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Abstract
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ferring the basic genetic constitution of diploid organisms on the basis of their
genotype. This information allows researchers to perform association studies for
the genetic variants involved in diseases and the individual responses to therapeu-
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problem (under certain hypotheses, such as the pure parsimony criterion) and to
solve it using off-the-shelf combinatorial optimization techniques. The main methods
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encoding) that, at present, are adequate only for moderate size instances. In this
paper, we present and discuss an approach based on the combination of local search
metaheuristics and a reduction procedure based on an analysis of the problem struc-
ture. Some relevant design issues are first described, then a family of local search
metaheuristics is defined to tackle the Haplotype Inference. Results on common
Haplotype Inference benchmarks show that the approach achieves a good trade-off
between solution quality and execution time.
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1 Introduction

A fundamental tool of analysis to investigate the genetic variations in a pop-
ulation is based on haplotype data. A haplotype is a copy of a chromosome of
a diploid organism (i.e., an organism that has two copies of each chromosome,
one inherited from the father and one from the mother). The haplotype infor-
mation allows to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents. The assessment
of a full Haplotype Map of the human genome is indeed one of the current
high priority tasks of human genomics [1].

Instead of dealing with complete DNA sequences, usually the researchers are
focusing on Single Nucleotide Polymorphisms (SNPs), which are the most
common mutations among haplotypes. A SNP is a single nucleotide site (allele)
where exactly two (out of four) different nucleotides occur in a large percentage
of the population.

The haplotype collection is not an easy task: in fact, due to technological
limitations it is currently infeasible to directly collect haplotypes in an exper-
imental way, but rather it is possible to collect genotypes, i.e., the conflation
of a pair of haplotypes. Moreover, instruments can only identify whether the
individual is homozygous (i.e., the alleles are the same) or heterozygous (i.e.,
the alleles are different) at a given site. Therefore, haplotypes have to be in-
ferred from genotypes in order to reconstruct the detailed information and
trace the precise structure of human populations. This process is called Hap-
lotype Inference and the goal is to find a set of haplotype pairs so that all the
genotypes are resolved.

The main approaches to solve the Haplotype Inference are either combinato-
rial or statistical methods. However, both of them, being of non-experimental
nature, need some genetic model of haplotype evolution, which poses some
hypotheses to constrain the possible inferences to the ones compatible with
Nature. In the case of the combinatorial methods, which are the subject of
the present work, a reasonable criterion is the pure parsimony approach [2],
which searches for the smallest collection of distinct haplotypes that solves
the Haplotype Inference problem. This criterion is consistent with current ob-
servations in natural populations for which the actual number of haplotypes
is vastly smaller than the total number of possible haplotypes. Anyway, some
other criteria can be used to assess the quality of the resolving haplotypes,
such as entropy measures. In this paper, we will present an approach that
makes it possible to easily accommodate different criteria in a single solver.

Current approaches for solving the problem include simple greedy heuristics
[3] and exact methods such as Integer Linear Programming [2,4,5,6], Semidefi-
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nite Programming [7,8], SAT models [9,10] and Pseudo-Boolean Optimization
algorithms [11]. These approaches, however, at present seem not to be partic-
ularly adequate for very-large size instances.

To the best of our knowledge, the only attempt to employ metaheuristic tech-
niques for the problem is a recently proposed Genetic Algorithm [12]. However,
the cited paper does not report results on real size instances. Anyway, we be-
lieve that metaheuristic and hybrid approaches could provide better scalability
than exact approaches. Moreover, metaheuristics can be very easily combined
with problem specific heuristics and they can also be integrated with tree-
based search techniques, thus providing a promising framework for hybrid
systems in which a good trade-off between effectiveness and efficiency can be
reached.

In this work we present and discuss a metaheuristic approach to tackle the
Haplotype Inference problem by pure parsimony. We introduce the problem in
Section 2. In Section 3 we propose an analysis of the problem structure. The
outcome of the analysis is a reduction procedure that can be combined with
the metaheuristic approach developed in Section 4 in order to improve the
performance of local search. Experimental results are discusses in Section 5,
along with a summary of the search space analysis aimed at explaining the
behavior of our algorithms. In Section 6 we compare our technique against the
state of the art for Haplotype Inference by parsimony. Finally, we discuss the
results and outline future work in Section 7.

