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Abstract

We prove the existence of quadrature formulas exact for integrating high degree polynomials

with respect to Jacobi weights based on scattered data on the unit interval. We also obtain a

characterization of local Besov spaces using the coefficients of a tight frame expansion.

1 Introduction

It is well known that a major drawback of polynomial approximation is that polynomials cannot be
localized; a polynomial of degree n is completely determined by its values at n+ 1 points on an interval,
howsoever small. Another example is the following. If P ∗

n is a best polynomial approximation of degree
at most n to the function f(x) = |x| on [−1, 1], then there are at least n+ 2 points yj on [−1, 1], where
|f(yj)−P ∗

n(yj)| ≥ cn−1, where c is a positive constant independent of n and the points yj. Moreover, as
n→ ∞, these points become dense on [−1, 1]. Thus, even though the function is piecewise analytic, the
only singularity of the function, namely, x = 0, affects the quality of best approximation on the entire
interval.

One of the interesting problems in the theory of polynomial approximation is thus to construct local-
ized polynomial approximations. There are two flavors to this problem. In the local information problem,
one has information about the target function only on a part of the interval [−1, 1], and wants to con-
struct the approximation also on a neighborhood of this part, keeping the growth of the approximation
in control on the rest of the interval. In the local adaptivity problem, the data is available on the whole
interval; indeed, it might even be in the form of the globally defined Fourier coefficients f̂(µ; k) (defined in
(2.4)) of the target function f for a suitable measure µ. Nevertheless, we wish to find a single polynomial
that adapts its behavior on different parts of the interval according to the smoothness of the target func-
tion on these parts. This is a different problem from piecewise polynomial (or spline) approximation and
adaptive approximation. Unlike in spline approximation, we want to obtain a single polynomial, which
yields the benefits of the superior degree of approximation provided by polynomials on intervals where
the function is smooth or even analytic. Unlike in adaptive approximation, we do not wish first to find
the location of the singularities of the target function; the determination of their locations should be a
byproduct of successive polynomial approximations. The construction of these polynomials may depend
upon finitely many of the Fourier coefficients, or on the values of f at certain points on the interval. In
most modern applications, one does not have a control on where to choose these points. Such problems
are called scattered data problems. Thus, one of the important problems in this theory is to develop
quadrature formulas similar to the Gauss–Jacobi quadarture formula, except that one should not require
that the values of f be at the zeros of some orthogonal polynomial, but may be at any set of points
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instead. In return, we cannot expect the formula based on m points to be exact for polynomials of degree
2m− 1 but only for polynomials of degree proportional to m.

To summarize, we wish to construct a wavelet–like expansion
∑

k

∑

j aj,k(f)ψj,k with the follow-

ing properties: (1) For k = 0, 1, · · ·, ψj,k is a polynomial of degree at most 2k, independent of f .
(2) Each coefficient aj,k should be a finite linear combination of the Fourier coefficients of the target
function f , or the values of f at O(2k) arbitratily chosen points on the interval. (3) The difference
∣

∣

∣

∑n
k=0

∑

j aj,k(f)ψj,k(x) − f(x)
∣

∣

∣
should be O(Eµ;c2n,∞(f)) uniformly on [−1, 1] (see (2.1) for definition,

µ being a suitable measure), and yet, near every point x ∈ [−1, 1], it should be small according to the
behavior of f near x. (4) It should be possible to characterize the smoothness of f near different points
by the absolute values |aj,n(f)|. (5) The following frame inequalities should be satisfied:

∑

k

∑

j

|aj,k(f)|2 ∼ ‖f‖µ;2. (1.1)

The system {ψj,k} will be called a frame. In the case when equality holds in (1.1) rather than ∼, the
system {ψj,k} will be called a tight frame.

This paper is a continuation of our paper [13], where we constructed certain localized kernels, and
characterized local Besov spaces on the unit interval in terms of polynomial frames based on Jacobi poly-
nomials. The aim of this paper is to fill in certain gaps left over in [13], which have come to our attention
after the publication of that paper. In Section 2, we introduce the necessary notations. In Section 3, we
develop the localized tight frames in the context of general mass distributions on [−1, 1]. Essential ingre-
dients in this theory are localized polynomial kernels and quadrature formulas. In Section 4, we develop
quadrature formulas exact for integrating high degree polynomials with respect to the Jacobi weight,
based on scattered data on the interval. In Section 5, we prove localization estimates on certain kernels
based on Jacobi polynomials that are more elegant than those presented in [13]. Certain computational
issues are addressed in Section 6.

2 Notations and background

For x > 0, let Πx denote the class of all (algebraic) polynomials of degree at most x. Denoting by ⌊x⌋ the
integer part of x, this is the same as the class Π⌊x⌋. Extending the notation in this way allows us to use
a less cumbersome notation, as well as relieves us of stating certain conditions on the degrees in almost
every statement. If µ is a finite positive or signed Borel measure on [−1, 1], the total variation measure
of µ will be denoted by |µ|. A point x ∈ [−1, 1] is called a point of increase of µ if |µ|(I) > 0 for every
open interval I containing x. The set of all points of increase of µ is called the support of µ, denoted by
supp (µ). It is clear that supp (µ) is always a closed set. The measure µ is called a mass distribution if
it has infinitely many points of increase and |µ|([−1, 1]) < ∞. If A ⊂ [−1, 1] is a µ–measurable subset,
and f : A→ C, we define

‖f‖µ;p,A :=







{
∫

A

|f(t)|pd|µ|(t)
}1/p

, if 1 ≤ p <∞,

|µ| − ess supt∈A |f(t)|, if p = ∞.

The class Lp(µ,A) consists of all µ–measurable functions f : A → C for which ‖f‖µ;p,A < ∞, with
the convention that two functions are considered equal if they are equal |µ|–almost everywhere. The
space C(A) denotes the class of all uniformly continuous, bounded functions on A. The symbol Xp(µ,A)
denotes Lp(µ,A) if 1 ≤ p <∞, and C(A) if p = ∞. For f ∈ Lp(µ,A) and x ≥ 0, we define the degree of
approximation of f from Πx by

Eµ;x,p,A(f) := inf
P∈Πx

‖f − P‖µ;p,A. (2.1)

In the sequel, if A = [−1, 1], we will often omit its mention from the notations, when not required by
considerations of clarity. Similarly, we will often omit the mention of the measure µ if it is the Lebesgue
measure.
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It is convenient to define the Besov spaces using the degrees of approximation. Characterizations in
terms of the Ditzian–Totik moduli of smoothness are given in [2] for some measures µ. Let 0 < ρ ≤ ∞,
γ > 0, and a = {an}∞n=0 be a sequence of real numbers. We define

