INEQUALITIES OF RAFALSON TYPE FOR ALGEBRAIC
POLYNOMIALS
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ABsTRACT. For a positive Borel measure du, we prove that the constant
Joo ™ (2)dv ()
Ynldvidp) == sup o

reP\ {0} o 7 (2)dpu(z)
can be represented by the zeros of orthogonal polynomials corresponding to du in case
(i) dv(z) = (A + Bx)du(z), where A + Bz is nonnegative on the support of du and
(i) dv(z) = (A + Bx?)du(x), where du is symmetric and A + Bx? is nonnegative
on the support of du. The extremal polynomials attaining the constant are obtained
and some concrete examples are given including Markov type inequality when dy is a
measure for Jacobi polynomials.
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1. INTRODUCTION

Let du be a positive Borel measure on R with infinite support whose moments are all finite.
Then there exists an orthonormal polynomial system {P,(dy; ) }22, with respect to du such
that

/ Py (dp; x) Py (dp; x) du(x) = S, m,n=20,1,2,...,

—00

where 0, is the Kronecker delta. One of the most important properties for { P, (du; x)}7%

is the three term recurrence relation
P (dp; x) = ant1 Pogr (dp; @) + b Pr(dps ) + anPo1 (dps; z), n=0,1,2,...,

where P_q(z) =0, Py(du;z) = (/7 d;z(x))%, and

an, = ap(dp) = / x Py (dp; x) Py—1(dp; x)dp(z), n>1,

o0

bp = by (dp) = / xP2(dy; x)du(z), n > 0.

— 00

It is interesting to find the best possible constant v, = 7, (dv;du) such that
(1'1) Hﬂ”du < 7n||7r||du7 T € Pp,

where P, is the space of all real polynomials of degree at most n , dv is another positive Borel

measure on R, and
1

Ialawi={ | w*)duta)}
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The constant 7, can be redefined by

(dv;dp) = sup {|[7lla = |I7llan =1}

TEPn
For du(z) = (1 — 2)*(1 + z)?dz and dv(z) = (1 — 2)7(1 4 z)°dz on [—1, 1], v, was estimated
in [1, 4] andforazﬁz%,’yzéz%o a:ﬂ:%,vz
obtained by Refalson [5].

In this paper, we will prove that the constant v, can be expressed by the zeros of orthonor-

0= %, the exact value ofvy, was

mal polynomials with respect to du in cases (i) dv(z) = (A 4+ Bx)du(x), where A + Bz is
nonnegative on the support of du and (i) dv(z) = (A + Bz?)du(x), where du is symmetric
and A + Bz? is nonnegative on the support of du. The extremal polynomial attaining v, is
obtained and some concrete examples are given including Markov type inequality when dy is

a measure for Jacobi polynomials.
2. CaSE dv(z) = (A+ Bx)du(z)

The zeros of orthogonal polynomial P, (du; x) are denoted by @1, (dp) > won(dp) > - -+ Tpn (dp).

Then by the Gauss quadrature formula, we have

7 an?(z)dp(z)

(2.1) T1 41 (dp) :ne%?\)io} [ 7r2(x)d:(m)
and

* ar?(z)du(x

(2.2) Tpt1n+1(dp) =  min oo R

rePu 0} [70 w2 (z)dp(x)

The maximum and the minimum in (2.1) and (2.2) are attained if and only if n(z) =
cPr1(dp;z) cPn1 (dps;z)
r—1,n+1(dp) T—Tnt1,n+1(dp)’

these formula, we can easily prove:

and m(z) = respectively, where ¢ is a non-zero constant. Using

Theorem 2.1. Let dv(z) = g(x)du(x), where g(x) = A+ Bx is nonnegative on the support
of du. Then

