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Abstract

We present a logic with has both a simple semantics and a cut-free Gentzen-type system on
one hand, and which combines relevance logics, da Costa’s paraconsistent logics, and classical
logic on the other. We further show that the logic has many other nice properties, and that its
language is ideal from the semantic point of view.

1 Introduction

A (propositional) logic L is paraconsistent with respect to a negation connective ~ if whenever P

and () are two distinct atomic variables then

~P, P/ Q

Intuitively (and sometimes practically) the logic(s) we use should be paraconsistent (perhaps with
respect to any unary connective!) on the ground of relevance: why should a “contradiction”
concerning P imply something completely unrelated? There is no wonder that relevance logics
([1, 2, 13]) are paraconsistent with respect to their official negation. However, relevance logics have
the defect that they totally reject extremely useful classical principles (like the disjunctive syllogism)
without providing any indication when can these principles safely be used. This is precisely what
da Costa’s family of paraconsistent logics ([11, 10]) is trying to provide. However, these logics (with
the exception of the 3-valued paraconsistent logic J3) have neither convincing semantics nor decent
cut-free proof systems, and their philosophical basis seems to be doubtful. In particular: relevance
considerations are altogether ignored in them. There seems indeed to be little connection between
this family and the family of relevance logics.

The goal of this paper is to present a logic with has both a simple semantics and a cut-free
Gentzen-type system on one hand, and which combines relevance logics, da Costa’s paraconsistent
logics, and classical logic on the other. By “combines” we mean, first of all, that the main ideas

and principles behind these logics are taken into account in our logic, and provide its basis. As



a result, our logic is a combination of these 3 families also in the technical sense that for each of
them it has an important fragment which belongs to that family.

Our starting point is classical logic. This, after all, is the primary logic, being both the simplest
logic and the metalogic used for investigating all other logics (as is revealed by any examination of

works on non-classical logics). Now classical logic is actually based on the following two principles:

(T) Whatever is not absolutely true is false.

(F) Whatever is not absolutely false is true.

These two intuitive principles might look fuzzy, but they can be translated into completely
precise ones using the semantic framework of matrices, which is general enough for characterizing

every propositional logic (by a famous theorem from [17]).

Definition 1 A matrix M for a propositional language L is a triple (M, D,0), where M is a
nonempty set (of “truth values”), ) € D C M (D is the subset of “designated” values), and O
includes an operation ¢ : M™ — M for every n-ary connective ¢ of L. A wvaluation in a matrix M is
a function v : £ — M which respects the operations, i.e.: v(o(91,... ,%,)) = 3(v(91),... ,0(1y))
for every connective ¢ of £. Such a valuation v is called a model in M of a formula % if v(y)) € D.
We say that ¢ follows in M from a theory T (T Faq ¥) if every model in M of all the formulas
of T is also a model of . M is a characteristic matriz for a logic L if b1, = Fq, and it is weakly

characteristic for L if they have the same tautologies, i.e.: for all ¢, g, ¢ iff Faq 9.

The conditions in Definition 1 concerning the set D imply that M contains at least two different
truth values, T and L, so that T € D while L ¢ D (note that this assumption excludes trivial
“logics”). We may take these two elements as denoting absolute truth and falsehood. This leads

to the following interpretations of the terms used in the formulation of (T) and (F) above:
e “p is true” means v(p) € D
e “p is absolutely true” means v(¢) =T
e “p is false” means v(¥) ¢ D
e “p is absolutely false” means v(¥) = L
With this interpretations the two classical principles reduce to:
Principle (T) : D ={T}

Principle (F) : D =M — {1}



Note that together with the condition L # T (which we henceforth assume) each of these
principles already implies that T € D while | ¢ D, and that whatever is absolutely true is true,
and whatever is absolutely false is false. Together the two principles imply that M = {T, L}, and
we get the classical, bivalent semantics. T and L may indeed be identified with the classical truth
values, and we shall henceforth make this identification. Accordingly, we shall take | =~ T as
a necessary condition for a unary connective ~ to serve as a “negation” (and usually also that
T =~ 1, so that ~ behaves exactly like classical negation on the classical truth values).

After formulating the two classical principles in precise terms we immediately see that para-
consistency is in a direct conflict with Principle (T). This principle easily implies that {~ P, P}
can have no model '. Hence every model of {~ P, P} is a model of any Q, and so ~P, P, Q in
any logic whose semantics obeys Principle (T). Since most of the more famous logics (like Classical
Logic, Intuitionistic Logic, Kleene’s three-valued logic, Lukasiewicz’ many-valued logics, other fuzzy
logics, and many others) adopt this principle, all these logics are not paraconsistent with respect
to their official negation.

It follows from the above discussion that any paraconsistent logic should be based on a many-
valued semantics in which there exist (at least) one designated element T such that | =~T ¢ D,
and (at least) one element I such that both I and ~ I are in D (such truth values correspond
to contradictory, or “paradoxical” propositions). The most economic many-valued structures with
these properties are those in which there are exactly 3 truth values {T, L, I}, with D = {T,I},
and ~ I = I. The famous paraconsistent logic J3 of [12, 14, 4, 20] is indeed based on such a
3-valued structure. Moreover: although J3 rejects Principle (T), it still adheres to Principle (F).
However, J3 has the defect that it does not take relevance into consideration: any two paradoxical
propositions are equivalent according to this logic. In order to avoid this, but still keep at least
one of the two classical principles, we should allow for more than one paradoxical truth-value. The
most natural alternative is to have a potentially infinite number of them. Paradoxical propositions
that get different paradoxical truth-value should then be considered as irrelevant to each other.

What logical connectives (in addition to negation) should be used in a logic which is based
on such structures? We suggest two main criteria. The main one (which we think is absolutely
necessary) is symmetry: there should be no way to distinguish between two given paradoxical
values on a logical basis. The other is isolation of contradictions: a formula may be assigned a
given paradoxical value only if all its constituents are assigned that paradoxical value.

In section 2 of this paper we describe the semantics, language and consequence relation of
the logic to which the above ideas lead. The main result there is that the connectives which are

definable in the language of that logic are exactly those that meet the two criteria mentioned

'Note that for this conclusion it suffices to assume that ~ T # T. This condition is equivalent (in case principle (T)
is respected) to the condition that P t/~ P for some P, and this is a less-than-minimal condition for any “negation”!



above. In section 3 we present proof systems for the logic. The most important among them
is the hypersequential Gentzen-type system GSRMI,,. In the main theorem of this section we
simultaneously show the strong completeness of GSRM I, for the logic, as well as the fact that
the cut rule and the external contraction rule can both be eliminated from it (this fact allows for
very direct proofs of valid hypersequents, and has several useful applications). In section 4 we use
this system to show that relevance logic, paraconsistent logic, and classical logic can all be viewed
as fragments of our logic, and discuss some further connections between these logics and ours.
The work described in this paper is a continuation of [3] and [9], and some results from these
papers are reproved here (usually by new methods) in order that the reader will have the full

picture. The paper is nevertheless self-contained, and its main results are new.

2 The Language and Its Semantics

Definition 2 The pure intensional propositional language > TL is the language {~,®}, where ~
is a unary connective, and ® is binary ?. The full intensional language TL™" is {~,®, L}, where L

is a propositional constant.

We next describe our intended algebraic semantics for ZL and ZL*. For simplicity, we use the

same symbols for the connectives of the languages and for their algebraic counterparts.

Definition 3

1. The structure A, = (A,,~,®) is defined as follows:

(1) Aw:{TaL7[17[27I37'--}

(i) ~T=L,~l=T,~I =1 (k=1,2,...)
1l a=1 orb=1

(iii) a®b=<CI;, a=b=1I

T  otherwise
2. A, (n >0) is the substructure of A, which consists of {T, L, I;,... ,I,}.
3. A wvaluation for TL (ZL"Y) is a function v from the set of formulas of ZL (ZL1) to A, such
that (v(L) =L and) v(~p) = ~v(p), v(e ® ¥) = v(p) @ v(¢) for all p, .

4. For T and ¢ in ZL (ZL1), T k4, ¢ iff for every valuation v in A, if v(y) #L for all ) € T
then v(¢) #L. In particular ¢ is valid in A, (Fa, ¢) iff v(¢) #L for every valuation v in
A,. F4, and validity in A,, are defined similarly.

