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ABSTRACT:

Milenkovic and Compton in 2002 gave an analysis of the run time of Gosper’s algo-

rithm applied to a random input. The main part of this was an asymptotic analysis of

the random degree of the cancellation polynomial c(k) under various stipulated laws

for the input. Their methods use probabilistic transform techniques. Here, a more

general class of input distributions is considered, and limit laws of the type proved by

Milenkovic and Compton are shown to follow from a general functional central limit

theorem. The methods herein are probabilistic and elementary and may be used to

compute the means of the limiting distributions.
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1 Introduction

Great strides have been made recently in automatic summation of series, particularly

hypergeometric series. A source for this is [PWZ96], which includes a historical

development of the problem as well as a fine exposition of the recent and seminal work

of the three authors. A cornerstone of the automation of hypergeometric summation

is Gosper’s algorithm. In [MC02a], it is pointed out that “despite the fact that

Gosper’s algorithm is one of the most important achievements in computer algebra,

to date there are no results concerning the average running time of the algorithm.”

In that same work, Milenkovic and Compton undertake an analysis of the run time

under various stipulated probabilistic models for the inputs.

To describe the results of MC1, let f and g be polynomials, let rk := f(k)/g(k),

and let tn :=
∏n−1

k=1 rk. The series {tn} and its partial sums are known as hypergeomet-

ric, and rk is called the hypergeometric ratio. The purpose of Gosper’s algorithm is

to find a closed form expression for the partial sum SN :=
∑N

n=1 tn. Its input is often

specified as the rational function rk in factored form. Roots of f and g differing by

integers play a crucial role in the algorithm. Milenkovic and Compton observe that

not much generality is lost in assuming the roots have been classified according to

their remainders modulo 1, and that the problem has been restricted to one of these

moduli classes. In other words, they assume that f and g have integer roots. They go
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on to stipulate joint probability distributions for f and g, which have as parameters

an a priori bound on the location of the roots. Specifically, they assume that

f(k) =

m
∏

j=1

(k − j)Aj

g(k) =
m
∏

j=1

(k − j)Bj (1.1)

so all roots of f and g lie in [m] := {1, . . . , m}.

The “uniformR model” considered by Milenkovic and Compton may be described

as follows. For each of f and g, a sequence of n IID uniform picks is made from [m].

This gives the multisets of roots for f and g. In other words, for j ∈ [m], the

random variables Aj and Bj count how many of n IID picks from [m] are equal to j.

Milenkovic and Compton point out that this is an urn model of Maxwell-Boltzman

type. A key to their analysis is the representation of the variables {Aj} as a set

of m IID picks from a Poisson distribution (of any mean), conditioned to sum to

n. A second distribution of roots they analyze is the “multi-set R model”, in which

the multisets of roots (equivalently the sequences (Aj)
m
j=1 and (Bj)

m
j=1) are chosen

uniformly from all multisets (equivalently all sequences of m nonnegative integers

summing to n). This is a Bose-Einstein urn model, and is equivalent to conditioning

two IID sequences of geometric random variables (with any mean) both to sum to n.

They also discuss two models, the “Uniform T model” and the “Multiset T model”,

in which the roots of the numerator and denominator of the partial product terms tk
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are directly modeled by the two respective urn models; these models are not addressed

in this paper.

Milenkovic and Compton give a partial average case analysis, meaning that they

focus on a few quantities which are highly determinative of the run time and give

average case analyses of these. The most important such quantity is the degree of the

cancellation polynomial, c(k). This is defined as the minimal polynomial c for which

we may write

f(k)

g(k)
=

a(k)

b(k)

c(k + 1)

c(k)
(1.2)

and also satisfying

GCD(a(x), b(x− h)) = 1 for all nonnegative integersh . (1.3)

The determination of this polynomial is Step 2 in the version of Gosper’s algorithm

described in [Wis03], which is distilled from [PWZ96]. Milenkovic and Compton

obtain the following results (they use N in place of the m in this paper). The draft of

their manuscript cited here is a very preliminary version which the authors have kindly

provided. Consequently, only results independently proved in the present paper are

quoted here, though in fact the manuscript [MC02a] obtains explicit constants for the

asymptotic expectations.