2 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings
of length m that corresponds to a chromosome with m sites. Each value in
the string belongs to the alphabet {0, 1, 2}. A position in the genotype is
associated with a site of interest on the chromosome (e.g., a SNP) and it has
value 0 (wild type) or 1 (mutant) if the corresponding chromosome site is a
homozygous site (i.e., it has that state on both copies) or the value 2 if the
chromosome site is heterozygous. A haplotype is a string of length m that
corresponds to only one copy of the chromosome (in diploid organisms) and
whose positions can assume the symbols 0 or 1.
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2.1 Genotype resolution

Given a chromosome, we are interested in finding an unordered 1 pair of hap-
lotypes that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution) Given a chromosome g, we say that
the pair 〈h, k〉 resolves g, and we write 〈h, k〉⊲g (or g = h⊕k), if the following
conditions hold (for j = 1, . . . , m):

g[j] = 0⇒h[j] = 0 ∧ k[j] = 0 (1a)

g[j] = 1⇒h[j] = 1 ∧ k[j] = 1 (1b)

g[j] = 2⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (1c)

We say that h is a resolvent of g, and we write h E g, if there exists a
companion haplotype k such that 〈h, k〉⊲g. This notation can be extend to sets
of haplotypes and we write H = {h1, . . . , hl} E g, meaning that hi E g for all
i = 1, . . . , l.

The operator ⊕ on a single site j can be defined accordingly:

0 ⊕ 0= 0

0 ⊕ 1= 2

1 ⊕ 0= 2

1 ⊕ 1= 1

and its extension to strings of length m is straightforward.

Conditions (1a) and (1b) require that both haplotypes must have the same
value in all homozygous sites, while condition (1c) states that in heterozygous
sites the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the hap-
lotype values at a given site are predetermined in the case of homozygous sites,
whereas there is a freedom to choose between two possibilities at heterozygous
places. This means that for a genotype string with l heterozygous sites there
are 2l−1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.

1 In the problem there is no distinction between the maternal and paternal haplo-
types.
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After these preliminaries we can state the Haplotype Inference problem as
follows:

Definition 2 (Haplotype Inference problem) Given a population of n in-
dividuals, each of them represented by a genotype string gi of length m we are
interested in finding a set R of n pairs of (not necessarily distinct) haplotypes
R = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉⊲gi, i = 1, . . . , n. We call H the set
of haplotypes used in the construction of R, i.e., H = {h1, . . . , hn, k1, . . . , kn}.

Of course, from the mathematical point of view, there are many possibilities
for constructing the set R since there is an exponential number of possible
haplotypes for each genotype. However, on the basis of knowledge about the
biological phenomenon, geneticists can provide some criteria to evaluate the
quality of solution returned, thus a constrained optimization model of the
problem can be defined. One well-known model of the Haplotype Inference
problem is the already mentioned pure parsimony approach that consists in
searching for a solution that minimizes the total number of distinct haplotypes
used or, in other words, |H|, the cardinality of the set H . A trivial upper
bound for |H| is 2n in the case of all genotypes resolved by a pair of distinct
haplotypes.

It has been shown that the Haplotype Inference problem under the pure par-
simony hypothesis is APX-hard [5] and therefore NP-hard. In Figure 1 an
example of an instance of Haplotype Inference under pure (or maximum)
parsimony is depicted. The number of genotypes is 5, among which one is
composed only of homozygous sites. Therefore, a set of 9 haplotypes, two
per genotype except for the genotype with homozygous sites, could resolve
them. Nevertheless, under the hypothesis of pure parsimony, it is possible to
find a smaller set of haplotypes that provides a more informative picture to
geneticists and biologists.

geneticists

(0221)= (0001) ⊕ (0111)

(1011)= (1011) ⊕ (1011)

(1022)= (1000) ⊕ (1011)

(2102)= (0100) ⊕ (1101)

(2211)= (0111) ⊕ (1011)

H = {(0001), (0100), (0111), (1000),

(1011), (1101)}

Figure 1. A solution under pure parsimony of an instance of the Haplotype Inference
problem.
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2.2 Compatibility and complementarity

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.
Let us build the graph G = (G, E), in which the set of vertices coincides with
the set of the genotypes; in the graph, a pair of genotypes g1, g2 are connected
by an edge if they are compatible, i.e., one or more common haplotypes can
resolve both of them. For example, the genotypes (2210) and (1220) are com-
patible, whereas genotypes (2210) and (1102) are not compatible. The formal
definition of this property is as follows.