2The terminology is from Relevance Logic. [16] uses the term “multiplicative” instead of “intensional”.
3~ and ® are called intensional negation and conjunction, respectively. The notation ~ is from relevance logic,
while ® is taken from [16] (relevantists had used o before).



Note A, which was first introduced in [3], can of course be taken as a matrix which is based on
Principle (F) (i.e.: its set of designated elements is A, — {L}). A; was first introduced in [21], and
in that paper the set of ZL-formulas which are valid in it was axiomatized. It is known, therefore,
as Sobocinski 3-valued logic. F 4, is also known to be ([1]) the purely intensional fragment of the
semi-relevant system RM. F 4, is, of course, just classical logic. In [3, 9] it is proved that 4 is
decidable, that any nontrivial logic in Z£ (or ZL') which properly extends it is identical to k4

for some 0 < n < w, and that each 4, (0 <n < w) is a proper extension of k4, ,.

The following are important connectives from relevance logic which are definable in ZL:
L=t =~(p®~y)

2. 009 =(0—=9)8 % =)

3. p+Y =~p =1

The following properties of these connectives can easily be established:

Lemma 1 The connective — corresponds in A, to the following function:

T a=1 orb=T
a—=b=<qI, a=b=1I;

1 otherwise

Lemma 2 ®, +, and — behave on {T, L} like the classical conjunction, disjunction, and impli-

cation (respectively). Moreover: v(p + 1) = T iff either v(p) =T orv(yp) =T.

Lemma 3 a < b #1 iff a=0b.

The main goal of the rest of this section is to provide in the context of A, a precise formulation
of the symmetry and isolation conditions described in the introduction, and to show that the
expressive power of ZL and L+ exactly corresponds to these conditions. For this we need first

some notations, definitions and lemmas.

Notations:
1. Let 9 be a formula. We denote by A(1)) the set of atomic variables that occur in ).

2. Let A(¢) = {p1,--. ,pn}, where py,... ,p, are the first n atomic variables. We denote by gy
the function from A7 to A, that corresponds to ¢ (i.e., if ¥ = (z1,... ,2,) then g, (%) = vz(v)),

where vz is a valuation in A, such that vz(p;) = z; for 1 <i < n).



3. Let A(¢) = {p1,-.. ,pn}. S[t], the subset of A” which is characterized by 1, is:
Sl =A{(a1,...,an) € A | gy(ar,... ,an) #L}
4. Denote by I} the n-tuple (Iy, Iy, ..., I)). Let I(n) = {I} | k € N'}.
Definition 4 An n-ary operation F' on A, (Ay) satisfies the symmetry condition if
F(h(z1),... ,h(zyn)) = b(F(z1,... ,zp))

for all z1,... ,z, € A, (Ax)) and for every injective function h from A, to A, (A to Ag) such
that h(T) = T and h(L) = L.

Lemma 4 If 1 is in TL" and A(y) = {p1,... ,pn} then gy satisfies the symmetry condition.

Proof: Since gy, is obtained from the functions ~, ®, the constant functions AZ. L, and the pro-
jection functions (including identity) using composition, it suffices to check that all these functions

satisfy the symmetry condition, and that composition preserves this property. This is easy.

Definition 5 Let F' be an n-ary operation on A, (A;).
1. F satisfies the isolation condition if for every k, F'(Z) = I}, only if ¥ = I}

2. F satisfies the strong isolation condition if for every k, F(Z) = I iff ¥ = I}

Lemma 5
1. If 1 is in L and A(Y) = {p1,... ,pn} then gy satisfies the isolation condition.

2. If ¢ is in TL and A(y) = {p1,... ,pn} then gy satisfies the strong isolation condition.

Proof: By induction on the structure of .
Corollary 1 If 4 is in ZLY, A(¢) = {p1,... ,pu}, and T & I(n), then gy (%) € {T, L}.
Corollary 2 If 1 is in ZL, and A() = {p1,... ,pn}, then I(n) C S[¢].

Lemma 6 Let (in L) T = ~L1. If ¢ is in TL and v is a valuation in A, then:

1 o)=L

T oy)=T
T ’U('L/}) #1 T

“T®w_{ L oo(y) #

MT%W—{



Lemma 7 Let T, = (p] —>p1) &® (p2 —>;D2) K- (pn —>pn)- Then

o [no@=1p
g“(x){T Zd I(n)

Lemma 8 For 1 <i <k, let 9; be in IEJ‘, and A(p;) = {p1,... ,pn}. Then:
1. (i Sli] = Sl @ 2 © -+~ ® 4]
2. Uiy Slwi] = S[T®y1 + T®Yo + - -+ + Ty

3. If oy is in TL for all 1 <i <k then U, S[vi] = S[tr + tha + -+ + ]

Proof: Immediate from the Definition of ®, Lemmas 2 and 6, and Corollaries 1 and 2.

Definition 6 We say that b = (by,... ,b,) € A" is similar to @ = (a1, ... ,a,) € A" if there exists
an injective function from A, to A, such that h(T) = T, h(L) = L, and h(a;) = b; for 1 < i < n.

The proof of the following two lemmas is straightforward:

Lemma 10 b is similar to @ iff the following conditions are satisfied for all 1 < 1i,7 < n:

e Ifa;=T thenb; =T

If aj =1 then b; =1

If a; € I(1) then b; € I1(1)

If a; = ay then b7 = bj

If a; ;é a; then b7 ;é bj
Corollary 3 Every b € Al is similar to some @ € AJ.

Definition 7 A subset C C A" is characterizable in TL* (TL) if C = S[t] for some formula ¢ of
TL* (ZL) such that A(Y) = {p1,... ,pu}.

We turn next to our two major Lemmas.

Lemma 11 C C A" is characterizable in ZL' if b € C whenever b is similar to some @ € C.



Proof: By Lemma 9 and Corollary 3, if C' has this property then C' = {Jzc gnne S where S
is the set of tuples which are similar to @. By Lemma 8 it remains therefore to prove that S is
characterizable in L+ for all @ € A”. By Lemma 10, S% = (Mi<i<n S9N (Mi<ij<n ng), where

{(FeAl|zi=T} =T
Sf=c{feAl|z;=1} a=1
{#eAl |z eI(l)} ai€lI(l)

gi _ JWFEALJwi=u} ai=q
Yoo HFe AL i £ 1} ai g

By Lemma 8 it remains therefore to prove that S& and Sf ; are characterizable in ZL* for all i and

4. This follows from the following equations, which easily follow from Lemmas 3, 6, and 7:*
{feAl|lzi=T}=S[(Tn®T) = pi
(e A" |2;=1}=S[(Tn®T) =~ pi]
{Te Al [z el(l)} =S[(Tn®T)@pi® ~ pi]
(e Ay |zi=2;} =S[(Th®T)® (pi ¢ pj)l
{#e Ay |z #x;} =S[(Th®T) =~ (pi ¢ pj)l
Lemma 12 A subset C C A? is characterizable in L if it satisfies the following two conditions:
e I(n)CC

e Ifae C and b is similar to @ then b € C.

Proof: The proof is similar to that of Lemma 11. The main difference is that because of the
extra condition, S% in the equation C' = UaeAng S% can be taken this time to be the union of I(n)
and the set of tuples which are similar to a. Again by Lemma 8 it remains therefore to prove that
this S is characterizable in ZL£ for all @ € A”. Again S% = (Ni<i<n S9N (Ni<ij<n ng), where

this time:
ImU{f e A |z, =T} ai=T
S =0In)u{FeA” |z, =1} a;=1

{f e A | z; € I(1)} a; € I(1)

a _ I(n)U{fEAZ|mi:fﬂj} a; = aj
] I(n)U{Z € AL | zi # zj} a; # q;j

“The reason for using T, in these equations is to make sure that we use only formulas ¢ s.t. A(¢)) = {p1,... ,pn}.




The fact that these Sf and ng are characterizable in ZL for all 4 and j follows from the following

easily established equations:
In)u{f e Al |z, =T}=S[Tn — pi
In)u{zf e A" |z, = L} = S[T, =~ pj]
{ZeAllzie (1)} = S[Th®pi® ~ pi]
I(n)U{Z € A}, | mi = z;} = S[Tn ® (pi < p;)]

I(n) U{7 € Al [ =i # 25} = S[Tn =~ (pi © pj)]
Note It is easy to see that the converse implications in Lemmas 11 and 12 are also true.