Theorem 1 (Milenkovic and Compton (2002) Theorems 20 and 21) In the
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uniform R model, if n/m → λ, the expected degree of c(k) is asymptotic to

C1(λ)m
3/2 .

In the multiset R model, they find that when λ is sufficiently large, the expected degree

of c is asymptotically

C2(λ)m
3/2 .

The method of [MC02a] is to compute transforms (generating functions) for the

unconditioned distributions, in which the variables Aj and Bj are independent Pois-

sons or geometrics, and then de-Poissonize, according to machinery they developed

in [MC02b].

Analytic de-poissonization may be technically somewhat involved; see for exam-

ple [JS99]. The present paper also relies on the representation of the stipulated

distributions as IID conditioned on a fixed sum. After that, however, the method

herein is purely probabilistic, relying on limit theory for the random walk whose in-

crements are Aj −Bj . Theorem 3 below, whose proof is a straightforward application

of random walk limit theory, shows that as n,m → ∞ with n/m = λ+ o(λ−1/2), the

expected degree of c is

(c+ o(1))m3/2 (1.4)

where c is a certain expectation taken with respect to the Brownian bridge. For the
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uniform and multiset R models, the constant c is calculated respectively as

cunif =
π
√
2λ

16
; (1.5)

cmulti =
π
√

2λ(λ+ 1)

16
. (1.6)

The authors of [MC02a] are aware of the random walk representation, but it appears

that they use this only via analytic transforms, and not via any scaling limits of the

random walk paths.

2 Definitions and results

Let F be a distribution on the nonnegative integers with mean λ and variance V < ∞.

We assume throughout that the GCD of the support of F is 1, as is true for Poisson

distributions and geometric distributions of any mean. Let PF,m be the probability

measure on S := Z2m making the coordinates IID with common distribution F . De-

note the first m coordinates by A1, . . . , Am and the last m coordinates by B1, . . . , Bm.

Let QF,m;n be the result of conditioning PF,m so that

m
∑

j=1

Aj =

m
∑

j=1

Bj = n .

Associated to each ω ∈ S are the polynomials f and g defined by (1.1), and the

associated hypergeometric series with ratio rk = f(k)/g(k). Define a function β :
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S → Z+ by letting β(ω) be the minimal degree of a polynomial c satisfying (1.2) for

the polynomials f and g. The next result, proved at the end of the section, provides

an alternative expression for β, which is essentially the random walk representation

in [MC02a, Theorem 1].

Define Xj := Aj − Bj and Sk :=
∑k

j=1Xj, with the convention that S0 := 0.

Define Mk := min{Sj : 0 ≤ j ≤ k} and define M̃k := min{Sj : k ≤ j ≤ m}. Let

τ := min{k : Sj ≥ Sk ∀j > k} denote the time of the first minimum of the process

{Sj : 0 ≤ j ≤ m}. For each j, define Yj := Sj − Mj and Ỹj := Sj − M̃j . Define

Ij := Yj1j≤τ + Ỹj1j>τ . At the end of this section we will prove:

Lemma 2

β =

m−1
∑

j=1

Ij =

τ
∑

j=1

Yj +

m−1
∑

j=τ+1

Ỹj .

Under the measures PF,m and QF,m;n, the quantities Aj, Bj, Xj , Yj, β and so forth

become random variables. In order to state the main results of this paper, some

definitions are required that mirror the definitions of these quantities but on the

space of continuous limits.

Let Ω be the space of CADLAG paths on [0, 1], with filtration {Ft}. For ω ∈ Ω,

define the minimum process M∗ by M∗(ω)(t) = inf{ω(s) : s ≤ t}. Define M̃∗ to be

the right to left minimum process M̃∗(ω)(t) = inf{ω(s) : s ≥ t}. Define the process
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Y to be ω −M∗ and Ỹ to be ω − M̃∗. Define τ = inf{t : ω(s) ≥ ω(t) ∀s > t} to be

the time of the first minimum and let I be the process Y 1t≤τ + Ỹ 1t>τ . Finally, we

define β∗(ω) to be the quantity
∫ 1

0
I(ω)(t) dt.

Let P2V be the law of a centered continuous Gaussian process with covariances

Eω(s)ω(t) = 2V (s ∧ t) .