Definition 3 (Genotypes compatibility) Let g1 and g2 be two genotypes,
g1 and g2 are compatible if, for all j = 1, . . . , m, the following conditions hold:

g1[j] = 0⇒ g2[j] ∈ {0, 2} (3a)

g1[j] = 1⇒ g2[j] ∈ {1, 2} (3b)

g1[j] = 2⇒ g2[j] ∈ {0, 1, 2} (3c)

The same concept can be expressed also between a genotype and a haplotype
as in the following definition.

Definition 4 (Compatibility between genotypes and haplotypes) Let
g be a genotype and h a haplotype, g and h are compatible if, for all j =
1, . . . , m, the following conditions hold:

g[j] = 0⇒h[j] = 0 (4a)

g[j] = 1⇒h[j] = 1 (4b)

g[j] = 2⇒h[j] ∈ {0, 1} (4c)

We denote this relation with h 7→ g, and we write h[j] 7→ g[j] when the
conditions hold for the single SNP j. Moreover with an abuse of notation we
indicate with h 7→ {g1, g2, . . . } the set of all the genotypes that are compatible
with haplotype h.

Observe that the set of compatible genotypes of a haplotype can contain only
mutually compatible genotypes (i.e., they form a clique in the compatibility
graph).

Another interesting observation is the following. Due to the resolution defi-
nition, when one of the two haplotypes composing the pair, say h, has been
selected, then the other haplotype can be directly inferred from h and the
genotype g thanks to the resolution conditions.
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Proposition 1 (Haplotype complement) Given a genotype g and a hap-
lotype h 7→ g, there exists a unique haplotype k such that h ⊕ k = g. The
haplotype k is called the complement of h with respect to g and is denoted
with k = g ⊖ h.

Proof 1 The existence and uniqueness of k is a direct consequence of Condi-
tions (1a)–(1c). 2

3 An analysis of the problem structure

To the best of our knowledge, there have been no attempts to exploit structural
properties of the problem which can be deduced from compatibility graphs,
or other problem representations. In this section, we perform such an analysis
and we present a reduction procedure that starts from a set of haplotypes in
the complete representation and tries to reduce its cardinality by exploiting
compatibility properties of the instance. Other heuristics based on graph rep-
resentations of the problem will be subject of ongoing work, such as the use
of graph density statistics and spectral graph analysis for guiding the choice
of the most suitable parameter setting and solver.

3.1 Haplotype cardinality reduction

Let us illustrate this property with an example. Consider the following set of
genotypes, which corresponds to the compatibility graph in Figure 2.

g1 : (2210212) g3 : (1212122) g5 : (1202201)

g2 : (2112110) g4 : (1222122)

Now consider the set H = {a, b, c, d, e, f, p, q} of haplotypes that resolves all
the genotypes g1, . . . , g5. The set consists of 8 distinct haplotypes; genotypes

g1

g2

g3

g4 g5

Figure 2. An example of compatibility graph.
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currently resolved by a given haplotype are denoted by bold typeface in the
resolvent list (i.e., we write g if g D h ∈ H).

g1 ⊳







a = (1110110) 7→ {g1, g2, g3, g4}

b = (0010010) 7→ {g1}

g2 ⊳







c = (0111110) 7→ {g2}

a = (1110110) 7→ {g1, g2, g3, g4}

g3 ⊳







d = (1111101) 7→ {g3, g4}

e = (1010110) 7→ {g1, g3, g4}

g4 ⊳







f = (1101101) 7→ {g4, g5}

p = (1010101) 7→ {g3, g4}

g5 ⊳







f = (1101101) 7→ {g4, g5}

q = (1000001) 7→ {g5}

Notice that the haplotype a = (1110110), resolving g1, is compatible also with
genotypes g2, g3 and g4 and, as a matter of fact, in the current resolution
it resolves g2 (but not g3). This configuration is depicted in the graph of
Figure 3 (dashed edges between genotypes represent genotype compatibility)
in which the haplotypes are represented by square nodes, the compatibility
between haplotypes and genotypes is represented by solid edges and a bold
edge represents the current resolution of a genotype by a haplotype. We will
call this graph an extended (compatibility) graph. The constraint on genotype
resolution is mapped onto the extended graph by imposing that every genotype
node must have (at least) two bold edges.

