INEQUALITIES OF RAFALSON TYPE FOR ALGEBRAIC POLYNOMIALS

K. H. $KWON^1$ AND D. W. LEE^2

Abstract. For a positive Borel measure $d\mu$, we prove that the constant

$$\gamma_n(d\nu; d\mu) := \sup_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} \pi^2(x) d\nu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)},$$

can be represented by the zeros of orthogonal polynomials corresponding to $d\mu$ in case (i) $d\nu(x) = (A+Bx)d\mu(x)$, where A+Bx is nonnegative on the support of $d\mu$ and (ii) $d\nu(x) = (A+Bx^2)d\mu(x)$, where $d\mu$ is symmetric and $A+Bx^2$ is nonnegative on the support of $d\mu$. The extremal polynomials attaining the constant are obtained and some concrete examples are given including Markov type inequality when $d\mu$ is a measure for Jacobi polynomials.

2000 AMS Subject Classification: 41A17, 41A44.

KEY WORDS: INEQUALITIES OF RAFALSON TYPE, ORTHOGONAL POLYNOMIALS.

1. Introduction

Let $d\mu$ be a positive Borel measure on \mathbb{R} with infinite support whose moments are all finite. Then there exists an orthonormal polynomial system $\{P_n(d\mu;x)\}_{n=0}^{\infty}$ with respect to $d\mu$ such that

$$\int_{-\infty}^{\infty} P_m(d\mu; x) P_n(d\mu; x) d\mu(x) = \delta_{mn}, \qquad m, n = 0, 1, 2, \dots,$$

where δ_{mn} is the Kronecker delta. One of the most important properties for $\{P_n(d\mu;x)\}_{n=0}^{\infty}$ is the three term recurrence relation

$$xP_n(d\mu;x) = a_{n+1}P_{n+1}(d\mu;x) + b_nP_n(d\mu;x) + a_nP_{n-1}(d\mu;x), \quad n = 0, 1, 2, \dots,$$

where $P_{-1}(x) \equiv 0$, $P_0(d\mu; x) = (\int_{-\infty}^{\infty} d\mu(x))^{\frac{1}{2}}$, and

$$a_n = a_n(d\mu) = \int_{-\infty}^{\infty} x P_n(d\mu; x) P_{n-1}(d\mu; x) d\mu(x), \quad n \ge 1,$$

$$b_n = b_n(d\mu) = \int_{-\infty}^{\infty} x P_n^2(d\mu; x) d\mu(x), \quad n \ge 0.$$

It is interesting to find the best possible constant $\gamma_n = \gamma_n(d\nu; d\mu)$ such that

(1.1)
$$\|\pi\|_{d\nu} \le \gamma_n \|\pi\|_{d\mu}, \quad \pi \in \mathcal{P}_n,$$

where \mathcal{P}_n is the space of all real polynomials of degree at most n, $d\nu$ is another positive Borel measure on \mathbb{R} , and

$$\|\pi\|_{d\mu} := \left\{ \int_{-\infty}^{\infty} \pi^2(x) d\mu(x) \right\}^{\frac{1}{2}}.$$

The constant γ_n can be redefined by

$$\gamma_n(d\nu; d\mu) = \sup_{\pi \in \mathcal{P}_n} \{ \|\pi\|_{d\nu} : \|\pi\|_{d\mu} = 1 \}.$$

For $d\mu(x) = (1-x)^{\alpha}(1+x)^{\beta}dx$ and $d\nu(x) = (1-x)^{\gamma}(1+x)^{\delta}dx$ on [-1,1], γ_n was estimated in [1, 4] and for $\alpha = \beta = \frac{1}{2}$, $\gamma = \delta = \frac{3}{2}$ or $\alpha = \beta = \frac{3}{2}$, $\gamma = \delta = \frac{1}{2}$, the exact value of γ_n was obtained by Refalson [5].

In this paper, we will prove that the constant γ_n can be expressed by the zeros of orthonormal polynomials with respect to $d\mu$ in cases (i) $d\nu(x) = (A+Bx)d\mu(x)$, where A+Bx is nonnegative on the support of $d\mu$ and (ii) $d\nu(x) = (A+Bx^2)d\mu(x)$, where $d\mu$ is symmetric and $A+Bx^2$ is nonnegative on the support of $d\mu$. The extremal polynomial attaining γ_n is obtained and some concrete examples are given including Markov type inequality when $d\mu$ is a measure for Jacobi polynomials.

