
Combining Classical Logic, Paraconsistency and RelevanceArnon AvronSchool of Computer ScienceTel-Aviv Universityemail: aa@cs.tau.ac.ilhttp://www.math.tau.ac.il/ aa/AbstractWe present a logic with has both a simple semantics and a cut-free Gentzen-type system onone hand, and which combines relevance logics, da Costa's paraconsistent logics, and classicallogic on the other. We further show that the logic has many other nice properties, and that itslanguage is ideal from the semantic point of view.1 IntroductionA (propositional) logic L is paraconsistent with respect to a negation connective � if whenever Pand Q are two distinct atomic variables then�P; P 6`L QIntuitively (and sometimes practically) the logic(s) we use should be paraconsistent (perhaps withrespect to any unary connective!) on the ground of relevance: why should a \contradiction"concerning P imply something completely unrelated? There is no wonder that relevance logics([1, 2, 13]) are paraconsistent with respect to their oÆcial negation. However, relevance logics havethe defect that they totally reject extremely useful classical principles (like the disjunctive syllogism)without providing any indication when can these principles safely be used. This is precisely whatda Costa's family of paraconsistent logics ([11, 10]) is trying to provide. However, these logics (withthe exception of the 3-valued paraconsistent logic J3) have neither convincing semantics nor decentcut-free proof systems, and their philosophical basis seems to be doubtful. In particular: relevanceconsiderations are altogether ignored in them. There seems indeed to be little connection betweenthis family and the family of relevance logics.The goal of this paper is to present a logic with has both a simple semantics and a cut-freeGentzen-type system on one hand, and which combines relevance logics, da Costa's paraconsistentlogics, and classical logic on the other. By \combines" we mean, �rst of all, that the main ideasand principles behind these logics are taken into account in our logic, and provide its basis. As1



a result, our logic is a combination of these 3 families also in the technical sense that for each ofthem it has an important fragment which belongs to that family.Our starting point is classical logic. This, after all, is the primary logic, being both the simplestlogic and the metalogic used for investigating all other logics (as is revealed by any examination ofworks on non-classical logics). Now classical logic is actually based on the following two principles:(T) Whatever is not absolutely true is false.(F) Whatever is not absolutely false is true.These two intuitive principles might look fuzzy, but they can be translated into completelyprecise ones using the semantic framework of matrices, which is general enough for characterizingevery propositional logic (by a famous theorem from [17]).De�nition 1 A matrix M for a propositional language L is a triple hM;D;Oi, where M is anonempty set (of \truth values"), ; � D � M (D is the subset of \designated" values), and Oincludes an operation e� : Mn !M for every n-ary connective � of L. A valuation in a matrix M isa function v : L ! M which respects the operations, i.e.: v(�( 1; : : : ;  n)) = e�(v( 1); : : : ; v( n))for every connective � of L. Such a valuation v is called a model in M of a formula  if v( ) 2 D.We say that ' follows in M from a theory T (T `M ') if every model in M of all the formulasof T is also a model of '. M is a characteristic matrix for a logic L if `L = `M, and it is weaklycharacteristic for L if they have the same tautologies, i.e.: for all  , `L  i� `M  .The conditions in De�nition 1 concerning the set D imply that M contains at least two di�erenttruth values, > and ?, so that > 2 D while ? 62 D (note that this assumption excludes trivial\logics"). We may take these two elements as denoting absolute truth and falsehood. This leadsto the following interpretations of the terms used in the formulation of (T) and (F) above:� \' is true" means v(') 2 D� \' is absolutely true" means v(') = >� \' is false" means v(') 62 D� \' is absolutely false" means v(') = ?With this interpretations the two classical principles reduce to:Principle (T) : D = f>gPrinciple (F) : D = M � f?g 2



Note that together with the condition ? 6= > (which we henceforth assume) each of theseprinciples already implies that > 2 D while ? 62 D, and that whatever is absolutely true is true,and whatever is absolutely false is false. Together the two principles imply that M = f>;?g, andwe get the classical, bivalent semantics. > and ? may indeed be identi�ed with the classical truthvalues, and we shall henceforth make this identi�cation. Accordingly, we shall take ? =� > asa necessary condition for a unary connective � to serve as a \negation" (and usually also that> =� ?, so that � behaves exactly like classical negation on the classical truth values).After formulating the two classical principles in precise terms we immediately see that para-consistency is in a direct con
ict with Principle (T). This principle easily implies that f� P; Pgcan have no model 1. Hence every model of f�P; Pg is a model of any Q, and so �P; P `L Q inany logic whose semantics obeys Principle (T). Since most of the more famous logics (like ClassicalLogic, Intuitionistic Logic, Kleene's three-valued logic,  Lukasiewicz' many-valued logics, other fuzzylogics, and many others) adopt this principle, all these logics are not paraconsistent with respectto their oÆcial negation.It follows from the above discussion that any paraconsistent logic should be based on a many-valued semantics in which there exist (at least) one designated element > such that ? =�> 62 D,and (at least) one element I such that both I and � I are in D (such truth values correspondto contradictory, or \paradoxical" propositions). The most economic many-valued structures withthese properties are those in which there are exactly 3 truth values f>;?; Ig, with D = f>; Ig,and � I = I. The famous paraconsistent logic J3 of [12, 14, 4, 20] is indeed based on such a3-valued structure. Moreover: although J3 rejects Principle (T), it still adheres to Principle (F).However, J3 has the defect that it does not take relevance into consideration: any two paradoxicalpropositions are equivalent according to this logic. In order to avoid this, but still keep at leastone of the two classical principles, we should allow for more than one paradoxical truth-value. Themost natural alternative is to have a potentially in�nite number of them. Paradoxical propositionsthat get di�erent paradoxical truth-value should then be considered as irrelevant to each other.What logical connectives (in addition to negation) should be used in a logic which is basedon such structures? We suggest two main criteria. The main one (which we think is absolutelynecessary) is symmetry: there should be no way to distinguish between two given paradoxicalvalues on a logical basis. The other is isolation of contradictions: a formula may be assigned agiven paradoxical value only if all its constituents are assigned that paradoxical value.In section 2 of this paper we describe the semantics, language and consequence relation ofthe logic to which the above ideas lead. The main result there is that the connectives which arede�nable in the language of that logic are exactly those that meet the two criteria mentioned1Note that for this conclusion it suÆces to assume that �> 6= >. This condition is equivalent (in case principle (T)is respected) to the condition that P 6`�P for some P , and this is a less-than-minimal condition for any \negation"!3



above. In section 3 we present proof systems for the logic. The most important among themis the hypersequential Gentzen-type system GSRMIm. In the main theorem of this section wesimultaneously show the strong completeness of GSRMIm for the logic, as well as the fact thatthe cut rule and the external contraction rule can both be eliminated from it (this fact allows forvery direct proofs of valid hypersequents, and has several useful applications). In section 4 we usethis system to show that relevance logic, paraconsistent logic, and classical logic can all be viewedas fragments of our logic, and discuss some further connections between these logics and ours.The work described in this paper is a continuation of [3] and [9], and some results from thesepapers are reproved here (usually by new methods) in order that the reader will have the fullpicture. The paper is nevertheless self-contained, and its main results are new.2 The Language and Its SemanticsDe�nition 2 The pure intensional propositional language 2 IL is the language f�;
g, where �is a unary connective, and 
 is binary 3. The full intensional language IL? is f�;
;?g, where ?is a propositional constant.We next describe our intended algebraic semantics for IL and IL?. For simplicity, we use thesame symbols for the connectives of the languages and for their algebraic counterparts.De�nition 31. The structure A! = hA!;�;
i is de�ned as follows:(i) A! = f>;?; I1; I2; I3; : : : g(ii) � > =?, �?= >, � Ik = Ik (k = 1; 2; : : : )(iii) a
 b = 8><>:? a =? or b =?Ik a = b = Ik> otherwise2. An (n � 0) is the substructure of A! which consists of f>;?; I1; : : : ; Ing.3. A valuation for IL (IL?) is a function v from the set of formulas of IL (IL?) to A! suchthat (v(?) =? and) v(�') = �v('), v('
  ) = v(') 
 v( ) for all '; .4. For T and ' in IL (IL?), T `A! ' i� for every valuation v in A!, if v( ) 6=? for all  2 Tthen v(') 6=?. In particular ' is valid in A! (`A! ') i� v(') 6=? for every valuation v inA!. `An and validity in An are de�ned similarly.2The terminology is from Relevance Logic. [16] uses the term \multiplicative" instead of \intensional".3� and 
 are called intensional negation and conjunction, respectively. The notation � is from relevance logic,while 
 is taken from [16] (relevantists had used Æ before).4