‖a‖ρ,γ :=















{
∞
∑

n=0

2nγρ|an|ρ}1/ρ, if 0 < ρ <∞,

sup
n≥0

2nγ |an|, if ρ = ∞.
(2.2)

The space of sequences a for which ‖a‖ρ,γ < ∞ will be denoted by bρ,γ . For 1 ≤ p ≤ ∞, 0 < ρ ≤ ∞,
γ > 0, the Besov space Bµ;p,ρ,γ := Bµ;p,ρ,γ consists of functions f ∈ Xp(µ) for which the sequence
{Eµ;2n,p} ∈ bρ,γ . We define

‖f‖Bµ;p,ρ,γ = ‖f‖µ;p + ‖{Eµ;2n,p}‖ρ,γ . (2.3)

Let x0 ∈ [−1, 1]. The local Besov space Bµ;p,ρ,γ(x0) consists of all f ∈ Xp(µ) with the property that for
every C∞ function φ supported on an interval containing x0, fφ ∈ Bµ;p,ρ,γ . Let µ be a finite positive
measure on [−1, 1]. If µ is a mass distribution, one can use the Gram–Schmidt orthogonalization process
to obtain a unique sequence of orthonormalized polynomials pk(µ;x) = γk(µ)x

k + · · · ∈ Πk, γk(µ) > 0,
k = 0, 1, · · ·, such that

∫ 1

−1

pk(µ;x)pj(µ;x)dµ(x) = 0, if k 6= j, k, j = 0, 1, · · ·,

and
∫ 1

−1 p
2
k(µ;x)dµ(x) = 1, k = 0, 1, · · ·. It is customary to define pk(µ;x) = 0 if k < 0. If f ∈ L1(µ), we

may define

f̂(µ; k) =

∫ 1

−1

f(t)pk(µ; t)dµ(t), k = 0, 1, · · · , (2.4)

and for m = 1, 2, · · ·,

sm(µ; f, x) :=

m−1
∑

k=0

f̂(µ; k)pk(µ;x) =

∫ 1

−1

f(t)Km(µ;x, t)dµ(t), (2.5)

where the Christoffel–Darboux kernel Km(µ;x, t) :=
∑m−1

k=0 pk(µ;x)pk(µ; t). In particular,

∫ 1

−1

Km(µ;x, t)2dµ(t) = Km(µ;x, x), x ∈ R, m = 1, 2, · · · . (2.6)

We find it convenient to introduce the notation

λm(µ;x)−1 := Km(µ;x, x), x ∈ R, m = 1, 2, · · · .

In the sequel, the symbols c, c1, · · · will denote generic positive constants independent of the degrees
of polynomials involved and the target function f , but may depend upon such fixed quantities in the
discussion as µ and the smoothness parameters γ, ρ, etc. The symbol A1 ∼ A2 means that c1A1 ≤ A2 ≤
c2A1.

3 Polynomial frames

We will assume in the sequel that µ is a fixed mass distribution.
Let S ≥ 2 be an integer, and h◦ : R → [0,∞) be a compactly supported function that can be expressed

as an S times iterated integral of a function of bounded variation on R. In view of the Poisson summation
formula [1],

∑

k∈Z

h◦(k/λ)eikx = λ
∑

k∈Z

∫ ∞

−∞

h◦(t) exp

(

iλ(x+ 2kπ)t

)

dt, x ∈ [−π, π], λ > 0.
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It is not difficult to derive from this formula by a repeated integration by parts that (cf. [15])
∣

∣

∣

∣

∣

∑

k∈Z

h◦(k/λ)eikx

∣

∣

∣

∣

∣

≤ cV (h◦(S−1))λmin{1, (λ|x|)−S}, x ∈ [−π, π], λ > 0,

where V (h◦(S−1)) is the total variation of h◦(S−1) on R. The following definitions are motivated by this
observation.

If h : [0,∞) → R is compactly supported, let

Φλ(µ;h, x, t) :=
∞
∑

k=0

h

(

k

λ

)

pk(µ;x)pk(µ; t), x, t ∈ R, λ ≥ 1. (3.1)

If λ < 1, then we set Φλ(µ;h, x, t) = 0. It may seem strange to define it so. However, in most applications,
h(t) = 0 if t ≥ 1. Therefore, even if Φλ(µ;h, x, t) were defined by (3.1) for all λ > 0, we would have
Φλ(µ;h, x, t) = h(0)p0(µ)

2 = Φ1(µ;h, x, t) for all λ ≤ 1. The statements of our results later (e.g.,
Corollary 3.2) will be simplified with the definition as we have made it. We note that if we choose
h(t) = 1 for 0 ≤ t < 1 and h(t) = 0 if t ≥ 1, then for integer n ≥ 1, the kernel Φn(µ;h) reduces to the
Christoffel–Darboux kernel. In the sequel, we will assume that λ ≥ 0.

Let S ≥ 1 be an integer. A function h : [0,∞) → [0,∞) will be called a multiplier mask of order S if
each of the following conditions (3.2), (3.3) is satisfied:

sup
λ≥0, x∈[−1,1]

∫ 1

−1

|Φλ(µ;h, x, t)|dµ(t) <∞, (3.2)

sup
x,t∈[−1,1], |x−t|≥δ

|Φλ(µ;h, x, t)| ≤ c(δ)λ−S , λ, δ > 0. (3.3)

If ν is a (possibly signed) measure, we define the summability operators by

σλ(ν, µ;h, f, x) :=

∫ 1

−1

Φλ(µ;h, x, t)f(t)dν(t), λ ≥ 0, x ∈ R. (3.4)

If ν = µ, then we write σ∗
λ(µ;h, f) := σλ(ν, µ;h, f). We note that if λ ≥ 1 then

σ∗
λ(µ;h, f, x) =

∞
∑

k=0

h

(

k

λ

)

f̂(µ; k)pk(µ;x), x ∈ R. (3.5)

Since h is compactly supported, σ∗
λ(µ;h, f, x) can be computed using O(λ) Fourier coefficients of f . If ν

is a discrete measure that associates the mass wz with each point z in a finite set C, then

σλ(ν, µ;h, f, x) =
∑

z∈C

wzΦλ(µ;h, x, z)f(z),

which can be computed using the information {f(z)}z∈C. Our theory usually does not depend upon the
choice of the set C and the specific weights wz. Therefore, we will often use the Stieltjes notation to
denote a sum of the form

∑

z∈C wzf(z). Thus, we define a measure ν to associate the mass wz with each
z ∈ C, and write

∫

fdν or a variant thereof to denote the finite sum. If 1 ≤ p ≤ ∞, then we will say that
ν �p µ if f ∈ Xp(µ) implies that f ∈ Xp(ν), and ‖f‖ν;p ≤ c‖f‖µ;p.

