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Abstract

Let q > 1 be an integer and let a and b be elements of the
residue ring ZZq of integers modulo q. We show how, when given a
polynomial f ∈ ZZq[X] and approximations to v0, v1 ∈ ZZq such that
v1 ≡ f(v0) mod q one can recover v0 and v1 efficiently. This result has
direct applications to predicting the polynomial congruential genera-
tor: a sequence (vn) of pseudorandom numbers defined by the relation
vn+1 ≡ f(vn) mod q for some polynomial f ∈ ZZq[X]. The applications
lead to analogues of results known for the linear congruential generator
xn+1 ≡ axn + b mod q, although the results are much more restrictive
due to nonlinearity of the problem.

Keywords: Noisy interpolation, lattice basis reduction, polynomial
congruences, predicting pseudorandom generators

1 Introduction

For an integer q > 1 we denote by ZZq the residue ring of integers modulo
q. We always represent the residue classes from ZZq by elements of the set
{0, 1, . . . , q− 1}. As usual, we denote by ZZ∗q the set of invertible elements of
ZZq.

Accordingly, for a prime p, we denote by IFp ∼= ZZp the field of p elements
and as before, we assume that it is represented by the set {0, 1, . . . , p − 1}.
In particular, sometimes, where obvious, we treat elements of ZZq and IFp as
integers in the above range.

Here we consider the noisy polynomial evaluation problem in ZZq: given
a polynomial f(X) ∈ ZZq[X] and approximations to v0, v1 ∈ ZZq, where v1 ≡
f(v0) mod q, recover v0 and v1. By an approximation to an integer vi, we
mean an integer wi such that |wi − vi| is small.

The question has applications to, and has been motivated by, the pre-
dictability problem for non-linear pseudorandom number generators. To be
more precise, given a polynomial f(X) ∈ ZZq[X], we define the polynomial
congruential generator to be a sequence (vn) of elements of ZZq satisfying the
recurrence relation

vn+1 ≡ f(vn) mod q, n = 0, 1, . . . , (1)

where v0 is the initial value. If deg f = m then we say that the polynomial
congruential generator is of degree m.
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This generator exhibits very attractive uniformity of distribution and non-
linearity properties, see [?, ?] for surveys or recent results. Here we study
some of its cryptographic properties, namely the question of so-called pre-
dictability of such generators.

In the cryptographic setting, the initial value v0 (and sometimes the poly-
nomial f and the modulus q) is assumed to be secret, and we want to use
the output of the generator as a stream cipher. In this setting, we output
only the most significant bits of each vn in the hope that this makes the
resulting output sequence difficult to predict. (Note that if we remove the k
least significant bits of each vn, an evesdropper may easily find integers wn
such that |wn − vn| ≤ 2k−1 by examining the output. This is the connection
to the noisy polynomial evaluation problem.) The main result of this paper
may be interpreted as saying that if f and q are public, and if too many bits
of the elements vn are output at each stage, then the generator becomes in-
secure because the elements vn may be efficiently recovered from the output.
Slightly more precisely, we show that the polynomial congruential generator
is polynomial time (in log q and deg f) predictable if sufficiently many bits of
its consecutive elements are revealed (even if the degree of the generator is
allowed to slowly grow together with the size of the modulus q). Our results
exclude a small set of polynomials f , and a small set of starting values v0:
see Theorems ?? and ?? for the details. In the final section of the paper, we
discuss the case when the polynomial f forms part of the secret key, and show
that the unique recovery of the elements vn from the output is not possible.

For the linear congruential generator

xn+1 ≡ axn + b mod q, n = 0, 1, . . . , (2)

similar problems have been introduced by Knuth [?] and then considered
in [?, ?, ?, ?, ?]; see also surveys [?, ?]. We remark that predicting nonlinear
generators has been considered in some of these works as well, however only
in the case when all terms are given in full. Thus the case we consider here,
when only some bits of the output are given, has not previously been studied
for non-linear generators.

