. 10 and 11 it is observed ET spatial 
patterns generally reproduce input radiation spatial patterns. From the 
reference models considered (GLEAM, MERRA, ERA and



(Fig. 2 and Fig. 4). Nevertheless, the best performance was obtained for 
PT-JPL (minimum RMSE and maximum R values range) (Fig. 2). Same 
conclusion is derived for each individual station (minimum distance to 
the observation point, Fig. 3). These results could be attributed to the 
simplified approach used in estimating ET, which avoids the need of 
explicitly parametrizing the aerodynamic and surface resistances. As λE 
is mainly explained by Rn, the use of a more complex description (re-
sistances) is not expected to contribute in a significant amount to λE 
explanation, instead additional noise is introduced by the use of addi-
tional parameters (Fisher et al., 2005). This is particular true for PM-Mu 
model. Considering the same λE partition as PT-JPL, the resistance 
formulation proposed does not result in an improved performance. 
These resistances are calculated using the biome-specific physiological 
parameters in Table 1. The most arguably assumption about these va-
lues is that they do not change over space or time. For all the forests of

the Amazon region same generic biome-specific properties are assumed, 
thus ignoring the high species diversity and the complex forest canopy 
structure. PM-Mu, however, succeeds in avoiding the need of soil 
moisture data, which for the region it is one of the most difficult 
parameter to model (Fisher et al., 2009). Main issue associated with PM-
Mu is that it tends to overestimate in-situ ET observations (Fig. 4). 
Maximum deviations are reached in months with maximum radiation. 
Validation of PM-Mu modelled net radiation against in-situ Rn values 
providing an underestimation of approximately 20 W/m2 for daytime Rn 

(Table S1, supplementary material) suggested that this issue results from 
model itself (an underestimation of Rn values results in an over-
estimation of ET values). This behaviour can be alleviated considering 
even lower Rn values resulting from a lower fc value. It is worth noting 
here that same fc value (0.98) derived from stations characterization (see 
references Table 2) was assumed for all the models. In MODIS

Fig. 10. Spatial patterns of annual mean Rn24 and SRin (deviation from the ensemble mean).

Fig. 11. Temporal evolution of zonal mean values for the Amazonian region.



stressing the importance of the previously commented issues (reanalysis 
soil moisture). It is worth mentioning here that in the new launch of 
LSASAF ET products the lack of λEI is explicitly addressed by mod-
ulating the vegetation rs by a wet fraction term.

Apart from the above mentioned model limitations, it has to be taken 
into account that the resulting deviations between in-situ ET 
observations and modelled ET estimates result also from the contribu-
tion of other causes. In particular, it is worth noting the extra un-
certainty introduced by the spatial mismatch between ground mea-
surements and remote sensing data. Footprints for eddy covariance 
range from 0.1 to 0.5 km2 (Kljun et al., 2004) depending on the re-
ference height. This scale is much smaller than the MODIS (or MERRA) 
pixel 1 km2 resolution. In addition, uncertainty in these remote sensing 
data will also introduce uncertainty in the modelled ET estimates. This 
uncertainty may be derived from an imperfect cloud masking and at-
mospheric correction of these data (Hilker et al., 2012; Gomis-Cebolla et 
al., 2018). Another cause of deviation to take into account is the 
uncertainty derived from the in-situ eddy-covariance measurements 
(lack of energy closure) and the possible deviations introduced by the 
selection of a specific correction method. As it was observed validation 
metrics (and therefore final conclusions) were dependent on the type of 
in-situ data (uncorrected or corrected) and the type of correction con-
sidered (BR or ER). Nevertheless, it is worth noting that same model 
comparison conclusions were derived from BR and ER (although with 
different validation metrics values).