2. Case
$$d\nu(x) = (A + Bx)d\mu(x)$$

The zeros of orthogonal polynomial $P_n(d\mu; x)$ are denoted by $x_{1n}(d\mu) > x_{2n}(d\mu) > \cdots x_{nn}(d\mu)$. Then by the Gauss quadrature formula, we have

(2.1)
$$x_{1,n+1}(d\mu) = \max_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} x \pi^2(x) d\mu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)}$$

and

(2.2)
$$x_{n+1,n+1}(d\mu) = \min_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} x \pi^2(x) d\mu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)}.$$

The maximum and the minimum in (2.1) and (2.2) are attained if and only if $\pi(x) = \frac{cP_{n+1}(d\mu;x)}{x-x_{1,n+1}(d\mu)}$ and $\pi(x) = \frac{cP_{n+1}(d\mu;x)}{x-x_{n+1,n+1}(d\mu)}$, respectively, where c is a non-zero constant. Using these formula, we can easily prove:

Theorem 2.1. Let $d\nu(x) = g(x)d\mu(x)$, where g(x) = A + Bx is nonnegative on the support of $d\mu$. Then

(2.3)
$$\gamma_n(d\nu; d\mu) = \left\{ \max_{k=1,2,\dots,n+1} g(x_{k,n+1}) \right\}^{\frac{1}{2}} = \begin{cases} \sqrt{g(x_{1,n+1})} & \text{if } B \ge 0\\ \sqrt{g(x_{n+1,n+1})} & \text{if } B < 0 \end{cases}$$

and

(2.4)
$$\gamma_n(d\mu; d\nu) = \left\{ \min_{k=1,2,\dots,n+1} g(x_{k,n+1}) \right\}^{-\frac{1}{2}} = \begin{cases} g(x_{n+1,n+1})^{-\frac{1}{2}} & \text{if } B \ge 0\\ g(x_{1,n+1})^{-\frac{1}{2}} & \text{if } B < 0, \end{cases}$$

where $x_{k,n+1} = x_{k,n+1}(d\mu)$. The constants $\gamma_n(d\nu;d\mu)$ in (2.3) and $\gamma_n(d\mu;d\nu)$ in (2.4) are attained if and only if $\pi(x) = \frac{cP_{n+1}(d\mu;x)}{x-x_{k,n+1}(d\mu)}$, where c is a non-zero constant and

$$k = \begin{cases} 1 & \text{if } B \ge 0 \\ n+1 & \text{if } B < 0 \end{cases} \quad \text{for} \quad \gamma_n(d\nu; d\mu), \qquad k = \begin{cases} n+1 & \text{if } B \ge 0 \\ 1 & \text{if } B < 0 \end{cases} \quad \text{for} \quad \gamma_n(d\mu; d\nu).$$

Proof. By the Gauss quadrature formula, we have for any $\pi \in \mathcal{P}_n$,

$$\int_{-\infty}^{\infty} \pi^{2}(x) d\nu(x) = \int_{-\infty}^{\infty} (A + Bx) \pi^{2}(x) d\mu(x)$$

$$= \sum_{k=1}^{n+1} \lambda_{k,n+1} (A + Bx_{k,n+1}) \pi^{2}(x_{k,n+1})$$

$$\leq \max_{k=1,2,\dots,n+1} (A + Bx_{k,n+1}) \sum_{k=1}^{n+1} \lambda_{k,n+1} \pi^{2}(x_{k,n+1})$$

$$= \max_{k=1,2,\dots,n+1} g(x_{k,n+1}) \int_{-\infty}^{\infty} \pi^{2}(x) d\mu(x),$$

where $\lambda_{k,n+1} := \lambda_{k,n+1}(d\mu)$ are the Christoffel numbers for the measure $d\mu$. Now assume $B \geq 0$. Then $\max_{k=1,2,\cdots,n+1} g(x_{k,n+1}) = g(x_{1,n+1})$ and we have the equality in (2.5) for $\pi(x) = \frac{P_{n+1}(x)}{x-x_{1,n+1}}$. Conversely if the equality holds in (1.1) for $\pi(x)$, then the equality holds also in (2.5) so that $\pi(x_{k,n+1}) = 0$, $2 \leq k \leq n+1$. Hence $\pi(x) = \frac{cP_{n+1}(x)}{x-x_{1,n+1}}$, $c \neq 0$. This proves (2.3) when $B \geq 0$. In case B < 0, the proof is similar. Finally the equation (2.4) can be proved by a similar process using (2.2) instead of (2.1) and

(2.6)
$$\gamma_n^2(d\mu; d\nu) = \max_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\nu(x)} = \left\{ \min_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} \pi^2(x) d\nu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)} \right\}^{-1}.$$