In other words, P2V is a Brownian motion with amplitude
√
2V . Let Q2V be the law

of a centered continuous Gaussian process with covariances

Eω(s)ω(t) = 2V ((s ∧ t)− st) . (2.7)

In other words, Q2V is a Brownian bridge of amplitude
√
2V . Recall that the mean

and variance of F are denoted by λ and V . The first main result of the paper, proved

in the next section, is:

Theorem 3 Let m → ∞ with n = λm+ o(m1/2). Then

∫

β dPF,m = (K1 + o(1))m3/2 (2.8)

and
∫

β dQF,m;n = (K2 + o(1))m3/2 (2.9)

with

K1 :=

∫

β∗ dP2V ; (2.10)
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K2 :=

∫

β∗ dQ2V . (2.11)

The integrals (2.10) and (2.11) may be evaluated, leading to quantitative versions:

Theorem 4 Consider the measure PF,m, under which {Aj , Bj : 1 ≤ j ≤ m} are IID

and have common variance V . Then as m → ∞,

Eβ = (1 + o(1))
2

3

√

V

π
m3/2 .

Theorem 5 Suppose that N(m) is an integer satisfying n(m)/m = λ + o(m−1/2) as

m → ∞. Consider the measure QF,m;n, under which {Aj , Bj : 1 ≤ j ≤ m} have the

distribution of IID picks from F conditioned on
∑m

j=1Aj =
∑m

j=1Bj = N . Then as

m → ∞,

Eβ = (1 + o(1))
π
√
2

16

√
Vm3/2 .

Remarks:

(1) Theorem 3 emerges without much difficulty from the convergence of

the random walks to Brownian paths. Thus not only does m−3/2 times

the PF,m expectation of β converge to E2V β
∗, but the PF,m distribution

of m−3/2β converges to the P2V distribution of β∗.
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(2) Although it is relatively easy and is superseded by the two quantitative

results, Theorem 3 is worth stating separately for the following reason: the

computations in Theorems 4 and 5 are a little tricky, and it is instructive

to see that the form of the result does not depend on calculations which

are not transparent.

(3) The asymptotics obtained by [MC02a] for both the uniform and mul-

tiset models pertain to Theorem 5. Theorem 4 corresponds to two models

discussed in [MC02a] but not quoted here, where the roots of f and g

are assumed to be unconditioned picks from the Poisson (respectively ge-

ometric) distributions, hence not necessarily equinumerous.

The rest of the organization of this paper is as follows. The functional central

limit arguments are spelled out in Section 3. The values of the constants K1 and K2

are then computed in Section 4. In the remainder of this section we prove Lemma 2.

We begin with an intermediate representation.

For each j between 1 and m, place Aj red balls and Bj blue balls in an urn marked

j; this will be called “position j” or “time j”. An admissible matching of the balls is

a set of pairs of balls such that

(i) each pair contains one red ball and one blue ball; say that these two balls are
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matched, and any ball not in the union of pairs is called unmatched;

(ii) the pairs are pairwise disjoint;

(iii) if a red ball in position i is matched with a blue ball in position j, then i ≤ j;

(iv) if there is an unmatched red ball in position i and an unmatched blue ball in

position j then i > j (that is, among unmatched balls, all red balls sit to the

right of all blue balls).

For each admissible matching ξ, define the weight w(ξ) to be the sum over all pairs

in the matching of j − i, where j is the position of the blue ball and i is the position

of the red ball.

Proposition 6

β = min{w(ξ) : ξ is an admissible matching}.