The goal of the reduction procedure is to try to decrease the number of dis-
tinct haplotypes, i.e., the number of square nodes while satisfying the resolu-
tion constraint. The intuition behind the procedure is that a possible way of
reducing the haplotype number is to resolve a genotype by a haplotype that
is compatible, but not currently resolving it, that is, changing an edge from
solid to bold. Of course, this move must be followed by repairing moves in the
graph so that the state is still feasible. These moves consist in adding one or
more haplotypes and relinking some nodes.

From the situation described above, we can use the resolvent of g1 to resolve
g3 or g4, however the situation is different in the two cases. For example, if we
use the resolvent a of g1 to resolve g3, then the situation will become:

g3 ⊳







a = (1110110) 7→ {g1, g2, g3, g4}

r = (1011101) 7→ {g3, g4}
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g1

g2

g3

g4 g5

a

b

e

d

c

p

f

q

Figure 3. Haplotype resolution graph.

As an effect of the reduction, the total number of haplotypes employed in the
solution has been decreased by 1, since now haplotypes d and e resolving g3

are replaced by a, which was already a member of the haplotype set, and a
new haplotype r (see Figure 4).

Instead, if we use the resolvent a to resolve g4 we obtain the following situation
(see Figure 5):

g4 ⊳







a = (1110110) 7→ {g1, g2, g3, g4}

s = (1001101) 7→ {g4}

Unlike the previous reduction, in this case the number of haplotypes in the
solution has not changed. The reason for this is that the haplotype f was
already shared between the resolutions of g4 and g5, therefore the reduction
operation removes one haplotype but it introduces also a new one, leaving the
total number of haplotypes unchanged.

The situation of the example can be generalized by the following proposition.

Proposition 2 (Haplotype local reduction) Given n genotypes G = {g1,
. . . , gn} and the resolvent set R = {〈h1, b〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 ⊲ gi.
Suppose there exist two genotypes g, g′ ∈ G such that:
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g1

g2

g3

g4 g5

a

b

r

c

p

f

q

Figure 4. The haplotype resolution graph after the reduction of g3.

g1

g2

g3

g4 g5

a

b

r

c

s

f

q

Figure 5. The haplotype resolution graph after the reduction of g4.
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g ⊳







h 7→ {g, g′, . . .}

k 7→ {g, . . .}
, g′ ⊳







h′ 7→ {g′, . . .}

k′ 7→ {g′, . . .}
(5)

and h 6= h′, h 6= k′, h′ E A, k′ E B.

The replacement of 〈h′, k′〉 with 〈h, g′ ⊖ h〉 in the resolution of g′ is a cor-
rect resolution that employs a number of distinct haplotypes according to the
following criteria:

• if |A| = 1 and |B| = 1, the new resolution uses at most one less distinct
haplotype;

• if |A| > 1 and |B| = 1 (or symmetrically, |A| = 1 and |B| > 1), the new
resolution uses at most the same number of distinct haplotypes;

• in the remaining case the new resolution uses at most one more distinct
haplotype.

Proof 2 The proof of the proposition is straightforward. The resolution is
obviously correct because h is compatible with g′ and g′ ⊖ h is the complement
of h with respect to g′.

Concerning the validity of the conditions on the cardinality, let us proceed by
cases and first consider the situation in which g′⊖h does not resolve any other
genotype but g′.

If |A| = |B| = 1, then h′ and k′ are not shared with other genotype resolutions
so they will not appear in the set H after the replacement, therefore since in the
new resolution h is shared between g and g′ the cardinality of H is decreased
by one.

Conversely, if one of the sets |A| or |B| consists of more than a genotype
and the other set of just one genotype, there is no guarantee of obtaining an
improvement from the replacement. Indeed, since one of the two haplotypes is
already shared with another genotype there is just a replacement of the shared
haplotype with another one in the set H.

