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ABSTRACT 13 

 14 

Earth Observation (EO) allows deriving from a range of sensors, often globally, operational 15 

estimates of surface soil moisture (SSM) at range of spatiotemporal resolutions. Yet, an evaluation of 16 

the accuracy of those products in a variety of environmental conditions has been often limited. In this 17 

study the accuracy of the SMOS SSM global operational product across 2 continents (USA, and 18 

Europe) is investigated. SMOS predictions were compared against near concurrent in-situ SSM 19 

measurements from the FLUXNET observational network. In total, 7 experimental sites were used to 20 

assess the accuracy of SMOS derived soil moisture for 2 complete years of observations (2010 to 21 

2011). The accuracy of the SMOS SSM product is investigated in different seasons for the seasonal 22 

cycle as well as different continents and land types. Results showed a generally reasonable 23 

agreement between the SMOS product and the in-situ soil moisture measurements in the 0-5 cm soil 24 

moisture layer. Root Mean Square Error (RMSE) in most cases was close to 0.1 m3 m-3 (minimum 25 

0.067 m3 m-3). With a few exceptions, Pearson’s correlation coefficient was found up to approx. 55%. 26 

Grassland, shrublands and woody savanna land cover types attained a satisfactory agreement 27 

between satellite derived and in-situ measurements but needleleaf forests had lower correlation. 28 

Better agreement was found for the grassland sites in both continents. Seasonally, summer and 29 

autumn underperformed spring and winter.  Our study results provide supportive evidence of the 30 

potential value of this operational product for meso-scale studies in a range of practical applications, 31 

helping to address key challenges present nowadays linked to food and water security. 32 

 33 

Keywords: surface soil moisture, earth observation, operational products, SMOS, validation  34 

 35 
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1. Introduction 36 

Soil moisture corresponds to water in both the uppermost layer of the land surface - called Surface Soil 37 

Moisture (SSM) - and the root zone or vadose area. This parameter is strongly affected by many factors 38 

such as soil texture, organic materials, and topography as well as land use/land cover and rainfall 39 

(Srivastava et al. 2016a; Raffelli et al. 2017) Soil moisture, particularly SSM plays a significant role in 40 

the distribution of the mass and energy fluxes between the land and the atmosphere, and it controls the 41 

different components of the water and energy balance (Seneviratne et al. 2010; Bao et al. 2018). 42 

Furthermore, it is a key state variable in organizing the natural ecosystems and biodiversity (Vereecken et 43 

al. 2008), also important to modeling extreme events such as flooding or landslides prediction (Bittelli et 44 

al. 2012; Wanders et al. 2014), drought monitoring (Sánchez-Ruiz et al. 2014), and numerical weather 45 

prediction (De Rosnay et al., 2013). Considering many aspects in life such as food security and water 46 

resources management, it is essential for agriculture and irrigation management practices. Particularly, in 47 

developing irrigation management practices for more crop production and optimum use of water 48 

resources especially in arid and semi-arid regions (Rotzer et al. 2014; Canone et al. 2015; Brocca, 49 

Ciabatta, et al. 2017; Canone et al. 2017). Thus, large scale SSM accuracy evaluation spatially and 50 

temporally represents an important topic to be investigated. 51 

SSM point based measurements at particular locations fail to effectively capture this variability. There are 52 

different approaches used for soil moisture measurements (a good review can be found for example in 53 

Petropoulos et al. 2015a) , including the establishment of relevant operational networks (Petropoulos et al. 54 

2017). In-situ techniques, such as the gravimetric Time Domain Reflectometry (TDR) and the Frequency 55 

Domain Reflectometry (FDR) techniques (Brocca et al. 2017) provide accurately SSM. However, they are 56 

of too sparse spatial coverage to characterize the spatiotemporal features of soil moisture at large-scale 57 

(Crow et al. 2012; Pierdicca et al. 2012). Newly developed techniques such as cosmic ray and GPS 58 

moderately address this issue (Dorigo et al. 2013).  59 

Earth Observation (EO) provides promising methods to survey SSM at large scale at satisfactory 60 

spatiotemporal resolution (Srivastava et al. 2016b; Petropoulos et al. 2018a).  In the past two decades 61 

immense progress has been achieved on developing soil moisture products by using EO from microwave, 62 

optical and thermal satellite sensors (for a review see e.g. (Petropoulos et al. 2018b). Several microwave 63 

instruments were launched for developing SSM global products from active/passive microwave signals. 64 

Currently, L-band microwave sensors are considered the most promising for SSM estimation. The Soil 65 

Moisture Ocean Salinity (SMOS) mission of European Space Agency (ESA) carries the first operational 66 