Note A!, which was �rst introduced in [3], can of course be taken as a matrix which is based onPrinciple (F) (i.e.: its set of designated elements is A!�f?g). A1 was �rst introduced in [21], andin that paper the set of IL-formulas which are valid in it was axiomatized. It is known, therefore,as Soboci�nski 3-valued logic. `A1 is also known to be ([1]) the purely intensional fragment of thesemi-relevant system RM . `A0 is, of course, just classical logic. In [3, 9] it is proved that `A! isdecidable, that any nontrivial logic in IL (or IL?) which properly extends it is identical to `Anfor some 0 � n < !, and that each `An (0 � n < !) is a proper extension of `An+1 .The following are important connectives from relevance logic which are de�nable in IL:1. '!  =�(' 
 � )2. '$  = ('!  )
 ( ! ')3. '+  =�'!  The following properties of these connectives can easily be established:Lemma 1 The connective ! corresponds in A! to the following function:a! b = 8><>:> a =? or b = >Ik a = b = Ik? otherwiseLemma 2 
, +, and ! behave on f>;?g like the classical conjunction, disjunction, and impli-cation (respectively). Moreover: v(' +  ) = > i� either v(') = > or v( ) = >.Lemma 3 a$ b 6=? i� a = b.The main goal of the rest of this section is to provide in the context of A! a precise formulationof the symmetry and isolation conditions described in the introduction, and to show that theexpressive power of IL and IL? exactly corresponds to these conditions. For this we need �rstsome notations, de�nitions and lemmas.Notations:1. Let  be a formula. We denote by A( ) the set of atomic variables that occur in  .2. Let A( ) = fp1; : : : ; png, where p1; : : : ; pn are the �rst n atomic variables. We denote by g the function from An! to A! that corresponds to  (i.e., if ~x = (x1; : : : ; xn) then g (~x) = v~x( ),where v~x is a valuation in A! such that v~x(pi) = xi for 1 � i � n).5



3. Let A( ) = fp1; : : : ; png. S[ ], the subset of An! which is characterized by  , is:S[ ] = f(a1; : : : ; an) 2 An! j g (a1; : : : ; an) 6=?g4. Denote by Ink the n-tuple (Ik; Ik; : : : ; Ik). Let I(n) = fInk j k 2 Ng.De�nition 4 An n-ary operation F on A! (Ak) satis�es the symmetry condition ifF (h(x1); : : : ; h(xn)) = h(F (x1; : : : ; xn))for all x1; : : : ; xn 2 A! (Ak)) and for every injective function h from A! to A! (Ak to Ak) suchthat h(>) = > and h(?) = ?.Lemma 4 If  is in IL? and A( ) = fp1; : : : ; png then g satis�es the symmetry condition.Proof: Since g is obtained from the functions �, 
, the constant functions �~x: ?, and the pro-jection functions (including identity) using composition, it suÆces to check that all these functionssatisfy the symmetry condition, and that composition preserves this property. This is easy.De�nition 5 Let F be an n-ary operation on A! (Al).1. F satis�es the isolation condition if for every k, F (~x) = Ik only if ~x = Ink .2. F satis�es the strong isolation condition if for every k, F (~x) = Ik i� ~x = Ink .Lemma 51. If  is in IL? and A( ) = fp1; : : : ; png then g satis�es the isolation condition.2. If  is in IL and A( ) = fp1; : : : ; png then g satis�es the strong isolation condition.Proof: By induction on the structure of  .Corollary 1 If  is in IL?, A( ) = fp1; : : : ; png, and ~x 62 I(n), then g (~x) 2 f>;?g.Corollary 2 If  is in IL, and A( ) = fp1; : : : ; png, then I(n) � S[ ].Lemma 6 Let (in IL?) > = �?. If  is in IL? and v is a valuation in A! then:v(>
  ) = (? v( ) =?> v( ) 6=? v(> !  ) = (> v( ) = >? v( ) 6= >
6



Lemma 7 Let >n = (p1 ! p1)
 (p2 ! p2)
 � � � 
 (pn ! pn). Theng>n (~x) = (Ik ~x = Ink> ~x 62 I(n)Lemma 8 For 1 � i � k, let  i be in IL?, and A( i) = fp1; : : : ; png. Then:1. Tki=1 S[ i] = S[ 1 
  2 
 � � � 
  k]2. Ski=1 S[ i] = S[>
 1 +>
 2 + � � �+>
 k]3. If  i is in IL for all 1 � i � k then Ski=1 S[ i] = S[ 1 +  2 + � � �+  k]Proof: Immediate from the De�nition of 
, Lemmas 2 and 6, and Corollaries 1 and 2.De�nition 6 We say that ~b = (b1; : : : ; bn) 2 An! is similar to ~a = (a1; : : : ; an) 2 An! if there existsan injective function from A! to A! such that h(>) = >, h(?) = ?, and h(ai) = bi for 1 � i � n.The proof of the following two lemmas is straightforward:Lemma 9 Similarity of tuples is an equivalence relation.Lemma 10 ~b is similar to ~a i� the following conditions are satis�ed for all 1 � i; j � n:� If ai = > then bi = >� If ai =? then bi =?� If ai 2 I(1) then bi 2 I(1)� If ai = aj then bi = bj� If ai 6= aj then bi 6= bjCorollary 3 Every ~b 2 An! is similar to some ~a 2 Ann.De�nition 7 A subset C � An! is characterizable in IL? (IL) if C = S[ ] for some formula  ofIL? (IL) such that A( ) = fp1; : : : ; png.We turn next to our two major Lemmas.Lemma 11 C � An! is characterizable in IL? if ~b 2 C whenever ~b is similar to some ~a 2 C.
7



Proof: By Lemma 9 and Corollary 3, if C has this property then C = S~a2Ann\C S~a where S~ais the set of tuples which are similar to ~a. By Lemma 8 it remains therefore to prove that S~a ischaracterizable in IL? for all ~a 2 An!. By Lemma 10, S~a = (T1�i�n S~ai ) \ (T1�i;j�n S~ai;j), whereS~ai = 8><>:f~x 2 An! j xi = >g ai = >f~x 2 An! j xi = ?g ai = ?f~x 2 An! j xi 2 I(1)g ai 2 I(1)S~ai;j = (f~x 2 An! j xi = xjg ai = ajf~x 2 An! j xi 6= xjg ai 6= ajBy Lemma 8 it remains therefore to prove that S~ai and S~ai;j are characterizable in IL? for all i andj. This follows from the following equations, which easily follow from Lemmas 3, 6, and 7:4f~x 2 An! j xi = >g = S[(>n 
>) ! pi]f~x 2 An! j xi = ?g = S[(>n 
>) !� pi]f~x 2 An! j xi 2 I(1)g = S[(>n 
>)
 pi
 � pi]f~x 2 An! j xi = xjg = S[(>n 
>)
 (pi $ pj)]f~x 2 An! j xi 6= xjg = S[(>n 
>) !� (pi $ pj)]Lemma 12 A subset C � An! is characterizable in IL if it satis�es the following two conditions:� I(n) � C� If ~a 2 C and ~b is similar to ~a then ~b 2 C.Proof: The proof is similar to that of Lemma 11. The main di�erence is that because of theextra condition, S~a in the equation C = S~a2Ann\C S~a can be taken this time to be the union of I(n)and the set of tuples which are similar to ~a. Again by Lemma 8 it remains therefore to prove thatthis S~a is characterizable in IL for all ~a 2 An!. Again S~a = (T1�i�n S~ai ) \ (T1�i;j�n S~ai;j), wherethis time: S~ai = 8><>:I(n) [ f~x 2 An! j xi = >g ai = >I(n) [ f~x 2 An! j xi = ?g ai = ?f~x 2 An! j xi 2 I(1)g ai 2 I(1)S~ai;j = (I(n) [ f~x 2 An! j xi = xjg ai = ajI(n) [ f~x 2 An! j xi 6= xjg ai 6= aj4The reason for using >n in these equations is to make sure that we use only formulas  s.t. A( ) = fp1; : : : ; png.8