1 9(x1n41) if B>0
(2.3) Tn(dv; dp) = {k:13§§n+lg(xk,n+1)}2 =
9(@ntr1nt1) if B<O
and
1 g(xn—‘rl,n—i-l)_% if B>0
(2.4) o (dps; dv) = { kzlg}.i.r.}n+1g($k,n+l)} -

g(erm) 7 i B <O,

where Tppi1 = Tppi1(dp). The constants v, (dv;dup) in (2.3) and vn(dp; dv) in (2.4) are
cPny1(dp;z)
T—xg it (dp)’

i > 1 >
k:{1 if B>0 k:{n+1 if B>0

attained if and only if m(z) = where ¢ is a non-zero constant and

for v (dv: dy), for v (dy: dv).
nil ifB<g OF eldvida) 1 fp<o o mldpdy)
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Proof. By the Gauss quadrature formula, we have for any 7 € P,,
/ 72 () dv(z) = / (A + Bo)e(2)du(z)

n+1
=D M1 (A + Brg i) 7 (@hn41)
k=1
(2.5)
n+1

< A+B > A 2
_k:1%§§n+l( + xk,n+1)k71 k1 T (Thnt1)

o0

= s (o) [ R @)dne),

k=1,2,....n — 0o

where Ag 41 := Apnt1(dp) are the Christoffel numbers for the measure dy. Now assume

B > 0. Then maxg—12... n+19(Tknt1) = 9(¢1,n41) and we have the equality in (2.5) for

m(x) = %. Conversely if the equality holds in (1.1) for 7(z), then the equality holds
also in (2.5) so that m(zgpt1) =0, 2 < k < n+1. Hence n(z) = ;J_D%ﬁ, ¢ # 0. This

proves (2.3) when B > 0. In case B < 0, the proof is similar. Finally the equation (2.4) can
be proved by a similar process using (2.2) instead of (2.1) and
7 (@)du(z)

I° _
2.6 2 (dps; dv) = 3 = '
(2.6) Tllps; dv) wergj\)f[o} 75 w2 (x)dv(x) {weglnl{l{ﬂ} [Zoe ™2 (x)dp(x)

25 7 (z)dv(z) }—1'

0

Corollary 2.2. Let dv(z) = (1 —2)%(1 +2)%dz, du(z) = (1 —2)?(1 +2)°dz on [~1,1], and
go?’?(n) = Y (dv;du), where o, 3,v,0 > —1. Then

™
1/2,1/2\"") = ¥1/2,1/2 m;

Pyaran) = o)y = (Vasin

SrT)

1/2,-1/2 o —1/2,1)2 . T .
@_1/27_1/2(71) = @_1/2,_1/2(70 = V2cos i)

—1/2,-1/2, \ _  —1/2,-1/2, \ . ™ -1
1/2,-1/2 (n) = P_1/2,1/2 (n) = (\/§s1n m) :

Proof. Let g(z) = 1 — x. Since the smallest zero of Chebychev polynomial U, ;(x) of the

g -
second kind is — cos 7,

3/2,1/2 _ ™ 7T
(2.7) @1/271/2(n)—1/1+cosn+2 —\/500872(71_'_2).

All others can be proved similarly by Theorem 2.1. O
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Example 2.1. Let du(x) = z%e *dx and dv(x) = xdu(x) on [0, 00), where av > —1. Using
the asymptotic behavior of the greatest zero xy 41 of the Laguerre polynomial L;Ofgl(x)[G],

we can use
dv:d T
i (A VLT
n—oo  2y/n n—oo  2y/n

Let dv(x) = g(z)du(x), where g € Py is nonnegative on [0,00). Then by the same process as

in the proof of Theorem 2.1, we have for any © € Py,

o o° {+1
2 < 2 _
| mew@ < e gunen) [ r@dut), m =[]
and
°° > (41
2 > : 2 _
| m@w@ 2 win o) [ m@dua), m =[]

Hence, we obtain an estimation for 7, (dv; du):

(2.8) B g(@m) S valdvidp) < max | g(@hnm).

But, the estimate (2.8) is not sharp in general if [ > 2.

