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1 Introduction

Recently external memory graph algorithms have received considerable attention because
massive graphs arise naturally in many applications involving massive data sets. One ex-
ample of a massive graph is AT&T’s 20TB phone-call data graph [11]. Other examples of
massive graphs arise in Geographic Information Systems (GIS). For instance, GIS terrains are
often represented using planar graphs and many common GIS problems can be formulated
as standard graph problems (Arc/Info [4], the most commonly used GIS package, contain-
s functions that correspond to computing depth-first, breadth-first, and minimum spanning
trees, as well as shortest paths and connected components). When working with such massive
graphs the I/O-communication, and not the internal memory computation time, is often the
bottleneck. Designing efficient external memory algorithms for such problems can thus lead
to considerable runtime improvements, as for example illustrated in our previous work [7].

Even though a large number of I/O-efficient graph algorithms have been developed in
recent years, a number of important problems still remain open. For example, developing
efficient algorithms for basic problems such as breadth-first search and depth-first search
remain open. In this paper we develop I/O-efficient algorithms for the minimum spanning
tree (MST) and single source shortest paths (SSSP) problems, as well as for multi-way planar
graph separation.

1.1 Problem Statement

MST and SSSP are well-known problems on a weighted graph G = (V,E): MST is the
problem of finding a spanning tree for G of minimum weight and SSSP is the problem of
finding the shortest paths from a given source vertex in G to all other vertices in G (the
length of a path is the sum of the weights of the edges on the path).

Consider an undirected graph G' = (V, E).! An f(V)-separator of G is a subset S of the
vertices of G of size f(V') such that the removal of S disconnects G into two subgraphs Gy
and Go, each of size at most % Lipton and Tarjan [23] proved that any planar graph has
an O(\/V )-separator and gave a linear time algorithm for finding such a separator. Using
this result recursively, a planar graph can be decomposed into @(%) subgraphs G; with O(R)

vertices each and O( VR) separator vertices, such that there is no edge between a vertex in Gj

and a vertex in G for i # j. We call such a decomposition a multi-way planar graph separation
of G. Graph separation is often used in the design of divide-and-conquer algorithms.

Throughout this paper we assume that the input graph G is given in edge-list represen-
tation. If G is planar we assume it is embedded in the plane. We also assume without loss
of generality that G is connected and that no two edges have the same weight. In some of
our algorithms we will assume that a breadth-first-search tree T" of G is given. In such cases
we assume that 7' is represented implicitly by storing with each vertex u in G its parent in T’
and marking every edge of G as either a tree or a non-tree edge.

1.2 Previous Results on 1/0-efficient Graph Algorithms

We work in the standard two-level I/O model with one (logical) disk [3, 20]. The model
defines the following parameters:

'For convenience we will use the name of a set to denote both the actual set and its cardinality.



Table 1: Best known upper bounds for basic graph theoretic problems.

Problem ‘ General undirected graphs ‘

DFS O(ZE+V) [12]
O ((V +scan(E)) - log & + sort(E))  [22]
BFS OV + £ -sort(V)) [25]
CC O (sort(E ) log log Y2) [25]
MST O (sort(E) - log 1) [12]
O (sort(E) -log B +scan(F) -log V)  [22]
SSSP | O(V+£-1og¥) [22]
N = V+F,
M = number of vertices/edges that can fit into internal memory,
B = number of vertices/edges per disk block,

where M < N and 1 < B < MY/(*9)_ for some £ > 0.2 An Input/Output (or simply 1/0)
involves reading (or writing) a block from disk into (from) internal memory. Our measure of
performance of an algorithm is the number of I/Os it performs. The number of I/Os needed to
read N contiguous items from disk is scan(N) = ©(Z) (the scanning bound), and the number
of 1/Os required to sort NV items is sort(N) = O( logy/p XY [3] (the sorting bound). In
practice the difference between an algorithm doing N I/Os and one doing scan(NV) or sort(N)
I/Os can be significant [7].