The fact that these S~ai and S~ai;j are characterizable in IL for all i and j follows from the followingeasily established equations: I(n) [ f~x 2 An! j xi = >g = S[>n ! pi]I(n) [ f~x 2 An! j xi = ?g = S[>n !� pi]f~x 2 An! j xi 2 I(1)g = S[>n 
 pi
 � pi]I(n) [ f~x 2 An! j xi = xjg = S[>n 
 (pi $ pj)]I(n) [ f~x 2 An! j xi 6= xjg = S[>n !� (pi $ pj)]Note It is easy to see that the converse implications in Lemmas 11 and 12 are also true.Theorem 11. An n-ary operation F on A! (Ak) is de�nable in IL by a formula  in the distinct proposi-tional variables p1; : : : ; pn (i.e., F = g ) i� it satis�es both the symmetry condition and thestrong isolation condition.2. An n-ary operation F on A! (Ak) is de�nable in IL? by a formula in the distinct propositionalvariables p1; : : : ; pn i� it satis�es both the symmetry condition and the isolation condition.Proof: The necessity parts have been shown in Lemmas 4 and 5. For the converse assume�rst that F satis�es the conditions of symmetry and strong isolation. It follows that the setE = f~x 2 An! j F (~x) 6=?g satis�es the two conditions from Lemma 12. Hence E = S[ F ] for someformula  F in IL. We show now that F = g F . We consider 3 cases:� If F (~x) = Ik for some k then (by isolation) ~x = Ink , and since  F is in IL it follows thatg F (~x) = Ik = F (~x).� If F (~x) =? then ~x 62 E. Hence ~x 62 S[ F ], and so g F (~x) =?= F (~x)� If F (~x) = > then ~x 2 E = S[ F ], and (by strong isolation) ~x 62 I(n). Hence g F (~x) 6=?, and(by isolation) g F (~x) 62 I(1). It follows that g F (~x) = > = F (~x).Assume now that F satis�es symmetry and isolation. If F (~x) 62 f>;?g for some ~x 2 An! thenthese two conditions together imply that F actually satis�es strong isolation as well. Hence F isde�nable in this case by a formula in IL (by what we have just proved). Assume therefore thatF (~x) 2 f>;?g for all ~x 2 An!. Since F satis�es the symmetry condition, Lemma 11 entails thatE = S[ F ] for some formula  F in IL?, where again E = f~x 2 An! j F (~x) 6=?g. It is easy now tosee that our assumptions on F imply that F = g>
 F .9



Corollary 4 An n-ary operation F on A1 is de�nable in IL? (IL) by a formula  in the distinctpropositional variables p1; : : : ; pn i� it satis�es the (strong) isolation condition.Proof: The symmetry condition is trivially true for any operation on A1.Of the two conditions we have imposed on the connectives of our languages the more funda-mental one is no doubt the symmetry condition. This condition seems to us absolutely essentialfor any logical language which is based on A!. It is interesting therefore to note that a �nite setof connectives which is functionally complete for the set of operations which satisfy this conditioncan be obtained from IL? by adding one extra binary connective which again is closely related toone which is used in relevance logic.De�nition 8 The partial order �r is de�ned on A! by: ? �r Ik �r >.Lemma 13 The structure hA!;�ri is a lattice. moreover: a! b 6= ? i� a �r b.De�nition 9 a _ b = sup�r(a; b) a ^ b = inf�r(a; b)It is easy to see that _ and ^ are connected by De Morgan's rules. Thus a ^ b =� (� a_ � b).Hence it suÆces to add just one of them to the language.Note: 
 itself can be de�ned as inf�o(a; b), where ? �o > �o Ik.Theorem 2 An n-ary operation F on A! is de�nable in f�;
;?;_g by a formula  in the distinctpropositional variables p1; : : : ; pn i� it satis�es the symmetry condition.5Proof: It is easy to see that every operation which is de�nable in f�;
;?;_g satis�es the sym-metry condition. For the converse, assume that the n-ary operation F satis�es this condition. Thisimplies that the sets f~x 2 An! j F (~x) = >g, f~x 2 An! j F (~x) 2 I(1)g, and f~x 2 An! j ~x is similar to ~ag(where ~a 2 An!) all satisfy the condition from Lemma 11, and so they are characterizable in IL?by formulas  >,  I and  ~a (respectively). By moving if necessary from  to >
 we may assumethat all these formulas take values only in f>;?g. The symmetry condition entails also that ifF (~a) = Ik then Ik = ai(~a) for some 1 � i(~a) � n 6, and that F (~x) = xi(~a) = xi(~x) for every ~x whichis similar to ~a. This entails that F = g( F ) where F =  > _ ( I ^ _~a2Ann\f~x2An!jF (~x)2I(1)g( ~a ^ pi(~a)))Indeed, if F (~x) = > then g > (~x) = >, and so g F (~x) = >. If F (~x) =? then g > (~x) =? andg I (~x) =?, and so g F (~x) =?. Finally, if F (~x) = xi(~x) 2 I(1) then g > (~x) =?, g I (~x) = >,5Note that this theorem is valid only in the in�nite case, but not in Ak for k < !!6This is the step in the proof which fails for Ak in case k is �nite!10



g ~a^pi(~a) (~x) =? for every ~a 2 Ann \ f~x 2 An! j F (~x) 2 I(1)g which is not similar to ~x, whileg ~a^pi(~a) (~x) = xi(~a) = xi(~x) for every ~a 2 Ann \ f~x 2 An! j F (~x) 2 I(1)g which is similar to ~x. Itfollows that g F (~x) = xi(~x) = F (~x) in this case as well.Note Using where necessary >n instead of >, one can prove in a similar way that the n-aryoperations F which are de�nable in f�;
;_g by a formula  such that A( ) = fp1; : : : ; png, areprecisely those which satisfy the symmetry condition as well as the condition F (Ink ) = Ik.Similar proofs can be used to show that an operation F on A1 is de�nable in f�;
;?;_g i�it is classically closed (i.e.: if fx1; ; : : : ; ; xng � f>;?g, then F (x1; ; : : : ; ; xn) 2 f>;?g), and thatsuch F is de�nable in f�;
;_g i� it is both classically closed and free (i.e.: F (In) = I).3 Corresponding Proof Systems3.1 Gentzen-type SystemsWe use simpli�ed versions of the Gentzen-type calculi introduced in [3] and [9]. Unlike the systemsthere, we employ here sequents of the form � ) � where � and � are �nite sets (rather thansequences or multisets) of formulas (so that the structural rules of contraction, its converse, andpermutation are all built in). As usual, we write �;� and �; ' instead of � [ � and � [ f'g(respectively). We use P;Q; p; q as metavariables for propositional variables (i.e.: atomic formulasother than ?), '; ;A;B;C as variables for arbitrary formulas, and s as a variable for sequents.Our main system use hypersequents as the main data structure. We start however with thefollowing ordinary sequential calculus from [3], on which our main system is based.THE SYSTEM GRMIm 7Axioms: P ) P ?;� ) �Logical rules: (: )) � ) �; ':';� ) � ';� ) �� ) �;:' () :)(
 )) �; ';  ) ��; '
  ) � �1 ) �1; ' �2 ) �2;  �1;�2 ) �1;�2; '
  () 
)Note In the axiom for ? we may (and will) assume that � and � are sets of atomic formulas.7This system was called GRMI?m in [9], while the name GRMIm was used there for the fragment without ?.11