A (possibly signed) measure ν will be called a M–Z (Marcinkiewicz–Zygmund) quadrature measure
of order n (for µ) if each of the following conditions (3.6), (3.7) is satisfied:

∫ 1

−1

Pdν =

∫ 1

−1

Pdµ, P ∈ Πn, (3.6)

‖P‖ν;1 ≤ c‖P‖µ;1, P ∈ Πn. (3.7)

(As usual, we tacitly think of the measure ν to be a member of a sequence of measures.)
In the rest of this section, let h : [0,∞) → [0,∞) be a nonincreasing function, such that h(t) = 1 if

0 ≤ t ≤ 1/2 and h(t) = 0 if t ≥ 1. We will assume that h is a multiplier mask of order S. The constants
c, c1, · · · may depend upon h.

The following proposition lists some immediate properties of the summability operators.
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Proposition 3.1 Let m ≥ 0 be an integer, ν be an M–Z quadrature measure of order 3m/2 − 1. Let
1 ≤ p ≤ ∞ and f ∈ Lp(µ).
(a) For P ∈ Πm/2, σm(ν, µ;h, P ) = P .
(b) We have

‖σm(ν, µ;h, f)‖µ;p ≤ c‖f‖ν;p, m = 0, 1, · · · . (3.8)

Consequently, if ν �p µ and f ∈ Xp(µ), then ‖σm(ν, µ;h, f)‖µ;p ≤ c‖f‖µ;p, and

Eµ;m,p(f) ≤ ‖f − σm(ν, µ;h, f)‖µ;p ≤ cEµ;m/2,p(f). (3.9)

(c) If f is supported on a subinterval I of [−1, 1], and J is an interval with I ⊂ J ⊆ [−1, 1], then

‖σm(ν, µ;h, f)‖µ;∞,[−1,1]\J ≤ c‖f‖µ;1m−S , (3.10)

where c may depend upon I and J in addition to µ, S, and h.

We point out an application of this proposition for the local information problem. Suppose J is a
subinterval of [−1, 1], C is a finite subset of J , and we have to construct an approximation to f ∈ X∞(µ)
based on the values {f(z)}z∈C. We may take a subinterval I of J , and a C∞ function φ which is equal
to 1 on I and 0 outside J . The above proposition shows how to approximate f on I while keeping the
growth of the approximating polynomial under control. We find an integer m such that there exists an
M–Z quadrature measure νm of order 3m/2 on a set containing C as its subset, and νm �∞ µ. The
existence of such measures is proved in [18, Proposition 5.1] under the assumption that µ({x}) = 0 for
each x ∈ [−1, 1]. Then (3.9) shows that

‖f − σm(νm, µ;h, fφ)‖µ;∞,I ≤ cEµ;m/2,∞(fφ),

while (3.10) and (3.8) limit the growth of ‖σm(νm, µ;h, fφ)‖µ;∞,[−1,1]\I .
Proof of Proposition 3.1. If P ∈ Πm/2, x ∈ R, then Φm(µ;h, x, ◦)P ∈ Π3m/2−1. Since h(t) = 1 if
t ≤ 1/2, it is easy to verify using (3.6) that

∫ 1

−1

Φm(µ;h, x, t)P (t)dν(t) =

∫ 1

−1

Φm(µ;h, x, t)P (t)dµ(t) = P (x).

This proves part (a).
In view of (3.7) and (3.2), we have

sup
x∈[−1,1]

∫ 1

−1

|Φm(µ;h, x, t)|d|ν|(t) ≤ c sup
x∈[−1,1]

∫ 1

−1

|Φm(µ;h, x, t)|dµ(t) ≤ c.

The estimate (3.8) is now a simple consequence of the Riesz–Thorin interpolation theorem and the fact
that ν �p µ (cf. [13, Lemma 4.1]).

If P ∈ Πm/2 is arbitrary, then part (a) and (3.8) imply that

Eµ;m,p(f) ≤ ‖f − σm(ν, µ;h, f)‖µ;p = ‖f − P − σm(ν, µ;h, f − P )‖µ;p ≤ c‖f − P‖µ;p.

This proves (3.9).
The estimate (3.10) is easy to deduce using (3.3). ✷

Corollary 3.1 Let m ≥ 0 be an integer, ν be an M–Z quadrature measure of order 3m− 1, and ν �∞ µ.
Then

‖P‖ν;p ∼ ‖P‖µ;p, P ∈ Πm, 1 ≤ p ≤ ∞. (3.11)

Proof. If f ∈ L1(µ), then (3.7) and (3.8) (applied with µ in place of ν) imply that

‖σ∗
2m(µ;h, f)‖ν;1 ≤ c‖σ∗

2m(µ;h, f)‖µ;1 ≤ c‖f‖µ;1.
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We note that ν �∞ µ and that σ∗
2m(µ;h, f) ∈ C([−1, 1]). An application of (3.8) again with p = ∞ and

µ in place of ν shows that

‖σ∗
2m(µ;h, f)‖ν;∞ ≤ c‖σ∗

2m(µ;h, f)‖µ;∞ ≤ c‖f‖µ;∞, f ∈ L∞(µ).

Consequently, the Riesz–Thorin interpolation theorem yields ‖σ∗
2m(µ;h, f)‖ν;p ≤ c‖f‖µ;p for every p ∈

(1,∞) and f ∈ Lp(µ). Using this estimate with P ∈ Πm in place of f , we obtain from part (a) of
Proposition 3.1 that ‖P‖ν;p ≤ c‖P‖µ;p, 1 ≤ p ≤ ∞. The estimates in the reverse direction follow directly
by using (3.8) with P in place of f and recalling part (a) of Proposition 3.1 again. ✷

The following theorem describes the local adaptivity property of the summability operators.

Theorem 3.1 Let 1 ≤ p ≤ ∞, f ∈ Xp(µ), x0 ∈ [−1, 1], 0 < ρ ≤ ∞, γ > 0, S > max(1, γ). For
each integer n ≥ 0, let νn be an M–Z quadrature measure of order (3/2)(2n) − 1, and νn �p µ. Then
f ∈ Bµ;p,ρ,γ(x0) if and only if there exists a nondegenerate interval I centered at x0 such that

‖f − σ2n(νn, µ;h, f)‖µ;p,I ∈ bρ,γ . (3.12)

Proof. Let f ∈ Bµ;p,ρ,γ(x0), and J be an interval centered at x0 such that Eµ;2n,p(fφ) ∈ bρ,γ for every
C∞ function φ supported on J . We take I ⊂ I1 ⊂ J to be intervals centered at x0, and a C∞ function
ψ supported on J and equal to 1 on I1. Then (3.10) leads to

‖σ2n(νn, µ;h, (1− ψ)f)‖µ;p,I ≤ c(I, J, f)2−nS.