I/O-efficient graph algorithms have been considered by a number of authors [1, 2, 5, 6, 10,
12, 16, 19, 22, 24, 25, 26, 29]. Table 1 reviews the best known algorithms for basic graph theo-
retic problems on general undirected graphs. For directed graphs the best known algorithm for
breadth-first search (BFS) and depth-first search (DFS) use O ((V + scan(E)) - log 5 + sort(E))
I/Os [10]. Lower bound results were proved in [6, 12, 25]. Note that no O(sort(E)) (deter-
ministic) algorithm is known for any of the problems, and that the best known algorithms
for DFS, BFS and SSSP require Q(V) I/Os. MST and connected components (CC) can be
solved in O(sort(E)) I/Os with randomized algorithms [12, 1].

Improved algorithms have been developed for several special classes of graphs. For trees,
O(sort(NN)) algorithms are known for BFS and DFS numbering, Euler tour computation,
expression tree evaluation, topological sorting, as well as several other problems [10, 12].
For planar graphs, O(sort(NN)) algorithms are known for CC and MST [12]. For grid graphs
O(sort(N)) algorithms are known for BFS and SSSP, and an O(scan(N)) algorithm for CC [7].
See [30] for a complete reference.

Given that even very basic graph problems seem hard to externalize, it is natural to try
to reduce the problems to one another. A first step in this direction was taken by Hutchinson
et al. [19] who considered the problem of computing an O(\/N )-separator of a planar graph
I/O-efficiently. Given a BFS tree they showed how to compute a separator in O(sort(N)) I/Os.
Given this algorithm, it is straightforward to solve the multi-way planar graph separation
problem in O(log % -sort(N))) I/Os, simply by applying the algorithm recursively.

2Often it is only assumed that B < M /2 but sometimes, as in this paper, the very realistic assumption that
the main memory is capable of holding B? elements is made (or as here, B*™ for some ¢ > 0).



1.3 Our results

In Section 2, we give an O(sort(E) - loglog Y2) = O(sort(E) - loglog B) algorithm for the
MST problem on general undirected weighted graphs, improving the previous bound of
O (sort(E) - log B + scan(F) - log V') [22]. The algorithm uses the same general idea as the CC
algorithm by Munagala and Ranade [25] and consists of two phases: first a vertex contraction
algorithm is used to reduce the number of vertices to O(%), and then an O(V +sort(E)) MST
algorithm is used on the reduced graph. The new contraction algorithm uses ideas similar to
the ones used in [8, 14, 25|, as well as a simplified version of the basic contraction step used in
previous MST algorithms [8, 12, 13, 14, 22, 25, 28]. The new O(V +sort(E)) MST algorithm
is a modified version of Prim’s algorithm. It remains a challenging open problem to develop
an O(sort(E)) MST algorithm.

In Section 3 and 4, we show that the multi-way planar graph separation problem and
the SSSP problem can be reduced to the BFS problem in O(sort(/N)) I/Os: In Section 3,
we give an O(sort(N)) algorithm for the multi-way planar graph separation problem given
a BFS tree. The algorithm improves the straightforward bound of O(log % - sort(N)) I/Os
and uses a divide-and-conquer algorithm based on ideas from [18]. In Section 4, we show
how to use this result to solve the SSSP problem in O(sort(/N)) I/Os. The algorithm is a
generalization of our SSSP algorithm on grid graphs [7] and uses ideas similar to the ones
utilized by Frederickson [17]. We believe that our O(sort(IN)) graph separation algorithm
might prove helpful in reducing other problems on planar graphs to the BFS problem. It
remains a challenging problem to develop an O(sort(FE)) BFS algorithm. Another interesting
open problem is if it is possible to develop an O(sort(FE)) BFS algorithm for a planar graph
given a multi-way separation of the graph.

2 Minimum Spanning Tree on General Graphs

In this section we describe our MST algorithm on general undirected weighted graphs. The
basic idea is to reduce the number of vertices to % using an O(sort(E)) vertex reduction
algorithm O(log log ¥2) times, and then use an O(V +sort(E)) MST algorithm on the result-
ing graph. The overall I/O complexity will thus be O(sort(E) - loglog Y2 + £ + sort(E)) =
O(sort(E) - loglog ¥2) 1/Os. In Section 2.1 we first describe the O(V + sort(E)) MST al-
gorithm, and in Section 2.2 we then describe the reduction algorithm. The MST result is
summarized in the following theorem.

Theorem 1 The MST of an undirected weighted graph can be found in O(sort(E)-loglog V—EB)
I/0s.