Several nonlinear generators have recently been studied in [?, ?]. Here,
as in [?, ?], we use some lattice algorithms. However, in contrast to [?, ?],
the dimension of our lattices grows as deg f grows, and thus slightly different
tools need to be applied.

In some sense the problem we solve can be considered as a special case
of the problem of finding small solutions of multivariate polynomial congru-
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ences. For polynomial congruences in one variable, an algorithm for solving
this problem has been given by Coppersmith [?], see also [?, ?]. However, in
the general case only heuristic results are known. Here we are able to obtain
rigorous results, due to the special structure of the polynomials involved.

Throughout the paper, the constants in the ‘O’-notation are absolute.
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ing visits of I.S. to the University of Cantabria (supported by MECD grant
SAB2000-0260) and to Royal Holloway, University of London (supported by
an EPSRC Visiting Fellowship). D.G.-P. and J.G. were partially supported
by Spanish Ministry of Science grant BFM2001-1294. The support and hos-
pitality of all these organisations are gratefully acknowledged.

2 Preliminaries

2.1 Background on Lattices

Here we review several related results and definitions concerning lattices, all
of which can be found in [?]. For more details and more recent references,
we recommend consulting [?, ?, ?, ?, ?].

Let {b1, . . . ,bs} be a set of linearly independent vectors in IRr. The set

L = {z : z = c1b1 + . . .+ csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional lattice with basis {b1, . . . ,bs}. If s = r, the lattice
L is of full rank.

One basic lattice problem is the shortest vector problem: given a basis
of a lattice L in IRs, find a nonzero lattice vector f ∈ L which minimises
the Euclidean norm ‖f‖ among all lattice vectors. Unfortunately, there are
several indications that this problem is NP-complete (when the dimension
grows). In particular, it is shown in [?] that the shortest vector problem is
NP-hard under randomized reductions, and so it is now widely believed that
there is no polynomial time algorithm to solve SVP. For a slightly weaker task
of finding a short vector, the celebrated LLL algorithm of Lenstra, Lenstra
and Lovász [?] provides a desirable solution. We however use a slightly
stronger result which follows from [?], and which we state as Lemma ??.

We always assume that the basis of L consists of vectors with rational
components. Thus a polynomial time algorithm for L means an algorithm
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whose running time is polynomial in the total number of bits required for
binary representation of numerators and denominators of all components of
the basis.

Lemma 1. There exists a deterministic polynomial time algorithm which,
when given an s-dimensional full rank lattice L, finds a non-zero lattice vector
f ∈ L satisfying the inequality

‖f‖ ≤ λs min {‖z‖ : z ∈ L, z 6= 0} ,

where

λs = exp

(
O

(
s(log log s)2

log s

))
.

Many other results on both exact and approximate finding of a shortest
vector in a lattice are discussed in [?, ?, ?, ?, ?, ?]; see also [?] for the most
recent developments (which however lead to probabilistic algorithms).

In fact, in this paper we consider only very special lattices. Namely, we
consider only lattices which consist of integer solutions x = (x0, . . . , xs−1) ∈
ZZs of the system of congruences

s−1∑
i=0

aijxi ≡ 0 mod qi, j = 1, . . . , `,

modulo some integers q1, . . . , q`. The lattices we consider are full rank lattices
of dimension s. All the aforementioned algorithms become polynomial in
log(q1 . . . q`) when applied to such lattices.

2.2 Polynomial Congruences

Our second basic tool is an upper bound on the number of solutions of
polynomial congruences.

For congruences modulo a prime we can use the Lagrange theorem which
asserts that a non-zero polynomial of degree s over any field has no more
than s zeros in this field.

However for congruences modulo composite numbers we apply an upper
bound from [?].

For a polynomial

5



F (X) =
s∑
i=0

AiX
i ∈ ZZ[X] (3)

of degree s and an integer Q ≥ 1 we denote by T (F,Q) the number of
solutions of the congruence

F (x) ≡ 0 mod Q, x ∈ ZZQ.