L-band radiometer to measure SSM at spatial resolution of ~40 km (Kerr et al. 2012; Djamai et al. 2015). 67 

Currently, the satellite Scatterometers of the European Remote Sensing (ERS-1/2) and the Advanced 68 

Scatterometer (ASCAT) onboard of the Meteorological Operational satellite program Metop-A and 69 

Metop-B (2007–2014) provide soil moisture retrievals at global scale.  70 

In order to obtain long term soil moisture estimation at global scale, passive and active microwave soil 71 

moisture products have been used in combination. For example, a method to derive soil moisture from 72 

SMAP/Sentinel-1 data such as SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band 73 

backscatter coefficients has been developed (Entekhabi et al. 2017). Likewise, there are efforts to merge 74 

the passive and active soil moisture products under the European Space Agency Climate Change Initiative 75 

soil moisture product (CCI SM), in an attempt to generate a long term global scale soil moisture record 76 

(Liu and Parinussa et al. 2011; Draper et al. 2012) The Water Cycle Observation Mission (WCOM) 77 
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satellite is being developed by the Chinese Academy of Sciences to combine the passive and active 78 

microwave sensors and is expected to be launched in 2020 (Shi et al. 2014). 79 

Due to its lower sensitivity to surface roughness and vegetation cover, the L-band is more appropriate for 80 

assessing soil moisture conditions (Calvet et al., 2011). This makes the L- the most suitable microwave 81 

band for soil moisture measurement from space. In the recent years, the product has been evaluated by 82 

various studies in several geographical regions around the globe like  USA (Zhuo et al. 2015), Argentina 83 

(Grings et al. 2015), Europe (Ro¨tzer et al. 2014; González-Zamora et al. 2015), China (Cui et al. 2017), 84 

India (Chakravorty et al. 2016) and West-Africa (Louvet et al. 2015).  85 

Despite the major importance of soil moisture and measuring it effectively in global scale, a systematic 86 

presentation of the accuracy of the MIRAS instrument of SMOS has been examined so far by very few 87 

studies (Petropoulos et al. 2014; Fascetti et al. 2014; Petropoulos et al. 2015b; Djamai et al. 2015; Liu et 88 

al. 2018; Chen et al. 2018). The motivation of our study was to investigate the accuracy of soil moisture 89 

measurements by SMOS in the Northern hemisphere. SMOS SSM is acquired by using remote sensing 90 

through indirect measurement techniques. There are many factors influencing their retrievals (e.g. radio 91 

interference, vegetation cover, soil roughness, etc. (see for example Petropoulos et al. 2014). Therefore, 92 

comprehensive evaluation of those operational products through all the seasons on different vegetation 93 

cover types is highly required, so that the data provider and the user can clearly understand the 94 

uncertainties associated with the data and assist in further algorithm development (Srivastava et al. 2014).   95 

Although a number of studies have been focused on evaluation of SMOS, there are rare studies available 96 

on assessment of products over the Northern hemisphere. In this context, this study explores SMOS soil 97 

moisture product accuracy in different seasons and variety of land cover types at selected sites belonging 98 

to the FLUXNET global in-situ measurements network to investigate the different factors that might 99 

influence the accuracy of the soil moisture product estimations. A better understanding of MIRAS SSM 100 

data can lead to rapid developments in important areas of the economy, such as agriculture, monitoring 101 

plant growth as well as food and water security.  102 

 103 

2. Data description  104 

2.1 In-situ measurements 105 

FLUXNET (http://fluxnet.ornl.gov/obtain-data) is the largest global network of micrometeorological 106 

fluxes and ancillary parameters (Baldocchi et al. 1995) in the regional and global scale. SSM is measured 107 

at 30-min intervals using standardized instrumentation across sites. After data are collected standard 108 

procedures for error corrections, gap-filling and quality control take place to make sure the data are 109 

consistent for all sites and datasets. Erroneous data measurements with obvious instrument errors are 110 

removed from the in-situ data. 111 

In this study, in-situ data for the years 2010 and 2011 were acquired from seven sites. Three of those sites 112 

were situated in Europe (AGU, LJU, and MAU) and four were in the United States (ME2, VAR, TON, 113 

WHS). Only sites with continuous long term datasets, at surfaces top 5cm depth were selected. Another 114 

factor during the selection of sites was homogeneity in the land cover type. To avoid any mixed pixel 115 

effects on the overall performance, satellite pixels are chosen over the FLUXNET towers having the 116 

largest homogenous land cover. 117 
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The 7 sites selected in this study are: ES Agu, US-WHS & ES-LJu —open shrubland, US-Me2—118 