2.1 An O(V +sort(E)) MST Algorithm

Our algorithm is a modified version of Prim’s internal memory algorithm [15]. The idea of
Prim’s algorithm is to grow the MST iteratively from a source node while maintaining a
priority queue on the vertices not included in the MST so far; the priority of a vertex is the
weight of the minimum edge connecting it to the current MST. The algorithm repeatedly
extracts the minimum priority vertex v, adds it to the MST, and updates the priority of the
vertices u adjacent to v. Specifically, the weight w of edge (v, u) is compared with the priority
of vertex u in the priority queue, and an update is performed if w is smaller than the current



priority. Prim’s algorithm cannot be implemented efficiently in external memory, the main
reason being that the current priority of a given vertex cannot in general be obtained without
doing one I/O. A direct implementation would thus lead to an O(E) I/O bound. Previously
known algorithms [12, 22] rely instead on vertex contraction methods [8, 13, 14].

Our modification of Prim’s algorithm consists of storing edges in the priority queue instead
of vertices. During the algorithm the priority queue contains (at least) all edges connecting
vertices in the current MST with vertices not in the tree. The queue can also contain edges
between two vertices in the MST. The algorithm works as follows: Repeatedly perform ez-
tract_min to extract the minimum weight edge (u,v) from the priority queue. If v is already
in the MST the edge is discarded. Otherwise v is included in the MST and all edges incident
to v, except (v,u), are inserted in the priority queue. The key to the I/O-efficiency of the al-
gorithm is that because we store edges in the priority queue we have a simple way of checking
whether a vertex is already included in MST — as all edges incident to v are inserted in the
priority queue when v is included in the MST, it follows that if both u and v are in the MST
when processing an edge e = (u,v), the edge e must appear in the priority queue twice. Thus
we can check if v is already included in the MST simply by performing one more extract-min
and checking if it returns the same edge e (recall that we assume that no two edges have the
same weight).

The algorithm performs at least one I/O for each vertex which is included in the MST in
order to read its adjacent vertices (traverse its adjacency lists). Thus processing all vertices
and edges takes V + % I/0s. It also performs O(E) insert’s and extract-min’s on the priority
queue. Using an external priority queue [5, 9] supporting these operations in O(% log s/ %)
I/Os amortized we obtain:

Lemma 1 The MST of an undirected weighted graph can be computed in O(V + sort(E))
1/0s.

2.2 MST Vertex-Reduction Algorithm

Our MST vertex reduction algorithm is obtained using ideas from the connected-component
algorithm of Munagala and Ranade [25] and the notion of “blocking values”. The standard
MST algorithm based on vertex contraction proceeds in [log V| phases [12, 22]. In each phase
the minimum cost edge adjacent to every vertex v is selected and output as part of the MST
and the vertices connected by the selected edges are contracted to supervertices. Let the size
of a supervertex be the number of vertices it contains from the original graph. After the ith
phase the size of every supervertex is at least 2¢. Since one contraction phase can be performed
in O(sort(£)) I/Os [12] this results in an O(sort(E) - log V') algorithm. The algorithm in [22]
utilizes that a contraction step can be performed more efficiently after O(log B) phases and
obtains an O(sort(E) - log B + scan(F) - log V') algorithm.

Our algorithm runs for [log %1 phases after which the number of supervertices is at
most £. Furthermore we reduce the number of I/Os used in the process by dividing the
[log Y21 phases into superphases requiring O(sort(E)) 1/Os each: Let N; = 20/2)" e Nijyj =
N;\/N;. Superphase i, for i > 0, consists of [log +/N;| phases. In a preprocessing step we run
the basic vertex contraction algorithm once to insure that the number of vertices before super-
phase 0 is Vg < Nlo = % We will maintain the invariant that before superphase ¢ the number

of supervertices is at most % To reduce the number of vertices to at most % it is therefore
7



sufficient to perform 3+ [logs > [log Y577 superphases and we obtain the O(sort(E)-log log Y2)
algorithm.