We now define Ns(Q) as the largest possible value of T (F,Q) taken over
all polynomials (??) with gcd(A0, . . . , As, Q) = 1. (Note that there is no
restriction on A0.)

The following bound is a relaxed form of the main result of [?].

Lemma 2. The bound
Ns(Q) = O(sQ1−1/s)

holds.

Writing F (X) = DG(X) withD = gcd(A0, . . . , As, Q) andG(X) ∈ ZZ[X],
we also have that T (F,Q) ≤ DNs(Q/D) for any polynomial (??), so

T (F,Q) = O(sQ1−1/sD1/s). (4)

We apply the Lagrange theorem and Lemma ?? to some families of poly-
nomials parametrised by small vectors in a certain lattice, thus the size of
the family can be kept under control. Zeros of these polynomials correspond
to potentially “bad” initial values of the polynomial congruential genera-
tor (??). Thus, if all polynomials in this family are not identical to zero
modulo q (or to be more precise, have a not too large value of D in (??))
then we have an upper bound on the number of such “bad” initial values.
Hence, the most crucial part of our approach is to study possible vanishing
of polynomials in the above family and to show that this may happen only
for very few values of the coefficients of the generator (??).

2.3 Residues of Small-Height Fractions

Some exceptional sets of parameters in our results can be described as sets
of residues of fractions with bounded numerator and denominator. Namely,
let F(q, R, S) be the set of a ∈ ZZ∗q that satisfy a congruence of the form
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ar ≡ s mod q for some integers r and s, not both zero modulo q, where
|r| ≤ R and |s| ≤ S.

As usual, we use σ(q) to denote the sum of divisors of q.

Lemma 3. For any 1 ≤ R, S < q, the bound

#F(q, R, S) ≤ 4RS
σ(q)

q

holds.

Proof. For every a ∈ ZZ∗q, the congruence ar ≡ s mod q implies

gcd(r, q)
∣∣ gcd(s, q).

We count the elements of F(q, R, S) by first choosing a divisor d < q of q,
then choosing r and s such that |r| ≤ R, |s| ≤ S, gcd(r, q) = d and d|s,
and finally choosing a such that ar ≡ s mod q. Note that once d is chosen,
there are at most 2R/d choices for r and at most 2S/d choices for s (because
1 ≤ R, S < q we see that rs 6= 0). Moreover, once r and s such that
gcd(r, q) = d are fixed, there are at most d choices for a. Hence

#F(q, R, S) ≤
∑
d|q

2R

d
· 2S

d
· d ≤ 4RS

∑
d|q

1

d
= 4RS

σ(q)

q

which finishes the proof. ut

Recall that
σ(q) = O (q log log q) ;

see [?, Theorem 323]. In particular,

#F(q, R, S) = O (RS log log q) .

3 Main Results

3.1 Predicting the Polynomial Generator Modulo an
Arbitrary Integer

Let ∆ be a positive integer. We say an integer w is a ∆-approximation to an
integer v if |w − v| ≤ ∆.
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Recall that we use σ(q) to denote the sum of the divisors of an integer q,
and we define λs to be the “stretch” factor λs given in Lemma ??.

We are now ready to state the main theorem of the paper.

Theorem 4. There exists an algorithm with the following properties. Let q
and ∆ be integers such that q > ∆ ≥ 1 and gcd(q,∆) = 1. Let

f(X) =
m∑
i=0

aiX
i ∈ ZZq[X]

be a polynomial of degree m ≥ 2 over ZZq whose leading coefficient am lies in
ZZ∗q\Am(q,∆), for some set Am(q,∆) of cardinality at most

16(m+ 2)λ2m+2∆
m+1σ(q)

q
.

The algorithm, when given f and ∆-approximations w0, w1 to v0, v1 where
v1 ≡ f(v0) mod q, recovers v0, v1 in time polynomial in m and log q provided
that v0 does not lie in a certain set V(f) ⊆ ZZq of cardinality #V(f) =

O
(

(2∆)ϑm q1−1/(m−1)
)

, where

ϑm =
m3 + 3m− 2

2(m− 1)
.