Theorem 1

1. An n-ary operation F on A, (Ag) is definable in ZL by a formula v in the distinct proposi-
tional variables py,... ,p, (i-e., F' = gy ) iff it satisfies both the symmetry condition and the

strong isolation condition.

2. Ann-ary operation F on A, (Ay) is definable in TLY by a formula in the distinct propositional

variables p1, ... ,pyn iff it satisfies both the symmetry condition and the isolation condition.

Proof: The necessity parts have been shown in Lemmas 4 and 5. For the converse assume
first that F satisfies the conditions of symmetry and strong isolation. It follows that the set
E ={i € Al | F(Z¥) #.L} satisfies the two conditions from Lemma 12. Hence E = S[¢r] for some
formula 9 in ZL. We show now that F' = g,,.. We consider 3 cases:

o If F(Z) = I; for some k then (by isolation) & = I}, and since ¢y is in ZL it follows that
gllJF("E) = Iy = F(%).

o If F(¥) =L then ¥ ¢ E. Hence Z € S[¢p], and so gy, (¥) =L= F(Z)

o If F(¥) =T then # € E = S[¢p], and (by strong isolation) & ¢ I(n). Hence gy, (%) #1, and
(by isolation) gy, (%) € I(1). It follows that gy, (¥) = T = F(Z).

Assume now that F' satisfies symmetry and isolation. If F/(Z) ¢ {T, L} for some Z € A7 then
these two conditions together imply that F' actually satisfies strong isolation as well. Hence F' is
definable in this case by a formula in ZL (by what we have just proved). Assume therefore that
F(z) € {T,L} for all ¥ € A7,. Since F satisfies the symmetry condition, Lemma 11 entails that
E = S[¢r] for some formula ¢ in ZL, where again E = {Z € A" | F(Z) #1}. Tt is easy now to

see that our assumptions on F' imply that F' = Yreuy

9



Corollary 4 An n-ary operation F on Ay is definable in TL (ZL) by a formula ¢ in the distinct

propositional variables p1, ... ,py iff it satisfies the (strong) isolation condition.

Proof:  The symmetry condition is trivially true for any operation on Aj.

Of the two conditions we have imposed on the connectives of our languages the more funda-
mental one is no doubt the symmetry condition. This condition seems to us absolutely essential
for any logical language which is based on A,. It is interesting therefore to note that a finite set
of connectives which is functionally complete for the set of operations which satisfy this condition
can be obtained from Z£' by adding one extra binary connective which again is closely related to

one which is used in relevance logic.
Definition 8 The partial order <, is defined on A, by: L <, I <, T.
Lemma 13 The structure (A, <,) is a lattice. moreover: a — b # L iff a <, b.

Definition 9 a V b = sup<,(a,b) aANb=inf< (a,b)

It is easy to see that V and A are connected by De Morgan’s rules. Thus a Ab =~ (~ aV ~ b).

Hence it suffices to add just one of them to the language.
Note: ® itself can be defined as inf< (a,b), where L <, T <, I}.

Theorem 2 An n-ary operation F' on A, is definable in {~,®, L, V} by a formula 1) in the distinct

propositional variables p1, ... ,pn iff it satisfies the symmetry condition.?

Proof: It is easy to see that every operation which is definable in {~, ®, L, V} satisfies the sym-
metry condition. For the converse, assume that the n-ary operation F' satisfies this condition. This
implies that the sets {# € A | F(¥) = T}, {#¥ € A | F(¥) € I(1)}, and {# € A | ¥ is similar to a}
(where @ € A™) all satisfy the condition from Lemma 11, and so they are characterizable in Z£*
by formulas ¢, 17 and 1z (respectively). By moving if necessary from 1 to T ® 1) we may assume
that all these formulas take values only in {T, L}. The symmetry condition entails also that if
F(@) = Iy, then I} = a;(5) for some 1 < i(@) <n 6 and that F(Z) = Ti(@) = Tj(z) for every ¥ which
is similar to @. This entails that F' = g(1,) where

Yr =TV (Y1 AVacarnizean p@era)y (Ya A pia)))

Indeed, if F(Z) = T then g, (Z) = T, and so g, (%) = T. If F(Z) =L then g, (&) =L and
9,,(Z) =1, and so g, (Z) =L1. Finally, if F(Z) = zyz € I(1) then g, (Z) =1, g, (Z) = T,

®Note that this theorem is valid only in the infinite case, but not in Ay for k < w!
5This is the step in the proof which fails for Ay in case k is finite!

10



Gy anvica (Z) =1L for every @ € AT N{Z& € A | F(#) € I(1)} which is not similar to &, while
G (Z) = mi@a) = zyg) for every @ € A} N{Z € A} | F(£) € I(1)} which is similar to 7. It

follows that g, (%) = 7z = F(7) in this case as well.

Note Using where necessary T, instead of T, one can prove in a similar way that the n-ary
operations F' which are definable in {~, ®,V} by a formula % such that A(¢) = {p1,... ,pn}, are
precisely those which satisfy the symmetry condition as well as the condition F(I}}) = Ij.

Similar proofs can be used to show that an operation F' on A; is definable in {~, ®, L, V} iff
it is classically closed (i.e.: if {z1,,...,,z,} C{T, L}, then F(zy,,...,,z,) € {T,L}), and that
such F' is definable in {~, ®, V} iff it is both classically closed and free (i.e.: F(I") = I).

3 Corresponding Proof Systems
3.1 Gentzen-type Systems

We use simplified versions of the Gentzen-type calculi introduced in [3] and [9]. Unlike the systems
there, we employ here sequents of the form I' = A where I" and A are finite sets (rather than
sequences or multisets) of formulas (so that the structural rules of contraction, its converse, and
permutation are all built in). As usual, we write I'; A and T', ¢ instead of ' U A and T' U {¢}
(respectively). We use P, @), p, ¢ as metavariables for propositional variables (i.e.: atomic formulas
other than 1), ¢,1, A, B,C as variables for arbitrary formulas, and s as a variable for sequents.
Our main system use hypersequents as the main data structure. We start however with the

following ordinary sequential calculus from [3], on which our main system is based.

THE SYSTEM GRMI,, ”

Axioms:
P=P 1, I'=A
Logical rules:
= A o, '= A
=) ——f N (=-)
-p, [ = A = A -p
Lo,y =>=A T = A, 'y = Ay,
(® =) X 1 1,9 2 2,9 (= ®)

Foy=A [, Ty = Ay Ag,p @9

Note In the axiom for | we may (and will) assume that T' and A are sets of atomic formulas.

"This system was called GRMIE in [9], while the name GRMI,, was used there for the fragment without L.

11



THE SYSTEM GRM,, is defined like GRM I,,,, but its axioms are the sequents of the form

I' = I" where I is a finite set of atomic formulas.

Notes

1. Tt is important to note that all the rules of this system are multiplicative (or pure, in the
terminology of [6]). This means that from any correct application of a rule one can get
another correct application of that rule by adding arbitrary finite sets to one side of the
premises (not necessarily the same set to each premise!) and the union of these sets to the

same side of the conclusion. In other words: the rules are context-free.

2. It is easy to show that both GRM I,,, and GRM,,, are closed under substitutions. Hence we
could have taken the axioms of GRMI,, to be ¢ = ¢ for every ¢, and L,I' = A for every
finite sets I', A of arbitrary formulas (and in the case of GRM,, also I" = T for every T').

3. It is easy to see that the derived rules for — and + in both systems are the standard mul-
tiplicative versions of the classical rules for implication and disjunction (respectively). Thus

the rules for + are just the duals of the rules for ®.

4. Another rule that was taken in [3] as primitive is the cut rule. It is easy however to use
Gentzen’s method from [15] to show that it is eliminable in both systems (See [3]). Below we

shall present a new, semantic proof of this fact (see Corollary 8).

Notation At(FE) denotes the sets of atomic formulas (i.e.: atomic variables or L) which occur in

E (here F can be a formula, a sequent, or a hypersequent).

Lemma 14 GRMI,, and GRM,, are closed under the strong expansion rule: If ' = A is provable
and At(p) C At(T' = A) then also o, ' = A and T' = A, ¢ are provable.