Finally, when |A| > 1 and |B| > 1 both h′ and k′ are shared with other
genotypes therefore the replacement introduces the new haplotype g′ ⊖h in the
set H.

Moving to the situation in which g′⊖h resolves also other genotypes, the same
considerations apply; additionally, given that g′ ⊖ h is already present in H,
the number of distinct haplotypes employed in the resolution is decreased by
one. For this reason the estimation of the changes of |H| is conservative. 2
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4 Local Search techniques for Haplotype Inference

The design process of metaheuristics involves first the definition of local search
model and search strategy. In the following we detail our design and implemen-
tation choices for a family of stochastic local search techniques to tackle the
Haplotype Inference. For a discussion on alternative metaheuristic approaches
see [13].

The local search model is defined by specifying three entities, namely the
search space, the cost function and the neighborhood relation.

4.1 Search space

As the search space for the Haplotype Inference problem we could either adopt
a complete or incomplete representation as explained below.

Complete representation: This search space is based on a straightforward
encoding of the problem. In this representation we consider, for each geno-
type g, the pair of haplotypes 〈h, k〉 that resolves it. Therefore in this repre-
sentation all the genotypes are fully resolved at each state by construction.
The search space is therefore the collection of sets R defined as in the prob-
lem statement.

Notice that, thanks to complementarity w.r.t. a genotype just one hap-
lotype can be selected to represent a pair of resolvents. Moreover, since the
pair is unordered, the haplotype pair 〈h, k〉 is equal to 〈k, h〉, therefore we
can break this symmetry by selecting the haplotype h as the representa-
tive for the state if h ≺ k, where the symbol ≺ indicates the lexicographic
precedence of the two strings, otherwise we select k as the representative.

Incomplete representation: In the incomplete representation, instead, we
deal with sets of haplotypes that are the elements of the set H . An element
h ∈ H is a potential resolvent of a genotype g, and it actually resolves
g only with its companion k, so that 〈h, k〉 ⊲ g, also belongs to H . As a
consequence, in this representation not necessarily all the genotypes have
a resolvent and the search space is the powerset P(

⋃n
i=1 Ai), where Ai =

{h|∃k〈h, k〉 ⊲ gi} is the set of all potential resolvents of a genotype gi of the
problem. This formulation is an incomplete representation of the problem,
since the genotype resolution is only potential and a solution of the problem
must be constructed on the basis of the haplotypes selected in a given state.
This representation shares some analogies with the classical representation
used when local search is applied to constraint satisfaction problems [14].
Indeed, in that case the state is usually represented as a complete assignment
that can be infeasible and the cost function accounts for possible violations.
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The difference with Haplotype Inference is that, in this case, infeasibility
has to be evaluated as a function of genotypes not resolved by the current
tentative solution. To the best of our knowledge, this representation has not
yet been used to tackle the Haplotype Inference problem and the design and
implementation of metaheuristics using it is subject of ongoing work.

The complete representation has the advantage of making it possible to design
anytime algorithms, since the search can be interrupted any moment and
return a feasible solution, i.e., a set of haplotypes (not necessarily minimal)
that resolve the given genotypes. Moreover, it is in general more adequate
for hybridization with constructive methods since it maintains the feasibility
(i.e., resolution of all genotypes) at every state of the search. For example it
allows to employ local search in a GRASP-like manner [15] or to hybridize
it with more informed strategies making use of problem-specific knowledge,
as usually done with metaheuristics [16]. For these reasons, we opted for this
search space representation.

4.2 Cost function

For the cost function, we identify different components related either to opti-
mality or to heuristic measures.

A natural component is the objective function of the original problem, that is
the cardinality |H| of the set of haplotypes employed in the resolution.

f1 = |H| (6)

Moreover, we also might want to include some heuristic measure related to
the potential quality of the solution. To this respect, a possible measure could
be the number of incompatible sites between each genotype/haplotype pair,
expressed by the following formula:

f2 =
∑

h∈H

∑

g∈G

m
∑

j=1

1 − χ(h[j] 7→ g[j]) (7)

In the formula, χ denotes the truth indicator function, whose value is 1 when
the proposition in parentheses is true and 0 otherwise.