3. CASE dv(x) = (A + Bz?)du(z)

In this section du is assumed to be symmetric and so the corresponding orthonormal polyno-

mials satisfy

2Py (dp; x) = apt1Ppt1(dus; x) + anPr—1(dp; ), n > 0.
Lemma 3.1. Let du be symmetric. Then we have

J2o @ () dp(x)

T dy) = max
L) = Ry T () ()
and equality holds if and only if w(x) = %W, where ¢ is a nonzero constant.
1,n+2
Proof. See Theorem 2 in [2]. O

Lemma 3.2. For any (n+ 1) X (n+ 1) matriz W (n > 1),

a 0 B O 0 0 0
0 ag 0 [ O 0 0
61 0 ay 0 B3 0 0
0 B2 0 a3 O Ba 0
(3.1) W .= : : : : : .
ﬁnfl
Ap—1 0
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we have |W| = |U||V|, where |W| is the determinant of the matriz W,
a B4 0 0 0 0
fr az Bz 0 0 0
0 B3 as fB5 O
) n
0
: Q2m—2  Pam-1
0 0 Oom—1 aom
and
ar B 0 0 0 0
B2 as Bs 0 0 0
0 B1 a5 B O
. -1
vi=|o0 o0 o |, e:[” ]
2
0
: a1 P
0 0 Par oy

Proof. 1t can be easily shown by elementary row and column operations. [l

Theorem 3.3. Let dv(z) = (A + Bx?)du(x), where A + Bx? is nonnegative on the support

of du. If du is symmetric, then
\/A+ Bz? 42

it B>0

(3.2) (dvidu) =< A+ B:1US_H ny2 if B<0andn=2s
1/A+B:vs+1’n+1 it B<Oandn=2s+1
and
(A+Bi?,.,) "7 i B<0
(3.3) Yuldpsdv) = ¢ (A+ Ba2, |, .5)~ 2 if B>0andn=2s
(A—I—B:L‘S+1n+1)_% if B>0andn=2s+1.

Proof. We will prove only (3.2). Then (3.3) can be proved by a similar process with (2.6).

n
When B = 0, it is trivial and so we may assume B # 0. Let w(z) = Y ¢ Pi(du; z). Then by
k=0
the three term recurrence relation,

n

(A+ Ba?)m(x) = Y (A+ Ba®)epPy(z)
k=0
n
[A+ B(aiy1 + a3)]ex Pr(x)
k=0
n+2 n—2
+ Y Bagag-1ck—2Pe(x) + > Bayaari1cer2Pe(),
k=2 k=0
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where ay = a(dp) and Py(z) = Pg(du;x). Hence, by the orthonormality of {P,(z)}5°

n=0>
) n n—2
/ 72(z)dv(z) = Z[A + B(aj,, +a})|ch +2 Z Baj42ak11CkCr42-
e k=0 k=0

If we assume that |74, = 1, that is, > j_, ¢z = 1, then

n n—2
To(dv;dp) = max { Z [A+ B(ajy + af)]cg +2 Z Bak+2ak+1ckck+2}
k=0 Ch= k=0 k=0

which is equal to max{|A| : A is an eigenvalue of W}, where W is the matrix (3.1) with
oy = A+B(aj+ai, ) and B, = Bagags1. By Lemma 3.2, v, (dv = dp) = max{|A| : Upn(A) = 0
or Vy(A) = 0}, where

Oéo—)\ ﬁl 0 0 0 0
B -\ 33 0 0 0
0 Bz au—A .0 0
Un(N) =| 0 0 0 (m:[ﬂ)
. ) 0
: : " . aom—2 — A Bom—1
0 .0 Bom_1  Qam — A
and
al—)\ ﬁz 0 0 0 0
B2 az—A B 0 0 0
0 ﬂ4 ()é5—/\ 0 0
. . . n—1
VA =| 0 0 o | (e=]57))
0
: : r . Qg1 — A Bae
0 .0 Bog Qorst — A