THE SYSTEM GRMm is de�ned like GRMIm, but its axioms are the sequents of the form� ) � where � is a �nite set of atomic formulas.Notes1. It is important to note that all the rules of this system are multiplicative (or pure, in theterminology of [6]). This means that from any correct application of a rule one can getanother correct application of that rule by adding arbitrary �nite sets to one side of thepremises (not necessarily the same set to each premise!) and the union of these sets to thesame side of the conclusion. In other words: the rules are context-free.2. It is easy to show that both GRMIm and GRMm are closed under substitutions. Hence wecould have taken the axioms of GRMIm to be ' ) ' for every ', and ?;� ) � for every�nite sets �;� of arbitrary formulas (and in the case of GRMm also � ) � for every �).3. It is easy to see that the derived rules for ! and + in both systems are the standard mul-tiplicative versions of the classical rules for implication and disjunction (respectively). Thusthe rules for + are just the duals of the rules for 
.4. Another rule that was taken in [3] as primitive is the cut rule. It is easy however to useGentzen's method from [15] to show that it is eliminable in both systems (See [3]). Below weshall present a new, semantic proof of this fact (see Corollary 8).Notation At(E) denotes the sets of atomic formulas (i.e.: atomic variables or ?) which occur inE (here E can be a formula, a sequent, or a hypersequent).Lemma 14 GRMIm and GRMm are closed under the strong expansion rule: If � ) � is provableand At(') � At(� ) �) then also ';� ) � and � ) �; ' are provable.Proof: By induction on the complexity of '. The base case (where ' is atomic) is done by aninner induction on the length of the proof of � ) �. The base case of this inner induction usesthe special form of the axioms of GRMIm, while both induction steps (that of the inner inductionand that of the main one) rely on the multiplicativity of the rules.Lemma 151. GRMIm is closed under the strong mingle rule: If At(�1 ) �1) \ At(�2 ) �2) 6= ;, andboth �1 ) �1 and �2 ) �2 are provable in GRMIm, then so is �1;�2 ) �1;�2.2. GRMm is closed under the mix (or combining) rule: If both �1 ) �1 and �2 ) �2 areprovable in GRMm, then so is �1;�2 ) �1;�2.12



Proof: By induction on the sum of the lengths of the proofs of �1 ) �1 and �2 ) �2 (againthe special axioms of GRMIm and GRMm are used for the base case, while the multiplicativity ofthe rules is used for the induction step).In [3] (and in Corollary 8 below) it is proved that GRMIm is weakly sound and completewith respect to A!, in the sense that `A! ' i� `GRMIm) '. The same is true for GRMm withrespect to A1. Neither system is strongly complete, though (see [9]). Thus ' 
  `A! ', but6`GRMm ' 
  ) '. In order to get strong completeness we need (like in [9]) to use calculi ofhypersequents. A hypersequent is a �nite multiset of ordinary sequents. The elements of thismultiset are called its components. We denote by s1 j � � � j sn the hypersequent whose componentsare s1; : : : ; sn, and use G a a variable for (possibly empty) hypersequents 8.De�nition 10 The n-part of a hypersequential calculus or a logic is the fragment in which onlyhypersequents with at most n components are allowed.THE SYSTEM GSRMImAxioms: P ) PLogical rules:(: )) G j � ) �; 'G j :';� ) � G j ';� ) �G j � ) �;:' () :)(
 )) G j �; ';  ) �G j �; '
  ) � G j �1 ) �1; ' G j �2 ) �2;  G j �1;�2 ) �1;�2; '
  () 
)Structural rules: G j s j sG j sG j �1 ) �1; ' G j ';�2 ) �2G j �1;�2 ) �1;�2G j �1;�2 ) �1;�2G j �1 ) �1j�2;�0 ) �2;�08Hypersequents were �rst introduced by Pottinger in [19], and independently in [5]. Related structures were usedbefore by Mints (see [18]). 13



(external contraction, cut, and strong splitting, respectively).THE SYSTEM GSRMm: Similar to GSRMIm, but with axioms like in GRMm.Note Unlike in [9], we use here the externally additive versions of the rules which have more thanone premise (this means that both premises have the same inactive side-hypersequent G)9. Thisis equivalent to the externally multiplicative versions of [9], because of the presence of externalcontraction and external weakening (the latter, which allows to infer G j s from G, is a special caseof strong splitting). We shall show that this formulation of the rules makes the problematic rule ofexternal contraction super
uous.The semantics of these hypersequential calculi is given in the next de�nition.De�nition 111. A valuation v is a model in A! of a sequent � ) � if either v(') =? for some ' 2 �, orv( ) = > for some  2 �, or � ) � is not empty and there exists k such that v(') = Ik forall ' 2 � [�, or � ) � is empty and there exists k such that v(P ) = Ik for some atomic P(i.e.: v is a model of the empty sequent i� it is not a classical valuation).2. A valuation v is a model of a hypersequent G in A! (v j=A! G) if v is a model in A! of atleast one of the components of G.3. A hypersequent G is valid in A! (`hA! G) if every valuation in A! is a model of G.4. The concepts of model and validity in A1 are de�ned similarly.Note It is easy to see that ) ' is valid in A! (A1) according to De�nition 11 i� ' is.Theorem 3 (Soundness Theorem)1. The axioms of GSRMIm (GSRMm) are valid in A! (A1), and all its rules are truth pre-serving: every model of all the premises of a rule is also a model of its conclusion.2. If `GSRMIm G then `hA! G. If `GSRMm G then `hA1 G.Proof: The second part is immediate from the �rst, while the proof of the �rst is straightforward.We only note that the cut rule is nontrivially sound here even in case the resulting component isempty. Indeed, v can be a model of both ) ' and ') only if v(') = Ik for some k. Such v is nota classical valuation, and so it is a model of ) as well.9Note that internally cut and () 
) still have a multiplicative form!14



3.2 Completeness and Cut EliminationThe main result of this section is the following:Theorem 4 A hypersequent G is valid in A! i� G has a proof in GSRMIm in which the cut ruleand the external contraction rule are not used.This subsection is mainly devoted to a proof of this theorem. For convenience, in the rest of it` G means that G has a a proof in GSRMIm in which cut and external contraction are not used.De�nition 12 A hypersequent �01 ) �01 j : : : j �0n ) �0n relevantly extends the hypersequent�1 ) �1 j : : : j �n ) �n if for all 1 � i � n we have that �i � �0i, �i � �0i, and every formula in�0i ) �0i is a subformula of some formula in �i ) �i.Lemma 16 Relevant extension is a transitive relation: if G1 relevantly extends G2, and G2 rele-vantly extends G3, then G1 relevantly extends G3.Lemma 17 A model of a hypersequent G is also a model of every relevant extension of G.Proof: Let v be a model of G and let G0 be a relevant extension of G. Then v is a model ofsome component �i ) �i of G. If v( ) = ? for some  2 �i, or v( ) = > for some  2 �i, thenthe same is true for the corresponding component �0i ) �0i of G0. If v( ) = Ik for all formulas of�i ) �i, or if �i ) �i is empty, then the same is again true for �0i ) �0i, since it consists only ofsubformulas of formulas in �i ) �i. In either case v is also a model of �0i ) �0i and so of G0.Notation Let �i ) �i be a component of the hypersequent G. Denote by Gi the hypersequentwhich is obtained from G by deleting �i ) �i (and so G = �i ) �i j Gi up to the order of thecomponents. Note also that Gi may be empty).De�nition 13 Let G be a hypersequent such that 6` G. G is called saturated if every component�i ) �i of G satis�es the following conditions:(i) If :' 2 �i then ' 2 �i(ii) If :' 2 �i then ' 2 �i(iii) If '
  2 �i then ' 2 �i and  2 �i(iv) If '
  2 �i and 6` �i ) �i; ' j Gi then ' 2 �i(v) If '
  2 �i and 6` � ) �i;  j Gi then  2 �i.15



Lemma 18 If 6` G then G has an unprovable, saturated relevant extension.Proof: If 6` G and G is not saturated then it is possible to properly and relevantly extend Gwithout making the new hypersequent provable (this is obvious and standard if one of the conditions(i){(iii) is violated by some component � ) � of G, and is trivial in the special cases (iv){(v)).Since G has only �nitely many subformulas, this process must stop by lemma 16 with a saturatedsequent which relevantly extends G.Lemma 19 Every unprovable saturated hypersequent has a countermodel in A!.Proof: Let G = �1 ) �1 j � � � j �n ) �n be an unprovable saturated sequent. De�ne:� = n[i=1 �i � = n[i=1 �iI(G) = fp 2 At(G) j p 2 � \�gR = fhp; qi 2 I(G)2 j 9�0 � �9�0 � �: `GRMIm �0 ) �0 and fp; qg � At(�0 ) �0)gWe �rst show that R is an equivalence relation. That R is re
exive follows immediately fromthe de�nition of I(G), and the symmetry of R is trivial. It remains to show that R is transitive.So assume that pRq and qRr. Then there exist �0;�0;�00;�00 such that �0;�0 � �, �0;�00 � �,`GRMIm �0 ) �0, `GRMIm �00 ) �00, fp; qg � At(�0 ) �0), and fq; rg � At(�00 ) �00). Since qbelongs to both At(�0 ) �0) and At(�00 ) �00), Lemma 15 entails that `GRMIm �0;�00)�0;�00.But fp; rg � fp; q; rg � At(�0;�00 ) �0;�00). Hence pRr.Let C1; : : : ; C` be the equivalence classes of R (in some order.) Obviously, ` has at most thecardinality of At(G). From the proof of the transitivity of R it also easily follows that for every1 � i � ` there exist �i � �;�i � � such that `GRMIm �i ) �i and Ci � At(�i ) �i).We now de�ne a countermodel v of G in A` (and so in A!) as follows:v(p) = 8><>:Ii p 2 Ci> p 2 �; p 62 �? p 62 �To show that v indeed refutes G, we �rst show by induction on the complexity of ' that if ' 2 �then v(') 6= ?, and if ' 2 � then v(') 6= >. This is obvious in case ' is atomic (including thecase ' = ?, by the special axiom for ? and the fact that G is unprovable). In case ' = : the claim follows easily from the induction hypothesis and conditions (i){(ii) in the de�nition ofa saturated sequent (De�nition 13). If ' =  1 
  2 and ' 2 � then the claim follows from theinduction hypothesis concerning  1 and  2 and condition (iii) of De�nition 13. Finally assume that' =  1 
  2 and ' 2 �. So ' 2 �i for some i. Had both �i ) �i;  1 j Gi and �i ) �i;  2 j Gi16