Proof: By induction on the complexity of ¢. The base case (where ¢ is atomic) is done by an
inner induction on the length of the proof of I' = A. The base case of this inner induction uses
the special form of the axioms of GRM I,,,, while both induction steps (that of the inner induction

and that of the main one) rely on the multiplicativity of the rules.

Lemma 15

1. GRM1,, is closed under the strong mingle rule: If At(T'y = A1) N At(Ty = Ag) # 0, and
both 'y = Ay and I's = Ay are provable in GRMI,,, then so is I'1,T'y = Aq, As.

2. GRM,, is closed under the mix (or combining) rule: If both Tv = Ay and T'ys = Ay are
provable in GRM,,, then so is I'1,I's = Aq, Ao.

12



Proof: By induction on the sum of the lengths of the proofs of 'y = A; and 'y = Ay (again
the special axioms of GRM I,,, and GRM,, are used for the base case, while the multiplicativity of

the rules is used for the induction step).

In [3] (and in Corollary 8 below) it is proved that GRM1I,, is weakly sound and complete
with respect to A, in the sense that -4, ¢ iff Fgrumr, = ¢. The same is true for GRM,, with
respect to Aj. Neither system is strongly complete, though (see [9]). Thus ¢ ® 9 F 4, ¢, but
Yarm,, ¢ @ Y = ¢. In order to get strong completeness we need (like in [9]) to use calculi of
hypersequents. A hypersequent is a finite multiset of ordinary sequents. The elements of this
multiset are called its components. We denote by s1 | - -+ | s, the hypersequent whose components

are si,... ,Sn, and use G a a variable for (possibly empty) hypersequents &.

Definition 10 The n-part of a hypersequential calculus or a logic is the fragment in which only

hypersequents with at most n components are allowed.

THE SYSTEM GSRMI,,

Axioms:
P=P
Logical rules:
G|IT=Ap Gl T=A
(==) G|l = A Gl = A, (=)
G| T,p,v=A G|I'1= Ay, G| Ty = Ay,
(® =) T,0,9 BN 1,9 Ty 2¢(:>®)
GIT,p®9y=A G|T1,To= A1, A0, 0 ®

Structural rules:

G|lsls
Gls

G|l = Ay Gl Ty = Ay
G‘F],FQiA],AQ
G ‘ Fl,FQ :>A1,A2
G | Iy :>A1‘F2,F' :>AQ,A'

¥Hypersequents were first introduced by Pottinger in [19], and independently in [5]. Related structures were used
before by Mints (see [18]).
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(external contraction, cut, and strong splitting, respectively).
THE SYSTEM GSRM,,: Similar to GSRM I,,,, but with axioms like in GRM,,.

Note Unlike in [9], we use here the externally additive versions of the rules which have more than
one premise (this means that both premises have the same inactive side-hypersequent G)?. This
is equivalent to the externally multiplicative versions of [9], because of the presence of external
contraction and external weakening (the latter, which allows to infer G | s from G, is a special case
of strong splitting). We shall show that this formulation of the rules makes the problematic rule of

external contraction superfluous.
The semantics of these hypersequential calculi is given in the next definition.

Definition 11

1. A valuation v is a model in A, of a sequent I' = A if either v(p) =1 for some ¢ € T, or
v(1p) = T for some ¢ € A, or I' = A is not empty and there exists & such that v(p) = I} for
all p e TUA, or I' = A is empty and there exists k such that v(P) = I} for some atomic P

(i.e.: v is a model of the empty sequent iff it is not a classical valuation).

2. A valuation v is a model of a hypersequent G in A, (v =4, G) if v is a model in A, of at

least one of the components of G.
3. A hypersequent (G is valid in A, (I—’}lw @) if every valuation in A, is a model of G.
4. The concepts of model and validity in A; are defined similarly.

Note It is easy to see that = ¢ is valid in A, (A;) according to Definition 11 iff ¢ is.

Theorem 3 (Soundness Theorem)

1. The azioms of GSRMI,, (GSRM,,) are valid in A, (Ai), and all its rules are truth pre-

serving: every model of all the premises of a rule is also a model of its conclusion.

2. If Fasrmi, G then 'lew G. If Fgsru, G then |_f}h G.

Proof:  The second part is immediate from the first, while the proof of the first is straightforward.
We only note that the cut rule is nontrivially sound here even in case the resulting component is
empty. Indeed, v can be a model of both = ¢ and ¢ = only if v(p) = Ij for some k. Such v is not

a classical valuation, and so it is a model of = as well.

“Note that internally cut and (= ®) still have a multiplicative form!
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3.2 Completeness and Cut Elimination

The main result of this section is the following:

Theorem 4 A hypersequent G is valid in A, iff G has a proof in GSRM I,,, in which the cut rule

and the external contraction rule are not used.

This subsection is mainly devoted to a proof of this theorem. For convenience, in the rest of it

F G means that G has a a proof in GSRM I,;, in which cut and external contraction are not used.

Definition 12 A hypersequent I} = A | ... | T, = Al relevantly extends the hypersequent
I'y=A|...]T= A, iffor all 1 <i < n we have that I'; CT',, A; C Al and every formula in

I'! = A is a subformula of some formula in T'; = A;.

Lemma 16 Relevant extension is a transitive relation: if Gy relevantly extends Go, and Go rele-

vantly extends G3, then G relevantly extends Gj.

Lemma 17 A model of a hypersequent G is also a model of every relevant extension of G.

Proof: Let v be a model of G and let G’ be a relevant extension of G. Then v is a model of
some component I'; = A; of G. If v(1)) = L for some 9 € T';, or v(yp) = T for some 9 € A;, then
the same is true for the corresponding component I', = A! of G'. If v(¢) = I}, for all formulas of
I; = A;, or if I'; = A; is empty, then the same is again true for I'; = A/, since it consists only of

subformulas of formulas in I'; = A;. In either case v is also a model of I} = Al and so of G’

Notation Let I'; = A; be a component of the hypersequent G. Denote by G; the hypersequent
which is obtained from G by deleting I'; = A; (and so G = T'; = A; | G; up to the order of the

components. Note also that G; may be empty).

Definition 13 Let G be a hypersequent such that t/ G. G is called saturated if every component

I'; = A; of G satisfies the following conditions:
(i) If mp € T'; then p € A;
(ii) If =p € A; then p € T
(iii) f p @ ¢ € T'; then p € T'; and ¢ € T
(iv) fp®9 e Ajand /Ty = Ay, ¢ | G then ¢ € A

(v) oy e Ajand /T = A9 | G; then 9 € A;.
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Lemma 18 Ift/ G then G has an unprovable, saturated relevant extension.

Proof: If ¥ G and G is not saturated then it is possible to properly and relevantly extend G
without making the new hypersequent provable (this is obvious and standard if one of the conditions
(i)—(iii) is violated by some component I' = A of GG, and is trivial in the special cases (iv)—(v)).
Since G has only finitely many subformulas, this process must stop by lemma 16 with a saturated

sequent which relevantly extends G.

Lemma 19 Ewvery unprovable saturated hypersequent has a countermodel in A,,.

Proof: LetG=T;= A;|---|T, = A, be an unprovable saturated sequent. Define:
n n
I = U I, A= U A;
i=1 i=1

I(G)={pe At(G) |[pe T NnA}
R={(p,q) € I(G)* | I CTIA' C A. Fgrur, I = A’ and {p,q} C At(I" = A')}

We first show that R is an equivalence relation. That R is reflexive follows immediately from
the definition of I(G), and the symmetry of R is trivial. It remains to show that R is transitive.
So assume that pRq and gqRr. Then there exist IV, A’, T, A” such that I",T" C ', A', A" C A,
Farmr, T = A Farur, TV = A", {p,q} C At(I" = A’), and {q,r} C At(T"” = A"). Since ¢
belongs to both At(I” = A') and A¢(T"" = A"), Lemma 15 entails that Fgrar, IV, T = A/ A”.
But {p,r} C{p,q.r} C At(T".T" = A’, A"). Hence pRr.