Proof: For every matched pair in positions i and j, we have

x− i

x− j
=

j−1
∏

s=i

x− s

x− (s+ 1)
=

e(k + 1)

e(k)

where e(x) =
∏j−1

s=i (x − s). Thus any admissible matching ξ of weight w yields

a solution H(ξ) to (1.2) where c has degree w. Conversely, let c solve (1.2) and

have degree w. If w = 0 then the empty matching is admissible. Assume now, for
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induction, that w > 0 and that for any f ′, g′ represented by red and blue balls in

urns, and any solution c′ to (1.2) of degree less than w, there is an admissible ξ for

that urn problem with c′ = H(ξ). For some j which is a root of c, let c′ denote c

with the linear factor (x− j) removed. By induction, there is a matching ξ′ of weight

w−1, with H(ξ′) = c′, admissible for the urn problem gotten from the original one by

adding a blue ball at position j and a red ball at j+1. Both of these new balls must

be matched in ξ′, say in pairs of positions (s, j) and (j+1, t), whence replacing these

with the pair (s, t) produces a ξ admissible for the original problem with H(ξ) = c.

�

Proof of Lemma 2: For any admissible matching ξ, define dj(ξ) to be the number

of red balls in positions 1, . . . , j matched with blue balls in positions j + 1, . . . , m.

Elementarily, summing by parts,

w(ξ) =
∑

pairs of

positions (i, j)

∑

j≤t<i

1 =
∑

t

dt(ξ) . (2.12)

Fix any j ≤ τ and let j∗ = argmin{Sj : 0 ≤ i ≤ j} so that Sj∗ = Mj . Then

in positions j∗ + 1, . . . , j there are a total of Yj more red balls than blue balls. In

positions j + 1, . . . , τ , there is an excess of Sj − Sτ ≥ Sj − Mj = Yj blue balls over

red balls. In an admissible matching, either every red ball at a position at most j

is matched or every blue ball at a position at least j + 1 is matched. It follows that

either at least Yj red balls from positions j∗ + 1, . . . j are matched to blue balls in
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positions beyond j, or at least Yj blue balls from positions j + 1, . . . , τ are matched

with red ball in positions up to j. In either case, dj(ξ) ≥ Yj.

Similarly, fix any j > τ and let j∗ ≥ j satisfying Sj∗ = M̃j . There is an excess of

Ỹj−1 blue balls in positions j, . . . , j∗ − 1. There is an excess of red balls in positions

τ+1, . . . , j−1 of Sj−1−Sτ ≥ Ỹj−1. Reasoning as before, one sees that dj−1(ξ) ≥ Ỹj−1.

Summing over j now gives

m−1
∑

j=1

dj(m) ≥
τ

∑

j=1

Yj +
m−1
∑

j=τ

Ỹj . (2.13)

Note that Yτ = Ỹτ = 0, so this is equal to
∑m−1

j=1 Ij. Minimizing over ξ then gives half

of the conclusion of the theorem: β ≥ ∑m−1
j=1 Ij .

To prove the other half, we produce an admissible matching ξ with dj(ξ) = Ij for

all 1 ≤ j ≤ m−1. In particular, dτ = 0, so no ball in a position at most j is matched

with a ball in a position beyond j, and ξ may be decomposed into a matching on

balls in urns 1, . . . , j and another on balls in urns j + 1, . . . , m. We construct these

separately. An algorithm for the first is as follows.

Initialize j := 1. Initialize a LIFO stack. Pull red balls out of urn j and

place them on the stack until there are no more red balls in urn j. Pull

blue balls out of urn j: while the stack is non-empty, match each blue ball

with the top element of the stack; once the stack is empty, label each new
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blue ball “unmatched” and discard it. When urn j is empty, increment j

and execute the loop until finished with the step j = τ .

It is easy to see that all red balls in positions up to τ will be matched, since every

time a red ball goes on the stack, there are more blues and reds to follow by time τ

and no blue will be discarded until that red ball is matched. Inductively, it is easy to

check that:

• the stack size after step j is Yj;

• the change in stack size from time j − 1 to j is max{Xj,−Yj};

• the total number of balls discarded through time j is −Mj .

From this one sees that dj(ξ) is equal to the stack size after time j, and is therefore

equal to Yj. A stack algorithm dual to this works in the case j > τ , working backward

from time m to τ , stacking blue balls and matching or discarding reds. It constructs

the other half of ξ so that dj(ξ) ≥ Yj for all j > τ . This completes the proof of

Lemma 2. �
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3 Proof of Theorem 3

Let T be the topology on Ω generated by the sup norm |ω| := sup0≤t≤1 |ω(t)|. The

following lemma is necessary only because τ is not a continuous function.