been provable, so would have been G (using our externally additive version of () 
), and the factthat ' 2 �i). Hence one of these sequents is unprovable. Assume, e.g., that 6` �i ) �i;  1 j Gi.Then  1 2 �i by condition (iv) of De�nition 13. Hence v( 1) 6= > by induction hypothesis.If v( 1) = ? then v(') = ? 6= >. Assume, therefore, that v( 1) = Ik for some k. Then? 62 At( 1), and v(P ) = Ik for every P 2 At( 1). Hence At( 1) � Ck. By the observationabove concerning Ck there exist �0j � �j, �0j � �j (j = 1; : : : ; n) such that `GRMIm �0 ) �0 andAt( 1) � Ck � At(�0 ) �0), where �0 = Snj=1 �0j;�0 = Snj=1 �0j . Hence `GRMIm �0 ) �0;  1 byLemma 14. Using the strong splitting rule of GSRMIm, this implies that ` �0i ) �0i;  1 j Gi. It isnot possible therefore that ` �i ) �i;  2 j Gi, since otherwise we would have (using again () 
),and the facts that �0i � �i, �0i � �i, and ' 2 �i) that ` G. It follows by condition (v) of De�nition13 that  2 2 �i, and so v( 2) 6= > by induction hypothesis. If v( 2) = ? then again v(') = ? 6= >.Assume therefore that v( 2) = Im for some m. Then again At( 2) � Cm, and there exist �00j � �j ,�00j � �j (j = 1; : : : ; n) such that `GRMIm �00 ) �00 and At( 2) � Cm � At(�00 ) �00), where�00 = Snj=1 �00j ;�00 = Snj=1 �00j . Hence `GRMIm �00 ) �00;  2 by Lemma 14. This and the fact that`GRMIm �0 ) �0;  1 entail that `GRMIm �0;�00 ) �0;�00; '. Since ' 2 �, this fact entails thatpRq for every p; q 2 At(')(= At( 1) [ At( 2)). It follows that Ck = Cm and so Ik = Im andv(') = Ik 
 Ik = Ik 6= ?.Next we observe that if p 2 I(G) then G j) is derivable from the axiom p ) p using strongsplittings. It follows that if the empty sequent is a component of G than I(G) is empty, and sov(p) 2 f>;?g for all p. Hence v refutes the empty sequent in case it is a component of G.To show that v is a countermodel of G it remains now only to eliminate the possibility thatthere exists 1 � i � n and 1 � k � ` such that v(') = Ik for all ' 2 �i [�i. Well, had there beensuch i and k we would have that v(P ) = Ik for all P 2 At(�i ) �i), and so At(�i ) �i) � Ck(note that ? 62 At(�i ) �i) in such a case!). Hence there would have been �0 � �, �0 � � suchthat `GRMIm �0 ) �0 and At(�i ) �i) � Ck � At(�0 ) �0). Lemma 14 would have implied thenthat `GRMIm �i;�0 ) �i;�0. From this it is possible to derive G using strong splittings (Since�i ) �i is a component of G and �0 � �, �0 � �). A contradiction.Proof of Theorem 4: The \if" part is Theorem 3. The \only if" part is immediate from Lemmas17, 18, and 19.Theorem 5 A hypersequent G is valid in A1 i� G has a proof in GSRMm in which the cut ruleand the external contraction rule are not used.Proof: The proof is similar to that of GSRMIm. The main di�erence is that the form of theaxioms of GRMm implies that the equivalence relation R used in the proof of lemma 18 has at most17



one equivalence class (If p and q are in I(G) then fp; qg � �, fp; qg � � and `GRMm p; q ) p; q).Hence ` � 1 and the countermodel we get is actually in A1.Note It is not necessary, of course, to introduce R at all if one proves the completeness of GSRMmdirectly, and the proof is therefore simpler than in the case of GSRMIm.Corollary 5 The cut elimination theorem is valid for GSRMIm and GSRMm. Moreover: if ahypersequent is provable in either of these systems then it has a proof there in which the cut ruleand the external contraction rule are not used.Proof: This follows from Theorems 3, 4, and 5.Corollary 6 The n-part (De�nition 10) of `hA! (`hA1) is identical to the (external contraction andcut free) n-part of GSRMIm (GSRMm).A close examination of the proof of the completeness theorem reveals that this Corollary canbe strengthened as follows:Corollary 7 Let GSRMIm(n) (GSRMm(n)) be the system for hypersequents with n componentswhich has as rules the logical rules of GSRMIm (not including cut!) and as axioms the hyper-sequents with n components which can be derived from a theorem of GSRMIm (GSRMm) usingstrong splittings. Then a hypersequent G with n components is valid in A! (A1) i� it has a proofin GSRMIm(n) (GSRMm(n)).Corollary 8 A sequent is valid in A! (A1) i� it has a (cut-free) proof in GRMIm (GRMm).Hence the cut rule is admissible in GRMIm and GRMm.Corollary 9 GSRMIm (GSRMm) is a conservative extension of GRMIm (GRMm).Note The cut-elimination part of Corollary 5 was �rst stated (with a hint for a very complicatedsyntactical proof) in [9]. This is the �rst time it is given a real (and much simpler) proof. Thatexternal contraction can also be eliminated is a new result. Corollaries 9 and 8 were �rst provedin [9] and [3] (respectively).3.3 Compactness and Characterizations of the Consequence RelationsWe turn now to a proof-theoretical characterization of `A! and `A1 using our hypersequentialcalculi (this, recall, was the main motivation for introducing these calculi, because for characterizingthe logically valid formulas the purely sequential fragments suÆce).The most standard way of using a sequential calculus G for de�ning a (Tarskian) consequencerelation is to let T `G ' i� there exists a �nite � � T such that `G � ) '. This method is not18



applicable here, because p
 q `A! p, but neither p
 q ) p nor ) p is provable even in GSRMm(since both are not valid in A1). Another common way to use G for this purpose is to let T `eG ' ifthe sequent ) ' is derivable in G from the set of sequents f)  j  2 T g. This method does workfor GSRMIm and GSRMm, since `eGSRMIm= `A! and `eGSRMm= `A1 (see Corollary 13 below). Itis not very useful, though, so a better one should be sought. Now in classical logic ) ' is derivablefrom f)  j  2 T g i� the set f')g[f)  j  2 T g is not satis�able, i.e.: there is no valuationv which assigns > to all sequents of this set. This characterization is based on the role of > (and ofprinciple (T)). An equivalent characterization, based on the role of ? (which is more natural here),is that there is no valuation v which assigns ? to all elements of f) 'g [ f )j  2 T g. Thisformulation relies, however, on the assumption that  ) can be true only if  is not true. Thisis a variant of principle (T) which fails in our framework. This can be remedied by using insteadthe (classically equivalent) condition that there is no valuation v which assigns ? to all elementsof f) 'g [ f ) ' j  2 T g. This characterization can be used in the case of `A! and `A1 . Thisline of thought leads to the following de�nitions and propositions:De�nition 14 A set S of sequents is called negatively satis�able (n-satis�able in short) in A! (A1)if there exists a valuation v there which is not a model of any element of S.Proposition 1 A �nite set fs1; : : : ; sng of sequents is n-satis�able in A! (A1) i� the hypersequents1 j : : : j sn is not valid there.Proposition 2 For a theory T and a formula ' let ST ;' = f) 'g [ f ) ' j  2 T g. ThenT `A! ' (T `A1 ') i� ST ;' is not n-satis�able in A! (A1).The two propositions easily follow from the relevant de�nitions. Together they yield the follow-ing characterization of `A! (`A1) in the case of �nite theories:Proposition 3 f 1; : : : ;  ng `A! ' i� the hypersequent ) ' j  1 ) ' j : : : j  n ) ' is valid inA!. A similar result holds for A1.Another, equivalent characterization is:Corollary 10 If � is �nite then � `A! ' (� `A1 ') i� � ) ' j) ' is valid in A! (A1).Proof: It is easy to see that ) ' j  1 ) ' j : : : j  n ) ' is valid in A! i�  1; : : : ;  n ) ' j) 'is valid there. The same applies to A1.In order to generalize these characterizations to arbitrary theories we need the following19