Now zeros of U,,(A) and V;(\) are the zeros of orthonormal polynomials Sy, 11(x) and Tp41(x),

respectively, satisfying

(3.4) xSy, = Ba2k+2a2k+15k+1 + [A + B(a%kJrl + a%k)]Sk + Baspaop_1Sk_1,

(3.5) :ka = Ba2k+3a2k+2Tk+1 + [A + B(a%k+2 + (L%k+1)]Tk + Ba2k+1a2ka_1.
On the other hand, since dy is symmetric, if we set
(3.6) Qr(2?) = Por(dp;z) and xRy (2?) = Popyr(dpsz), k>0,

then {Qk ()}, and {Ry(x)}32,, are orthonormal polynomials satisfying the three term re-

currence relations

(3.7)  2Qi(x) = aokr202k41 Qr+1(x) + (a1 + a3y)Qu(T) + azpage—1Qr—1(x), k >0,
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(38) :ch(x) = a2k+3a2k+2Rk+1(ﬂs) + (a%k+2 + a§k+1)Rk(x) + a2k+1a2kRk_1(x), k> 0.

Then {Qn(5(z — A))}5%, and {R, (5 (x — A))}52, satisfy the recurrence relations (3.4) and
(3.5), respectively. Hence,

1 1

Sm+1(2) = Qm1(F (2 — A)) and Topy(2) = R (5 (2 — 4))-

From the relation (3.6), Qu+1(z3 oma2) = 0, k= 1,2,...,m + 1, and RHl(mi’%%) =0,
k=1,2,...,/+ 1 and so

Smi1(A+ B gpmys) =0, k=1,2,... ,m+1
Tri1(A+ B gpy3) =0, k=1,2,... 041

Hence

2 2 2
Yaldvidp) = max  {A+ Baj o0, A+ Brjas)

J=1,2, 041
A+ Bmax{a? 5, 12,77 9py5} if B>0
A+ Bmin{z?, 1 0497719043} if B<O.
If B> 0and n = 2s is even, then m = s and £ = s — 1 so that
Yo(dv; dp) = A+ B$%,2s+2 = A+ Baf .
If B>0and n=2s+1is odd, then m = s and £ = s so that
Yaldvidp) = A+ Batyg s = A+ Bai .
If B <0 and n=2sis even, then m = s and £ = s — 1 so that
Yaldvidp) = A+ Bagy 50 = A+ By s
since 0 < Zs41n4+1 < Tont1- If B <0 and n =2s+1is odd, then m = ¢ = s so that
Ve(dvidp) = A+ B}, 050 = A+ Brl g 41
since 0 < Zs41n4+1 < Ts4+1,n+2. Hence, the conclusion follows. O

Note that the constant v, (dv;du) in (2.2) is attained if and only if

Liz(diiz) — 4r g >
22=27 4o =
m(x) =
LQenln) i B <,

3_.2
TI=T 11,2542

where c is a non-zero constant.
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Corollary 3.4. Let dv(x) = (1 —)*(1+2)dz, du(r) = (1 )" (1 +2)’dz on [~1,1], and
25 (n) = yu(dvidp), where a, 3,7,6 > —1. Then

4,03/273/2( _ Jcos m if nis even
1/2,1/2 cos 2(7;;2) if nis odd

1/21/2, (. ® \7b
e = (sin 25 s

1/2,1/2 _ Jcos ﬁ if n is even '
90_1/27_1/2(71) {cos ﬁﬂ) if n is odd

-1/2,-1/2 R ™ -1
Pryzap (M) = (Sm 2(n + 2)) '

Proof. If « = 3 = 3 and v = § = 1, then dv(z) = (1 — 2?)du(z) and the orthonormal
polynomials {U,(x)}2%, with respect to du are the Chebychev polynomials of the second

kind, whose zeros are

km
n+1’

Tpn(dp) = cos k=1,2,...,n.

Hence, by Theorem 3.3, if n = 2s, then

1
@??;?g(n) = \/1 — cos? s+ Dm _ cos ——
) s

and if n = 2s + 1, then

3/2,3/2, \ _ 9 Dm W
g01/271/2(n) = \/1 cos? = o = o8 St

All the other cases can be obtained similarly by Theorem 3.3 and the zeros of the Chebychev
polynomials of the first and the second kinds. O

Corollary 3.5. Let du be symmetric. Then we have

2 o
Tiiqpqe U n=2s

[ w*m (@) dp(=)

min =
TE€PR\{0 2 d
PO oo (@) du(z) 22 =25+ 1.