Lemma 7 β∗ is a continuous function on Ω with respect to T .

Proof: Suppose sups |ω1(s) − ω2(s))| ≤ ǫ. Fix any t. It is clear that |M(t, ω1) −

M(t, ω2)| ≤ ǫ and likewise for M̃ , hence these are continuous. If τ(ω1), τ(ω2) ≥ t, it

follows immediately also that |I(t, ω1)− I(t, ω2)| ≤ 2ǫ. Likewise, if τ(ω1), τ(ω2) > t,

it follows that |I(t, ω1)− I(t, ω2)| ≤ 2ǫ.

Suppose now that τ1 := τ(ω1) < t ≤ τ2 := τ(ω2). Then

M̃(t, ω1) ≥ ω1(τ1) ≥ ω2(τ1)− ǫ ≥ M(t, ω2)− ǫ

since τ1 is one of the times over which the inf defining M(t, ω2) is taken. Similarly,

M̃(t, ω2) ≥ ω2(τ2) ≥ ω1(τ2)− ǫ ≥ M(t, ω1)− ǫ .

It follows that

∣

∣

∣
M̃(t, ω1)−M(t, ω2)

∣

∣

∣
≤ ǫ . (3.14)

Together with |ω1(t)− ω2(t)| ≤ ǫ, this shows that |I(t, ω1)− I(t, ω2)| ≤ 2ǫ. A similar

argument shows this in the case that τ2 < t ≤ τ1. This establishes continuity of I,

with continuity of D following by integration. �
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Proof of (2.8): Recall the definition of the partial sums Sj on S and define a map

κ : S → Ω by

κ(ω)(t) = m−1/2S⌊mt⌋ .

The following relations are evident:

τ ∗ ◦ κ = m−1τ ;

M∗(κ(ω)(t)) = m−1/2M(ω(⌊mt⌋)) ;

M̃∗(κ(ω)(t)) = m−1/2M̃(ω(⌊mt⌋)) ;

Y ∗(κ(ω)(t)) = m−1/2Y (ω(⌊mt⌋)) ;

Ỹ ∗(κ(ω)(t)) = m−1/2Ỹ (ω(⌊mt⌋)) ;

I∗(κ(ω)(t)) = m−1/2I(ω(⌊mt⌋)) ;

β∗ ◦ κ = m−3/2β .

Let P(m) denote the image under κ of PF,m. The functional central limit theorem

says that the laws under P(m) of κ converge weakly as m → ∞ to the measure P2V .

See [Bil86, Theorem 37.8] for a proof when p ≥ 4 or [Dur96, Theorem 6.3 of Chapter 7]

for a general proof using Skorohod embedding. This and Lemma 7 would complete

the proof of (2.8) if β∗ were bounded. Since β∗ is not bounded, we may define for

each L > 0,

IL := sgn(I∗) (|I∗| ∧ L) .
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We may then conclude that the expectation with respect to P(m) of the bounded

continuous function β(L) :=
∫

I(L) converges as m → ∞ to its expectation with

respect to P2V .

Lemma 8 Let ßmax := sup0≤t≤1 ω(t). Then

lim
L→∞

sup
m

E(m)ßmax1ßmax>L
= 0 .

Assuming this for the moment, we observe that P(m) is symmetric so the same

holds with inf in place of sup, and thus

lim
L→∞

sup
m

E(m)ßspan1ßspan>L
= 0 (3.15)

where ßspan = supt ω(t)− inft ω(t). Since

|β∗(ω)− β(L)(ω)| ≤ ßspan := sup
t

ω(t)− inf
t
ω(t)

and β∗ = β(L) on the event {ßspan ≤ L}, the inequality (2.8) follows from (3.15) and

the convergence of E(m)βP (L) to E2V β(L).