The phases in each superphase only work on a subset of the (remaining) edges. The
edge subsets are chosen in order to allow each supervertex to grow by a factor of v/Nj; in
superphase i. Let G; = (V;, E;) be the graph just prior to superphase i. We construct
a graph G, = (V;, El), where E! is a subset of E;. For each vertex v, E! contains the
[V/N;] lightest edges adjacent to v. Heavier edges e = (v,u) adjacent to v are only included
in E! if e is among the [v/N;] lightest edges adjacent to u. We define the blocking value
of v to be the weight of the ([v/N;] + 1)-th lightest edge adjacent to v. The set E! and
blocking values can be computed using O(sort(£;)) I/Os. If we guarantee that V; < %
as stated above, it follows that E! < 2V;[y/N;] < 4%. As each contraction phase in
superphase i can be performed in O(sort(E})) I/Os, it follows that superphase i requires
O(sort(E;) + sort(E!) - log(v/N;)) = O(sort(E) + sort(\/LNfi) -log(v/N;)) = O(sort(E)) 1/Os.
After performing all the phases of superphase ¢ the edges E; — E!, i.e. the heavy edges which
were not included in the sample, need to be re-incorporated in E;y;. This can be easily be
done as in [25] using O(sort(E)) I/Os in total. Details will appear in the full paper.

The only thing that remains to be described is how the individual phases in superphase ¢
are performed such that after superphase ¢ the number of supervertices is at most % and
such that only edges that actually belong to the MST are included. A phase is perftormed
as in the basic vertex reduction algorithm: For each vertex v consider the adjacent edge e
with minimum weight in E/. If the weight of e is smaller than the blocking value of v, then
we select e for contraction. If the weight of e is larger than the blocking value, no edges is
selected for v, since there might be a lighter edge adjacent to v in E; — E]. The selected
edges are contracted in O(sort(E)) I/Os (using the algorithm in [12, 22, 25] or a simpler
algorithm which we will include in the full version). After the contraction, the blocking value
of a supervertex is set to be the minimum of the blocking values of the contracted vertices.
The algorithm is correct as a simple induction argument can be be used to show that for
every supervertex v the (contracted) edge sample contains all edges adjacent to v with weight
smaller than the blocking value of v (i.e. the edges selected in the next phase belong to the
MST). If in superphase i the blocking value of a supervertex v prevents us from selecting an
edge for v to be included in the MST, then v must be the contraction of at least v/N; vertices
from V;. This follows from the fact that the blocking value of v corresponds to the blocking
value of some vertex u in V; and v must span the [y/N;| vertices adjacent to u in Ef. If
no blocking value prevents us from selecting an edges for v, then after [log+/N;| phases v
must have size at least 2108 VNi — V/N;. Tt follows that superphase i reduces the number of
vertices by a factor of at least v/Nj, i.e. the number of vertices after superphase i is at most
\/V]Q—i < Niyﬁi = %ﬂ as claimed by the invariant.

Lemma 2 Let G = (V, E) be an undirected weighted graph. The MST problem on G can be
reduced to the MST problem on a graph with at most % vertices in O(sort(E) - loglog V—EB)

I/0s.

3 Multi-way Planar Graph Separation

In this section, we show how to separate a planar graph G into @(%) subgraphs with O(R)
vertices each and a set of O(sort(IN)) separator vertices using O(sort(N)) I/Os.



Given a BFS tree T of G, Hutchinson et al. [19] showed how to compute a O(v/N)-
separator for G in O(sort(N)) I/Os. Their algorithm closely follows the algorithm by Lipton
and Tarjan [23]: The BFS tree T has the property that no edge crosses two or more levels, and
hence every level in T' is a separator in G. The basic idea is to use the “middle” level ¢; in T
(the level containing the vertex with number N/2 in the BFS numbering) as the separator.
Level /1 has the property that the total number of vertices on levels above £, as well as in
levels below ¢4, is less than N/2. The problem is that ¢; might contain more than O(v/N)
vertices. However, there exists a level £y above ¢ and a level /5 below ¢1 with O(\/N ) vertices
each, such that ¢y — ¢y < VN (that is, ¢y and ¢y are not too far away from ¢;). Levels ¢
and /o divide G into three subgraphs Gg, Gy and G consisting of the vertices on the levels
above £y, between £y and ¢ and below {5 respectively, with the property that Gy and G-
contain less than N/2 vertices and G has a spanning tree of bounded height V/'N. Refer
to Fig. 1 (a). It is easy to see that in order to find a separator for G it is enough to find
a separator in G [23]. Such a separator can be found using properties of the dual graph
of G1. The dual graph G* = (V*, E*) of a planar graph G is a planar graph with a vertex for
each face of G whose edges are in one-to-one correspondence with the edges of G. The dual
graph G* is obtained by placing a vertex in each face of G and connecting two faces f; and
f; adjacent to a common edge e = (u,v) of G with an edge (f;, f;) in £*. The edge (fi, f;)
in G* is called the dual edge of (u,v) in G. Let E' C E be a subset of edges in G. It is well
known that (V, E’) is a spanning tree of G if and only if (V*,(E — E’)*) is a spanning tree
in G* [21]. Thus the edges in (E — T)* form a spanning tree in G* which we denote TT. An
example is shown in Fig. 2(a). If 7' has bounded height v/N then every edge in (E —T) (and
therefore the corresponding edge in (E — T)*) determines a cycle in T' with at most 2V N
vertices. Assuming (without loss of generality) that G is triangulated, Lipton and Tarjan [23]
proved that there exists an edge e € (E — T') such that the number of vertices inside and
outside the cycle defined by e is < 2N/3, and showed how it can be computed efficiently using
a bottom-up traversal of the dual tree 7. Hutchinson et al. [19] showed how to perform all
these operations using O(sort(N)) I/Os.