Evergreen Needle-Leaf Forest, US-Var  —grasslands, FR-MAU —croplands. For FR-MAU, only data 119 

from 2011 were available. All in-situ data were obtained from the FLUXNET website and where possible, 120 

verified by the site manager above. 121 

 122 

2.2 SMOS Soil Moisture Product 123 

The SMOS mission is a part of European Space Agency. It is the first L-band microwave satellite devoted 124 

to provide global measurements of soil moisture over land and ocean salinity by observing natural 125 

microwave emissions from the earth surface. The SMOS satellite was launched in November 2009, its 126 

orbit is 763km which is approximately circular with a 6 a.m. (ascending) and 6 p.m. (descending) 127 

equatorial local crossing time and still works surpassing 5 year its proposed service period.  128 

The interferometric radiometer onboard of SMOS satellite operates in the L-band microwave. The SMOS 129 

platform main instrument is Microwave Imaging Radiometer with Aperture Synthesis (MIRAS), a dual 130 

polarized 2-D interferometer that records emitted energy from earth surface in microwave L-band (1.4 131 

GHz). It is aimed to provide near-surface soil moisture estimations with global coverage, a three days 132 

revisit time at the equator and approximately daily at the pole, spatial resolution of around 40 km (Kerr et 133 

al. 2001).  The SMOS SSM products are defined on the Icosahedral Snyder Equal Area projection (ISEA 134 

4H9 grid) with aperture 4, resolution 9. The shape of cells is a hexagon (Srivastava et al. 2016a). Its 135 

mission expected accuracy of 4% which expected to be achievable over relatively uniform area (Panciera 136 

et al. 2011). The soil moisture retrievals evaluated in this study are the SMOS products version (v05) 137 

image granules which were acquired from Eoli-SA portal covering the full years of 2011 and 2012.  138 

 139 

3. Methods  140 

In-situ measurements recorded in FLUXNET at the time closer of SMOS overpass were selected for the 141 

comparisons performed in this study. After quality assessment, the data values were extracted (Excel 142 

Macro VBA) and assigned to point shapefiles of the study site (Tabular join in ArcMap 10.2). The 143 

shapefiles were imported on top of the pre-processed SMOS image pixels in the BEAM VISAT and 144 

SMOS toolbox. These pixels were further analyzed using Microsoft Excel and Matlab 2016a. 145 

Comparisons of the in-situ soil moisture (0–5 cm) and the satellite soil moisture retrievals were performed 146 

and are presented in the results below. Evaluation was performed on point by point comparison of the in-147 

situ and satellite products. The statistical performance measures used were: The Root Mean Square Error 148 

(RMSE), Pearson’s Correlation coefficient (R) including slope and intercept, Spearman’s rank correlation 149 

coefficient (Rs), the Mean Error (Bias), and the standard deviation (Scatter). Those statistical measures 150 

have been used in other previous studies (e.g. (G. Petropoulos et al. 2013; Deng et al. 2019). The analysis 151 

was carried out on different land cover types and agreement was evaluated for 7 sites. Similarly, 152 

agreement was also evaluated for the 4 seasons, spring (March- May), summer (June–August), autumn 153 

(September–November) and winter (December–February), direct point-by-point comparisons were 154 

performed at every in-situ station to evaluate the statistical agreement for each threshold. Analysis was 155 

performed for each scenario independently for both 2010 and 2011. 156 

 157 

 158 
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4. Results 159 

4.1 Europe 160 

4.1.1 Different land covers Performance comparisons  161 

The first study area is Europe, with three stations. The land cover type mainly covered by AGU represents 162 

Shrublands, LJU represents olive orchards and MAU represents croplands. AGU and LJU are used for the 163 

evaluations in 2010, and AGU, LJU and MAU are used for the year 2011.  164 

Table 1, Figures 1-5 show the evaluation results of SMOS SSM product in Europe for the years 2010 and 165 

2011. In addition, considering that the scatter plot at a given significance level can effectively show the 166 

general trends of the correlation R between the SMOS predicted SSM with the in-situ measurements and 167 

outliers of an array, 95% confidence levels was used to intuitively reflect and compare the parameter 168 

values shown in Figure 2. Generally, as indicated from the statistical metrics calculated for the case of the 169 

comparisons for all sites, a relatively satisfactory agreement between the two compared datasets was 170 

reported (RMSE = 0.101 m3/m3, bias = -0.024 m3/ m3, scatter = 0.099 m3/m3 and R= 0.446). 171 

Further analysis was conducted to evaluate the product performance over the different land cover types. 172 

As can be seen from Table 1, Figure 1 and 2, the correlation coefficient varied from 0.537-0.683 in 2010 173 

over AGU& LJU to 0.303, 0.428 & 0.673 in 2011 over AGU, LJU and MAU respectively. Notably, for 174 