Let Cy,...,Cy be the equivalence classes of R (in some order.) Obviously, £ has at most the
cardinality of At(G). From the proof of the transitivity of R it also easily follows that for every
1 <4 < ¢ there exist I'; C I'; A; C A such that Fgrur, I's = A; and C; C At(D; = A;).

We now define a countermodel v of G in Ay (and so in A,) as follows:

Ii pECi
vp) =4 T pel,pgA
1L pégl

To show that v indeed refutes GG, we first show by induction on the complexity of ¢ that if p € I’
then v(p) # L, and if ¢ € A then v(p) # T. This is obvious in case ¢ is atomic (including the
case ¢ = L, by the special axiom for L and the fact that G is unprovable). In case ¢ = —)
the claim follows easily from the induction hypothesis and conditions (i) (ii) in the definition of
a saturated sequent (Definition 13). If ¢ = 191 ® 19 and ¢ € T then the claim follows from the
induction hypothesis concerning v; and 19 and condition (iii) of Definition 13. Finally assume that
0 =11 ®1g and ¢ € A. So p € A; for some i. Had both T'; = A4 | G; and T; = A 9o | G;
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been provable, so would have been G (using our externally additive version of (= ®), and the fact
that ¢ € A;). Hence one of these sequents is unprovable. Assume, e.g., that I/ I'; = A;, 91 | G;.
Then 1; € A; by condition (iv) of Definition 13. Hence v()1) # T by induction hypothesis.
If v(1p1) = L then v(p) = L # T. Assume, therefore, that v(¢;) = I for some k. Then
L & At(yn), and v(P) = I for every P € At(y). Hence At(¢) C Cy. By the observation
above concerning Cy there exist I'; C I';, A} C Aj (j =1,...,n) such that Fgryp, I = A" and
At(41) C Cp C AT = A'), where I' = J7_, T}, A" = Uj_, A). Hence Fgrui,, I' = A’ 41 by
Lemma 14. Using the strong splitting rule of GSRMI,,,, this implies that F I", = Al 4 | G;. Tt is
not possible therefore that - I'; = A;, 1, | G;, since otherwise we would have (using again (= ®),
and the facts that I, C T';, Al C A;, and ¢ € A;) that - G. It follows by condition (v) of Definition
13 that 99 € A;, and so v(1)9) # T by induction hypothesis. If v(¢)9) = L then again v(p) = L # T.
Assume therefore that v(¢2) = I, for some m. Then again A#(¢2) C Cyp,, and there exist I'] C T';,
A7 CAj (j =1,...,n) such that Fgruy,, I'" = A" and At(y2) C Oy, C A" = A"), where
"= U;‘:] F";, A" = U_?’:] A";. Hence Faruyr, T = A” 1y by Lemma 14. This and the fact that
Farur, T' = A'1 entail that Fgrur, TV, T" = A, A" p. Since ¢ € A, this fact entails that
pRq for every p,q € At(p)(= At(y1) U At(eh9)). It follows that Cx = C,, and so Iy = I, and
(i) =L, =I) # L.

Next we observe that if p € I(G) then G |= is derivable from the axiom p = p using strong
splittings. It follows that if the empty sequent is a component of G than I(G) is empty, and so
v(p) € {T, L} for all p. Hence v refutes the empty sequent in case it is a component of G.

To show that v is a countermodel of G it remains now only to eliminate the possibility that
there exists 1 <4 < mn and 1 < k < /¢ such that v(p) = Ij for all ¢ € T'; UA;. Well, had there been
such i and k£ we would have that v(P) = I for all P € At(I'; = A;), and so At(I'; = A;) C Ck
(note that L ¢ At(T'; = A;) in such a case!). Hence there would have been I C T', A’ C A such
that Fgrag, T' = A’ and AH(T; = A;) C C C At(I" = A’). Lemma 14 would have implied then
that Fgrumr, T, T7 = A;, A’. From this it is possible to derive G using strong splittings (Since
I'; = A; is a component of G and IV C ', A’ C A). A contradiction.

Proof of Theorem 4: The “if” part is Theorem 3. The “only if” part is immediate from Lemmas
17, 18, and 19.

Theorem 5 A hypersequent G is valid in Ay iff G has a proof in GSRM,, in which the cut rule

and the external contraction rule are not used.

Proof: The proof is similar to that of GSRM I,,,. The main difference is that the form of the

axioms of GRM,, implies that the equivalence relation R used in the proof of lemma 18 has at most
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one equivalence class (If p and ¢ are in I(G) then {p,q} C T, {p,q} C A and Fgrm,, P,q¢ = p,q).

Hence ¢ < 1 and the countermodel we get is actually in A;.

Note It is not necessary, of course, to introduce R at all if one proves the completeness of GSRM,,

directly, and the proof is therefore simpler than in the case of GSRM I,,.

Corollary 5 The cut elimination theorem is valid for GSRMI,, and GSRM,,. Moreover: if a
hypersequent is provable in either of these systems then it has a proof there in which the cut rule

and the external contraction rule are not used.

Proof: This follows from Theorems 3, 4, and 5.

Corollary 6 The n-part (Definition 10) of I—Zw ()—’jh) is identical to the (external contraction and
cut free) n-part of GSRMI,, (GSRM,,).

A close examination of the proof of the completeness theorem reveals that this Corollary can

be strengthened as follows:

Corollary 7 Let GSRMI,,(n) (GSRM,,(n)) be the system for hypersequents with n components
which has as rules the logical rules of GSRMI,, (not including cut!) and as axioms the hyper-
sequents with n components which can be derived from a theorem of GSRMI,, (GSRM,,) using

strong splittings. Then a hypersequent G with n components is valid in A, (Ai) iff it has a proof
in GSRM1I,,(n) (GSRM,,(n)).

Corollary 8 A sequent is valid in A, (A1) iff it has a (cut-free) proof in GRMI,, (GRM,,).
Hence the cut rule is admissible in GRM I, and GRM,,.

Corollary 9 GSRM I, (GSRM,,) is a conservative extension of GRM I, (GRM,y,).

Note The cut-elimination part of Corollary 5 was first stated (with a hint for a very complicated
syntactical proof) in [9]. This is the first time it is given a real (and much simpler) proof. That
external contraction can also be eliminated is a new result. Corollaries 9 and 8 were first proved

in [9] and [3] (respectively).

3.3 Compactness and Characterizations of the Consequence Relations

We turn now to a proof-theoretical characterization of 4, and F4, using our hypersequential
calculi (this, recall, was the main motivation for introducing these calculi, because for characterizing
the logically valid formulas the purely sequential fragments suffice).

The most standard way of using a sequential calculus G for defining a (Tarskian) consequence

relation is to let T kg o iff there exists a finite I' C T such that ¢ I' = ¢. This method is not
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applicable here, because p ® g -4, p, but neither p ® ¢ = p nor = p is provable even in GSRM,,
(since both are not valid in A;). Another common way to use G for this purpose is to let 7 F¢, ¢ if
the sequent = ¢ is derivable in G from the set of sequents {= 1 | 1) € T}. This method does work
for GSRM I, and GSRM,, since Fgpar = Fa, and Fggppy, =4, (see Corollary 13 below). It
is not very useful, though, so a better one should be sought. Now in classical logic = ¢ is derivable
from {= ¢ | ¢ € T} iff the set {¢ =} U{= 1 | ¥ € T} is not satisfiable, i.e.: there is no valuation
v which assigns T to all sequents of this set. This characterization is based on the role of T (and of
principle (T)). An equivalent characterization, based on the role of | (which is more natural here),
is that there is no valuation v which assigns L to all elements of {= ¢} U {¢ =] ¢ € T}. This
formulation relies, however, on the assumption that 1 = can be true only if 4 is not true. This
is a variant of principle (T) which fails in our framework. This can be remedied by using instead
the (classically equivalent) condition that there is no valuation v which assigns | to all elements
of {= p}U{yp = ¢ | ¢ € T}. This characterization can be used in the case of -4, and - 4,. This

line of thought leads to the following definitions and propositions:

Definition 14 A set S of sequents is called negatively satisfiable (n-satisfiable in short) in A, (A)

if there exists a valuation v there which is not a model of any element of S.

Proposition 1 A finite set {s1,... ,s,} of sequents is n-satisfiable in A, (A1) iff the hypersequent

$1| ... | $p is not valid there.