Since ψ(t) = 1 for t ∈ I, we conclude that

‖f − σ2n(νn, µ;h, f)‖µ;p,I ≤ ‖ψf − σ2n(νn, µ;h, ψf)‖µ;p,I + ‖σ2n(νn, µ;h, (1− ψ)f)‖µ;p,I
≤ c(I, J, f)

{

Eµ;2n−1,p(ψf) + 2−nS
}

.

This proves (3.12).
Conversely, let (3.12) hold, and φ be a C∞ function supported on I. The direct theorem of approxi-

mation theory shows that there exists R ∈ Π2n such that ‖φ−R‖∞ ≤ c(φ)2−nS . Therefore, using (3.8)
and the fact that νn �p µ, we derive that

Eµ;2n+1,p(fφ) ≤ ‖fφ−Rσ2n(νn, µ;h, f)‖µ;p
≤ ‖(f − σ2n(νn, µ;h, f))φ‖µ;p + ‖(φ−R)σ2n(νn, µ;h, f)‖µ;p
≤ c(φ)

{

‖f − σ2n(νn, µ;h, f)‖µ;p,I + 2−nS‖f‖µ;p
}

.

In view of (3.12), this implies that f ∈ Bµ;p,ρ,γ(x0). ✷

The discrete Hardy inequality [2, Lemma 3.4, p. 27] implies that if {aj}∞j=0 ∈ bρ,γ then {∑∞
j=k aj}∞k=0 ∈

bρ,γ as well. Therefore, we can deduce the following corollary using (3.9) and (3.12).

Corollary 3.2 With the set up as in Theorem 3.1, we have

f =

∞
∑

n=0

(σ2n(νn, µ;h, f)− σ2n−1(νn−1, µ;h, f)) (3.13)

with convergence in the sense of Xp(µ). Moreover, f ∈ Bµ;p,ρ,γ(x0) if and only if there exists a nonde-
generate interval I centered at x0 such that

‖σ2n(νn, µ;h, f)− σ2n−1(νn−1, µ;h, f)‖µ;p,I ∈ bρ,γ .

The frame properties of the operators f 7→ σ2n(νn, µ;h, f)−σ2n−1(νn−1, µ;h, f) were described in [13].
We will now describe a tight frame, and demonstrate its use in characterization of local Besov spaces,
thereby achieving all the objectives listed in the introduction.

Let g(t) :=
√

h(t)− h(2t). Then g is supported on [1/4, 1], We assume that g is also a multiplier
mask of order S. We define

τ∗n(µ;h, f) := σ∗
2n(µ; g, f).

In the following theorem, we can choose νn to be a discretely supported positive measure. In the case of
the Jacobi weights, it may be the measure that associates with each zero xk,c(2n)(µ), k = 1, · · · , c(2n) of
pc(2n) the mass λc(2n)(µ;xk,c(2n)(µ)) for a suitable integer constant c ([21, Theorem 25, p. 168]).
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Theorem 3.2 Let 1 ≤ p ≤ ∞, f ∈ Xp(µ), x0 ∈ [−1, 1], 0 < ρ ≤ ∞, γ > 0, S > max(1, γ). For each
integer n ≥ 0, let νn be a sequence of measures with each νn satisfying

∫ 1

−1

Pdνn =

∫ 1

−1

Pdµ, P ∈ Π2n+1−1. (3.14)

(a) We have, with convergence in the sense of Xp,

f =
∞
∑

n=0

∫ 1

−1

τ∗n(µ;h, f, t)Φ2n(µ; g, ◦, t)dνn(t). (3.15)

(b) In the case when p = 2,

‖f‖2µ;2 =
∞
∑

n=0

‖τ∗n(µ;h, f)‖2νn;2. (3.16)

(c) Let νn be an M–Z measure of order 3(2n)− 1 and νn �p µ. Then f ∈ Bµ;p,ρ,γ(x0) if and only if there
exists a nondegenerate interval I centered at x0 such that {‖τ∗n(µ;h, f)‖µ;p,I} ∈ bρ,γ , or equivalently,
there exists a nondegenerate interval I centered at x0 such that {‖τ∗n(µ;h, f)‖νn;p,I} ∈ bρ,γ.

We remark that by choosing νn to be a discretely supported positive measure, the representation
(3.15) is actually a double sum representation, similar to classical wavelet expansions. The equation
(3.16) then appears as the analogue of the classical Parseval identity for trignometric Fourier series.
Part (c) shows that the absolute values of the coefficients (τ∗n(µ;h, f, t))t∈ supp (νn) in the representation
(3.15) can be used to characterize the local Besov spaces. It should be noted, however, that the functions
Φ2n(µ; g, ◦, t), t ∈ supp (νn), are not necessarily linearly independent.
Proof of Theorem 3.2. In view of (3.14), a straightforward calculation using the orthonormality of
the polynomials pk(µ) shows that for x ∈ R,

∫ 1

−1

τ∗n(µ;h, f, t)Φ2n(µ; g, x, t)dνn(t) =

∫ 1

−1

τ∗n(µ;h, f, t)Φ2n(µ; g, x, t)dµ(t)

= σ∗
2n(µ;h, f, x)− σ∗

2n−1(µ;h, f, x). (3.17)

The equation (3.15) follows from (3.13), used with each νn = µ. Similarly,

‖τ∗n(µ;h, f)‖2νn;2 = ‖τ∗n(µ;h, f)‖2µ;2,

and (3.16) follows by a straightforward calculation (cf. [16, Theorem 3].) Next, we prove part (c), where
stronger assumptions on νn are made. Since g(t) = 0 if t ≤ 1/4, and g is a multiplier mask of order S,
we have for any P ∈ Π2n−2 ,

‖τ∗n(µ;h, f)‖µ;p = ‖τ∗n(µ;h, f − P )‖µ;p ≤ c‖f − P‖µ;p.