Corollary 2.2. Let $d\nu(x) = (1-x)^{\alpha}(1+x)^{\beta}dx$, $d\mu(x) = (1-x)^{\gamma}(1+x)^{\delta}dx$ on [-1,1], and $\varphi_{\gamma,\delta}^{\alpha,\beta}(n) = \gamma_n(d\nu;d\mu)$, where $\alpha,\beta,\gamma,\delta > -1$. Then

$$\varphi_{1/2,1/2}^{3/2,1/2}(n) = \varphi_{1/2,1/2}^{1/2,3/2}(n) = \sqrt{2}\cos\frac{\pi}{2(n+2)};$$

$$\varphi_{3/2,1/2}^{1/2,1/2}(n) = \varphi_{1/2,3/2}^{1/2,1/2}(n) = \left(\sqrt{2}\sin\frac{\pi}{2(n+1)}\right)^{-1};$$

$$\varphi_{-1/2,-1/2}^{1/2,-1/2}(n) = \varphi_{-1/2,-1/2}^{-1/2,1/2}(n) = \sqrt{2}\cos\frac{\pi}{4(n+1)};$$

$$\varphi_{-1/2,-1/2}^{-1/2,-1/2}(n) = \varphi_{-1/2,1/2}^{-1/2,-1/2}(n) = \left(\sqrt{2}\sin\frac{\pi}{4(n+1)}\right)^{-1}.$$

Proof. Let g(x) = 1 - x. Since the smallest zero of Chebychev polynomial $U_{n+1}(x)$ of the second kind is $-\cos \frac{\pi}{n+2}$,

(2.7)
$$\varphi_{1/2,1/2}^{3/2,1/2}(n) = \sqrt{1 + \cos\frac{\pi}{n+2}} = \sqrt{2}\cos\frac{\pi}{2(n+2)}.$$

All others can be proved similarly by Theorem 2.1.

Example 2.1. Let $d\mu(x) = x^{\alpha}e^{-x}dx$ and $d\nu(x) = xd\mu(x)$ on $[0, \infty)$, where $\alpha > -1$. Using the asymptotic behavior of the greatest zero $x_{1,n+1}$ of the Laguerre polynomial $L_{n+1}^{(\alpha)}(x)[6]$, we can use

$$\lim_{n \to \infty} \frac{\gamma_n(d\nu; d\mu)}{2\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{x_{1,n+1}}}{2\sqrt{n}} = 1.$$

Let $d\nu(x) = g(x)d\mu(x)$, where $g \in \mathcal{P}_{\ell}$ is nonnegative on $[0, \infty)$. Then by the same process as in the proof of Theorem 2.1, we have for any $\pi \in \mathcal{P}_n$,

$$\int_{0}^{\infty} \pi^{2}(x) d\nu(x) \leq \max_{k=1,2,\dots,n+m} g(x_{k,n+m}) \int_{0}^{\infty} \pi^{2}(x) d\mu(x), \quad m = \left[\frac{\ell+1}{2}\right]$$

and

$$\int_0^\infty \pi^2(x) d\nu(x) \geq \min_{k=1,2,\dots,n+m} g(x_{k,n+m}) \int_0^\infty \pi^2(x) d\mu(x), \quad m = \left[\frac{\ell+1}{2}\right].$$

Hence, we obtain an estimation for $\gamma_n(d\nu; d\mu)$

(2.8)
$$\min_{k=1,2,\dots,n+m} g(x_{k,n+m}) \le \gamma_n^2(d\nu; d\mu) \le \max_{k=1,2,\dots,n+m} g(x_{k,n+m}).$$

But, the estimate (2.8) is not sharp in general if $l \geq 2$.

3. Case
$$d\nu(x) = (A + Bx^2)d\mu(x)$$

In this section $d\mu$ is assumed to be symmetric and so the corresponding orthonormal polynomials satisfy

$$xP_n(d\mu; x) = a_{n+1}P_{n+1}(d\mu; x) + a_nP_{n-1}(d\mu; x), \quad n \ge 0.$$

Lemma 3.1. Let $d\mu$ be symmetric. Then we have

$$x_{1,n+2}(d\mu) = \max_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} x^2 \pi^2(x) d\mu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)}$$

and equality holds if and only if $\pi(x) = \frac{cP_{n+2}(d\mu;x)}{x^2 - x_{1,n+2}^2}$, where c is a nonzero constant.

Proof. See Theorem 2 in [2].