6.2. Forcing scenario II and spatial patterns

Scenario II differs from scenario I in the use of reanalysis meteor-
ological data for forcing the models. Reanalysis data uncertainty results 
from reanalysis inherent errors and the spatial mismatch between 
ground measurements. Quality of these data was addressed by com-
parison of reanalysis inputs against in-situ stations inputs. From Table 3, 
the poor quality of these data can be deduced. Generally, for the three 
reanalysis, wind speed was the most uncertain parameter with a greater 
than 60% of relative error (RE), followed by radiation inputs 
(approximately 30%), humidity (15%) and temperature inputs (max-
imum RE of 10%). In addition, R values range from 0.3 to 0.7 for ra-
diation, temperature and wind variables while for humidity variables a 
maximum value of 0.35 is obtained. The impact of these inputs un-
certainty on model output was assessed using the Sobol global sensi-
tivity analysis. From Fig. 5, it can be deduced that radiation inputs are 
the key variables driven model output, and therefore model uncertainty 
will result mainly from radiation input uncertainty. This fact, is clearly 
in agreement with the fact that the tropical forests of Amazonia are 
energy driven (Fisher et al., 2009; Rocha et al., 2009). In particular, for 
PT-JPL and SEBS model Rn24 is the key variable. A bias in these input 
will be therefore directly translated into a bias in the estimates. Con-
sidering the scaling logic of PET for PT-JPL and the assumption of 
constant evaporative fraction this result could be expected. In addition, 
this fact also explained the similarity in PT-JPL and SEBS results in 
scenario I. In the case of PM-Mu, model variability is mainly driven by 
SRin variability. A bias in SRin translates into a direct bias in Rn and 
therefore in the estimates. It is worth mentioning the role played by Ta 

and ea variables (especially from May to November). These inputs are 
involved in the calculation of VPD (es is derived from Ta). During these 
months, VPD increases therefore contributing more to λE. In addition, Ta 

is also involved in the calculation of Rn. For LSASAF, although SRin 

explains most of the model variance, ea, Ta and Rootsm additionally play 
an important role. Taking into account model parametrization these 
results were expected. ea is involved in the λE calculation, explicitly 
(specific humidity) and implicitly (in the calculation of rs). The same 
holds true for Ta but for the sensible heat flux. Rootsm is used in rs 

calculation. Therefore, the effect of reanalysis inputs on model esti-
mates is not as direct as in the other models. It is worth noting here, that 
model is almost insensitive to wind speed (even if it is the most

operative implementation however fapar is used as a surrogate of fc. 
With this lower value (0.85) this overestimation issue is somewhat al-
leviated (Figure S4 and Table S2, supplemetary material), nevertheless 
same conclusions from model comparison can still be derived. In this 
case altough a general agreement with in-situ observations is obtained 
input values differ from their optimum values (underestimation of Rn 

and fc). It is worth noting here that PM-Mu biophysical parameteres 
were calibrated globally, therefore some improvement could still be 
expected from local calibration.

SEBS model perform similar to PT-JPL, main discrepancy arises in R 
and S metrics. This similar performance could be attributed that both 
models heavily rely on daily Rn for ET estimation. In PT-JPL, PET (and 
therefore daily Rn) is scaled to ET values using biophysical constraints, 
for SEBS daily Rn is scaled using a pre-calculated evaporative fraction. As 
this fraction is calculated at the satellite time overpass, the varia-bility 
introduced by using instantaneous values together with the as-sumption 
of constant value of evaporative fraction could help to explain the 
discrepancy for R and S metrics. In SEBS, the explicit para-metrization of 
surface resistance (and the problematic parametrization associated) is 
avoided by calculating λE as a residual term. Accuracy in the results is 
thus determined by the accuracy in calculating ra (and the derived H). 
Van der Kwast et al. (2009) pointed out to LST errors as a
source of ra uncertainty. In particular, the split-window algorithm used 
in this study was demonstrated to provide more accurate LST estimates 
than current MODIS LST operative products (Gomis-Cebolla et al., 
2018). In addition, possible deviations introduced by a deficient 
roughness and ground heat flux parametrization were addressed fol-
lowing Timmermans et al. (2013) indications. SEBS differ from the rest 
of the models in the fact that no λE partition is considered. Never-
theless, SEBS one-source approach can be assumed for the region (λEs 