AGU and MAU in the 2011 the RMSE is larger than 0.1 m3m-3 due to the presence of bias whereas the 175 

correlation obtained for AGU was low (R = 0.303). On both land covers AGU (Shrubland) and LJU 176 

(Olive), SSM product shows a good estimation against the in-situ measurements for the year 2010 (figure 177 

1a). The SSM product estimation showed lower performance against the in-situ measurements for the 178 

year 2011 (figure 1b).  When the results are combined for all sites for both years, there is indication of 179 

bias (-0.024) leading to an underestimation of the predicted SSM. In addition, performance for all sites 180 

was better in 2010 than 2011 with overall lower RMSE for 2010 than 2011. Similar findings were 181 

reported also for the Scatter. In general, SMOS product behaved similarly in the different land cover types. 182 

The SMOS products for LJU (2010) had the best fitting trend with a high R (Figure 2b). 183 

Table 1: Comparison between Satellite (SMOS) and observed SSM at the validation sites in EU based on 184 

land cover type, for 2010 and 2011 as well as all sites (both years). AGU represents Shrublands, LJU 185 

represents Olive Orchards and MAU represents Croplands. Units are in m3/m3 186 

Measure AGU 2010 AGU 2011 LJU 2010 LJU 2011 MAU 2011 All Sites 

ME (bias)  0.037 0.063 -0.040 -0.046 -0.080 -0.024 

MAE 0.074 0.085 0.054 0.079 0.087 0.079 

RMSE 0.092 0.116 0.067 0.099 0.110 0.101 

R 0.537 0.303 0.683 0.428 0.673 0.446 

Rs 0.447 0.404 0.479 0.397 0.675 0.433 

Scatter 0.085 0.099 0.054 0.089 0.075 0.099 

Slope 0.566 0.431 0.595 0.478 0.587 0.391 

Intercept 0.088 0.135 0.030 0.061 0.019 0.088 

N 74 56 46 61 130 367 

 187 
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 188 

Figure 1: Agreement between in-situ and predicted SSM from SMOS for the different land cover types in 189 

EUROPE. Results are shown for: a) 2010: ES_AGU (red) and ES_LJU (blue).  b) 2011: ES_AGU (red), 190 

ES_LJU (blue), FR_MAU (green)  191 

i- 192 

 193 

ii-194 

 195 
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Figure 2: Agreement between in-situ and predicted SSM from SMOS for all the different land cover 196 

types in Europe. Results are shown for: i- 2010: a) ES_AGU and b) ES_LJU   ii- 2011: a) ES_AGU  b)  197 

ES_LJU  c)  FR_MAU (green) 198 

 199 

4.1.2 Temporal Variability 200 

To explore the temporal trends between in-situ and SMOS product for different seasons during 2010 and 201 

2011, the in-situ measurements (red) and the predicted SSM (blue) over AGU, LJU in 2010, AGU, LJU 202 

and MAU in 2011 are investigated by month, when possible by the data, as shown in Figure 3. The 95% 203 

confidence intervals are shown as green dashed lines in figures 3 and 4. Due to discontinuous data and 204 

small number of data per month, the confidence margins are wide and there are gaps in the data. Thus, it 205 

is not always possible to have results for overestimation or underestimation in a given month with 206 

statistical certainty. 207 

In 2010, as shown in Figure 3, the SMOS product overestimated the in-situ observations from September 208 

to November over AGU (Figure 3a) with statistical significance. In 2011, SMOS product aligns with 209 

AGU within the 95% confidence level, except for October and November although data for the previous 210 

months are scarce.  Looking at the entirety of AGU though, SMOS tends to overestimate the SSM. The 211 

time series for LJU in 2011 show a greater lack of data and cannot lead to conclusions about 212 

overestimation or underestimation. For Croplands (MAU site, Figure 4c) the data is continuous. SMOS 213 

underestimates the SSM for this site especially from January to April.   214 

Table 2 summarizes the comparisons between autumn, winter, spring and summer in 2010 and 2011. 215 

Figures 3- 5 show the agreement between predicted and observed soil moisture for the different seasons 216 

separately for 2010, 2011. Generally, all seasons displayed adequate RMSE (between 0.071 and 0.139) 217 

but a low correlation coefficient. No clear patterns that can be seen between the seasons in 2010 and 2011. 218 

The correlation (R 0.22) in spring 2011, could be associated with the negative bias and the smaller size in 219 

comparison to the other seasons in 2010 and 2011. 220 

 221 

Table 2: Comparison per season between Satellite (SMOS) and observed SSM at all validation sites in 222 

EU for 2010 and 2011. Units are in m3/m3 223 

 224 

Measure 
Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2010 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2011 