Lemma 3.2. For any $(n+1) \times (n+1)$ matrix W $(n \ge 1)$,

$$(3.1) W := \begin{pmatrix} \alpha_0 & 0 & \beta_1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \alpha_1 & 0 & \beta_2 & 0 & 0 & \cdots & 0 \\ \beta_1 & 0 & \alpha_2 & 0 & \beta_3 & 0 & \cdots & 0 \\ 0 & \beta_2 & 0 & \alpha_3 & 0 & \beta_4 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \beta_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \alpha_{n-1} & 0 \\ 0 & \cdots & \cdots & 0 & \beta_{n-1} & 0 & \alpha_n \end{pmatrix}$$

we have |W| = |U||V|, where |W| is the determinant of the matrix W,

$$U := \begin{pmatrix} \alpha_0 & \beta_1 & 0 & 0 & 0 & \cdots & 0 \\ \beta_1 & \alpha_2 & \beta_3 & 0 & 0 & \cdots & 0 \\ 0 & \beta_3 & \alpha_4 & \beta_5 & 0 & \cdots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \alpha_{2m-2} & \beta_{2m-1} \\ 0 & \cdots & \cdots & 0 & \beta_{2m-1} & \alpha_{2m} \end{pmatrix}, \qquad m := \left[\frac{n}{2}\right],$$

and

$$V := \begin{pmatrix} \alpha_1 & \beta_2 & 0 & 0 & 0 & \cdots & 0 \\ \beta_2 & \alpha_3 & \beta_4 & 0 & 0 & \cdots & 0 \\ 0 & \beta_4 & \alpha_5 & \beta_6 & 0 & \cdots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \alpha_{2\ell-1} & \beta_{2\ell} \\ 0 & \cdots & \cdots & 0 & \beta_{2\ell} & \alpha_{2\ell+1} \end{pmatrix}, \qquad \ell := \left[\frac{n-1}{2}\right].$$

Proof. It can be easily shown by elementary row and column operations.

Theorem 3.3. Let $d\nu(x) = (A + Bx^2)d\mu(x)$, where $A + Bx^2$ is nonnegative on the support of $d\mu$. If $d\mu$ is symmetric, then

(3.2)
$$\gamma_n(d\nu; d\mu) = \begin{cases} \sqrt{A + Bx_{1,n+2}^2} & \text{if } B \ge 0\\ \sqrt{A + Bx_{s+1,n+2}^2} & \text{if } B < 0 \text{ and } n = 2s\\ \sqrt{A + Bx_{s+1,n+1}^2} & \text{if } B < 0 \text{ and } n = 2s + 1 \end{cases}$$

and

(3.3)
$$\gamma_n(d\mu; d\nu) = \begin{cases} (A + Bx_{1,n+2}^2)^{-\frac{1}{2}} & \text{if } B \le 0\\ (A + Bx_{s+1,n+2}^2)^{-\frac{1}{2}} & \text{if } B > 0 \text{ and } n = 2s\\ (A + Bx_{s+1,n+1}^2)^{-\frac{1}{2}} & \text{if } B > 0 \text{ and } n = 2s + 1. \end{cases}$$

Proof. We will prove only (3.2). Then (3.3) can be proved by a similar process with (2.6). When B=0, it is trivial and so we may assume $B\neq 0$. Let $\pi(x)=\sum_{k=0}^n c_k P_k(d\mu;x)$. Then by the three term recurrence relation,

$$(A + Bx^{2})\pi(x) = \sum_{k=0}^{n} (A + Bx^{2})c_{k}P_{k}(x)$$

$$= \sum_{k=0}^{n} [A + B(a_{k+1}^{2} + a_{k}^{2})]c_{k}P_{k}(x)$$

$$+ \sum_{k=2}^{n+2} Ba_{k}a_{k-1}c_{k-2}P_{k}(x) + \sum_{k=0}^{n-2} Ba_{k+2}a_{k+1}c_{k+2}P_{k}(x),$$

where $a_k = a_k(d\mu)$ and $P_k(x) = P_k(d\mu; x)$. Hence, by the orthonormality of $\{P_n(x)\}_{n=0}^{\infty}$,

$$\int_{-\infty}^{\infty} \pi^2(x) d\nu(x) = \sum_{k=0}^{n} [A + B(a_{k+1}^2 + a_k^2)] c_k^2 + 2 \sum_{k=0}^{n-2} Ba_{k+2} a_{k+1} c_k c_{k+2}.$$