Thus, ‖τ∗n(µ;h, f)‖µ;p ≤ cEµ;2n−2,p(f). Therefore, if f ∈ Bµ;p,ρ,γ(x0), then an argument similar to
the proof of Theorem 3.1, using the assumption that g is a multiplier mask of order S, implies that
{‖τ∗n(µ;h, f)‖µ;p,I} ∈ bρ,γ for some interval I containing x0. Conversely, let {‖τ∗n(µ;h, f)‖µ;p,I} ∈ bρ,γ ,
J ⊂ I be a proper subinterval centered at x0, and φ be an arbitrary C∞ function supported on J .
Denoting by X the characteristic function of I, we obtain in view of (3.2) with g in place of h that

∥

∥

∥

∥

∫

I

τ∗n(µ;h, f, t)Φ2n(µ; g, ◦, t)dµ(t)
∥

∥

∥

∥

µ;p,J

≤
∥

∥

∥

∥

∫ 1

−1

τ∗n(µ;h, f, t)X (t)Φ2n(µ; g, ◦, t)dµ(t)
∥

∥

∥

∥

µ;p

≤ c‖τ∗n(µ;h, f)‖µ;p,I . (3.18)

If x ∈ J , then
∫

[−1,1]\I

|τ∗n(µ;h, f, t)Φ2n(µ; g, x, t)|dµ(t) ≤ c(I, J)2−nS‖τ∗n(µ;h, f)‖µ;p ≤ c(I, J)2−nS‖f‖µ;p.
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The above two estimates and (3.17) show that

‖σ∗
2n(µ;h, f)− σ∗

2n−1(µ;h, f)‖µ;p,J =

∥

∥

∥

∥

∫ 1

−1

τ∗n(µ;h, f, t)Φ2n(µ; g, ◦, t)dµ(t)
∥

∥

∥

∥

µ;p,J

≤ c1‖τ∗n(µ;h, f)‖µ;p,I + c(I, J)2−nS‖f‖µ;p.

Thus, ‖σ∗
2n(µ;h, f)− σ∗

2n−1(µ;h, f)‖µ;p,J ∈ bρ,γ , and Corollary 3.2 implies that f ∈ Bµ;p,ρ,γ(x0). ✷

4 Quadrature formulas

In this section, we restrict ourselves to the case of Jacobi weights, and prove the existence of quadrature
formulas at arbitrarily chosen points on the interval, exact for integrating high degree polynomials with
respect to the Jacobi weights.

For α, β > −1, let wα,β(x) := (1 − x)α(1 + x)β , x ∈ (−1, 1), and wα,β(x) = 0 otherwise. We define
dµ(α,β)(x) = wα,β(x)dx, and denote the corresponding degree k orthonormalized polynomial pk(µ

(α,β))

with positive leading coefficient by p
(α,β)
k , (k = 0, 1, · · ·). In particular, for integers k, j = 0, 1, · · ·,

∫ 1

−1

pk
(α,β)(x)pj

(α,β)(x)wα,β(x)dx =

{

1, if k = j,
0, otherwise.

In the case α = β = −1/2, one obtains the Chebyshev polynomials. For θ ∈ [0, π], let Tk(cos θ) :=

cos kθ. We have for x ∈ [−1, 1], p
(−1/2,−1/2)
0 (x) = (1/

√
π)T0(x), and for k = 1, 2, · · · , p(−1/2,−1/2)

k (x) =

(
√

2/π)Tk(x).
Let M ≥ 4 be an integer, 0 = θ0 ≤ θ1 < · · · < θk < θk+1 < · · · < θM ≤ θM+1 = π be arbitrary points,

and zk = cos θk, k = 0, · · · ,M +1. We will tacitly assume that the set C = {zk} is one of the members of
a nested sequence of sets of points on [−1, 1], whose union in dense in [−1, 1]. Thus, all constants will be
independent of M and the points zk. The mesh norm (also known as fill distance) of the set is defined
by

δC := max
θ∈[0,π]

min
1≤k≤M

|θ − θk| =
1

2
max

0≤k≤M
|θk+1 − θk|.

The separation radius of C is defined by qC := (1/2)min0≤k≤M |θk+1 − θk|. The set C is called ρ-uniform
if δC ≤ ρqC , and uniform if it is ρ–uniform for some ρ. Again, it is to be understood that the value
of ρ is the same for the whole implicitly understood sequence of sets C. If δC ≤ π/4, and m ≥ 1

is the integer part of πδ−1
C /4, then each interval of the form [

(4j + 1)π

4m
,
(4j + 3)π

4m
] contains at least

one θk. We choose one θkj
from each such interval to obtain a subset C′ = {cos θkj

} ⊂ C such that
qC′ ≥ π/(4m) and δC ≤ δC′ ≤ π/m ≤ 4δC. Moreover, {θkj

} ⊂ [c/m, π − c/m]. Thus, in the sequel, we
may assume that the sets C are all 4-uniform, and that there exists a constant c with the property that
{cos−1 z : z ∈ C} ⊂ [c/m, π − c/m]. Clearly, for a uniform set C, qC ∼ δC ∼ |C|−1.

Theorem 4.1 Let α, β > −1, ρ ≥ 1. There exists a constant a > 0 depending only on α, β, ρ, with
the following property. Let C ⊂ (−1, 1) be a finite ρ–uniform set, and m ≥ 1 be an integer such that
π/(2m) ≤ δC ≤ π/m. Then there exist positive numbers wz, z ∈ C, with the following properties:

∑

z∈C

wzP (z) =

∫ 1

−1

P (t)wα,β(t)dt, P ∈ Πam, (4.1)

wz ∼ λm(µ(α,β); z), z ∈ C, (4.2)

and
∑

z∈C

wz |P (z)| ∼
∫

|P (t)|wα,β(t)dt, P ∈ Πam. (4.3)
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The proof of this theorem follows a familiar theme, introduced in [7, 14]. We first recall an abstract
quadrature formula in the setting of general finite dimensional spaces (cf. [12, Theorem 3.2.1]).

Proposition 4.1 Let (X, ‖ · ‖X) be a finite dimensional normed linear space, (X∗, ‖ · ‖X∗) be its dual
space, Z = {x∗1, · · · , x∗M} ⊂ X∗ \ {0}, and x∗ ∈ X∗. Suppose the operator x 7→ (x∗1(x), · · · , x∗M (x)),
x ∈ X, is one-to-one, and the following two conditions are satisfied: (1) If x ∈ X and x∗ℓ (x) ≥ 0 for
ℓ = 1, · · · ,M , then x∗(x) ≥ 0, and (2) there exists some x0 ∈ X such that x∗ℓ (x0) > 0 for ℓ = 1, · · · ,M .
Then there exist nonnegative numbers Wℓ, ℓ = 1, · · · ,M such that

x∗(x) =

M
∑

ℓ=1

Wℓx
∗
ℓ (x). (4.4)

We will apply this proposition with X = Πam for a judiciously chosen a, and x∗ℓ (P ) = P (xℓ) for
xℓ ∈ C. The choice of a is dictated by the following Lemma 4.1. The inequalities of the form (4.5) are
known as Marcinkiewicz–Zygmund (M–Z) inequalities.