Theorem 6 (Compactness Theorem) Let S be a set of sequents such that every �nite subsetof S is n-satis�able in A! (A1). Then S itself is n-satis�able there.Proof: We do here the case of A!. We may assume without a loss in generality that S is amaximal set of sequents with the property that every �nite subset of it is n-satis�able. Hence byProposition 1 a sequent s is not in S i� there exist s1; : : : ; sk 2 S such that `hA! s1 j : : : j sk j s(while there exist no s1; : : : ; sk 2 S such that `hA! s1 j : : : j sk).Let S = f�� ) �� j � 2 Ig. The construction of a valuation v which is a countermodel in A!of all the sequents of S is similar to that in the proof of Lemma 19. We de�ne:� = [�2I �� � = [�2I ��I(S) = fp 2 At(S) j p 2 � \�gR = fhp; qi 2 I(S)2 j 9�0 � �9�0 � �: `GRMIm �0 ) �0 and fp; qg � At(�0 ) �0)gAgain R is an equivalence relation. Let C1; C2; : : : be the equivalence classes of R in some order(the set of equivalence classes may be �nite or countable). Again it can easily be proved thatif C 0i is a �nite subset of Ci then there exist �i � �;�i � � such that `GRMIm �i ) �i andC 0i � At(�i ) �i).We de�ne now our countermodel v exactly as in the proof of Lemma 19, and again �rst showby induction on the complexity of ' that if ' 2 � then v(') 6= ?, and if ' 2 � then v(') 6= >. Asbefore, this is obvious in case ' is atomic. Assume next that ' = : and ' 2 �. Then there exists� 2 I s.t. ' 2 ��. Assume that �� )  ;�� is not in S. Then there exist s1; : : : ; sk 2 S suchthat `hA! s1 j : : : j sk j �� )  ;��. Since : 2 ��, this entails that `hA! s1 j : : : j sk j �� ) ��.This contradicts the basic property of S. It follows that  2 �, and so v( ) 6= > by the inductionhypothesis. Hence v(') 6= ?. The cases where ' = : and ' 2 � and where ' =  1
 2 and ' 2 �are similarly handled. Finally assume that ' =  1
 2 and ' 2 �. So ' 2 �� for some � 2 I. It isimpossible that both �� ) ��;  1 and �� ) ��;  2 are not in S, since in such a case there wouldexist s1; : : : ; sk 2 S such that `hA! s1 j : : : j sk j �� ) ��;  1 and `hA! s1 j : : : j sk j �� ) ��;  2,and this implies that `hA! s1 j : : : j sk j �� ) �� (since ' =  1 
  2 2 ��). A contradiction.Assume, accordingly, that �� ) ��;  1 (say) is in S. Then  1 2 �, and so v( 1) 6= > by inductionhypothesis. If v( 1) = ? then v(') = ? 6= >. Assume, therefore, that v( 1) = Ik for some k. Then? 62 At( 1), and v(P ) = Ik for every P 2 At( 1). Hence At( 1) � Ck, and so there exist �0 � �,�0 � � such that `GRMIm �0 ) �0 and At( 1) � At(�0 ) �0). Hence `GRMIm �0 ) �0;  1 byLemma 14. By the soundness of strong splitting, this implies that there exist s01; : : : ; s0k 2 S suchthat `hA! s01 j : : : j s0k j)  1. It is impossible therefore that �� ) ��;  2 is not in S, since in sucha case there would exist s001; : : : ; s00l 2 S such that `hA! s001 j : : : j s00l j �� ) ��;  2, and together20



with `hA! s01 j : : : j s0k j)  1 we would get that `hA! s01 j : : : j s0k j s001 j : : : j s00l j �� ) �� (since' =  1 
  2 2 ��). A contradiction. It follows that  2 2 �, and so v( 2) 6= > by inductionhypothesis. If v( 2) = ? then again v(') = ? 6= >. Assume therefore that v( 2) = Im for somem. Then again At( 2) � Cm, and there exist �00 � �, �00 � � such that `GRMIm �00 ) �00and At( 2) � At(�00 ) �00), Hence `GRMIm �00 ) �00;  2 by Lemma 14. This and the fact that`GRMIm �0 ) �0;  1 entail that `GRMIm �0;�00 ) �0;�00; '. Since ' 2 �, this fact entails thatpRq for every p; q 2 At('). It follows that Ck = Cm and so Ik = Im and v(') = Ik 
 Ik = Ik 6= ?.Assume now that the empty sequent is in S. Than I(S) is empty, since if p 2 I(S) thenp 2 ��1 \ ��2 for some �1; �2 2 I, and so f);��1 ) ��1 ;��2 ) ��2g is not n-satis�able. Itfollows that v refutes the empty sequent in case it is in S.To show that v is a countermodel of all the sequents in S it remains now only to eliminatethe possibility that there exists � 2 I and k such that v(') = Ik for all ' 2 �� [ ��. Well,had there been such � and k we would have that v(P ) = Ik for all P 2 At(�� ) ��), and soAt(�� ) ��) � Ck. Hence there would have been �0 � �, �0 � � such that `GRMIm �0 ) �0 andAt(�� ) ��) � At(�0 ) �0). Lemma 14 would have implied then that `GRMIm ��;�0 ) ��;�0.By the soundness of strong splittings this entails that `hA! s1 j : : : j sk j �� ) ��, for somes1; : : : ; sk 2 S. A contradiction (Since �� ) �� is also in S).Corollary 11 `A! is �nitary: T `A! ' i� there exists a �nite subset � of T such that � `A! '.The same is true for `A1.Proof: Immediate from Theorem 6 and Proposition 2.The following theorem and its corollary provide our best syntactic characterization of `A! (`A1)in terms of GSRMIm (GSRMm):Theorem 7 T `A! ' (T `A1 ') i� there exists a �nite subset � of T such that � ) ' j) ' isprovable in GSRMIm (GSRMm) without using cut or external contraction.Proof: This follows from Corollary 11, Corollary 10, and Theorems 4 and 5.Corollary 121. A formula ' is valid in A! i� ) ' has a cut-free proof in the 1-part of GSRMIm (which isjust GRMIm). Similar relations hold between `A1 and the 1-part of GSRMm (GSRMm).2. T `A! ' (T `A1 ') i� there exists a �nite subset � of T such that � ) ' j) ' has a cut-free(and external contraction-free) proof in the 2-part of GSRMIm (GSRMm).21



Proof: Immediate from Theorem 7 and Corollary 6.Another important characterization of `A! (`A1) in terms of GSRMIm (GSRMm) is given inthe following corollary:Corollary 13 T `A! ' (T `A1 ') i� the sequent ) ' is derivable in the 2-part of GSRMIm(GSRMm) from the set of sequents f)  j  2 T g.Proof: The \if" part follows from the soundness of the rules of GSRMIm (GSRMm). The\only if" part follows from Corollary 12, since ) ' is derivable from � ) ' j) ' and the setf)  j  2 �g using n cuts followed by an external contraction.Both of the two last corollaries mean that for characterizing the consequence relation inducedby A! (A1) only the 2-part of GSRMIm (GSRMm) is needed!Note Proposition 3, Corollary 10, Corollary 11, and the �rst part of Corollary 12 have alreadybeen proved in [9]. A weak version of Theorem 7, in which only the possibility of eliminating cutsis mentioned, was also claimed (without a proof) in [9]. All other results of this subsection are new.3.4 Hilbert-type SystemsFor the sake of completeness, we present now the Hilbert-type systems for our logics given in [3, 9](with new proofs of their completeness). For this it is preferable to take ! as primitive.THE SYSTEM HRMImAxioms(I) A! A (Identity)(T) (A! B) ! �(B ! C) ! (A! C)� (Transitivity)(P) �A! (B ! C)�! �B ! (A! C)� (Permutation)(R1)(R2) �A! (B ! C)�! �A
B ! C��A
B ! C�! �A! (B ! C)� (Residuation)(C) A! A
A (Contraction)(M) A
A! A (Mingle)(N1) �A!� B�! �B !� A� (Contraposition)(N2) �� A! A (Double Negation)(F) ? ! A (Falsehood)Rule of inference A A! BB 22