If we assume that $\|\pi\|_{d\mu} = 1$, that is, $\sum_{k=0}^{n} c_k^2 = 1$, then

$$\gamma_n^2(d\nu; d\mu) = \max_{\sum_{k=0}^n c_k^2 = 1} \left\{ \sum_{k=0}^n [A + B(a_{k+1}^2 + a_k^2)] c_k^2 + 2 \sum_{k=0}^{n-2} Ba_{k+2} a_{k+1} c_k c_{k+2} \right\},\,$$

which is equal to $\max\{|\lambda|: \lambda \text{ is an eigenvalue of } W\}$, where W is the matrix (3.1) with $\alpha_k = A + B(a_k^2 + a_{k+1}^2)$ and $\beta_k = Ba_k a_{k+1}$. By Lemma 3.2, $\gamma_n(d\nu: d\mu) = \max\{|\lambda|: U_m(\lambda) = 0 \text{ or } V_\ell(\lambda) = 0\}$, where

$$U_{m}(\lambda) = \begin{vmatrix} \alpha_{0} - \lambda & \beta_{1} & 0 & 0 & 0 & \cdots & 0 \\ \beta_{1} & \alpha_{2} - \lambda & \beta_{3} & 0 & 0 & \cdots & 0 \\ 0 & \beta_{3} & \alpha_{4} - \lambda & \ddots & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \alpha_{2m-2} - \lambda & \beta_{2m-1} \\ 0 & \cdots & \cdots & 0 & \beta_{2m-1} & \alpha_{2m} - \lambda \end{vmatrix} \left(m = \left[\frac{n}{2} \right] \right)$$

and

$$V_{\ell}(\lambda) = \begin{vmatrix} \alpha_1 - \lambda & \beta_2 & 0 & 0 & 0 & \cdots & 0 \\ \beta_2 & \alpha_3 - \lambda & \beta_4 & 0 & 0 & \cdots & 0 \\ 0 & \beta_4 & \alpha_5 - \lambda & \ddots & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \alpha_{2\ell-1} - \lambda & \beta_{2\ell} \\ 0 & \cdots & \cdots & 0 & \beta_{2\ell} & \alpha_{2\ell+1} - \lambda \end{vmatrix} \left(\ell = \left[\frac{n-1}{2}\right]\right).$$

Now zeros of $U_m(\lambda)$ and $V_{\ell}(\lambda)$ are the zeros of orthonormal polynomials $S_{m+1}(x)$ and $T_{\ell+1}(x)$, respectively, satisfying

$$(3.4) xS_k = Ba_{2k+2}a_{2k+1}S_{k+1} + [A + B(a_{2k+1}^2 + a_{2k}^2)]S_k + Ba_{2k}a_{2k-1}S_{k-1},$$

$$(3.5) xT_k = Ba_{2k+3}a_{2k+2}T_{k+1} + [A + B(a_{2k+2}^2 + a_{2k+1}^2)]T_k + Ba_{2k+1}a_{2k}T_{k-1}.$$

On the other hand, since $d\mu$ is symmetric, if we set

(3.6)
$$Q_k(x^2) = P_{2k}(d\mu; x) \text{ and } xR_k(x^2) = P_{2k+1}(d\mu; x), \quad k \ge 0,$$

then $\{Q_k(x)\}_{k=0}^{\infty}$ and $\{R_k(x)\}_{k=0}^{\infty}$ are orthonormal polynomials satisfying the three term recurrence relations

$$(3.7) xQ_k(x) = a_{2k+2}a_{2k+1}Q_{k+1}(x) + (a_{2k+1}^2 + a_{2k}^2)Q_k(x) + a_{2k}a_{2k-1}Q_{k-1}(x), k \ge 0,$$

$$(3.8) xR_k(x) = a_{2k+3}a_{2k+2}R_{k+1}(x) + (a_{2k+2}^2 + a_{2k+1}^2)R_k(x) + a_{2k+1}a_{2k}R_{k-1}(x), k \ge 0.$$

Then $\{Q_n(\frac{1}{B}(x-A))\}_{n=0}^{\infty}$ and $\{R_n(\frac{1}{B}(x-A))\}_{n=0}^{\infty}$ satisfy the recurrence relations (3.4) and (3.5), respectively. Hence,

$$S_{m+1}(x) = Q_{m+1}(\frac{1}{B}(x-A))$$
 and $T_{\ell+1}(x) = R_{\ell+1}(\frac{1}{B}(x-A)).$