can be neglected, and the LST observations are expected to reflect the
effect of intercepted water on the leaves and canopy for λEI ). Main 
limitation of SEBS model is the lack of ET estimates for cloudy days. In
order to deal with this problem, ET was derived from the fAW in these 
days. This technique was shown to overcome this issue nevertheless it 
tended to underestimate SEBS values. This fact may result from the 
simplification used (transpiration results only from the contribution of 
soil moisture). Although this assumption is generally true for water 
limited regions it may not offer a complete description for energy 
limited regions (evapotranspiration is mainly determined by the in-
coming radiation rather than the available water). In addition, this gap-
filling technique entails one additional aspect, the alteration in the ET 
estimates distribution. Due to the continuous cloud cover of the study
region, fAW ET estimates contribute more to the total distribution than 
SEBS estimates (i.e. from approximately 1600–1700 SEBS-GF estimates, 
only 500–600 are from SEBS).

LSASAF provides the worst performance amongst the models con-
sidered. ET estimates were clearly underestimated. In LSASAF, an ex-
plicit parametrization of rs and ra is used in order to estimate λE. rs is 
calculated by upscaling rsmin using Jarvis functions. A constant value of 
rsmin is assumed for all the forests of the Amazonia. Apart from this issue, 
the soil moisture is considered in this calculation. The proble-matic 
description of this input together with the spatial mismatch be-tween in-
situ point station and reanalysis data negatively affect model 
performance. In addition, as in SEBS, there is a dependency on
roughness parameters for ra calculation. Therefore, uncertainty in this 
parametrization could also affect model performance. Nevertheless, the 
main reason behind the underestimation of LSASAF model is the not 
inclusion of a λEI term in the λE partition. In order to test this hy-
pothesis, λEI was calculated assuming rs equal to 0 (as in open waters) 
and using same vegetation roughness lengths driving ra. λE components 
were weighted as in PM-Mu. Results indicated (Fig. S5 and Table S3, 
Supplementary material) that the inclusion of this new term help to 
overcome the underestimation issue. Although some variability in va-
lidation metrics is expected because of this fact, same model compar-
ison conclusions can be derived in terms of R and S metrics. Therefore,



7. Conclusions

In this study, the ET estimates of four remote-sensing based algo-
rithms (PT-JPL, PM-Mu, SEBS (SEBS-GF) and LSASAF) were validated
over the tropical forests of the Amazonian region. Validation was per-
formed using in-situ data forcing and reanalysis data forcing. MERRA-2,
ERA-Interim and GLDAS-2 were used as a source of external meteor-
ological input data. Main conclusions derived from this study are:

1 From the in-situ based validation, it was concluded that PT-JPL was
the best performing model (RMSE=0.55mm/day, R=0.88). The
worst performance was provided by LSASAF, because of an under-
estimation resulting from ignoring water canopy evaporation. SEBS
performance was similar to that of PT-JPL. Nevertheless, being de-
pendent on LST observations, SEBS estimates are limited by the
continuous cloud cover of the region. The gap-filling method pro-
posed was shown to alleviate this issue, nevertheless it resulted in an
underestimation of SEBS values. PM-Mu shows similar performance
to PT-JPL and SEBS. Nevertheless it provided an inherent tendency
to overestimate in-situ ET observations.

2 From reanalysis-based validation, it was concluded that the re-
analysis poor data quality over the region determined the poor
model performance observed. MERRA-2, ERA-Interim and GLDAS-2
contain biases that clearly impact model performance. In particular,
the biases obtained in ET estimates derived by the biases on radia-
tion inputs. MERRA-2 tends to overestimate daily net radiation and

incoming solar radiation. ERA-Interim tends to underestimate both
variables, and GLDAS tends to overestimate daily radiation while
underestimating incoming solar radiation. Discrepancies amongst
these inputs mainly explain discrepancies between models estimates
(spatial and temporal patterns). The results obtained in this study,
thus serve to emphasize the need to improve the accuracy of re-
analysis estimates in order to improve the accuracy in ET estimates.
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