As discussed in the introduction, the O(sort(N)) separator algorithm [19] can be used
to develop a recursive O(log % -sort(N)) multi-way separator algorithm in a straightforward

way. The idea in our new O(sort(IV)) algorithm is to obtain O(logy/ &) recursion depth

by increasing the fan-out of the separation from 2 to % and implement each step in O(%)

I/Os. In order to divide the graph in % subgraphs we use ideas similar to the ones used by
Goodrich [18]. The general idea is the following: Instead of finding only one level cutting
the graph in two halves, we find (roughly) % levels which cut the graph in O(ML/B)—sized
chunks. We then use these levels to find a set of levels with few vertices which divide G
into subgraphs such that each subgraph is either of size O(%) or has a spanning tree of
bounded height O(\/E) We then subdivide the subgraphs with bounded height into graphs
of size O(R) using properties of the dual graph. In Section 3.2 we show how this can be done
I/O-efficiently and prove the following lemma:

Lemma 3 A graph G with a spanning tree T of height H can be divided into @(%) subgraphs
of size O(R) each and O(% H) separator vertices in total using O(sort(N)) 1/Os.

After subdividing the bounded height subgraphs we recursively subdivide the subgraphs

of size O(ML/B). In Section 3.1 we give the details in our algorithm and prove the following:



(a)

Figure 1: (a) Illustration of the planar separator algorithm [23]; (b) Starter and cutter levels
inT.

Theorem 2 Let G = (V, E) be a planar graph and T a breadth-first search tree for G. Fur-
thermore assume 3 & > 0 such that M > B**¢. For any R = Q(M), G can be partitioned into
@(%) subgraphs G; of size O(R) each and a set of separator vertices S of size O(sort(N))
using O(sort(N)) 1/Os.

3.1 Separating Planar Graphs

In this section we prove Theorem 2 using Lemma 3. Let L(i) be the total number of vertices
on levels 0 through ¢ of T and define the starter levels to be the levels ¢ such that the interval
(L(i), L(i+1)] contains a multiple of [£], for some 0 < X < N. There are at most X starter
levels and the number of vertices between consecutive starter levels is smaller than [%}
Just like the ¢ level in Lipton and Tarjan’s algorithm [23], the starter levels divide G in
subgraphs of “small” size. However, as previously, the starter levels can contain too many
vertices. Therefore we consider the first level above each starter level, as well as the first
level below each starter level containing at most Y vertices, for some 0 < Y < N. We call
these levels the cutter levels. The cutter levels divide G into O(X) subgraphs G, consisting
of the vertices between two consecutive cutter levels, with the property that if the two cutter
levels defining G; are within two (consecutive) starter levels then G; has size O(%). If the
two cutters defining G; are not within two consecutive starter levels then G; has a spanning
tree of depth O(£). Refer to Fig. 1 (b).