From the relation (3.6), $Q_{m+1}(x_{k,2m+2}^2) = 0$, k = 1, 2, ..., m+1, and $R_{\ell+1}(x_{k,2\ell+3}^2) = 0$, $k = 1, 2, ..., \ell+1$ and so

$$S_{m+1}(A + Bx_{k,2m+2}^2) = 0, \quad k = 1, 2, \dots, m+1$$

$$T_{\ell+1}(A + Bx_{k,2\ell+3}^2) = 0, \quad k = 1, 2, \dots, \ell+1.$$

Hence

$$\begin{split} \gamma_n^2(d\nu;d\mu) &= \max_{k=1,2,\dots,m+1;\atop j=1,2,\dots,\ell+1} \{A+Bx_{k,2m+2}^2,\,A+Bx_{j,2\ell+3}^2\} \\ &= \begin{cases} A+B\max\{x_{1,2m+2}^2,x_{1,2\ell+3}^2\} & \text{if } \mathbf{B}>0 \\ \\ A+B\min\{x_{m+1,2m+2}^2,x_{\ell+1,2\ell+3}^2\} & \text{if } \mathbf{B}<0. \end{cases} \end{split}$$

If B > 0 and n = 2s is even, then m = s and $\ell = s - 1$ so that

$$\gamma_n^2(d\nu; d\mu) = A + Bx_{1,2s+2}^2 = A + Bx_{1,n+2}^2.$$

If B > 0 and n = 2s + 1 is odd, then m = s and $\ell = s$ so that

$$\gamma_n^2(d\nu; d\mu) = A + Bx_{1,2s+3}^2 = A + Bx_{1,n+2}^2$$

If B < 0 and n = 2s is even, then m = s and $\ell = s - 1$ so that

$$\gamma_n^2(d\nu; d\mu) = A + Bx_{s+1, 2s+2}^2 = A + Bx_{s+1, n+2}^2$$

since $0 < x_{s+1,n+1} < x_{s,n+1}$. If B < 0 and n = 2s + 1 is odd, then $m = \ell = s$ so that

$$\gamma_n^2(d\nu;d\mu) = A + Bx_{s+1,2s+2}^2 = A + Bx_{s+1,n+1}^2$$

since $0 < x_{s+1,n+1} < x_{s+1,n+2}$. Hence, the conclusion follows.

Note that the constant $\gamma_n(d\nu; d\mu)$ in (2.2) is attained if and only if

$$\pi(x) = \begin{cases} \frac{cP_{n+2}(d\mu;x)}{x^2 - x_{1,n+2}^2} & \text{if } B \ge 0\\ \frac{cQ_{s+1}(x)}{x^2 - x_{s+1,2s+2}^2} & \text{if } B < 0, \end{cases}$$

where c is a non-zero constant.

Corollary 3.4. Let $d\nu(x) = (1-x)^{\alpha}(1+x)^{\beta}dx$, $d\mu(x) = (1-x)^{\gamma}(1+x)^{\delta}dx$ on [-1,1], and $\varphi_{\gamma,\delta}^{\alpha,\beta}(n) = \gamma_n(d\nu;d\mu)$, where $\alpha,\beta,\gamma,\delta > -1$. Then

$$\varphi_{1/2,1/2}^{3/2,3/2}(n) = \begin{cases} \cos\frac{\pi}{2(n+3)} & \text{if } n \text{ is even} \\ \cos\frac{\pi}{2(n+2)} & \text{if } n \text{ is odd} \end{cases};$$

$$\varphi_{3/2,3/2}^{1/2,1/2}(n) = \left(\sin\frac{\pi}{n+3}\right)^{-1};$$

$$\varphi_{-1/2,-1/2}^{1/2,1/2}(n) = \begin{cases} \cos\frac{\pi}{2(n+2)} & \text{if } n \text{ is even} \\ \cos\frac{\pi}{2(n+1)} & \text{if } n \text{ is odd} \end{cases};$$

$$\varphi_{-1/2,1/2}^{-1/2,-1/2}(n) = \left(\sin\frac{\pi}{2(n+2)}\right)^{-1}.$$

Proof. If $\alpha = \beta = \frac{3}{2}$ and $\gamma = \delta = \frac{1}{2}$, then $d\nu(x) = (1 - x^2)d\mu(x)$ and the orthonormal polynomials $\{U_n(x)\}_{n=0}^{\infty}$ with respect to $d\mu$ are the Chebychev polynomials of the second kind, whose zeros are

$$x_{kn}(d\mu) = \cos\frac{k\pi}{n+1}, \quad k = 1, 2, \dots, n.$$

Hence, by Theorem 3.3, if n = 2s, then

$$\varphi_{1/2,1/2}^{3/2,3/2}(n) = \sqrt{1 - \cos^2\frac{(s+1)\pi}{2s+3}} = \cos\frac{\pi}{2(n+3)}$$

and if n = 2s + 1, then

$$\varphi_{1/2,1/2}^{3/2,3/2}(n) = \sqrt{1 - \cos^2\frac{(s+1)\pi}{2s+3}} = \cos\frac{\pi}{2(n+2)}.$$