Proof. We may assume that

q > 2m+1
√
m+ 2λm+2∆

m−1 and q > ∆m (5)

for if either of these inequalities fail to hold the result is trivially true (by
examining bound on the cardinality of the set Am(q,∆)).

We define the set Am(q,∆) = F(q, R, S), with R = 2
√
m+ 2λm+2∆

m

and S = 2
√
m+ 2λm+2∆, where F(q, R, S) is defined in Section ??. By (??)

we see that R < S < q. Now the bound on #Am(q,∆) is immediate by
Lemma ??.

An outline of the algorithm is as follows. The algorithm first constructs
a lattice L from the information it is given. This lattice has a short non-zero
vector e which may be used to derive v0 and v1 from w0 and w1. The lattice L
has the additional property that any reasonably short vector in L is parallel
to e. It is also important to observe that the bit-size of all coordinates of
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the basis vectors of L is O(log q). The algorithm finds a reasonably short
non-zero vector f ∈ L by using the techniques of Lemma ??. It is then easy
to find e and hence v0 and v1.

Let εj = vj − wj, j = 0, 1. Then we have

w1 + ε1 ≡
m∑
i=0

ai(w0 + ε0)
i mod q.

If we expand the right hand side of this equation in terms of powers of ε0
using Taylor’s formula, and then introduce various powers of ∆ that cancel
each other, we obtain

A∆m +B∆m−1ε1 +
m∑
i=1

Ci∆
m−iεi0 ≡ 0 mod q,

where

A ≡ (f(w0)− w1)∆
−m mod q,

B ≡ −∆−m+1 mod q,

Ci ≡
f (i)(w0)

i!
∆−m+i mod q, i = 1, . . . ,m,

and f (i) denotes the ith derivative of f .
Let L be the lattice consisting of integer solutions x = (x0, . . . , xm+1) ∈

ZZm+2 of the system of congruences:

Ax0 +Bx1 +
m∑
i=1

Cixi+1 ≡ 0 mod q,

x0 ≡ 0 mod ∆m,

x1 ≡ 0 mod ∆m−1,

xi+2 ≡ 0 mod ∆m−i−1, i = 0, . . . ,m− 1.

(6)

Note that L can be computed from the information given to the algorithm
and in fact it is easy to see that it is a simple linear algebra problem to com-
pute a basis of L whose basis vectors consist of elements of bit-size O(log q).

Clearly, L contains the non-zero vector

e = (∆m,∆m−1ε1,∆
m−1ε0, . . . ,∆

m−iεi0, . . . , ε
m
0 )

= (∆me0,∆
m−1e1,∆

m−1e2, . . . ,∆
m−i+1ei, . . . , em+1).

9



We have

e0 = 1, |e1| ≤ ∆, |ei| ≤ ∆i−1, i = 2, . . . ,m+ 1.

Since ∆ ≥ 2 and m ≥ 2, we see that the Euclidean norm ‖e‖ of e satisfies
the inequality

‖e‖ ≤
√

(m+ 2)∆2m =
√
m+ 2 ∆m.

The algorithm of Lemma ?? applied to the lattice L returns a non-zero vector

f = (∆mf0,∆
m−1f1,∆

m−1f2, . . . ,∆
m−i+1fi, . . . , fm+1) ∈ L

such that ‖f‖ ≤ λm+2‖e‖ ≤
√
m+ 2λm+2∆

m. In particular, we have the
inequalities

|f0| ≤
√
m+ 2λm+2, |f1| ≤

√
m+ 2λm+2∆,

|fi| ≤
√
m+ 2λm+2∆

i−1, i = 2, . . . ,m+ 1.

We aim to show that f is parallel to e, provided that v0 does not lie in a set
V(f) which we define below.