As mentioned, the idea in our algorithm is to apply Lemma 3 to the subgraphs of bounded
height O(%) and recursively separate the subgraphs of size O(%) By choosing Y = % each

bounded height subgraph G; of size N; has height v/R, and it can thus be separated into
@(%) subgraphs of size O(R) and O(% VR) = O(%) separator vertices using O(sort(N;))
I/Os. Note that as we are not recursing on G; (that is, we are not touching G; again), the total
cost of separating all such subgraphs over all levels of the recursion adds up to O(sort(V))
in total. The separator vertices are the vertices of the O(X) cutter levels (each cutter level
has at most ¥ = % vertices), the separator vertices resulting from applying Lemma 3 to
the subgraphs of bounded height and the separator vertices resulted from the recursive calls.
Thus the total number of separator vertices is given by S(N) < X% + % + X S(%)

If we choose X = (%)1/4 and assume M > B?%¢ for some ¢ > 0, it can be shown that



X% = O(%) and logx % = O(logy/B X, so that S(N) = O(sort(N)).

The only thing remaining to discuss is how to represent a subgraph G; between two cutter
levels ¢; and ¢;41 in the format needed in order to apply Lemma 3 or perform the recursive
call. Both these steps require that a BFS tree is given along with the subgraph. The part
of T included in G; is not connected and thus it is not a BFS tree for G;. However, we can
easily produce such a tree by introducing a “fake” root v; and connecting it with “fake” edges
to all vertices on level ¢;11. Note that if T is given level-by-level this can easily be done for
all the subgraphs in O(%) I/Os. The fake vertices and edges are marked so that they can be
removed at the end of the algorithm. Details will appear in the full paper.

That our algorithm uses O(sort(N)) I/Os can be seen as follows. The preprocessing step
of computing the BFS level for each vertex in T" and sorting the edges of G by level can easily
be performed in O(sort(N)) I/Os using standard techniques (such as list ranking and Euler
tours) [12]. If we do not count the I/Os used to separate the subgraphs with bounded height,
one recursion step can be performed in O(%) I/Os, and the recurrence for the number of
I/Os used becomes T'(N) < % +X- T(%) Thus T'(N) = O(sort(NN)). As the total number
of I/Os used to separate the subgraphs of bounded height is O(sort(/N)), we have shown that
our algorithm uses O(sort(N)) I/Os in total. This concludes the proof of Theorem 2.

So far we have only discussed the case R = Q(M). If R is o(M) then we can use Theorem 2
to separate G in subgraphs of size O(M), then load each subgraph into main memory one
at a time and apply Lipton and Tarjan planar separator algorithm [23] until all subgraphs
have size O(R). This results in O(%) separator vertices. In some applications of the graph
separation it is necessary to bound not only the total number of separators .S, but also the
number of separator vertices adjacent to any subgraph. This can be done as follows: For each
subgraph which has Q(ﬁ) adjacent separator vertices mark the inner vertices as inactive and
apply Theorem 2 until the resulting subgraphs have O(%) (active) vertices. Fredrickson [17]
proves that this maintains the same bounds for the number of subgraphs and separators given
that the graph has bounded degree. Details will appear in the full paper.

Corollary 1 Let G = (V,E) be a planar graph and T a breadth-first search tree for G.
Furthermore assume 3 € > 0 such that M > B?>T¢. Then G can be separated in @(%)
subgraphs of O(R) vertices each and a set S of O(sort(N) + %) separator vertices using
O(sort(N)) 1/0s.

If G has bounded degree then the separation can be constructed such that each subgraph G;
is adjacent to O(SE) separator vertices.

3.2 Separating Planar Graphs of Bounded Height Spanning Tree

In this section describe how we can separate in O(sort(/N)) I/Os a planar graph G = (V, E)
with a spanning tree T' of height H into ©(%) subgraphs of size O(R) each and O(XH)
separator vertices.

Assume for simplicity that G is triangulated. (If this is not the case, we can triangulate
it using O(sort(NN)) I/Os [19] and mark the added edges so that they can be removed at the
end of the separation. Note that 7" remains a spanning tree after the triangulation). Let G*
be the dual of G and let TT = (E — T)* be the spanning tree in G*. The spanning tree T'f
can be computed from G and T in O(sort(N)) I/Os using a face finding algorithm as in [19]
and a few sorting steps. Each edge in T is the dual of an edge e = (u,v) in (F —T) and
there exists a unique path from u to v in T’; this path and e forms a cycle in G, and since T



has bounded height H, the cycle contains at most 2H — 1 vertices. Thus each edge in T
determines a cycle of size O(H) in G which separates G into the vertices inside the cycle and
vertices outside the cycle. Refer to Fig. 2 (a). It can be shown that if e is the centroid edge
of T, then the number of vertices inside and outside the cycle is roughly the same [18].