All the other cases can be obtained similarly by Theorem 3.3 and the zeros of the Chebychev polynomials of the first and the second kinds. \Box

Corollary 3.5. Let $d\mu$ be symmetric. Then we have

(3.9)
$$\min_{\pi \in \mathcal{P}_n \setminus \{0\}} \frac{\int_{-\infty}^{\infty} x^2 \pi^2(x) d\mu(x)}{\int_{-\infty}^{\infty} \pi^2(x) d\mu(x)} = \begin{cases} x_{s+1,n+2}^2 & \text{if } n = 2s \\ x_{s+1,n+1}^2 & \text{if } n = 2s + 1. \end{cases}$$

The minimum is attained if and only if $\pi(x) = \frac{cP_{n+2}(d\mu;x)}{x^2 - x_{s+1,n+2}^2(d\mu)}$ when n = 2s and $\pi(x) = \frac{cP_{n+1}(d\mu;x)}{x^2 - x_{s+1,n+1}^2(d\mu)}$ when n = 2s+1, where c is a nonzero constant.

Proof. Take A=0 and B=1 in Theorem 3.3. Then $\min_{\pi\in\mathcal{P}_n\setminus\{0\}}\frac{\int_{-\infty}^{\infty}x^2\pi^2(x)d\mu(x)}{\int_{-\infty}^{\infty}\pi^2(x)d\mu(x)}=\gamma_n^{-2}(d\mu;d\nu)$ and so (3.9) holds by Theorem 3.3. By the Gauss quadrature formula and (2.6), we can show that the minimum is attained only when

$$\pi(x) = \begin{cases} \frac{cP_{n+2}(d\mu;x)}{x^2 - x_{s+1,n+2}^2(d\mu)} & \text{if } n = 2s\\ \frac{cP_{n+1}(d\mu;x)}{x^2 - x_{s+1,n+1}^2(d\mu)} & \text{if } n = 2s + 1, \end{cases}$$

where c is a nonzero constant.

The following sharp inequality was proved in [3](see also [1] for $\alpha = \beta$). If $\pi \in \mathcal{P}_n$ and $\alpha, \beta > -1$, then

(3.10)
$$\|\pi^{(m)}\|_{m+\alpha,m+\beta} \le \sqrt{\frac{n! \Gamma(n+\alpha+\beta+m+1)}{(n-m)! \Gamma(n+\alpha+\beta+1)}} \|\pi\|_{\alpha,\beta},$$

where

$$\|\pi\|_{\alpha,\beta} = \left(\int_{-1}^{1} \pi^{2}(x)(1-x)^{\alpha}(1+x)^{\beta}dx\right)^{\frac{1}{2}}.$$

Applying Theorem 2.1 iteratively, if $\alpha = \beta + k$, then

$$\|\pi^{(m)}\|_{\alpha+m,\beta+m} \leq \sqrt{\frac{n! \Gamma(n+\alpha+\beta+m+1)}{(n-m)! \Gamma(n+\alpha+\beta+1)}} \|\pi\|_{\beta+k,\beta}$$

$$\leq \sqrt{\frac{n! \Gamma(n+\alpha+\beta+m+1)}{(n-m)! \Gamma(n+\alpha+\beta+1)}} \prod_{j=0}^{k-1} \varphi_{\beta+j,\beta}^{\beta+j+1,\beta}(n) \|\pi\|_{\beta,\beta}$$

$$= \sqrt{\frac{n! \Gamma(n+\alpha+\beta+m+1)}{(n-m)! \Gamma(n+\alpha+\beta+1)}} \prod_{j=0}^{k-1} \left(1 - x_{n+1,n+1}^{\beta+j,\beta}\right)^{\frac{1}{2}} \|\pi\|_{\beta,\beta},$$

where $\{x_{k,n}^{\alpha,\beta}\}_{k=1}^n$ denotes the zeros of Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$. Similarly, if $\alpha = \beta - k$, then

$$\|\pi^{(m)}\|_{\alpha+m,\beta+m} \le \sqrt{\frac{n!\,\Gamma(n+\alpha+\beta+m+1)}{(n-m)!\,\Gamma(n+\alpha+\beta+1)}} \prod_{j=0}^{k-1} \left(1 + x_{1,n+1}^{\alpha,\alpha+j}\right)^{\frac{1}{2}} \|\pi\|_{\alpha,\alpha}.$$