The cost function F is then the weighted sum of the two components:

F = α1f1 + α2f2 (8)
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in which the weights α1 and α2 must be chosen for the problem at hand to
reflect the trade-offs among the different components. In our experimentation
we adopt the values α1 = α2 = 1.

4.3 Local search strategies

We designed a family of local search strategies, namely Best improvement,
Stochastic first improvement, Simulated annealing, and Tabu search. The tech-
niques are instances of the general strategies described in [16]. All of them start
with a set of haplotypes of cardinality 2n, where n is the number of genotypes,
and they explore the search space by iteratively modifying pairs of resolving
haplotypes trying to reduce the number of distinct ones. Best improvement
and Stochastic first improvement traverse the search space by moving from a
state to a neighboring one with a lower cost function value, by choosing the
best and first neighbor respectively. Simulated annealing moves also to worse
states than the current one, on the basis of a probabilistic choice function.
Finally, Tabu search behaves in principle like Best improvement but restricts
the neighborhood by forbidding recently performed moves.

Local moves are defined upon a Hamming neighborhood function. A good
trade-off between exploration and execution time is the 1-Hamming distance
neighborhood w.r.t. each haplotype in the current solution. The complete ex-
ploration of such a neighborhood has a time complexity bounded from above
by O(nk), where k is the number of haplotypes and n the number of sites per
haplotype. In practice, the time complexity can be further reduced by restrict-
ing the number of neighbors to heterozygous sites and haplotypes resolving
non isolated genotypes. This kind of move can be thought as a flip, performed
at a given position in a pair 2 of haplotypes resolving a given genotype.

The drawback of this choice relies in its local character of exploring neigh-
boring solutions, that might not help search escape from areas in which it
has been attracted. Indeed, in our experiments Tabu search strikingly outper-
formed the other local search algorithms we tested, being equipped with an
effective diversification mechanism.

5 Experimental results

We developed our solvers with EasyLocal++ [17], a framework for the de-
velopment of local search algorithms. The algorithms have been implemented

2 Two haplotypes are involved in the move, since we adopt the complete represen-
tation and we must guarantee the pair of resolvents for each genotype.
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Table 1
A summary of the main characteristics of the benchmarks.

Benchmark set N. of instances N. of genotypes N. of sites

Harrower uniform 200 10÷100 30÷50

Harrower non-uniform 90 10÷100 30÷50

Harrower hapmap 24 5÷68 30÷75

Marchini SU1 100 90 179

Marchini SU2 100 90 171

Marchini SU3 100 90 187

Marchini SU-100kb 29 90 18

in C++ and compiled with gcc 3.2.2 and run on a Intel Xeon CPU 2.80GHz
machine with SUSE Linux 2.4.21-278-smp. Each algorithm was run on every
instance one time and we allotted 300 seconds for each execution of the algo-
rithms. Since Tabu search (TS) showed superior performance over the other
local search algorithms, we only discuss results of this technique.

Our Tabu search implementation considers as tabu all the moves that insist on
a pair of haplotypes that recently changed. We also experimented with a more
relaxed criterion that prohibits only to apply the flip on the same haplotypes
and in the same position of a recent move, however we realized that this
criterion had an insufficient impact in the ability to diversify the search. The
tabu list scheme adopted is a dynamic one, that is for each move performed
we consider it as prohibited for a number of iterations that randomly varies
between two values kmin and kmax. The values of these parameters were chosen
according to the results of an exploratory analysis based on the F -Race method
[18], and were set to kmin = 10, kmax = 20. These settings have shown to be
quite robust across the variety of instances tested.

The benchmark instances are composed of two parts. The first one, composed
of the sets Harrower uniform, Harrower non-uniform and Harrower hapmap, is
the benchmark used in [6]. The second part of the instances, namely Marchini
SU1, Marchini SU2, Marchini SU3 and Marchini SU-100kb, were taken from
the website http://www.stats.ox.ac.uk/~marchini/phaseoff.html. The
main characteristics of the instance sets are summarized in Table 1.

The cases of interest for our analysis are the local search run with or without
the initial reduction procedure. The plots in Figures 6 and 7 show a comparison
of the two approaches; a point (x, y) in the plot represents the number of
haplotypes in the best solution returned by TS without and with reduction,
respectively. A point below the line means that the solution returned by the
algorithm corresponding to the y-axis is better than the one returned by the
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Figure 6. Comparison between TS without and with reduction procedure on Har-
rower’s instances (in terms of number of haplotypes in the best solution).

algorithm associated to the x-axis.