The vector f0e− e0f ∈ L has first component zero, and so using the first
congruence in (??) we obtain

B∆m−1d1 +
m∑
i=1

Ci∆
m−idi+1 ≡ 0 mod q,

where di = f0ei − e0fi = f0ei − fi, i = 1, . . . ,m+ 1. Hence

|d1| ≤ 2
√
m+ 2λm+2∆,

|di| ≤ 2
√
m+ 2λm+2∆

i−1, i = 2, . . . ,m+ 1.
(7)

Using the definitions of B and C1, . . . , Cm (and the fact that Cm is equal to
the leading coefficient am of f(X)) we have

m−1∑
i=1

f (i)(w0)

i!
di+1 ≡ d1 − amdm+1 mod q. (8)

We remark that if d2 ≡ . . . ≡ dm ≡ 0 mod q, then (??) implies that
d1 ≡ amdm+1 mod q. Recalling that am ∈ ZZ∗q\Am(q,∆) we then derive that
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d1 ≡ dm+1 ≡ 0 mod q. Taking into account the bound (??) we conclude that
in this case di = 0, i = 1, . . . ,m+ 1. Hence f0e− e0f = 0, and so f and e are
parallel. Hence we may assume that one of d2, d3, . . . , dm is non-zero modulo
q.

Substituting w0 = v0 − ε0 in the congruence (??), we obtain the congru-
ence

F (v0) ≡ α0 mod q, (9)

where

F (X) =
m−1∑
i=1

αiX
i

and αi, i = 0, . . . ,m − 1, are polynomials in ε0, d1, . . . , dm+1. We place any
solution v0 to (??) for any possible values of d1, . . . , dm+1 and ε0 into the set
V(f). Thus e and f are parallel, so long as v0 6∈ V(f). We need to show that
the cardinality of V(f) is as claimed in the statement of the theorem.

We define ν by the conditions d2 = . . . = dν = 0, dν+1 6= 0. We are
assuming that not all of d2, . . . , dm are zero, and so ν ≤ m− 1. Then F is of
degree degF = deg f (ν) = m− ν and the leading coefficient of F is

αm−ν =

(
m

ν

)
amdν+1.

Note that this coefficient is non-zero modulo q since am ∈ ZZ∗q and that by (??)∣∣∣∣(mν
)
dν+1

∣∣∣∣ ≤ 2mdν+1 ≤ 2m+1
√
m+ 2λm+2∆

ν < q

by our assumption (??). Moreover we see that

gcd(α1, . . . , αm−1, q) ≤ gcd(αm−ν , q) = gcd

((
m

ν

)
dν+1, q

)
≤

∣∣∣∣(mν
)
dν+1

∣∣∣∣ ≤ 2m+1
√
m+ 2λm+2∆

ν .

Thus by (??) we see that each congruence (??) can be satisfied by at
most

O
(

(m− ν)q1−1/(m−ν)(2m+1
√
m+ 2λm+2∆

ν)1/(m−ν)
)
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values v0. Note that, for 1 ≤ ν ≤ m− 1,

(m− ν)q1−1/(m−ν)(2m+1
√
m+ 2λm+2∆

ν)1/(m−ν)

= O
(
m2mλm+2q

1−1/(m−ν)∆ν/(m−ν))
= O

(
m2mλm+2q∆

−1(∆m/q)1/(m−ν)
)

= O
(
m2mλm+2q∆

−1(∆m/q)1/(m−1)
)
,

where the last equality follows from (??).
Thus we have placed at most O

(
m2mλm+2q

1−1/(m−1)∆1/(m−1)) values of
v0 in V(f) for each choice of ε0, d1, . . . , dm+1. By (??) the total number of
possible choices for the integers di, i = 1, . . . ,m+ 1, is at most(

4
√
m+ 2λm+2∆ + 1

)m+1∏
i=2

(
4
√
m+ 2λm+2∆

i−1 + 1
)

<
(

5
√
m+ 2λm+2

)m+1

∆m(m+1)/2+1

and the total number of possible choices for ε0 is at most 2∆ + 1. Thus the
total number of values of v0 that we have placed in V(f) is

O

(
m
(

10
√
m+ 2λm+2

)m+2

q1−1/(m−1)∆m(m+1)/2+2+1/(m−1)
)

= O
(

(2∆)ϑm q1−1/(m−1)
)
,

where

ϑm =
m(m+ 1)

2
+ 2 +

1

m− 1
=
m3 + 3m− 2

2(m− 1)
.