Note Instead of leaving 
 as primitive, we could have de�ned it by '
  =Df� ('!�  ) (Thisequivalence is a theorem of the version we have preferred here). Axiom (F) can and should bedeleted if we are interested only in the pure intensional language IL.Proposition 41. `GRMIm) ' i� `HRMIm '. More generally:`GRMIm '1; : : : ; 'n )  1; : : : ;  k i� `HRMIm� '1+ � '2 + � � �+ � 'n +  1 + � � �+  k2. T `HRMIm ' i� there exists a �nite subset � of T such that `GRMIm � ) '.Proof: The proof of the �rst part of Proposition 4 with the help of the admissible cut rule isstandard. The second part follows from the �rst using the relevant deduction theorem for HRMIm(see Proposition 5).De�nition 15 HSRMIm is the system which is obtained from HRMIm by adding A
BA as anextra rule of inference.Theorem 8 T `A! ' i� T `HSRMIm '.Proof: By Proposition 4 all axioms of HSRMIm are valid in A!, and it is easy to check thatits two rules of inference are also sound with respect to A!. Hence the \if" part. For the converse,assume T `A! '. Then by Theorem 7 there exists a �nite subset � = f 1; : : : ;  ng of T such that� ) ' j) ' is provable in GSRMIm. Now from each of the two components of this hypersequentit is easy to derive (using the provability of  i )  i and n applications of () 
)) the sequent� ) ' 
  , where  =  1 
 � � � 
  n. Hence this sequent is provable in GSRMIm (using anexternal contraction), and so also in GRMIm (by Corollary 9). It follows by Proposition 4 thatT `HRMIm '
 , and so T `HSRMIm ' (using a single application of the extra rule of HSRMIm).De�nition 16 HRMm is the system which is obtained from HRMIm by adding to it the axiom� (A ! A) ! (B ! B). HSRMm is the system which is obtained from HRMm by adding A
BAas an extra rule of inference.Theorem 9 T `A1 ' i� T `HRMm '.Proof: Similar to that of Theorem 8.
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4 Relations with Other Logics4.1 Relations with Relevance LogicOur logic is based on the purely intensional fragment of relevance logic 10. Indeed, the basiclanguage IL is exactly that of the \intensional" fragment of the relevant logic R 11, and the 1-partof the IL-fragment of our logic strictly belongs to the family of intensional relevance logics. Infact, it is a very close relative of R�! (which to our opinion is superior to R�!).The connections (and the di�erences) are the following:1. GRMI�!, the IL-fragment of GRMIm, is almost identical to GR�!, the calculus given forR�! in [13]. Indeed, both systems are obtained from the classical Gentzen-type system bydeleting its structural rule of weakening (and using the multiplicative versions of its otherrules). The main di�erence is that in GR�! the two sides of a sequent basically consistof multisets of formulas rather than of sets (as in GRMI�!), and the structural rule ofcontraction (but not its converse!) is therefore added (Note that the constant ? has alsobeen considered and used in the relevance literature, as well as in Linear Logic, and theaxiom used for it in GRMIm is practically the same as the one used for it in [16]).2. HRMI�!, the IL-fragment of HRMIm is obtained from HR�! (the Hilbert-type systemswhich de�nes R�!) by adding to it Axiom (M) (subsection 3.4). This addition turns theintensional conjunction 
 into a fully idempotent connective.3. In both HR�! and HRMI�! the implication connective ! enjoys some relevant deductiontheorems. These theorems are reviewed in the next proposition (the proofs are standard - seee.g. [8]).Proposition 51. For L = HR�!, HRMI�! and HRM�! (or any other extension of HR�! by axiom schemes)T ; A `L B i� either T `L B or T `L A! B.2. `HR�! '1 
 � � � 
'n !  i� there is a proof in HR�! of  from the multiset ['1; : : : ; 'n] inwhich each element of this multiset is used at least once (the same applies to any extensionof HR�! by axiom schemes).3. `HRMI�! '1 
 � � � 
 'n !  i� there is a proof in HRMI�! of  from the set f'1; : : : ; 'ngin which each element of this set is used at least once (the same applies to any extension ofHRMI�! by axiom schemes, e.g.: HRMIm or HRMm).10In [7] we have argued in length that this is the only fragment that is well motivated.11This fragment is denoted by R�! in the relevant literature, like [1, 2, 13]). Note that the relevantists prefer totake the relevant implication ! as primitive rather than 
, which is preferred here for purely technical reasons.24



These deduction theorems are no longer valid when we pass from the logic induced by the 1-partof `A! to the full logic (as the example of p
 q `A! p shows). Instead we have there the followingrelevant deduction theorem:Theorem 10 Call a sentence ' fully relevant to a sentence  if At(') � At( ). If ' is fullyrelevant to  then T ; ' `A!  i� T `A! '!  (the same is true for any An).Proof: Assume that T ; ' `A!  , and that v(�) 6=? for all � 2 T . If v(') =? then v('!  ) =>. Otherwise v( ) 6=? (since T ; ' `A!  ). If v( ) = > then again v(' !  ) = >. If v( ) = Ikfor some k then also v(') = Ik (by the Isolation property and the fact that At(') � At( )), andso v('!  ) = Ik 6=? in this case as well.The converse is easy and is left to the reader.We note �nally that in [3] it was shown that the implication ! has in the IL-fragment of ourlogic the crucial variable-sharing property, which is the main characteristic of relevance logics:Theorem 11 If `A! '!  (where ' and  are in IL) than ' and  share a variable.Proof: This follows from the fact that I1 ! I2 = ?: If ' and  share no variable we canassign I1 to all the atomic formulas of ' and I2 to all the atomic formulas of  . We shall get thatv(') = I1, v( ) = I2, and v('!  ) = ?.Note Using Theorem 1, a similar proof can show that for every binary relation � de�nable in IL,either � or its complement �� (de�ned by '�� =� (' �  )) has in `A! (and so also in R�!) thevariable-sharing property (Whether it is �� or � depends on whether I1 � I2 = > or I1 � I2 = ?). Wenote also that in the full language one should add to the the claim made in Theorem 11 two otherpossibilities: that ' is equivalent to ?, and that  is equivalent to >. The proof is similar.4.2 Relations with Classical LogicWe next show that classical logic (CL) can be identi�ed with a special fragment of our logic. Forthis we associate with each n-ary operation on A! de�nable in IL? (or just IL) its restriction tof>;?gn. In particular: we associate classical conjunction with 
, and classical negation with �(and so classical implication is associated with !, classical disjunction with +, etc.). The followingtheorem should be understood accordingly.Theorem 121. A sequent s is classically valid i� s j) is valid in A! (i� it is provable in GSRMIm withoutusing cut or external contraction). 25