The algorithm that incorporates the initial graph reduction clearly outper-
forms the one without graph reduction. This behavior shows that the ex-
ploitation of graph structure is particularly effective.

5.1 Search space analysis

The behavior of the local search algorithms we developed can be explained by
analyzing the properties of the search space. Among the main search space
parameters are the number and density of local and global minima and the
basins of attraction of minima.

Informally, the basin of attraction of a state s is the set of initial states that
make search reach s. Basins of attraction of minima represent a finer piece of
information than minima density, because basins of attraction also take into
account possible anisotropies of the search space. By studying the basins of
attraction (BOA) of local and global minima, it is possible to estimate the
probability of reaching a global minimum [19,20].

More formally, given a deterministic algorithm, such as Best improvement,
the basin of attraction B(s) of a minimum s, is defined as the set of states
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Figure 7. Comparison between TS without and with reduction procedure on Mar-
chini’s instances (in terms of number of haplotypes in the best solution).

that, taken as initial states, give origin to trajectories that ends at point s.
The cardinality of B(s) represents its size. The quantity rBOA(s), defined as
the ratio between the size of B(s) and the search space size, is an estimation
of the reachability of state s.

Given the set S∗ of the global optima, the union of the BOA of global optima
I∗ =

⋃

s∈S∗ B(s) represents the set of desirable initial states of the search.
Indeed, a search starting from s ∈ I∗ will eventually find an optimal solu-
tion. Since it is usually not possible to construct an initial solution that is
guaranteed to be in I∗, the ratio rGBOA = |I∗|/|S| can be taken as an in-
dicator of the probability to find an optimal solution. On the extreme case,
if we start from a random solution, the probability to find a global optimum
is exactly |I∗|/|S|. Therefore, the higher this ratio, the higher the probability
of success of the algorithm. TS incorporates stochastic decision mechanisms
and moreover it is also able to escape from local minima by using the tabu
criteria, therefore the estimation of basins of attraction size related to Best
improvement provides a lower bound on the probability of reaching the global
optimum when using TS.

We estimated the basins of attraction (w.r.t. Best improvement) of minima in
the search space of some representative instances by uniformly sampling the
search space. We observed two different scenarios: one in which many different
very small basins exist, and, in some instances, most of them lead to attractors
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Table 2
Estimation of basins of attraction of minima in the search space some representative
instances from Harrower’s benchmarks. Results are taken from up to 5000 uniform
samples.
Instance Sol. value rGBOA

Harrower uniform 30 50.00 54 0.001

55 0.002

56 0.005

57 0.018

58 0.038

59 0.075

60 0.145

61 0.222

62 0.218

63 0.181

64 0.094

Harrower non-uniform 30 50.00 52 0.001

54 0.004

55 0.008

56 0.020

57 0.045

58 0.091

59 0.149

60 0.215

61 0.218

62 0.153

63 0.082

64 0.016

at the same cost value (Harrower’s benchmarks and Marchini SU-100kb); and
the other scenario, in which no sample could find a state in a global minimum
attraction basin (Marchini SU1÷SU3). Tables 2 and 3 report some statistics
of representative cases of this analysis. Each line in the table reports a given
solution value and its corresponding rGBOA, i.e., the estimated fraction of
initial states which lead to that cost value.

The outcome of this analysis explains why TS outperforms the other local
search algorithms. Indeed, in the first scenario, rGBOA is very small, hence
a simple Best improvement strategy has a very low probability of finding an
optimal or a near-optimal solution. On the contrary, TS can effectively traverse
such a landscape and reach a (near-)optimal solution. In the second scenario,
the situation is even more dramatic because the frequency of success is zero,
therefore TS is definitely preferable over a simple Best improvement.
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Table 3
Estimation of basins of attraction of minima in the search space some representative
instances from Marchini’s benchmarks. Results are taken from up to 5000 uniform
samples.
Instance Sol. value rGBOA