We have shown that e and f are always parallel, for otherwise v0 would lie
in the set V(f) of values which we have excluded. Since e0 = 1, we find that
e = f/f0 and thus the algorithm may now recover e from f . Obviously, given
the third component ∆m−1ε0 of e the algorithm can find v0. This completes
the proof. ut

3.2 Predicting the Polynomial Generator Modulo a
Prime

Let p be a prime. Let ∆ and m be integers such that p ≥ ∆ ≥ 1 and m ≥ 2.
We also use the notion of a ∆-approximation given in Section ??.
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Theorem 5. There exists an algorithm with the following property. Let p be
a prime number, and let ∆ be an integer such that p > ∆ ≥ 1. Let

f(X) =
m∑
i=0

aiX
i ∈ IFp[X]

be a polynomial of degree m ≥ 2 over IFp whose leading coefficient am lies in
IF∗p\Am(p,∆) for some set Am(p,∆) of cardinality

#Am(p,∆) < 17λ2m+2(m+ 2)∆m+1.

Then the algorithm, when given f and ∆-approximations w0, w1 to v0, v1
where v1 ≡ f(v0) mod p, recovers v0, v1 in time polynomial in m and log p
provided that v0 does not lie in a certain set V(f) ⊆ IFp of cardinality

#V(f) = O
(

(2∆)m(m+1)/2+2
)

.

Proof. The proof of this theorem is almost identical to that of Theorem ??.
In particular, we define Am(p,∆) = F(p,R, S) where as before R =

2
√
m+ 2λm+2∆

m, S = 2
√
m+ 2λm+2∆ and F(p,R, S) is defined as in Sec-

tion ??. Again, we can assume that 2
√
m+ 2λm+2∆

m < p, and also that
p ≥ 17, so that σ(p)/p = (p+ 1)/p < 17/16. Now the bound on #Am(p,∆)
follows from Lemma ??.

The only other place where the proof differs from that of Theorem ?? is
when we calculate the cardinality of the set V(f); so we need to count the
number of possible solutions to congruences of the form

F (v0) ≡ α0 mod p, (10)

where

F (X) =
m−1∑
i=1

αiX
i

and αi, i = 0, . . . ,m − 1, are polynomials in ε0, d1, . . . , dm+1. Just as in the
proof of Theorem ??, all these congruences are non-trivial, and so (since
we are working modulo a prime) each instance of (??) has at most m − 1
solutions. Moreover, as in the proof of Theorem ?? we see by (??) that there

are at most
(
5
√
m+ 2λm+2

)m+1
∆m(m+1)/2+1 possibilities for d1, . . . , dm+1 and

at most 2∆ + 1 possibilities for ε0 and hence at most

(m− 1)(2∆ + 1)
(

5
√
m+ 2λm+2

)m+1

∆m(m+1)/2+1 = O
(
(2∆)m(m+1)/2+2

)
13



solutions to a congruence of the form (??). The proof of Theorem ??, with
this counting argument changed, now suffices to prove Theorem ??. ut