ME (bias) 0.039 -0.051 -0.030 0.031 -0.014 -0.087 -0.063 -0.010 

MAE 0.061 0.101 0.067 0.053 0.075 0.099 0.110 0.064 

RMSE 0.078 0.116 0.077 0.071 0.093 0.119 0.139 0.089 

R 0.305 0.234 0.559 -0.110 0.338 0.432 0.218 0.365 

Rs 0.282 0.144 0.649 0.021 0.293 0.404 0.277 0.298 

Scatter 0.068 0.107 0.073 0.065 0.093 0.081 0.126 0.089 

Slope 0.452 0.443 0.626 -0.185 0.334 0.531 0.236 0.372 

Intercept 0.093 0.100 0.037 0.128 0.095 0.053 0.115 0.089 

N 44 19 26 31 79 55 50 63 

 225 
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 226 

Figure 3: Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land 227 

cover types throughout 2010 in EUROPE. Results are shown for: (a) ES_AGU and (b) ES_LJU.  228 

 229 

Figure 4: Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land 230 

cover types throughout 2011 in EUROPE. Results are shown for: (a) ES_AGU and (b) ES_LJU and (c) 231 

FR_MAU 232 
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 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

Figure 5: Agreement between in-situ and predicted SSM from SMOS for the different seasons for all 251 

sites together shown here for year EUROPE. In particular, for (a) Autumn, (b) Winter, (c) Spring, (d) for  252 

2011 253 

 254 

 4.2 USA: 255 

4.2.1 Comparisons for different land use/cover types  256 

A total of four stations were included in the USA. The characteristic land surface cover types in this area 257 

are as follows: ME2 stands for Evergreen Needle-leaf Forest (ENF), TON represents Woody Savannahs 258 

(WSA), VAR stands for Grasslands (GRA) and WHS represents Open Shrublands (OSH). Table 3 and 259 

Figures 6-9 show the comparison statistics between SMOS product and the in-situ measurements over 260 

different land cover types. The correlation coefficient of the predicted and the observed measurements is 261 

included in the scatterplots (Figure 6).  262 

Overall, as indicated from the statistical metrics computed for the analysis of the combination of all sites, 263 

a very good agreement between the two datasets was indicated (RMSE = 0.080 m3/m3, bias = 0.014 m3/ 264 

m3, scatter = 0.079 m3/m3 and R= 0.80). In the case of the different Land cover comparison, SMOS 265 
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product had negative bias over ME2 (ENF) and TON (WSA), while the positive bias over VAR (GRA) 266 

and WHS (OSH)  for both 2010 and 2011. In term of correlation coefficient, SMOS product performance 267 

was good for all sites except ME2 (ENF) which has minimum correlation coefficient for RME2 _2010 = 268 

0.116 reflected by the RMSE=0.117, in contrast to the high performance in 2011 for the same site 269 

(RME2_2011 =0.759, RMSE=0.040). In addition, SMOS product shows maximum scatter (or standard 270 

deviation) on ME22010 (Scatter = 0.110), while the scattering is minimum in ME22011 (Scatter = 0.031). 271 

Moreover, the product has shown small RMSE values (all between 0.040 and 0.117), illustrating 272 

preferable correlation to the in-situ measurements.   In addition, the SMOS products for TON, VAR and 273 

WHS showed good data quality in terms of accuracy, stability, and correlation coefficient over the 274 

different land cover types in USA, as seen in the scatter plots of Figure 7. In contrast SMOS product over 275 

Evergreen Needle-forest ME2 could not effectively coincide with the in-situ measurements (Figure 7: (i)-276 

a and (ii)-a) displaying either very high or very low slope and high intercept.    277 

 278 

Table 3: Comparison between Satellite (SMOS) and observed SSM at the validation sites in USA based 279 

on land cover type, for 2010 and 2011 as well as all sites (both years). ME2 stands for Evergreen Needle-280 

leaf Forest, TON represents Woody Savannahs, VAR stands for Grasslands and WHS represents Open 281 