Proposition 2 For a theory T and a formula ¢ let ST, = {= ¢} U{ = ¢ | € T}. Then
T Fa, ¢ (T Fa, @) iff ST is not n-satisfiable in A, (Ar).

The two propositions easily follow from the relevant definitions. Together they yield the follow-

ing characterization of 4, (F_4,) in the case of finite theories:

Proposition 3 {11,... ,¢n} Fa, @ iff the hypersequent = ¢ | 1 = @ | ... | Pn = @ is valid in
A,. A similar result holds for Aj.

Another, equivalent characterization is:

Corollary 10 If T is finite then T F 4, o (T Fa, ¢) iff T = ¢ |= ¢ is valid in A, (A1).

Proof: It is easy to see that = @ |1 = ¢ | ... |9, = @ isvalidin A, iff ¢1,... ;9 = 0 = ¢
is valid there. The same applies to Aj.

In order to generalize these characterizations to arbitrary theories we need the following
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Theorem 6 (Compactness Theorem) Let S be a set of sequents such that every finite subset

of S is n-satisfiable in A, (A1). Then S itself is n-satisfiable there.

Proof: We do here the case of A,. We may assume without a loss in generality that S is a
maximal set of sequents with the property that every finite subset of it is n-satisfiable. Hence by
Proposition 1 a sequent s is not in S iff there exist sq,...,s, € S such that I—’jlw S1 ... sk]s
(while there exist no si,...,s; € S such that l—ﬁlw St sk)

Let S ={T's = A, | @ € I'}. The construction of a valuation v which is a countermodel in A,

of all the sequents of S is similar to that in the proof of Lemma 19. We define:

r:Ura A:UA(X

a€el acl
I(S)={pe At(S) | pe TN A}
R={(p,q) € I(S)* | 31" CTIA' C A. Fgrur, I"= A" and {p,q} C A(T" = A')}

Again R is an equivalence relation. Let Cy,Cs,... be the equivalence classes of R in some order
(the set of equivalence classes may be finite or countable). Again it can easily be proved that
if C! is a finite subset of C; then there exist I'; C I';A; C A such that Fgrapy, Ti = A; and
C] C AT = Ay).

We define now our countermodel v exactly as in the proof of Lemma 19, and again first show
by induction on the complexity of ¢ that if ¢ € I then v(p) # L, and if ¢ € A then v(p) # T. As
before, this is obvious in case ¢ is atomic. Assume next that ¢ = =1 and ¢ € I'. Then there exists
a €1 st. o€’y Assume that I'y = 9, A, is not in S. Then there exist s1,...,s; € S such
that I—’f% s1|...] sk | Ta =1, A,. Since —1p € T, this entails that I—’f% S1 ... ] sk | Ta = A
This contradicts the basic property of S. It follows that ¢ € A, and so v(¢) # T by the induction
hypothesis. Hence v(p) # L. The cases where ¢ = =) and ¢ € A and where ¢ = 1)1 Q@19 and ¢ € T
are similarly handled. Finally assume that ¢ = 11 ® 9 and ¢ € A. So ¢ € A, for some « € I. It is
impossible that both 'y, = Ay, 41 and 'y, = A,, %9 are not in S, since in such a case there would
exist $1,...,8; € S such that I—’}lw S1|...] 8k | Ta = As, 91 and I—’jlw S1 || sk | Ta = Aa, 1o,
and this implies that 'Jjétw S1 | ... | sk | Do = Ay (since ¢ = 91 ® g € Ay). A contradiction.
Assume, accordingly, that T', = A, (say) isin S. Then 1)1 € A, and so v(1)1) # T by induction
hypothesis. If v(11) = L then v(p) = L # T. Assume, therefore, that v(1) = I} for some k. Then
L & At(y1), and v(P) = I}, for every P € At(¢). Hence At(1);) C Cf, and so there exist I" C T,
A" C A such that Fgrur, TV = A’ and At(y1) C At(I” = A'). Hence Fgrur, TV = A’ 4 by
Lemma 14. By the soundness of strong splitting, this implies that there exist s),... s} € S such
that I—ﬁlw sh | ... ] s} |= 4. It is impossible therefore that T'y, = A,, 7 is not in S, since in such

a case there would exist s{,... ,s/ € § such that F% s{ | ... | s | Tq = Aq,1h2, and together
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with F - sf | ... | 8], [= 91 we would get that F% i | .. [ s} [ sf ... | s |Tq = Ay (since
© =11 @Yo € Ay). A contradiction. It follows that 19 € A, and so v(¢9) # T by induction
hypothesis. If v(1) = L then again v(p) = L # T. Assume therefore that v(y9) = I, for some
m. Then again At(49) C Cpp, and there exist I C T'; A” C A such that Fggryy, T = A"
and At(19) C At(I'" = A"), Hence Fgrmr,, " = A” 19 by Lemma 14. This and the fact that
Farur, T' = A’ 4 entail that Fgrur, TV, T = A, A" p. Since ¢ € A, this fact entails that
pRq for every p,q € At(p). It follows that Cy = C), and so Iy = I,, and v(p) = [, @ I, = I}, # L.

Assume now that the empty sequent is in S. Than I(S) is empty, since if p € I(S) then
p € I'yy, NA,, for some aj,a9 € I, and so {=,Ty, = A4, e, = Ag,} is not n-satisfiable. It
follows that v refutes the empty sequent in case it is in S.

To show that v is a countermodel of all the sequents in S it remains now only to eliminate
the possibility that there exists @ € I and k such that v(p) = I for all ¢ € Ty, UA,. Well,
had there been such a and k we would have that v(P) = I for all P € At(l'y, = A,), and so
At(Ty, = A,) C Ck. Hence there would have been IV C ', A’ C A such that Fggarg, IV = A’ and
At(Ty, = A,) C AT = A'). Lemma 14 would have implied then that Fgrur, Ta, I = Ag, A
By the soundness of strong splittings this entails that 'Jjétw s1 | ... ] sk | T'a = A, for some
S1y... .8k € S. A contradiction (Since I', = A, is also in S).

Corollary 11 4, is finitary: T F.a, @ iff there exists a finite subset I' of T such that I' F 4, ¢.

The same is true for 4, .

Proof: Immediate from Theorem 6 and Proposition 2.

The following theorem and its corollary provide our best syntactic characterization of 4, (F.4,)

in terms of GSRM I, (GSRM,,):

Theorem 7 T b4, ¢ (T b4, ) iff there exists a finite subset T of T such that T' = ¢ |= ¢ is
provable in GSRMI,,, (GSRM,,) without using cut or external contraction.

Proof:  This follows from Corollary 11, Corollary 10, and Theorems 4 and 5.

Corollary 12

1. A formula ¢ is valid in A, iff = ¢ has a cut-free proof in the 1-part of GSRMI,, (which is
just GRM I, ). Similar relations hold between 4, and the 1-part of GSRM,, (GSRM,,).

2. T Fa, ¢ (T Fa @) iff there exists a finite subset T' of T such that T' = ¢ |= ¢ has a cut-free
(and external contraction-free) proof in the 2-part of GSRMI,, (GSRM,,).
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Proof:  Immediate from Theorem 7 and Corollary 6.

Another important characterization of -4, (F4,) in terms of GSRM I,,, (GSRM,,) is given in

the following corollary:

Corollary 13 T ka4, ¢ (T Fa, @) iff the sequent = ¢ is derivable in the 2-part of GSRMI,,
(GSRM,,) from the set of sequents {= 1 | 1) € T}.

Proof: The “if” part follows from the soundness of the rules of GSRMI,, (GSRM,,). The
“only if” part follows from Corollary 12, since = ¢ is derivable from I' = ¢ |= ¢ and the set

{= % |y € I'} using n cuts followed by an external contraction.

Both of the two last corollaries mean that for characterizing the consequence relation induced

by A, (A1) only the 2-part of GSRMI,, (GSRM,,) is needed!

Note Proposition 3, Corollary 10, Corollary 11, and the first part of Corollary 12 have already
been proved in [9]. A weak version of Theorem 7, in which only the possibility of eliminating cuts

is mentioned, was also claimed (without a proof) in [9]. All other results of this subsection are new.

3.4 Hilbert-type Systems

For the sake of completeness, we present now the Hilbert-type systems for our logics given in [3, 9]

(with new proofs of their completeness). For this it is preferable to take — as primitive.