4 Remarks and Open Questions

It would be very natural to study the case when the polynomial f is not
known and forms a part of the secret key. However, we observe that in this
case the unique recovery of v0 (and f) is not possible. Indeed, it is easy to see
that given any number k of ‘approximations’ wj, which are actually the exact
values wj = vj, j = 0, . . . , k − 1, and an integer h, each of the sequences,

v
(h)
0 = v0 − h and v

(h)
j ≡ fh

(
v
(h)
j−1

)
mod q, j = 1, . . . , k − 1,

where fh(X) = f(X+h)−h satisfies v
(h)
j = vj−h. Therefore, for any integer

h with |h| ≤ ∆ we have |wj−v(h)j | ≤ ∆. Thus each of the sequences v
(h)
j−1 (and

each polynomial fh) may give rise to the same sequence of approximations
wj. We remark that this argument works for any family F of functions which
is closed under the transformation f(X)→ f(X + h)− h. The fact that the
family of functions fa,b(X) = aX−1+b does not satisfy this property explains
why the inversive congruential generator , un+1 ≡ au−1n + b mod q, can be
completely recovered even in the case of unknown coefficients; see [?, ?]
for the case where q = p is prime. On the other hand, in cryptographic
applications we do not need to completely recover v0 and f : we merely
need to be able to continue to generate the sequence of “approximations”
wj (formed, say, by taking the ` > 0 most significant bits of vj, that is
wj = 2`

⌊
2−`vj

⌋
). In the case of the linear congruential generator (??), that

is, for the family of functions f(X) = aX + b, this issue has been discussed
in Section 3 of [?]. In particular it has been noted in [?] that the difference
sequence yn = xn+1 − xn satisfies the homogeneous relations

yn+1 ≡ ayn (mod q), n = 0, 1, . . . ,

and can be recovered, which can then be used for finding approximations to
the sequence xn. However, for nonlinear functions f this method no longer
applies, and finding an analogous method (even a heuristic one) remains an
open problem.

In Theorem ?? we have the technical condition that gcd(∆, q) = 1. This
condition is needed to be able to define the coefficients A,B,C1, . . . , Cm.
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However, the condition is rather an artificial one: the value ∆ in the al-
gorithm of Theorem ?? may be replaced by any slightly larger value ∆0

without significantly altering the algorithm’s performance, and so we may
ensure that gcd(∆0, q) = 1. For example, ∆0 can be chosen to be the small-
est prime number which is greater than ∆ and does not divide q. Because q
has at most O(log q/ log log q) prime divisors this would lead to only slightly
weaker estimates. More precisely, the largest distance J(q) between two in-
tegers relatively prime to q is called the Jacobsthal function and has been
extensivel studied in the literature, in particular J(q) = O((log q)2), see [?].

We have not used the full power of the bound on λs in Lemma ??. How-
ever using the original estimate λs ≤ 2(s−1)/2 of [?] would force us to replace
2∆ in our bounds on Am(p,∆) and V(f) in Sections ?? and ?? with a slightly
larger multiple of ∆.

References

[1] M. Ajtai, ‘The shortest vector problem in L2 is NP-hard for randomized
reductions’, Proc. 30th ACM Symp. on Theory of Comput., ACM, 1998,
10–19.

[2] M. Ajtai, R. Kumar and D. Sivakumar, ‘A sieve algorithm for the short-
est lattice vector problem’, Proc. 33rd ACM Symp. on Theory of Com-
put., ACM, 2001, 601–610.

[3] S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski,
‘Predicting the inversive generator’, Proc. 9th IMA Intern. Conf on
Cryptography and Coding , Lect. Notes in Comp. Sci., Springer-Verlag,
Berlin, 2898 (2003), 264–275.

[4] S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski,
‘Predicting nonlinear pseudorandom number generators’, Math. Comp.,
(to appear).

[5] J. Boyar, ‘Inferring sequences produced by pseudo-random number gen-
erators’, J. ACM , 36 (1989), 129–141.

[6] J. Boyar, ‘Inferring sequences produces by a linear congruential genera-
tor missing low–order bits’, J. Cryptology 1 (1989) 177–184.

15



[7] E. F. Brickell and A. M. Odlyzko, ‘Cryptanalysis: A survey of recent
results’, Contemp. Cryptology , IEEE Press, NY, 1992, 501–540.

[8] D. Coppersmith, ‘Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities’, J. Cryptology , 10 (1997), 233–260.