Shrublands. Units are in m3/m3 282 

Measure 
ME2 
2010 

ME2 
2011 

TON 
2010 

TON 
2011 

VAR 
2010 

VAR 
2011 

WHS 
2010 

WHS 
2011 

All 
Sites 

ME (bias) -0.045 -0.025 -0.033 -0.016 0.047 0.073 0.074 0.082 0.014 

MAE 0.089 0.033 0.054 0.055 0.051 0.077 0.075 0.082 0.062 

RMSE 0.117 0.040 0.075 0.068 0.065 0.093 0.086 0.092 0.080 

R 0.116 0.759 0.890 0.875 0.947 0.842 0.616 0.682 0.803 

Rs 0.232 0.276 0.840 0.849 0.913 0.845 0.528 0.629 0.736 

Scatter 0.110 0.031 0.068 0.067 0.046 0.059 0.045 0.042 0.079 

Slope 0.176 2.036 0.768 0.758 1.238 1.406 1.014 1.436 0.789 

Intercept 0.079 -0.116 0.024 0.046 0.008 -0.022 0.073 0.068 0.050 

N 31 29 61 46 58 28 31 29 313 

 283 
Figure 6: Agreement between in-situ and predicted SSM from SMOS for all the different land cover 284 

types in USA. Results are shown for US_ME2 (black), US_TON (red), US_VAR (green) and US_WHS 285 

(blue): a) 2010   b) 2011 286 
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i- 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

ii- 301 

 302 
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 303 

Figure 7: Agreement between in-situ and predicted SSM from SMOS for the different land cover types in 304 

USA. Results are shown for (a) US_ME2, (b) US_TON, (c) US_VAR and (d) US_WHS. i- 2010  ii- 2011 305 

 306 

4.2.2 Temporal Variability  307 

Figure 8 shows the temporal fitting trend between the in-situ measurements (red) and the predicted SSM 308 

(blue) over TON (Woody Savannahs), VAR (Grasslands) and WHS (Open Shrublands). For ME2 in 2010 309 

and for all sites in 2011, the data were discontinuous with large gaps so the temporal fitting was not 310 

included. Even for the remaining sites, in some cases there was a small number of data per month leading 311 

to wide confidence margins. Thus, it is not always possible to have results for overestimation or 312 

underestimation in a given month with statistical certainty. 313 

SMOS SSM estimations for TON (Woody Savannahs) is in good agreement with in-situ SSM from May 314 

to December with statistically significant underestimation for March and April. For VAR (Grasslands, 315 

figure 8b) and WHS (Shrublands, figure 8c), a slight (and not always statistically significant) 316 

overestimation of the SSM by SMOS can be witnessed throughout the year.  317 

Table 4 summarizes the comparisons between the seasons and Figure 9 shows the agreement between 318 

SSM SMOS and the in-situ measurements for the different seasons separately for 2010 and 2011. In 319 

general, the SSM SMOS product has shown low RMSE in all the seasons as shown in Table 4 and Figure 320 

9. However, the correlation coefficient R was inferior in autumn 2011 and for both summers and 321 

generally good in the other seasons in both years. RMSE has the highest values in winter in both years. 322 

Spring of 2011 has the highest Pearson’s coefficient from all sites investigated in all continents and the 323 

lowest bias 0.012 m3/m3. 324 

Table 4: Comparison per season between Satellite (SMOS) and observed SSM at all validation sites in 325 

USA for 2010 and 2011. Units are in m3/m3 326 

Measure 
Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2010 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2011 

ME (bias) 0.009 0.045 -0.013 -0.011 0.006 0.037 0.012 0.055 
MAE 0.050 0.079 0.069 0.057 0.049 0.071 0.067 0.064 
RMSE 0.074 0.091 0.086 0.082 0.063 0.084 0.078 0.083 
R 0.662 0.827 0.792 0.109 0.318 0.837 0.868 0.403 
Rs 0.560 0.679 0.735 0.161 0.208 0.805 0.856 0.324 
Scatter 0.075 0.080 0.086 0.082 0.063 0.077 0.079 0.065 
Slope 0.804 0.590 0.562 0.098 0.461 0.738 0.752 0.569 
Intercept 0.033 0.149 0.089 0.083 0.054 0.096 0.078 0.103 
N 53 46 31 51 54 45 20 13 

 327 
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 328 

 329 

Figure 8: Agreement between in-situ (red) and predicted SSM (blue) from SMOS for the different land 330 

cover types throughout 2010 in the USA. Results are shown for: (a) US_TON, (b) US_VAR and (c) 331 

US_WHS 332 

 333 
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 365 

Figure 9: Agreement between in-situ and predicted SSM from SMOS for the different seasons for all 366 

sites together shown here for year USA. In particular, for (a) Autumn, (b) Winter, (c) Spring, (d) Summer 367 

[ii] 2010 and [ii] 2011 368 

 369 

5. Discussion 370 

In this study, SSM SMOS operational product is evaluated using in-situ measurements in two continental 371 

regions based on different land cover types. Three in-situ networks in Europe that included: AGU 372 

(Shrublands), LJU (olive orchards) and MAU (croplands). In USA four in-situ networks were used 373 

namely: ME2 (Evergreen Needle-leaf Forest), TON (Woody Savannahs), VAR (Grasslands) and WHS 374 