Combining Theorem 3.3 and applying Theorem 2.1 again, we obtain a Markov type inequality. More precisely, if $\alpha = \beta + k$, then

$$\|\pi^{(m)}\|_{\alpha+m,\beta+m} \leq D_{n,m}^{\alpha,\beta} \prod_{j=0}^{k-1} \sqrt{1 - x_{n+1,n+1}^{\beta+j,\beta}} \|\pi\|_{\beta,\beta}$$

$$\leq D_{n,m}^{\alpha,\beta} \prod_{j=0}^{k-1} \sqrt{1 - x_{n+1,n+1}^{\beta+j,\beta}} \prod_{j=0}^{m-1} \left(1 - (x_{1,n+2}^{\beta+j,\beta+j})^2\right)^{-\frac{1}{2}} \|\pi\|_{\beta+k+m,\beta+m}$$

$$= D_{n,m}^{\alpha,\beta} \prod_{j=0}^{k-1} \sqrt{\frac{1 - x_{n+1,n+1}^{\beta+j,\beta}}{1 + x_{1,n+1}^{\beta+m+j,\beta+m}}} \prod_{j=0}^{m-1} \left(1 - (x_{1,n+2}^{\beta+j,\beta+j})^2\right)^{-\frac{1}{2}} \|\pi\|_{\alpha+m,\beta+m}$$

and if $\alpha = \beta - k$, then

$$(3.12) \|\pi^{(m)}\|_{\alpha+m,\beta+m} \le D_{n,m}^{\alpha,\beta} \prod_{j=0}^{k-1} \sqrt{\frac{1+x_{1,n+1}^{\alpha,\alpha+j}}{1+x_{n+1,n+1}^{\alpha+m,\alpha+m+j}}} \prod_{j=0}^{m-1} \left(1-(x_{1,n+2}^{\alpha+j,\alpha+j})^2\right)^{-\frac{1}{2}} \|\pi\|_{\alpha+m,\beta+m},$$

where

$$D_{n,m}^{\alpha,\beta} = \sqrt{\frac{n! \Gamma(n+\alpha+\beta+m+1)}{(n-m)! \Gamma(n+\alpha+\beta+1)}}.$$

In particular, if k = 0, then $\alpha = \beta$ and

$$\|\pi^{(m)}\|_{\alpha+m,\beta+m} \le \sqrt{\frac{n!\,\Gamma(n+m+2\alpha+1)}{(n-m)!\,\Gamma(n+2\alpha+1)}} \prod_{j=0}^{m-1} \left(1 - (x_{1,n+2}^{\alpha+j,\alpha+j})^2\right)^{-\frac{1}{2}} \|\pi\|_{m+\alpha,m+\alpha},$$

which is a Markov type inequality for ultraspherical polynomials. As a special case, we obtain $(\alpha = \beta = -\frac{1}{2} \text{ and } m = 1)$

 $\|\pi'\|_{\frac{1}{2},\frac{1}{2}} \le \frac{n}{\sin\frac{\pi}{2(n+2)}} \|\pi\|_{\frac{1}{2},\frac{1}{2}},$

which was also found in [5]. In this way, we can obtain various kinds of inequalities using (3.10), (3.11), and (3.12).

Acknowledgment. The first author(KHK) was partially supported by KRF-2002-070-C00004 and the second author(DWL) was supported by the Post-doctoral Fellowship Program of KOSEF.

References

- [1] I.K.Daugavet and S.Z.Rafalson, Some inequalities of Markov-Nikolskii type for algebraic polynomials, Vestnik Leningrad. Univ. Mekh. Astronom., 1 (1972), 15-25.
- [2] G.Freud, On the greatest zero of orthogonal polynomials I, Acta Sci. Math.(Szeged), 34 (1973), 91-97.
- [3] A.Guessab and G.V.Milovanovic, Weighted L²-analogues of Bernstein's inequality and classical orthogonal polynomials, J. Math. Anal. Appl., 182 (1994), 244-249.
- [4] S.V.Konjagin, On estimates of derivatives of polynomials, Dokl. Akad. Nauk SSSR, 243 (1978), 1116-1118.
- [5] S.Z.Rafalson, Some sharp inequalities for algebraic polynomials, J. Approx. Th., 95 (1998), 161-171.
- [6] G.Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., N.Y. (1939).

¹K. H. Kwon division of applied mathematics kaist taejon 305-701, korea khkwon@jacobi.kaist.ac.kr ²D. W. LEE
DEPARTMENT OF MATHEMATICS
TEACHERS COLLEGE
KYUNGPOOK NATIONAL UNIVERSITY
TAEGU 702-701, KOREA
dowlee@knu.ac.kr