THE SYSTEM HRMI,,

Axioms
(1) A=A (Identity)
(T) (A-B)—= (B—=C)— (A= (C)) (Transitivity)
(P) (A= (B—=C) = (B—=(A—=0) (Permutation)

R1 (A= (B—=C)) = (A®B = 0)

5323 (A®B—C) = (A— (B—0C)) (Residuation)
(C) A—>A®A (Contraction)
(M) ARA— A (Mingle)

(N1) (A=~ B) = (B—~ A) (Contraposition)

(N2) ~~ A= A (Double Negation)
(F) 1—-A (Falsehood)

Rule of inference
A A— B
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Note Instead of leaving ® as primitive, we could have defined it by ¢ ® ¢ =p s~ (¢ =~ 1)) (This
equivalence is a theorem of the version we have preferred here). Axiom (F) can and should be

deleted if we are interested only in the pure intensional language ZL.

Proposition 4
1. Farma,= ¢ iff FarM,, @- More generally:

FGrMIL, ©15-v o0 = 1, i FrruL,~ 01~ 02+~ o P+ Yy
2. T Furmi, @ iff there exists a finite subset I' of T such that Fgrya, T = .

Proof: The proof of the first part of Proposition 4 with the help of the admissible cut rule is
standard. The second part follows from the first using the relevant deduction theorem for HRM I,,

(see Proposition 5).

Definition 15 HSRMI,, is the system which is obtained from HRM I,,, by adding A®TB as an

extra rule of inference.
Theorem 8 T '_Aw (2 ZﬁT l_HSRMIm Q.

Proof: By Proposition 4 all axioms of HSRM I, are valid in A,,, and it is easy to check that
its two rules of inference are also sound with respect to A,. Hence the “if” part. For the converse,
assume T 4, ¢. Then by Theorem 7 there exists a finite subset I' = {41,... , %, } of T such that
I' = ¢ |= ¢ is provable in GSRMI,,,. Now from each of the two components of this hypersequent
it is easy to derive (using the provability of 1; = 1); and n applications of (= ®)) the sequent
' = ¢®1, where 9 = 1)1 ® -+ ® 1. Hence this sequent is provable in GSRMI,, (using an
external contraction), and so also in GRM I, (by Corollary 9). It follows by Proposition 4 that
T Furmi, ¢®v, and so T Fysrmi,, ¢ (using a single application of the extra rule of HSRMI,,,).

Definition 16 HRM,, is the system which is obtained from H RM I,,, by adding to it the axiom
~ (A — A) — (B — B). HSRM,, is the system which is obtained from H RM,, by adding %

as an extra rule of inference.
Theorem 9 T 4, ¢ iff T Furwm,, »-

Proof: Similar to that of Theorem 8.
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4 Relations with Other Logics

4.1

Relations with Relevance Logic

Our logic is based on the purely intensional fragment of relevance logic '. Indeed, the basic

language ZL is exactly that of the “intensional” fragment of the relevant logic R '', and the 1-part

of the ZL-fragment of our logic strictly belongs to the family of intensional relevance logics. In

fact, it is a very close relative of R~ (which to our opinion is superior to R%).

The connections (and the differences) are the following:

1.

GRM I~,, the ZL-fragment of GRM Ip,, is almost identical to GR~, the calculus given for
R~ in [13]. Indeed, both systems are obtained from the classical Gentzen-type system by
deleting its structural rule of weakening (and using the multiplicative versions of its other
rules). The main difference is that in GR~, the two sides of a sequent basically consist
of multisets of formulas rather than of sets (as in GRMI~), and the structural rule of
contraction (but not its converse!) is therefore added (Note that the constant | has also
been considered and used in the relevance literature, as well as in Linear Logic, and the

axiom used for it in GRM I,,, is practically the same as the one used for it in [16]).

. HRM I~,, the ZL-fragment of HRM I, is obtained from H R~ (the Hilbert-type systems

which defines R~ ) by adding to it Axiom (M) (subsection 3.4). This addition turns the

intensional conjunction ® into a fully idempotent connective.

In both HR~ and HRM I~ the implication connective — enjoys some relevant deduction

theorems. These theorems are reviewed in the next proposition (the proofs are standard - see

e.g. [8]).

Proposition 5

1.

For L = HR~ , HRMI~, and HRM~, (or any other extension of HR~, by aziom schemes)
T,Abr, B iff either Tt;, BorThEp A— B.

I—HR% 1@ ®pn — P iff there is a proof in HRx~ of ¢ from the multiset [p1,... ,pn] in
which each element of this multiset is used at least once (the same applies to any extension

of HR~, by axiom schemes).

I—HRMI% 1 ® - ® pyn — 2 iff there is a proof in HRM I~ of % from the set {¢1,... ,¢n}
in which each element of this set is used at least once (the same applies to any extension of

HRM I~ by axziom schemes, e.g.. HRM I, or HRM,,).

%Tn [7] we have argued in length that this is the only fragment that is well motivated.
"'This fragment is denoted by R~ in the relevant literature, like [1, 2, 13]). Note that the relevantists prefer to
take the relevant implication — as primitive rather than ®, which is preferred here for purely technical reasons.
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These deduction theorems are no longer valid when we pass from the logic induced by the 1-part
of F 4, to the full logic (as the example of p ® g 4, p shows). Instead we have there the following

relevant deduction theorem:

Theorem 10 Call a sentence  fully relevant to a sentence v if At(p) C At(y). If ¢ is fully
relevant to 1 then T,p bt a, ¥ iff T Fa, ¢ — 9 (the same is true for any A,).

Proof:  Assume that 7,¢ F 4, %, and that v(¢) #L for all ¢ € T. If v(p) =L then v(p — ) =
T. Otherwise v(¢)) #.L (since T, Fa, ¥). If v(p) = T then again v(p — ) = T. If v(yp) = I
for some k then also v(¢) = I (by the Isolation property and the fact that At(¢) C At(1))), and
so v(p — 1) = I #L in this case as well.

The converse is easy and is left to the reader.

We note finally that in [3] it was shown that the implication — has in the ZL-fragment of our

logic the crucial variable-sharing property, which is the main characteristic of relevance logics:

Theorem 11 IfF 4, ¢ — 9 (where ¢ and 1) are in ZL) than ¢ and 1) share a variable.

Proof: This follows from the fact that Iy — I, = L: If ¢ and 9 share no variable we can

assign I to all the atomic formulas of ¢ and I to all the atomic formulas of 1. We shall get that
v(p) = I, v(¢p) = Iz, and v(p — ) = L.

Note Using Theorem 1, a similar proof can show that for every binary relation % definable in ZL,
either  or its complement * (defined by @*1) =~ (¢ * 1)) has in 4, (and so also in R~ ) the
variable-sharing property (Whether it is * or * depends on whether Iy x Iy, = T or Iy x [ = 1). We
note also that in the full language one should add to the the claim made in Theorem 11 two other

possibilities: that ¢ is equivalent to 1, and that i is equivalent to T. The proof is similar.

4.2 Relations with Classical Logic

We next show that classical logic (C'L) can be identified with a special fragment of our logic. For
this we associate with each n-ary operation on A,, definable in ZL! (or just ZL) its restriction to
{T,L}". In particular: we associate classical conjunction with ®, and classical negation with ~
(and so classical implication is associated with —, classical disjunction with +, etc.). The following

theorem should be understood accordingly.

Theorem 12

1. A sequent s is classically valid iff s |= is valid in A, (iff it is provable in GSRM I, without

using cut or external contraction).
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2. T For ¢ iff there exists a finite subset I' of T such that I' = ¢ |= has a cut-free (and
external contraction-free) proof in the 2-part of GSRMI,,.

Proof:  The first part immediately follows from the semantic definitions (especially the definition
of a model of the empty sequent). The second part follows from the first, Corollary 6, and well-

known properties of F¢y..

Notes
1. The second part of Theorem 12 should be compared with the second part of Corollary 12!
2. Theorem 12 remains valid if we restrict ourselves to the ZL-fragment of GSRM I,,,.