2. T `CL ' i� there exists a �nite subset � of T such that � ) ' j) has a cut-free (andexternal contraction-free) proof in the 2-part of GSRMIm.Proof: The �rst part immediately follows from the semantic de�nitions (especially the de�nitionof a model of the empty sequent). The second part follows from the �rst, Corollary 6, and well-known properties of `CL.Notes1. The second part of Theorem 12 should be compared with the second part of Corollary 12!2. Theorem 12 remains valid if we restrict ourselves to the IL-fragment of GSRMIm.3. Theorem 12 is easily seen to imply both the completeness of the usual Gentzen-type systemfor classical propositional logic, as well as the cut elimination theorem for it. In fact, asplitting in a cut-free and external contraction-free proof in GSRMIm of s j) amounts toa generalized form of weakening applied to some subsequent of s (in which more than oneformula is added). A proof of s j) in GSRMIm exactly simulates therefore a special type ofa cut-free proof of s in a Gentzen-type system for CL.We next show that CL can be taken as a sublogic of `A! also from another point of view: itcan be interpreted in `A! .De�nition 17 ' �  =Df '! '
  '�_ =Df (' �  ) �  Theorem 13 [9] The f
; �_;�;?g-fragment of `A! is identical to classical logic (where theseconnectives are respectively taken as the interpretations of classical conjunction, disjunction, im-plication, and falsehood).Proof: It can easily be checked that a
 b is true (i.e. a
 b 6= ?) i� both a and b are true, a�_bis true i� either a is true or b is true, a � b is true i� either a is not true or b is true, and ? is ofcourse never true.Notes1. It follows from this theorem that the IL-fragment of our logic is suÆcient for interpretingpositive classical logic. It is easy however to see that the strong isolation condition (see Lemma5) entails that no faithful interpretation of classical negation is available in it.2. � is in fact an implication connective for `A! as a whole, since it is easy to see that thefollowing deduction theorem from [9] obtains for it: T ; ' `A!  i� T `A! ' �  .26



3. The interpretation of classical negation is de�ned of course in the language f
; �_;�;?g as:' =Df ' � ? (which is equivalent to ' ! ?). It is easy to see that :a is true i� a is nottrue. Note also that the languages f
; �_;�;?g and f
; �_;�;:g are equivalent, since ? isequivalent in A! to :'
 ', where ' is arbitrary.The following propositions provide two other connections between our logic and classical logic:Theorem 14 (Substitution of classical equivalents) Let A and B be two classically equivalentformulas in the language f
; �_;�;?g such that At(A) = At(B). Let the formula  be obtainedfrom the formula ' of IL? by replacing some occurrences of A in ' by B. Then `A! '$  .Proof: Let v be a valuation in A!. By Theorem 13 A � B and B � A are both valid in A!.This implies that v(A) = v(B) in case both v(A) and v(B) are in f>;?g. On the other handthe fact that At(A) = At(B) entails that v(A) = Ik for some k i� v(B) = Ik (note that this isimpossible if ? 2 At(A) = At(B)). It follows that v(A) = v(B) in all cases, and so v(') = v( ) forall v. Hence '$  is valid in A!.Proposition 6 Let  be a formula of IL in which exactly one atomic formula P occurs. If  isa classical tautology (with � and 
 interpreted as negation and conjunction, respectively), then  is valid in A!.Proof: Let v be a valuation in A!. If v(P ) = Ik for some k then v( ) = Ik by Theorem 1. Ifv(P ) 2 f>;?g then v behaves with respect to  like a classical valuation, and so v( ) = > (since is a classical tautology). In either case v( ) 6= ?.4.3 Relations with Paraconsistent LogicsWe �nally turn to investigate the relations between our logic and da Costa's family of paraconsistentlogics. We start with the trivial observation that with respect to � even `A1 is paraconsistent:Proposition 7 � P; P 6`A1 Q if P and Q are distinct atomic formulas.This proposition is true in fact not only for �, but for any other \negation" that one might tryto de�ne in IL. Moreover: we have the following stronger result:Proposition 8 No �nite theory � in IL is trivial in `A1 : if Q does not occur in � then � 6`A1 Q.Proof: Let v be the valuation which assigns ? to Q and I1 to any other atomic variable. Thenby Theorem 1 v is a model of � which is not a model of Q.The value of `A! (and `A1) as a paraconsistent logic is due not only to these negative results,but also to the following positive one: 27



Proposition 9 A hypersequent G is valid in A! (A1) under the assumption that '1; : : : ; 'n areall \normal" (i.e.: G is true for any v which assigns to '1; : : : ; 'n truth value in f>;?g) i�G j) '1
 � '1 j � � � j) 'n
 � 'n is valid in A!.This proposition (the easy proof of which we leave to the reader) is important because it makesit possible to use withinA! default assumptions of the form \the formula  is normal" (and classicallogic when it seems safe) by applying nonmonotonically the rule: from G j) ' 
 �' infer G.We next show that the IL-fragment of `A! is a proper extension of da Costa's basic paracon-sistent logic C! ([11]). Identifying �, 
, �_, and � (respectively) with the negation, conjunction,disjunction, and implication of C! we have:Proposition 10 The f�;
; �_;�g-fragment of `A! is a proper extension of C!. This remains trueif we replace 
 by any other binary connective & such that a&b = ? i� either a = ? or b = ?.Proof: C! is obtained from positive classical logic by adding to it as axioms excluded middle(� �_ ) and double negation elimination (�� �  ). Hence Theorem 13 and Proposition 6 implythat `A! is an extension of C!. Proposition 6 implies also that `A!  � �� . Since this schemais not derivable in C!, `A! is in fact a proper extension of C!.C! is the weakest logic in the sequence fCig!i=1 of da Costa's paraconsistent logics. We turnnow to compare the f�;
; �_;�g-fragment of `A! (which we denote by `pacA! in what follows) withthe strongest logic in this sequence: C1. We �rst note three big advantages that `pacA! has over C1:� C1 is paraconsistent only with respect to �, but it is possible to de�ne within it anothernegation with respect to which it is not paraconsistent. By Proposition 8 this is impossiblein `pacA! , and so this logic is absolutely paraconsistent.� While the choice of the basic axioms concerning � in C1 seems quite arbitrary (why is�� �  accepted while its converse is not?), Proposition 6 implies that in `pacA! all classicaltautologies of this type are accepted.� Equivalence in C1 is never a real equivalence, since substitution of equivalents always fails inthe context of negation. Thus even � ('�_ ) and � ( �_') are not equivalent in C1 (althoughboth ('�_ ) � ( �_') and its converse are theorems). By Theorem 14, in contrast, A canbe substituted for B whenever A and B are (instances of) positive equivalent formulas of`pacA! having the same atomic variables. The same is true (by Proposition 6) if A and B are(instances of) classically equivalent formulas s.t. At(A) = At(B) = fPg (thus in `pacA! theformula ' can always be substituted for �� ', and vice versa).28



On the other hand C1 has the advantage that it is possible to express within its language theassumption that a given formula should be taken as \normal" (i.e. its truth value should be inf>;?g). This normality of a formula ' is de�ned by 'Æ =Df�(�'&') (where & is the oÆcialconjunction of the system). This makes it possible to use full classical logic within C1 under theassumption that certain formulas are normal. Thus the most characteristic axiom of this systemallows to infer �' from ' �  , ' ��  , and  Æ. Proposition 9 provides some substitute for thisproperty of C1 in the case of `pacA! , but normality is not expressible within the language of this logic.It is easy in fact to show (using Theorem 1) that one cannot de�ne in IL a unary connective � suchthat �(P ); Q � P;Q �� P `A1� Q. This shortcoming(?) can be remedied in the full languageIL? at the cost of losing the �rst advantage of `pacA! over C1 which we have noted above.De�nition 18 '& =Df '
  
>Note that v('& ) is ? i� either v(') = ? or v( ) = ?, and v('& ) = > otherwise. Hence ifwe de�ne 'Æ =Df�(�'&') then v('Æ) = > if v(') 2 f>;?g, and v('Æ) = ? otherwise. Using thisfact, Proposition 10 and some routine checks it is easy to prove:Theorem 15 The f�;&; �_;�g-fragment of `A! is a proper extension of C1.Note The f�;&; �_;�g-fragment of `A! is a paraconsistent logic which still has over C1 the secondand third advantages noted above. In addition it is sensitive to relevance considerations, and it hasboth simple semantics and a nice proof system. These properties make it (so we believe) superiorto C1 or to any other paraconsistent logic which has been suggested in the literature.A �nal note: A1 can be taken as the restriction of J3 (the strongest logic produced by daCosta's school), to the language described in Corollary 4. Indeed the two structures have the same(designated) truth-values, and the connectives of IL? are de�nable in J3 (see [4]).References[1] A.R. Anderson and N.D. Belnap, Entailment, vol. I. Princeton University Press, 1975.[2] A.R. Anderson and N.D. Belnap, Entailment, vol. II. Princeton University Press, 1992.[3] Avron A., Relevant entailment - semantics and formal systems, Journal of Symbolic Logic, 49(1984), 334-342.[4] Avron A., On an implication connective of RM, Notre Dame Journal of Formal Logic, 27(1986), 201{209.[5] A. Avron, A constructive analysis of RM, Journal of Symbolic Logic, 52 (1987), 939{951.29
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