Marchini SU1 genos.haps.1 170 1.0

Marchini SU2 genos.haps.1 180 1.0

Marchini SU3 genos.haps.1 180 1.0

Marchini SU-100kb genos.haps.1 105 0.009

106 0.013

107 0.009

108 0.017

109 0.035

110 0.009

111 0.061

112 0.061

113 0.035

114 0.078

115 0.082

116 0.113

117 0.069

118 0.065

119 0.108

120 0.065

121 0.043

122 0.048

123 0.048

124 0.013

125 0.009

126 0.004

127 0.009

6 Comparison with the state of the art

In order to estimate the quality of solutions produced by TS, we need to
compute the optimal solution of the benchmark instances. We tackled the
instances with rpoly [11], a state-of-the-art exact solver for the Haplotype
Inference. We run the solver on the same benchmark instances and on the
same machine. We allotted rpoly 24 hours of computation for each instance.
The instances of the set Harrower uniform, Harrower non-uniform, Harrower
hapmap, Marchini SU1 and Marchini SU2 were completely solved. From Mar-
chini SU3 and Marchini SU-100kb only a portion of the instances were solved.
Overall, most of the instances could be solved with a runtime higher than 12
hours. A summary of the fraction of solved instances is reported in Table 4.
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Table 4
Fraction of instances solved by rpoly from each benchmark.

Benchmark set Fraction of solved instances

Harrower uniform 200/200

Harrower non-uniform 90/90

Harrower hapmap 24/24

Marchini SU1 20/100

Marchini SU2 100/100

Marchini SU3 89/100

Marchini SU-100kb 23/29
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Figure 8. Comparison between TS and rpoly (on the instances solved by rpoly) in
terms of number of haplotypes in the best solution.

In Figures 8 and 9 the plots showing the comparison between TS and rpoly
on the solved instances are drawn.

We can observe that the solution quality achieved by TS (with reduction)
approximates the optimal one returned by rpoly on some benchmarks, namely
Harrower sets and Marchini SU-100kb, whilst the performance on Marchini
SU2 is considerably inferior. The performance on benchmarks Marchini SU1
and Marchini SU3 is inferior, but it has to be taken into account that TS
returned a feasible solution to all the instances of the sets, whilst rpoly solved
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Figure 9. Comparison between TS and rpoly (on the instances solved by rpoly) in
terms of number of haplotypes in the best solution.

only a fraction of the instances of Marchini SU3. We also observe that our
approach scales very smoothly. Conversely, in instances with a high number
of individuals and sites, the complete approach has not a good performance in
terms of running times and it even fails to find a solution in 24 hours, whereas
TS is able to find always a solution (even though its optimality cannot be
guaranteed) within 300 seconds.

These results enlighten the complementarity of the two approaches: the al-
gorithm that also returns the proof of optimality is definitely preferable over
the incomplete one when the execution time allotted can be large, while we
can resort to the approximate algorithm to have a feasible and (hopefully)
near-optimal solution in very short time. Therefore, a possible powerful com-
bination of the two techniques can be an hybrid algorithm that interleaves the
execution of rpoly and local search, using the solution returned by latter as
an upper bound for the former.

The local search approach discussed in this work has also the advantage of
enabling the developer to easily specify different objective functions or also a
weighted combination of objectives. This characteristic can be very useful to
explore different solutions to the Haplotype Inference, making it possible for
biologists to compare different candidate solutions to the real problem. In this
respect, we are currently experimenting with several quality measures.
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7 Discussion and future work

We have presented a metaheuristic approach to tackle the Haplotype Infer-
ence problem by pure parsimony and, in particular, we showed and discuss
results of Tabu search. The performance of local search can be enhanced by
introducing a reduction procedure that exploits features of the compatibility
graph. Results are encouraging, although on some benchmarks our algorithm
is dominated by the pseudo-boolean optimization solver rpoly. Nevertheless, it
has to be considered that our algorithm quickly finds feasible solutions to all
the instances and it can be taken as a starting point to design hybrid efficient
algorithms to find near-optimal solutions.

We are currently working on improvements to our stochastic local search and
testing our approach on Haplotype Inference by parsimony and other quality
measures, such as entropy. Moreover, hybrid metaheuristics, combining local
search and constructive procedures exploiting instance structure, are subject
of ongoing work [13].
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