Lemma 4.1 Let α, β > −1, ρ ≥ 1. There exists a constant a > 0 depending only on α, β, ρ, with
the following property. Let C ⊂ (−1, 1) be a finite ρ–uniform set, and m ≥ 1 be an integer such that
π/(2m) ≤ δC ≤ π/m. Then for every P ∈ Πam,

c1‖P‖µ(α,β);1 ≤
∑

z∈C

λm(µ(α,β); z)|P (z)| ≤ c2‖P‖µ(α,β);1. (4.5)

Moreover, if P (z) ≥ 0 for each z ∈ C, then there exists c ∈ (0, 1) (depending only on α, β) such that

∫ 1

−1

P (t)wα,β(t)dt ≥ c
∑

z∈C

λm(µ(α,β); z)P (z) ≥ 0. (4.6)

In order to prove this lemma, we need to recall certain basic inequalities. Parts (a) and (b) can be
found in [11, Theorem 4] and part (c) can be found in [21, p. 108]. We recall that we omit the mention
of the measure µ from the notations if it is the Lebesgue measure.

Proposition 4.2 Let m ≥ 1 be an integer, P ∈ Πm, 1 ≤ p ≤ ∞, α, β > −1, and wα,β ∈ Lp. Let

wm,α,β(x) := (
√
1− x+ 1/m)2α(

√
1 + x+ 1/m)2β. (4.7)

(a) (Markov–Bernstein inequality)

‖P ′wm,α+1/2,β+1/2‖p ≤ cm‖Pwα,β‖p. (4.8)

(b) (Nikolskii inequality)

‖Pwm,α,β‖r ≤ cm2(1/r−1/p)‖Pwα,β‖p, 1 ≤ p ≤ r ≤ ∞. (4.9)

(c) Let θ, ϕ ∈ [0, π], m ≥ 1 be an integer, |θ − ϕ| ∼ 1/m, x = cos θ, y = cosϕ, x ≤ y and u, v ∈ [x, y].
Then

λm(µ(α,β);u) ∼ (1/m)wm,α+1/2,β+1/2(u) ∼ (1/m)wm,α+1/2,β+1/2(v). (4.10)

Proof of Lemma 4.1. In this proof only, let M ≥ 4 be an integer, C = {zk = cos θk}Mk=1. Since C is

uniform, we also have qC ∼ 1/m. In this proof only, let θ̃0 = 0, θ̃j = θj + qC , j = 1, · · · ,M − 1, θ̃M = π,

z̃j = cos θ̃j , 0 ≤ j ≤ M , and Ij := [z̃j, z̃j−1], j = 1, · · · ,M . Let n ≥ 1 be an integer, and P ∈ Πn be
arbitrary. We will prove first that

M
∑

j=1

∫

Ij

|P (t)− P (zj)|wα,β(t)dt ≤ c3

{

n

m
+
( n

m

)2
}

‖Pwα,β‖1. (4.11)
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We observe that 1− z̃1 = 2 sin2(θ̃1/2) ∼ 1/m2. In view of (4.10),

∫ 1

z̃1

wα,β(t)dt ∼ (1 − z̃1)
α+1 ∼ wm,α,β(z̃1)

m2
∼ wm,α,β(z1)

m2
∼ wm,α+1/2,β+1/2(z1)

m
∼ λm(µ(α,β); z1). (4.12)

Similarly,

∫ z̃M−1

−1

wα,β(t)dt ∼ (1 + z̃M−1)
β+1 ∼ wm,α,β(z̃M−1)

m2
∼ wm,α,β(zM )

m2

∼ wm,α+1/2,β+1/2(zM )

m
∼ λm(µ(α,β); zM ). (4.13)

In view of (4.12) and (4.9), we have for u ∈ [z̃1, 1],

|P (u)|
∫ 1

z̃1

wα,β(t)dt ≤
c

m2
|P (u)|wm,α,β(z̃1) ≤

c

m2
|P (u)|wm,α,β(u) ≤

cn2

m2
‖Pwα,β‖1.

We estimate |P (v)|
∫ z̃M−1

−1
wα,β(t)dt (v ∈ [−1, z̃M−1]) in the same way using (4.13) in place of (4.12), and

deduce that

∫ 1

z̃1

|P (t)− P (z1)|wα,β(t)dt+

∫ z̃M−1

−1

|P (t)− P (zM )|wα,β(t)dt ≤
cn2

m2
‖Pwα,β‖1. (4.14)

If 2 ≤ j ≤M − 1, then for t, u ∈ Ij , we have

wα+1/2,β+1/2(t) ∼ wm,α+1/2,β+1/2(t) ∼ wα+1/2,β+1/2(u).

Consequently, using (4.8), we obtain

M−1
∑

j=1

∫

Ij

|P (t)− P (zj)|wα,β(t)dt ≤
M−2
∑

j=2

∫

Ij

∫

Ij

|P ′(u)|duwα,β(t)dt

≤ c

M−1
∑

j=1

∫

Ij

∫

Ij

|P ′(u)|wα+1/2,β+1/2(u)du(1− t2)−1/2dt

≤ cmax(θ̃j+1 − θ̃j)

∫ 1

−1

|P ′(u)|wm,α+1/2,β+1/2(u)du

≤ cn

m
‖Pwα,β‖1. (4.15)

The estimates (4.14) and (4.15) together imply (4.11).
In the remainder of this proof, we consider the value of c3 fixed as in (4.11). Let a = min(1, 1/(8c3)),

and P ∈ Πam. Then with am in place of n,

c3

{

n

m
+
( n

m

)2
}

≤ c3(a+ a2) ≤ 2c3a ≤ 1/4. (4.16)

Since
∣

∣

∣

∣

∣

∣

∫ 1

−1

|P (t)|wα,β(t)dt−
M
∑

j=1

|P (zj)|
∫

Ij

wα,β(t)dt

∣

∣

∣

∣

∣

∣

≤
M
∑

j=1

∫

Ij

|P (t)− P (zj)|wα,β(t)dt,

we obtain from (4.11) that

(3/4)‖Pwα,β‖1 ≤
M
∑

j=1

|P (zj)|
∫

Ij

wα,β(t)dt ≤ (5/4)‖Pwα,β‖1. (4.17)
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We now observe that for 2 ≤ j ≤ M − 1, and t ∈ Ij , wα,β(t)
√
1− t2 ∼ wm,α+1/2,β+1/2(t). Therefore,

(4.10) implies that

∫

Ij

wα,β(t)dt ∼
∫

Ij

wm,α+1/2,β+1/2(t)
dt√
1− t2

∼ wm,α+1/2,β+1/2(zj)

m
∼ λm(µ(α,β); zj).