(Open Shrublands). The performance was evaluated using metrics defined in previous work (Petropoulos 375 

et al. 2013). Results are shown in section 4. In this section, an extended discussion is conducted on SMOS 376 

SSM product overall performance on different land cover types in order to further improve the algorithm. 377 

To summarize, SMOS SSM product is generally applicable in all the selected areas. As shown in Tables 378 

1-4, several errors metrics e.g. RMSE, Bias, Scatter, and R showed satisfactory accuracy over selected 379 

sites in Europe and USA. In Europe, SMOS SSM has shown reasonable R values, except over the Open 380 

Shrubland of AGU2011. This could be due to number of factors such as the retrieved SMOS SSM product 381 

observed at a depth of 0-5 cm, whereas in-situ measurement sensors observed at 5 cm. Thus, the strong 382 
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response to wet and dry period at shallow depth could be a reasonable explanation for discrepancies in 383 

agreement (Petropoulos et al. 2013). The SMOS values usually range between (0.001–0.7 m3 m-3), 384 

although the values generally presented a dry bias, which causes an underestimation. There is not strong 385 

evidence suggesting systematic overestimation or underestimation of SSM by SMOS. This result is 386 

coincident with some previous studies that have validated SMOS  (Petropoulos et al. 2014). Recent 387 

studies (Gumuzzio et al. 2016; Cui et al. 2017) have suggested that the error in SMOS could be due to 388 

lack of scale representation between SMOS and the in-situ observations of surface temperature, land 389 

cover information, soil condition in particular and the RFI.  390 

Previous studies focusing on the product comparisons at the annual scale shows that soil moisture 391 

estimates are driven to a certain extent by the seasonal cycle (Qin et al. 2013; Petropoulos et al. 2018b). In 392 

our study, in several cases of the seasonal cycle investigation there was a slight underestimation of SSM 393 

by SMOS. The negative correlation in summer can be explained mainly by lack of spatial sampling 394 

between predicted and observed comparison (Al Bitar et al. 2012). Also, it can be partially attributed to 395 

lesser fractional vegetation cover than other seasons and/or could be associated with the smaller sample 396 

size than other seasons. On the temporal series comparisons, the predicted SMOS SSM product often 397 

overestimates slightly the in-situ observations from May to June or August. This could be explained by 398 

the presence of dew which is most prominent during summer, spring and autumn, respectively (De Jeu et 399 

al. 2005; Du et al. 2012). In winter, SMOS predictions have low accuracy for European sites and perform 400 

very well in USA sites. As such, no conclusions about the performance of SMOS in winter can be made 401 

from our study. Summer correlation coefficient is generally suboptimal compared to other seasons for 402 

both 2010 and 2011 for USA and European sites.  403 

In the USA sites SMOS showed good agreement between the two datasets. In term of correlation 404 

coefficient, SMOS product performance was good for TON (WSA), VAR (GRA), and WHS (OSH) in 405 

2010 and 2011, but underperformed for ME22010 (ENF). In the case of the different vegetation cover 406 

comparison, SMOS product had negative bias over ME2 (ENF) and TON (WSA). The product had 407 

positive bias over VAR (GRA) and WHS (OSH) in both years 2010 & 2011. Studies linked SMOS errors 408 

to global parameters such as soil texture, RFI, and land cover suggested that globally the forest presence 409 

in the radiometer field of view appears to have the great influence on SMOS error up to (56.8%) whereas 410 

1.7% of the RFI. The extent of the impact varies among different continents; however, soil texture was 411 

highlighted as the main influence over Europe whereas RFI had the greatest influence over Asia. 412 

Additionally, a land cover difference as a result of spatial heterogeneity could increase the error in SM 413 

within a 0.25◦-resolution pixel. Whereas, forest as well dense vegetation could increase the SSM error by 414 

negatively affecting microwave penetration (Rotzer et al. 2012; Leroux et al. 2013; Liu et al. 2018) 415 

The Correlation coefficient (R) was inferior in summer and good for winter and spring for both 2010 and 416 

2011. In both years RMSE has high values in winter. This could be due to the frozen soil. During summer 417 

and spring the error could partially be explained by the presence of dew which has a significant effect on 418 

passive microwave observations by increasing horizontal brightness, and is most prominent during 419 

summer, spring, and autumn, respectively (De Jeu et al. 2005; Du et al. 2012). RFI can be defined as the 420 

disturbance that affects an electromagnetic radiation emitted from an external source (Murray 2013). It is 421 

a major problem in SMOS SSM retrieval, which decreases the efficiency of retrieved soil moisture 422 