Proof of Lemma 8: By the L2 maximum inequality ([Dur96, Theorem 4.4.3]),

E(m)ßmax2 ≤ 4Eω(1)2

= 4EF,m(m
−1/2Sm)

2

= 4V , (3.16)
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and hence

E(m)ßmax1ßmax>L
≤ L−1E(m)ßmax2 ≤ 4V

L
(3.17)

for all m, proving the lemma. �

Proof of (2.9): Recall that Q2V denotes the law on Ω of a Brownian bridge of

amplitude
√
2V . The proof proceeds analogously to the proof of (2.8). In place of the

standard functional central limit theorem is a well known result that may be found,

among other places, in [Pit02, equation (6) of Section 0.4] (refer to [DK63] for the

proof).

Lemma 9 (Conditional Functional CLT) Let n(m) → ∞ asm → ∞ with n(m)/m =

λ+o(m−1/2). Recall that QF,m;n is the measure on (Z+)2m whose coordinates have the

distribution of IID draws from F conditioned on
∑m

j=1Aj =
∑m

j=1Bj = n and recall

the aperiodicity assumption on F . Let Q(m) denote the image under κ of QF,m;n.

Then the Q(m) law of {Sj : 1 ≤ j ≤ m} converges weakly to Q2V . �

All that remains is to show the analogue of Lemma 8 with Q(m) in place of P(m).

As in (3.17), this will follow once we have shown a uniform bound on the Q(m) second

moment of ßmax2 analogous to (3.16). This in turn follows immediately from the

inequality

QF,m;n(ßmax > L) ≤ CPF,m(ßmax > L) (3.18)
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where hereafter C may change from equation to equation but will depend only on F .

To prove (3.18), let G be the event that
∑m

j=1Aj =
∑m

j=1Bj = n. By the local central

limit theorem, PF,m(G) is asymptotic to C/n, hence, using time-reversal symmetry

of the path {Sj} under PF,m,

QF,m;n(ßmax > L) =
PF,m(ßmax > L;G)

PF,m(G)

≤ C nPF,m(ßmax > L;G)

= 2C n
∑

j>L

∑

t≤m/2

PF,m(ßmax = j = St;G) . (3.19)

It then suffices to show

PF,m(ßmax = j = St;G) ≤ Cn−1PF,m(ßmax = j = St) (3.20)

since then resumming (3.19) proves (3.18).

Let l = ⌊3m/4⌋, let Fl be the σ-field generated by {Ai, Bi : i ≤ l} and let H be

the event that St = max{Si : i ≤ l}. The local central limit theorem [Dur96, (5.2) in

Chapter 2] gives PF,m(G | Fl) ≤ Cn−1, whence

PF,m(ßmax = j = St;G) ≤ PF,m(St = j;H ∩G)

≤ PF,m(St = j;H)PF,m(G | Fl)

≤ Cn−1PF,m(St = j;H)

Conditioning again on Fl, we see that PF,m(St = j;H) ≤ Cn−1PF,m(St = j = ßmax),

which establishes (3.20), hence (3.18) and the theorem. �
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4 Evaluation of the constants

Let

D1(ω) :=

∫ τ

0

(ω(t)−M(t)) dt .

By symmetry,
∫

D1 dP2V = (1/2)
∫

β∗ dP2V and similarly,
∫

D1 dQ2V = (1/2)
∫

β∗ dQ2V .

Thus it suffices to compute expectations of D1.

Proof of Theorem 4: For a process with law P2V , the process Y (t) = ω(t)−M(t)

is well known to have the same distribution as the law under P2V of the reflected

Brownian motion {|ω(t)| : 0 ≤ t ≤ 1} (see, e.g., [Kal02, Prop. 13.13]). Clearly, the

map ω 7→ ω−M has the property that t is a left-to-right minimum for ω if and only

if t is a zero of ω −M . The last left-to-right minimum is the global minimum, which

occurs at the last zero of ω − M . Because the process ω − M is distributed as |ω|,

the location of the last zero of ω −M is distributed as the last zero of ω. This has

an arc-sine density π−1(x(1− x))−1/2 dx [Dur96, Example 4.4]. The following lemma

writing Brownian motion as a mixture of bridges up to the last zero follows directly

from the strong Markov property, scaling, and the fact that the bridge is a Brownian

motion conditioned to return to zero:

Lemma 10 Let L = L(ω) = sup{t ≤ 1 : ω(t) = 0} be the last zero of Brownian
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motion and let g : Ω → R+ depend only on ω|[0,L(ω)]. Then

∫

Ω

g dP2V =

∫ 1

0

dt

π
√

t(1− t)

∫

Ω

g dQ
(t)
2V (ω)

where the inner integral is on Ft and Q
(t)
2V is the law on Ft of a bridge of amplitude

√
2V on [0, t], that is, a centered Gaussian process with covariance

Eω(u)ω(v) = u ∧ v − uv

t
.

�

Using this, c may be evaluated as follows. By definition, by [Kal02, Prop. 13.13],

and lastly by Lemma 10 applied to the integral up to L of |ω|, we have

∫

Ω

D1 dP2V (ω) =

∫

Ω

∫ τ

0

(ω(s)−M(ω)(s)) ds dP2V

=

∫

Ω

∫ L(ω)

0

|ω(s)| ds dP2V

=

∫ 1

0

dt

π
√

t(1− t)

∫

Ω

dQ
(t)
2V

∫ t

0

|ω(s)| ds .

From the covariance structure of Q
(t)
2V , we see this law makes ω(s) is a centered

Gaussian with variance s(1− s/t). The expected absolute value of a N(0, a) random

variable is
√

2a/π. Switching the order of the two inner integrals, we may then write

∫

Ω

D1 dP2V (ω) =

∫ 1

0

dt

π
√

t(1− t)

∫ t

0

ds

∫

Ω

|ω(s)| dQ(t)
2V (ω)

=

∫ 1

0

dt

π
√

t(1− t)

∫ t

0

ds

π
√

t(1− t)

√

4V

π

√

s
(

1− s

t

)

.
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The evaluation is now straightforward integration. Substitute s = tu and ds = t du

to get

∫

Ω

D1 dP2V (ω) =

√

4V

π

∫ 1

0

dt

π
√
1− t

∫ 1

0

√

u(1− u) du

=

√

4V

π

∫ 1

0

dt

π
√
1− t

π

8

=
1

4

√

V

π

∫ 1

0

t√
1− t

dt

=
1

3

√

V

π
.

Doubling yields
∫

β∗ dP2V and finishes the proof of Theorem 4, that is, K1 =

(2/3)
√

V/π ≈ 0.376
√
V . �

Proof of Theorem 5: If the distribution of ω(t) − m(t) for a Brownian bridge

were explicitly known in a usable form, the computation of the Q-expectation would

be analogous to the P-expectation of D. In the absence of such a representation, the

second computation ignores the representation of the law of ω−M as that of |ω| and

proceeds as follows.

The counterpart to Lemma 10 is the following joint density for the pair (ω(t),M(ω)(t))

under Q1 conditioned on τ > t.

Lemma 11 For fixed t ∈ (0, 1), define the positive function fH on the set R :=

21



{(x, y) : y ≥ 0 x ≥ −y} as follows:

fH(x, y) :=
2

πt3(1− t)3
(x+ 2y)e−(x+2y)2/(2t(1−t)) .

Then fH is a conditional density for (ω(t),−M(ω)(t)) under Q1 conditioned on τ > t.

Proof: Begin with the computation of a density for (ω,M) under the standard

Brownian measure P. By the reflection principle, using Pa to denote standard Brow-

nian motion starting at a, one has

P0(ω(t) ∈ [x, x+ dx],M(t) ≤ −y) = P−2y(ω(t) ∈ [x, x+ dx])

=

√

1

2πt
e−(x+2y)2/(2t) dx .

Differentiating with respect to y yields

P0(ω(t) ∈ [x, x+ dx],M(t) ∈ [−y,−y + dy]) =
4(x+ 2y)

2t

√

1

2πt
e−(x+2y)2/(2t) dx dy

(4.21)

On R.

Next, compute the joint density

P(ω(t) ∈ [x, x+ dx],M(t) ∈ [y, y + dy], ω(1) ∈ [0, dz], τ > t) .