Together with (4.12) and (4.13), we have proved that
∫

Ij

wα,β(t)dt ∼ λm(µ(α,β); zj), j = 1, · · · ,M. (4.18)

The estimates (4.17) and (4.18) imply (4.5).
Next, let P (zj) ≥ 0 for j = 1, · · · ,M . In view of (4.11) and (4.17), we obtain

∣

∣

∣

∣

∣

∣

∫ 1

−1

P (t)wα,β(t)dt −
M
∑

j=1

P (zj)

∫

Ij

wα,β(t)dt

∣

∣

∣

∣

∣

∣

≤
M
∑

j=1

∫

Ij

|P (t)− P (zj)|wα,β(t)dt ≤
1

4
‖Pwα,β‖1 ≤

1

3

M
∑

j=1

P (zj)

∫

Ij

wα,β(t)dt.

Consequently,
∫ 1

−1

P (t)wα,β(t)dt ≥
2

3

M
∑

j=1

P (zj)

∫

Ij

wα,β(t)dt ≥ 0.

In view of (4.18), this implies (4.6). ✷

We are now in a position to prove Theorem 4.1, mainly using the ideas in [14], but using a trick in
[20] to prove (4.2).
Proof of Theorem 4.1. We let a be as in Lemma 4.1. In Proposition 4.1, we choose Πam in place of
X , |C| in place of M , the mappings P 7→ P (z), z ∈ C, as the set Z of linear functionals. The estimate
(4.5) shows that the operator P 7→ (P (z))z∈C is one-to-one. We will take

x∗(P ) =

∫ 1

−1

P (t)dµ(α,β)(t)− c

2

∑

z∈C

λm(µ(α,β); z)P (z),

where c is the constant appearing in (4.6). If each P (z) ≥ 0, z ∈ C, then (4.6) implies that x∗(P ) ≥ 0.
Taking x0 in Proposition 4.1 to be the polynomial identically equal to 1, we see from (4.6) that x∗(x0) > 0.
Thus, all the conditions of Proposition 4.1 are satisfied, and we obtain nonnegative Wz, z ∈ C, such that

∫ 1

−1

P (t)wα,β(t) =
∑

z∈C

(Wz + cλm(µ(α,β); z)/2)P (z), P ∈ Πam.

Setting wz =Wz + cλm(µ(α,β); z)/2, we have proved (4.1), and also that wz ≥ cλm(µ(α,β); z)/2, z ∈ C.
Next, let ξ ∈ C, and n be the integer part of am/2. Then (4.1) and (2.6) imply that

wξK
2
n(µ

(α,β); ξ, ξ) ≤
∑

z∈C

wzK
2
n(µ

(α,β); ξ, z) =

∫ 1

−1

K2
n(µ

(α,β); ξ, t)wα,β(t) = Kn(µ
(α,β); ξ, ξ).

Hence,
wξ ≤ λn(µ

(α,β); ξ), ξ ∈ C. (4.19)

In view of (4.10) and the already proved fact that wξ ≥ (c/2)λm(µ(α,β); ξ), ξ ∈ C, this implies (4.2).
The estimates (4.3) are clear from (4.2) and (4.5). ✷

Remark. We have actually proved (4.19) for any positive numbers wz for which (4.1) is valid for all
P ∈ Πn, whether obtained via Theorem 4.1 or not.
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5 Localized polynomial kernels

The objective of this section is to demonstrate that in the case of the Jacobi weights, any sufficiently
smooth, compactly supported function h, which is constant on a neighborhood of 0, is a summability
mask of order S. This fact was essentially proved in [13], but our estimates here are more elegant. We
prefer to generalize the summability kernels defined in Section 3 to define

Φ(µ;h, x, t) :=

∞
∑

k=0

hkpk(µ;x)pk(µ; t), x, t ∈ R, (5.1)

where h = {hk}∞k=0 is a compactly supported sequence.
The summability operator corresponding to the kernel Φ(µ;h) is defined by

σ∗(µ;h, f, x) :=

∫ 1

−1

Φ(µ;h, x, t)f(t)dµ(t) =

∞
∑

k=0

hkf̂(µ; k)pk(µ;x). (5.2)

An interesting problem in harmonic analysis is to find conditions on the sequence h so that this operator
is bounded in some Lp(µ); i.e., ‖σ∗(µ;h, f)‖µ;p ≤ c(h)‖f‖µ;p. If this is the case, the sequence h is called
a multiplier sequence. In the important case when µ = µ(α,β), several conditions to ensure that h is a
multiplier sequence are available in the literature (e.g. [19, 5]). Typically, these conditions do not hold
when p = 1 or p = ∞. For our research, we therefore need to find some conditions to ensure that the
sequence h is a multiplier sequence also in these cases. It is not difficult to see (cf. [10, Proposition 2.1])
that this requirement is equivalent to

sup
x∈[−1,1]

∫ 1

−1

|Φ(µ;h, x, t)|dµ(t) ≤ c(h). (5.3)

Theorem 5.1 Let α, β ≥ −1/2, S ≥ 1 be an integer, hk = 0 for all sufficiently large k. Then for
θ, ϕ ∈ [0, π],

|Φ(µ(α,β);h, cos θ, cosϕ)|

≤ c























∞
∑

k=0

min

(

(k + 1),
1

|θ − ϕ|

)max(α,β)+S+1/2

×

×
S
∑

m=1

(k + 1)max(α,β)+1/2−S+m|∆mhk|.
(5.4)

In particular, if h : [0,∞) → [0,∞) is a compactly supported function that can be expressed as an S times
iterated integral of a function of bounded variation, and h′(t) = 0 in a neighborhood of 0, then for λ ≥ 1,

|Φλ(µ
(α,β);h, cos θ, cosϕ)| ≤ cλ2max(α,β)+2V (h(S−1))min

(

1,
1

(λ|θ − ϕ|)max(α,β)+S+1/2

)

. (5.5)

The following corollary is a routine consequence of Theorem 5.1, proved in [13, Lemma 4.6] using a
different argument. We omit the proof.