(Jackson et al. 1999). These disturbances largely reduce or limit the quality of the data. Hence, signal 423 

contamination removal in L-band is an ongoing research challenge in Europe and many other parts of the 424 

world (Kerr et al. 2012; Oliva et al. 2012; Daganzo-Eusebio et al. 2013).   425 
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Overall, the lack of agreement between the predicted and observed SSM for all scenarios examined here 426 

can be attributed to a number of factors, such as: (1) the topographic and vegetation properties complexity. 427 

It is known that high vegetation density (e.g., taller and/or denser), frozen soils, snow cover, and volume 428 

scattering in dry soils are very critical for SSM operational products retrieval accuracy (Brocca et al. 429 

2017). With regards to vegetation effects in particular the quality of SSM retrievals could be strongly 430 

affected by the vegetation structure and water content. (2) The differences in terms of the SSM sensing 431 

depth between the compared datasets. In our study the surface ground measurement used for the 432 

evaluation is at 5cm. while the sampling depth of the effective soil moisture of SMOS varies as a function 433 

of topography and land cover characteristics (Deng et al. 2019). (3) Differences in spatial observation 434 

scale. Since the exact scale of the satellite observation could not be represented by ground observation, 435 

the average point-based measurement is used as a “reference”. However, as is also argued in many studies, 436 

it is difficult to characterize the spatial soil moisture patterns by using in-situ measurement. It is able only 437 

to reproduce the temporal dynamic of soil moisture but not the absolute value (Petropoulos et al. 2015). 438 

Sometimes, if in-situ sensors are not dense enough, it causes mismatch in scales and hence poor accuracy 439 

in comparison. (4)  Errors caused by measurements accuracy of the sensors Land surface factors, such as 440 

topography, seasons and land cover types (particularly at the presence of forests) have been pointed out as 441 

elements to affect the product accuracy and consistency. In addition to that  they affect the quality of the 442 

product that can be expected by the final user (Dorigo et al. 2013; Petropoulos et al. 2014).  443 

6. Conclusions – Future work  444 

The quantification of the SMOS SSM product accuracy is crucial for hydrological applications of the 445 

product and for the retrieval algorithm refinement. This study explores the performance of the SMOS 446 

product. SMOS data were compared to in-situ measurements from FLUXNET validated observational 447 

networks over different land cover, seasonal and varied climatic zones. This comparison increases our 448 

understanding to the product application at continental expanse. SMOS product is available for a long 449 

term period that can be used in modeling of scale-related researches such as land surface and hydrological 450 

studies. On the other hand the present evaluation can provide help and feedback for the current retrieval 451 

algorithm improvement. 452 

The study results showed that direct comparison of SMOS operational product with in-situ observations 453 

indicate good performance of the product within these sites in respect of the RMSE. The main findings of 454 

the study can be summarized as follows: 455 

(1) The overall comparison at variety of sites showed generally reasonable agreement between the 456 

SMOS product and the in-situ measurement of soil moisture, but at different vegetation cover, 457 

some SMOS observations show negative bias. The results were largely comparable to pervious 458 

related validation studies. 459 

(2) The agreement between the in-situ measurements and the product SSM estimations is 460 

observed in regard to different vegetation covers, where SMOS product displayed negative 461 

bias over ME2 (ENF) and TON (WSA), while the positive bias over VAR (GRA) and WHS 462 

(OSH). This conclusion suggests that the vegetation effects must be carefully accounted for 463 

consistent SSM estimations. SMOS uses nadir optical depth and different polarization 464 

incidence angle to estimate vegetation optical depth. Land cover impacts the variation of soil 465 

moisture content because of increasing transpiration losses and rainfall interception. 466 

Furthermore, the type of land cover also influences the vegetation attenuation and scattering 467 
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albedo which can affect the overall soil moisture retrieval. Therefore, analyzing the effect of 468 

vegetation on these algorithms would be important. 469 

(3) The seasonal periods where the predicted and observed SSM exhibited low correlation 470 

coefficient are summer and autumn. This could partially be explained by the presence of dew 471 

which is most prominent during summer, spring and autumn. Seasonality is one of the major 472 

controls on soil moisture dynamic and its variability can have very important impacts which 473 

can influence overall performance of the soil moisture retrieval. 474 

The work presented was focused on temperate areas. As the results were promising, work is ongoing in 475 

expanding the SMOS SSM, SMAP, ASCAT operational SSM product evaluation over cold and arid 476 

regions. The effect of vegetation cover factor that affects the data quality mentioned in the previous 477 

paragraphs will be comprehensively considered. In the future, the integration of numerical weather 478 

models, meteorological variables, local hydrological models and information on land cover could also be 479 

utilized to more accurately analyze the effect of seasonality on soil moisture estimation as already 480 

demonstrated in other studies (Srivastava et al. 2013).  481 
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