To do this, according to the Markov property, one must multiply (4.21) by

Px(ω(1− t) ∈ [0, dz], min
0≤s≤1−t

ω(s) ≤ −y) .
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By the reflection principle, this last factor is equal to

P−2y−x(ω(1− t) ∈ [0, dz]) =

√

1

2πt
e−(x+2y)2/(2(1−t)) dz ,

and multiplying and simplifying 1/t+ 1/(1− t) to 1/(t(1− t)) in the exponent gives

a joint density of

x+ 2y

π
√

t3(1− t)
e−(x+2y)2/(2t(1−t)) dz dx dy . (4.22)

A change of variables simplifies the computation a little. Let u = x + 2y and

v = (2x − y)/5, so that du dv = dx dy and x = (u + 10v)/5, y = (2u − 5v)/5. The

region R is transformed into the region R′ := {u ≥ 0, (−3/5)u ≤ v ≤ (2/5)u. Now

rewrite the density (4.22) as

u

π
√

t3(1− t)
e−u2/(2t(1−t)) dz du dv . (4.23)

The conditional density of (u, v) given ω(1) ∈ [0, dz] and τ < t, is given by

normalizing this. One must divide by the integral of (4.23) over R′, computed by a

simple linear change of variables u = r
√

t(1− t) in the third line:

∫ ∞

0

∫ (2/5)u

−(3/5)u

u

π
√

t3(1− t)
e−u2/(2t(1−t)) dv du dz

=

∫ ∞

0

u2

π
√

t3(1− t)
e−u2/(2t(1−t)) du dz

=

∫ ∞

0

t(1− t)
r2

π
√

t3(1− t)
e−r2/2

√

t(1− t) dr dz

=
1− t√
2π

dz
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using the fact that
∫∞

0
r2e−r2/2 dr =

√

π/2. Dividing,

fH(x(u, v), y(u, v)) =

√

2

πt3(1− t)3
ue−u2/(2t(1−t))

and plugging in u = x+ 2y proves the lemma. �

Proof of Theorem 5 continued: Let G denote the CDF for the time at which

a Brownian bridge on [0, 1] reaches its minimum. Set the amplitude 2V = 1 for

convenience, and note that ω(t)−M(t) = x−(−y) = (3u+5v)/5. Then by Lemma 11,

we have

∫

Ω

D1 dQ1 =

∫

Ω

∫ 1

0

(ω(t)−M(t)) 1τ>t dt dQ1(ω)

=

∫ 1

0

dt (1−G(t))

∫

Ω

(ω(t)−M(ω)(t)) d(Q1 | τ > t)(ω)

=

∫ 1

0

dt (1−G(t))

∫

R′

3u+ 5v

5
fH(x(u, v), y(u, v)) du dv . (4.24)

The integral over R′ may be computed by substituting u = r
√

t(1− t) as before

to get

∫

R′

3u+ 5v

5
fH(x, y)dv du =

√

2

πt3(1− t)3

∫ ∞

0

du ue−u2/(2t(1−t))

∫ (2/5)u

(−3/5)u

3u+ 5v

5
dv

=

√

2

πt3(1− t)3

∫ ∞

0

ue−u2/(2t(1−t))(
3

5
u2 − 1

10
u2) du

=

√

1

2πt3(1− t)3

∫ ∞

0

u3e−u2/(2t(1−t)) du

=

√

1

2π

√

t(1− t)

∫ ∞

0

e−r2/2 dr

=
1

2

√

t(1− t) .
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Finally, one may evaluate the integral in (4.24) without knowing the exact distri-

bution function G. By symmetry, we know G(t) +G(1− t) = 1. The integral over R′

is symmetric under t 7→ 1− t. Thus

∫

Ω

D1 dQ1 =

∫ 1

0

(1−G(t))
1

2

√

t(1− t) dt

=

∫ 1

0

1

4

√

t(1− t) dt

=
π

32
.

Now doubling to get D and multiplying by the amplitude of
√
2V leads to

∫

Ω

DdQ2V =
π
√
2V

16
,

which establishes the value of K2 and finishes the proof of Theorem 5.
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