[9] D. Coppersmith, ‘Small solutions of small degree polynomials’, Proc.
Intern. Conf. on Cryptography and Lattices , Lect. Notes in Comp. Sci.,
vol. 2146, Springer-Verlag, Berlin, 2001, 20–31.

[10] A. M. Frieze, J. H̊astad, R. Kannan, J. C. Lagarias and A. Shamir, ‘Re-
constructing truncated integer variables satisfying linear congruences’,
SIAM J. Comp., 17 (1988), 262–280.

[11] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and
combinatorial optimization, Springer-Verlag, Berlin, 1993.

[12] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers ,
Oxford Univ. Press, Oxford, 1979.

[13] N. A. Howgrave-Graham, ‘Finding small roots of univariate modular
equations revisited’, Proc. 6th IMA Intern. Conf on Cryptography and
Coding , Lect. Notes in Comp. Sci., vol. 1355, Springer-Verlag, Berlin,
1997, 131–142.

[14] H. Iwaniec, ‘On the problem of Jacobsthal’, Demonstratio Math., 11
(1978), 225–231.

[15] A. Joux and J. Stern, ‘Lattice reduction: A toolbox for the cryptanalyst’,
J. Cryptology , 11 (1998), 161–185.

[16] R. Kannan, ‘Algorithmic geometry of numbers’, Annual Review of
Comp. Sci., 2 (1987), 231–267.

[17] R. Kannan, ‘Minkowski’s convex body theorem and integer program-
ming’, Math. Oper. Res., 12 (1987), 415–440.

[18] D. E. Knuth, ‘Deciphering a linear congruential encryption’, IEEE
Trans. Inf. Theory 31 (1985), 49–52.

[19] S. V. Konyagin, ‘On the number of solutions of an univariate congruence
of nth degree’, Matem. Sbornik , 102 (1979), 171–187 (in Russian).

16



[20] H. Krawczyk, ‘How to predict congruential generators’, J. Algorithms ,
13 (1992), 527–545.

[21] J. C. Lagarias, ‘Pseudorandom number generators in cryptography and
number theory’, Proc. Symp. in Appl. Math., Amer. Math. Soc., Provi-
dence, RI, 42 (1990), 115–143.

[22] A. K. Lenstra, H. W. Lenstra and L. Lovász, ‘Factoring polynomials with
rational coefficients’, Mathematische Annalen, 261 (1982), 515–534.

[23] D. Micciancio and S. Goldwasser, Complexity of lattice problems , Kluwer
Acad. Publ., 2002.

[24] P. Q. Nguyen and J. Stern, ‘Lattice reduction in cryptology: An update’,
Proc. 4th Intern. Symp. on Algorithmic Number Theory , Lect. Notes in
Comp. Sci., vol. 1838, Springer-Verlag, Berlin, 2000, 85–112.

[25] P. Q. Nguyen and J. Stern, ‘The two faces of lattices in cryptology’, Proc.
Intern. Conf. on Cryptography and Lattices , Lect. Notes in Comp. Sci.,
vol. 2146, Springer-Verlag, Berlin, 2001, 146–180.

[26] H. Niederreiter and I. E. Shparlinski, ‘Recent advances in the theory
of nonlinear pseudorandom number generators’, Proc. Conf. on Monte
Carlo and Quasi-Monte Carlo Methods, 2000 , Springer-Verlag, Berlin.,
2002, 86–102.

[27] H. Niederreiter and I. E. Shparlinski, ‘Dynamical systems generated
by rational functions’, Proc. 15th Symp. on Appl. Algebra, Algebraic
Algorithms, and Error-Correcting Codes , Lect. Notes in Comp. Sci.,
vol. 2643, Springer-Verlag, Berlin, 2003, 6–17.

[28] C. P. Schnorr, ‘A hierarchy of polynomial lattice basis reduction algo-
rithms’, Theor. Comp. Sci., 53 (1987), 201–224.

17