The main idea in our algorithm is to find O(%) cycles which partition G into subgraphs
of roughly equal size O(R). In order to do so, we ﬁrst discuss how to find O( ) edges in Tt
such that their removal divides 7T into subtrees of roughly equal size O(R). Then we show
that the duals of these edges define O(%) cycles in G with the desired properties.

Figure 2: (a) A triangulated graph G (solid lines), T (solid thick lines) and T (dotted lines).
(b) The decomposition of TT into its 10-bridges; square vertices are the attachments. (c)
Subtree of T and the induced cycle in G.

The decomposition of a tree into independent subtrees of approximately equal size was
studied by Gazit et al. [27] in the context of parallel R-contractions. We review briefly their
notations and results. Let D = (V| E) be a tree with N vertices. The weight W (v) of a
vertex v in D is the number of vertices in the subtree rooted at v. A vertex v is called R-
critical if v is not a leaf and [W(U 1> [W(U | for all children v' of v. Let C C V. Two edges e
and ¢’ of G are C-equivalent if there exists a path from e to ¢’ that avoids the vertices C.
The graphs induced by the equivalence classes of the C-equivalent edges are called the bridges
of C. The attachments of a bridge I are the vertices of I that are also in C. The R-bridges
of a tree D are the bridges of C, where C is the set of R-critical vertices of D. An example of
the decomposition of a tree into its R-bridges is shown in Fig. 2 (b). Gazit et al. [27] prove
the following: (1) The number of R-critical vertices in a tree of size N is at most % -1
(2) The number of R-bridges in a tree with bounded degree d is at most d(25 — 1). (3) The
number of vertices of an R-bridge is at most R+ 1. (4) If I is an R-bridge, then I can have
at most two attachments.

As the basic step in the computation of the R-bridges of D is the computation of the
weight of each vertex, it is easy to show how standard I/O-efficient algorithms can be used to
compute the R-bridges in O(sort(N)) I/Os. If G is a triangulated graph, 77 is a binary tree,
and thus it has at most % R-bridges. Each R-bridge defines two cycles in G determined by
the two edges incident to the two attachments. One of these cycles will be inside the other
and there are at most R + 1 faces inside the outer cycle but outside the inner cycle (the
faces corresponding to the vertices in the R-bridge). Thus the R-bridges of 77 determine
a separation of G into 4& subgraphs of at most R vertices adjacent to O(N H) separator
vertices in total. Given the R-bridges, the decomposition of G can be easily computed in
O(sort(NN)) I/Os and Lemma 3 follows.
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(b)

Figure 3: (a) Separation of a graph into subgraphs (boxed) and separators (black); (b) a
subgraph in the partition, its boundary vertices and boundary sets.

4 Single Source Shortest Paths on Planar Graphs

In this section we show how to use our graph separation result to obtain an efficient SSSP
algorithm for planar graphs with bounded degree.?

Consider separating a planar graph G into @(%) subgraphs G; = (V;, E;) of O(R) vertices
each and a set S of separator vertices, such that each subgraph is adjacent to O(%) separator
vertices. We call the separator vertices adjacent to G; the boundary wvertices of G;. Our
algorithm relies on the following observation: Consider a shortest path d(s,t) between two
vertices s and ¢ in G and let {s, s1, ...} denote its intersection with S. The portion of d(s,t)
between s; and s;41 is completely within some subgraph G; and it must be the shortest path
between s; and s;11 within Gj.