(3.9)

cPnyo(dp;w)

The minimum is attained if and only if m(x) = ——% when n = 2s and w(x) =
T _$5+l,n+2(d/’l‘)

P, du; .
Bt LT ’;“( 1iz) when n = 2s + 1, where ¢ is a nonzero constant.
z 7‘Zs+1,n+1(d'u'

ROO 2.2
_ 1 : o T (@dp(®) o
Proof. Take A =0 and B = 1 in Theorem 3.3. Then 7r€r7£1nl€{0} 372000 @) dp(a) Yo 2 (dp; dv)
and so (3.9) holds by Theorem 3.3. By the Gauss quadrature formula and (2.6), we can show
that the minimum is attained only when

_CPuaaldpiz) gy o
$2_$§+1,n+2(dﬂ)
m(x) =

cPni1(dp;z) :
e, ifn=2s+1
m2*x§+1,n+1(dﬂ) !
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where ¢ is a nonzero constant. O

The following sharp inequality was proved in [3](see also [1] for « = ). If 7 € P, and
a, 3 > —1, then

n!'n+a+8+m+1)
(3.10) 17 llmvamers < \/( 17 lla 8,

n—m)!I'(n+a+F+1)

where ) 1
17 lla,5 = (/ 72(x)(1 — x)*(1 + m)ﬁd:n) 2
—1
Applying Theorem 2.1 iteratively, if « = 8 + k, then

1™ o <\/”!””+“+5+m“>
at+m,B+m > (

n—m)!T'(n+a+pB+1) Illp+.5
_ [nTn+atf+m+l) kol B () ]
: n ™
(3.11) “V(-m!Tn+a+8+1) =0 o5 s
_ [ nltats+m+1) NOET R
B (n—m)!f‘(n+a+ﬁ+1)1—‘£( _:E”H’"H) Ills.6
]:

where {ng }r_, denotes the zeros of Jacobi polynomial P,ga’ﬂ ) (). Similarly, if « = 8 — k,
then

k-1 1
Tn+a+F+m+1) N 2
(m) n | I a,a+j
I et mgm < \/(n —m)!IT(n+a+f+1) 4 (1 * x17n+1) Ileo-

Combining Theorem 3.3 and applying Theorem 2.1 again, we obtain a Markov type inequality.
More precisely, if @« = 8 + k, then

+7,
Hﬂ(m)Ha—&—m,ﬁ—&—m < Ds:rﬁn 1= ‘775-1-]151-1-1 I7lls.s
_ m—1 _1
+4, +7,6+7 2
< DR ITV1 - T (1= GIEYP)  Inlossimsin
X j=0
2 (el T g
n 771-‘1- + '7 + ] 2
= ﬁ,’r[i 1 4+ ZormEifm (1 = (@1 ])2) Iellatm,m
j=0 1,n+1 7=0
and if & = 8 — k, then
k—1 1+ xtl;v,ai—lj m—1 ) ) _ 1L
,n + ) + 2
(3.12) HT"(m)Ha+m,ﬁ+m < fo,’fi H 1 a+m,a+m-+j H (1_(1.(11»”?"; j)Z) ”71'Ha+m,ﬁ+m7
=0 + xn+1,n+1 7=0

where

DoB nIn+a+B+m+1)
N (n—m)Tn+a+B+1)
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In particular, if £ = 0, then o = 3 and

m—1

1
e
IT (1= @E25™02)  Ilmsamtas

=0

n!T(n+m+2a+1)
(n—m)!T(n+2a+1)

Hﬂ-(m) ||a+m,,8+m <

which is a Markov type inequality for ultraspherical polynomials. As a special case, we obtain

(a:ﬂ:—% andm:1)
n
< 7l s

11 :

22 7 sin gty

which was also found in [5]. In this way, we can obtain various kinds of inequalities using
(3.10), (3.11), and (3.12).

[l
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