3. Theorem 12 is easily seen to imply both the completeness of the usual Gentzen-type system
for classical propositional logic, as well as the cut elimination theorem for it. In fact, a
splitting in a cut-free and external contraction-free proof in GSRMI,, of s |= amounts to
a generalized form of weakening applied to some subsequent of s (in which more than one
formula is added). A proof of s |= in GSRM I,,, exactly simulates therefore a special type of

a cut-free proof of s in a Gentzen-type system for C'L.

We next show that CL can be taken as a sublogic of I 4, also from another point of view: it

can be interpreted in 4.

Definition 17 o DY =pro = 0@y @V =psr (¢ DY) DY

Theorem 13 [9] The {®,V,D, L}-fragment of 4, is identical to classical logic (where these
connectives are respectively taken as the interpretations of classical conjunction, disjunction, im-

plication, and falsehood).

Proof: It can easily be checked that a ® b is true (i.e. a ® b # L) iff both a and b are true, aVb
is true iff either a is true or b is true, a D b is true iff either a is not true or b is true, and L is of

course never true.

Notes

1. It follows from this theorem that the ZL£-fragment of our logic is sufficient for interpreting
positive classical logic. It is easy however to see that the strong isolation condition (see Lemma

5) entails that no faithful interpretation of classical negation is available in it.

2. D is in fact an implication connective for 4,  as a whole, since it is easy to see that the

following deduction theorem from [9] obtains for it: T,¢ F 4, ¥ iff T F4, ¢ D .
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3. The interpretation of classical negation is defined of course in the language {®,V,D, 1} as
—¢ =ps ¢ O L (which is equivalent to ¢ — L). It is easy to see that —a is true iff a is not
true. Note also that the languages {®,V,D, L} and {®,V, D, —} are equivalent, since L is

equivalent in A, to —¢ ® ¢, where ¢ is arbitrary.

The following propositions provide two other connections between our logic and classical logic:

Theorem 14 (Substitution of classical equivalents) Let A and B be two classically equivalent
formulas in the language {®,V,D, L} such that At(A) = At(B). Let the formula 9 be obtained
from the formula ¢ of L by replacing some occurrences of A in ¢ by B. Then Fa, © <.

Proof: Let v be a valuation in A,. By Theorem 13 A D B and B D A are both valid in A,,,.
This implies that v(A) = v(B) in case both v(A) and v(B) are in {T,L}. On the other hand
the fact that At(A) = At(B) entails that v(A) = I for some k iff v(B) = I; (note that this is
impossible if 1 € At(A) = At(B)). It follows that v(A) = v(B) in all cases, and so v(p) = v(v) for

all v. Hence ¢ <> 9 is valid in A,,.

Proposition 6 Let ¢ be a formula of TL in which exactly one atomic formula P occurs. If i is
a classical tautology (with ~ and & interpreted as negation and conjunction, respectively), then 1

is valid in A,,.

Proof:  Let v be a valuation in A,. If v(P) = Ij for some k then v(¢) = I by Theorem 1. If
v(P) € {T, L} then v behaves with respect to 1 like a classical valuation, and so v(9)) = T (since
1 is a classical tautology). In either case v(y)) # L.

4.3 Relations with Paraconsistent Logics

We finally turn to investigate the relations between our logic and da Costa’s family of paraconsistent

logics. We start with the trivial observation that with respect to ~ even -4, is paraconsistent:

Proposition 7 ~ P, P /4, Q if P and Q are distinct atomic formulas.

This proposition is true in fact not only for ~, but for any other “negation” that one might try

to define in ZL. Moreover: we have the following stronger result:

Proposition 8 No finite theory I' in ZL is trivial in - 4,: if Q does not occur in I then I' t/ 4, Q.

Proof: Let v be the valuation which assigns 1 to () and I; to any other atomic variable. Then

by Theorem 1 v is a model of I' which is not a model of .

The value of - 4, (and F4,) as a paraconsistent logic is due not only to these negative results,

but also to the following positive one:
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Proposition 9 A hypersequent G is valid in A, (A1) under the assumption that ¢1,... ,p, are
all “normal” (i.e.: G is true for any v which assigns to ¢1,... @y truth value in {T,L}) iff
Gl=o1®@~@1 | |= pn® ~ @y is valid in A,.

This proposition (the easy proof of which we leave to the reader) is important because it makes
it possible to use within A,, default assumptions of the form “the formula v is normal” (and classical

logic when it seems safe) by applying nonmonotonically the rule: from G |= ¢ ® ~¢ infer G.

We next show that the ZL-fragment of -4 is a proper extension of da Costa’s basic paracon-
sistent logic C,, ([11]). Identifying ~, ®, V, and D (respectively) with the negation, conjunction,

disjunction, and implication of C, we have:

Proposition 10 The {~.®,V, D}-fragment of b 4, is a proper extension of C,. This remains true

if we replace @ by any other binary connective & such that a&b = L iff either a = 1L or b= L.

Proof: C,, is obtained from positive classical logic by adding to it as axioms excluded middle
(~1V1p) and double negation elimination (~~1 D 1). Hence Theorem 13 and Proposition 6 imply
that -4, is an extension of C,. Proposition 6 implies also that -4, ¥ D ~~1. Since this schema

is not derivable in Cy,, F 4, is in fact a proper extension of C,,.

C, is the weakest logic in the sequence {C;}¥ ; of da Costa’s paraconsistent logics. We turn
now to compare the {~,®,V, D}-fragment of - 4, (which we denote by /" in what follows) with

the strongest logic in this sequence: C. We first note three big advantages that l—l;{lwc has over Cj:

e (1 is paraconsistent only with respect to ~, but it is possible to define within it another
negation with respect to which it is not paraconsistent. By Proposition 8 this is impossible

in F'°, and so this logic is absolutely paraconsistent.

e While the choice of the basic axioms concerning ~ in Cj seems quite arbitrary (why is
~n~ 1) D 1) accepted while its converse is not?), Proposition 6 implies that in l—%f all classical

tautologies of this type are accepted.

e Equivalence in (' is never a real equivalence, since substitution of equivalents always fails in
the context of negation. Thus even ~ (pV1)) and ~ (1V¢) are not equivalent in C (although
both (¢V) D (V) and its converse are theorems). By Theorem 14, in contrast, A can
be substituted for B whenever A and B are (instances of) positive equivalent formulas of
I—Z"f having the same atomic variables. The same is true (by Proposition 6) if A and B are
(instances of) classically equivalent formulas s.t. At(A) = At(B) = {P} (thus in F'* the

formula ¢ can always be substituted for ~~ ¢, and vice versa).
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On the other hand C; has the advantage that it is possible to express within its language the
assumption that a given formula should be taken as “normal” (i.e. its truth value should be in
{T,L}). This normality of a formula ¢ is defined by ¢° =ps~(~p&y) (where & is the official
conjunction of the system). This makes it possible to use full classical logic within C; under the
assumption that certain formulas are normal. Thus the most characteristic axiom of this system
allows to infer ~¢ from ¢ D 1, ¢ D~ 9, and 9°. Proposition 9 provides some substitute for this
property of C in the case of I—m:, but normality is not expressible within the language of this logic.
It is easy in fact to show (using Theorem 1) that one cannot define in ZL a unary connective ¢ such
that o(P),Q D P,QQ D~ P F4,~ (. This shortcoming(?) can be remedied in the full language

TL* at the cost of losing the first advantage of I—%f over C] which we have noted above.

Definition 18 @&y =p; @y @ T

Note that v(p&1) is L iff either v(p) = L or v(¢p) = L, and v(p&e) = T otherwise. Hence if
we define p° =pr~(~p&yp) then v(p°) = T if v(p) € {T, L}, and v(¢°) = L otherwise. Using this

fact, Proposition 10 and some routine checks it is easy to prove:

Theorem 15 The {~,&,V, D}-fragment of & 4, is a proper extension of C;.

Note The {~, &, V, D}-fragment of - 4, is a paraconsistent logic which still has over C; the second
and third advantages noted above. In addition it is sensitive to relevance considerations, and it has
both simple semantics and a nice proof system. These properties make it (so we believe) superior

to C} or to any other paraconsistent logic which has been suggested in the literature.

A final note: A; can be taken as the restriction of J3 (the strongest logic produced by da
Costa’s school), to the language described in Corollary 4. Indeed the two structures have the same

designated) truth-values, and the connectives of ZL+ are definable in J5 (see [4]).
g
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