The main idea in our algorithm is to construct a new graph G by replacing each sub-
graph G; with a complete graph on its boundary vertices. If the source vertex s is not a
separator vertex, we also include s in Gf and connect it to the boundary vertices of the
subgraph containing it. The graph G® has S vertices and O(% : (%)2) = O(%) edges.
The weight of an edge in G is the length of the shortest path in G; between the corre-
sponding two boundary vertices. If R = O(M) these weights can be computed as follows:
We load each subgraph G; into main memory together with its boundary vertices and use an
internal memory all-pair-shortest-paths algorithm to compute the weights of the new edges
between the boundary vertices of G;, and write these edges to the disk. Since each separator
vertex is a boundary vertex for at most O(1) subgraphs (because of the bounded degree),

we use at most (¥ + 5) I/Os to load all the subgraphs and their boundary vertices. As

we use O(scan(S—NE)) I/Os to write the new edges, it follows that G can be computed in
O(S + Scan(%)) I/Os in total. Using S = O(sort(NV) + %) (Corollary 1) and choosing
— N _ B? is i
= StT(V] = Tog,, N/ < M, this is O(sort(N)) I/Os. ‘
Now assume wé'Know how to compute the shortest paths from s to all separator vertices

in O(sort(N)) I/Os. Using the observation mentioned above, we know that these paths are
identical to the shortest paths in the original graph G. We can then compute the shortest

3Note that any graph can be transformed into a graph with each vertex having degree at most 3 using a
simple transformation [17].
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paths from s to all the remaining vertices in G by loading each subgraph G; and its boundary
vertices in main memory, and using an internal memory algorithm to compute the shortest
path from s to each vertex ¢ in V; using the formula (s, t) = min,{0(s,v)+dg, (v, t)}, where v
ranges over all boundary vertices of G;. This takes O(S +scan(N)) I/Os, so the total number
of I/Os used is O(sort(N)).

All that remains is to show how to solve the SSSP problem on the graph G¥ with S =
O(sort(IV)) vertices and O(S;R) = O(N) edges in O(sort(N)) I/Os. To do so we use a slightly
modified version of Dijkstra’s algorithm which avoids the use of a decrease_key priority queue
operation. We want to avoid such an operation since the I/O bound of the best known external
data structure with this operation is O(%) [22], while priority queues with O(w)
I/O bound are known if this operation is not supported [5, 9]. During the algorithm we
maintain a list L of pairs of vertices of G and their distances. Initially all distances are co.
We maintain the invariant that the distance of a vertex in L is identical to the distances
stored in the priority queue controlling the algorithm. The algorithm repeatedly performs a
delete_min operation on the priority queue to obtain the next vertex v to process; then the
O(3E) = O(m) edges incident to v are loaded using O(1) I/Os and the O(38) =

(G N7
current distances) are loaded from L using O(

) boundary vertices adjacent to v are determined. These vertices (and their

W) I/0Os, and, without further I/Os we

then compute which vertices need to have their distances updated. Finally, the new distances
are written back to L and the corresponding updates are performed on the priority queue.
Note that as we know the current distance of a vertex which needs to have its distance
updated, we can perform the update in O(W) I/Os using a delete and an insert
operation.

Our algorithm performs O(N) operations on the priority queue using O(sort(N)) 1/Os
in total. It also uses O(S) = O(sort(/N)) I/Os in total to load the neighbors of each ver-

tex. Thus the I/O use is dominated by the O(m) I/Os used for each vertex to

load its adjacent vertices from L. Since there are O(sort(N)) vertices, this sums up to
O(m) -O(sort(N)) = O(N) I/Os in total.

In order to improve the I/O bound to O(sort(/N)) we modify the algorithm, taking into
account that there is some implicit adjacency between the boundary vertices. Let a boundary
set be a maximal subset of boundary vertices such that all boundary vertices in the subset are
adjacent to exactly the same subgraphs. An example is shown in Fig. 3 (b). Fredrickson [17]
showed that the number of boundary sets is equal to the number of subgraphs O(%). We
therefore modify our algorithm such that the vertices in the same boundary sets are stored
consecutively in L. Otherwise the algorithm remains unmodified. When a vertex v is pro-
cessed, the relevant boundary sets are determined and loaded from L as before. However, now

we can think of the accesses as involving full boundary sets, as opposed to boundary vertices.

Each boundary set is accessed O( o B ~ ) times (once by each of its adjacent boundary
vertices), and as there are O(%) boundary’sets we use O(—2L— - &) = O(sort(N)) I/Os in

logyr/ B %

total.
Theorem 3 Let G be a bounded degree planar graph and T a BFS tree for G. Furthermore

assume 3 & > 0 such that M > B**¢. The SSSP problem on G can be solved in O(sort(N))
I/0s.
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