Corollary 5.1 Let α, β ≥ −1/2, S ≥ max(α, β) + 3/2 be an integer, hk = 0 for all sufficiently large k.
Then

sup
x∈[−1,1]

∫ 1

−1

|Φ(µ(α,β);h, x, y)|dµ(α,β)(y) ≤ c

S
∑

j=1

∞
∑

k=0

(k + 1)j−1|∆jhk|. (5.6)

In particular, if h : [0,∞) → [0,∞) is a compactly supported function that can be expressed as an S times
iterated integral of a function of bounded variation, then

sup
λ>0, x∈[−1,1]

∫ 1

−1

|Φλ(µ
(α,β);h, x, y)|dµ(α,β)(y) <∞. (5.7)

12



Analogues of (5.5) and (5.7) hold in very general situations, e.g., in the case of eigenfunctions of Laplace–
Beltrami operators on a smooth manifold rather than Jacobi polynomials [10].

Although (5.7) is routinely proved using an estimate similar to (5.5), it is sometimes possible to obtain
such estimates without first proving a localization estimate ([3, 4]). We have recently observed in [18]
that there is a simple construction of exponentially localized operators from kernels satisfying analogues
of (5.7), with interesting consequences for spectral approximation of piecewise analytic functions.

In order to prove Theorem 5.1, we start by recalling the following estimate proved in [13, Lemma 4.10],
using the explicit formulas for the Christoffel–Darboux kernel for the Jacobi polynomials:

Proposition 5.1 Let α, β ≥ −1/2, S ≥ 1 be an integer, hk = 0 for all sufficiently large k. Then

|Φ(µ(α,β);h, 1, y)|

≤ c











































∞
∑

k=0

min

(

(k + 1)2,
1

1− y

)α/2+S/2+1/4

×

×
S−1
∑

m=0

(k + 1)α+1/2−m|∆S−mhk|, if 0 ≤ y < 1,

∞
∑

k=0

(k + 1)α+β+1
S−1
∑

m=0

(k + 1)−m|∆S−mhk|, if −1 ≤ y < 0,

(5.8)

and

|Φ(µ(α,β);h,−1, y)|

≤ c











































∞
∑

k=0

min

(

(k + 1)2,
1

1 + y

)β/2+S/2+1/4

×

×
S−1
∑

m=0

(k + 1)β+1/2−m|∆S−mhk|, if −1 < y ≤ 0,

∞
∑

k=0

(k + 1)α+β+1
S−1
∑

m=0

(k + 1)−m|∆S−mhk|, if 0 < y ≤ 1.

(5.9)

Proof of Theorem 5.1. We note first that the uniqueness of orthonormalized polynomials implies that
pk

(α,β)(x) = (−1)kpk
(β,α)(−x), and hence, Φ(µ(α,β);h, x, y) = Φ(µ(β,α);h,−x,−y). Therefore, we may

assume that α ≥ β. The estimate (5.8) is then equivalent to (5.4) for the case when cos θ = 1. To extend
the estimate for Φ(µ(α,β);h, x, y) for every x, y ∈ [−1, 1], we recall the following product formula (5.11)
by Koornwinder [8]: Let α ≥ β ≥ −1/2, R := [0, 1]× [0, π], and for x, y ∈ [−1, 1], r ∈ [0, 1], ω ∈ [0, π], let

F (x, y; r, ω) :=
(1 + x)(1 + y)

2
+

(1− x)(1 − y)

2
r2 +

√

1− x2
√

1− y2r cosω − 1. (5.10)

There exists a probability measure µ̃ = µ̃α,β on R such that for n = 0, 1, · · ·, and x, y ∈ [−1, 1],

pn
(α,β)(x)pn

(α,β)(y) =

∫

R

pn
(α,β)(1)pn

(α,β)(F (x, y; r, ω))dµ̃(r, ω). (5.11)

It follows that

Φ(µ(α,β);h, x, y) =

∫

R

Φ(µ(α,β);h, 1, F (x, y; r, ω))dµ̃(r, ω). (5.12)

Let x = cos θ, y = cosϕ. Then

F (x, y; r, ω) =
1

2
(1 + x)(1 + y) +

1

2
(1 − x)(1 − y) +

√

1− x2
√

1− y2

+
1

2
(1− x)(1 − y)(r2 − 1) +

√

1− x2
√

1− y2(r cosω − 1)− 1

= xy +
√

1− x2
√

1− y2 +
1

2
(1− x)(1 − y)(r2 − 1) +

√

1− x2
√

1− y2(r cosω − 1),
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and we have

1− F (x, y; r, ω) = 1− (xy +
√

1− x2
√

1− y2) +
1

2
(1− x)(1 − y)(1− r2)

+(1− r cosω)
√

1− x2
√

1− y2

≥ 1− (xy +
√

1− x2
√

1− y2) = 1− cos(θ − ϕ) = 2 sin2
θ − ϕ

2

≥ 2

π2
(θ − ϕ)2.

We now observe that α+ S + 1/2 ≥ β + 1/2, so that (5.8) implies

|Φ(µ(α,β);h, 1, F (x, y; r, ω))|

≤ c

∞
∑

k=0

min

(

(k + 1)2,
1

1− F (x, y; r, ω)

)α/2+S/2+1/4

×

×
S−1
∑

m=0

(k + 1)α+1/2−m|∆S−mhk|

≤ c

∞
∑

k=0

min

(

(k + 1)2,
1

(θ − ϕ)2

)α/2+S/2+1/4

×

×
S−1
∑

m=0

(k + 1)α+1/2−m|∆S−mhk|.

Since µ̃ is a probability measure, (5.12) now implies (5.4).
We observe next that if h : [0,∞) → [0,∞) is a compactly supported function that can be expressed

as an S times iterated integral of a function of bounded variation, h′(t) = 0 in a neighborhood of 0,
and λ ≥ 1, then we may apply the above estimates with the sequence hλ whose k-th term is given by
hλ,k = h(k/λ), k = 0, 1, · · ·. A repeated application of mean value theorem implies that for any s ∈ R

and integer r ≥ 1,

∞
∑

k=0

(k + 1)s∆rhλ,k ≤ cλ−s
∑

cλ≤k≤c1λ

|∆rhk,λ| ≤ cλs−r+1V (h(r−1)). (5.13)

The estimate (5.5) follows from (5.4) and (5.13). ✷

6 Some comments on computations

There are several algorithms for computing orthogonal polynomials and the corresponding Gauss–Jacobi
quadrature formulas, as well as expressions of the form

∑n
k=0 akpk(µ;x) [6]. Although we have not

necessarily used these, the localization properties of our operators and their ability to detect singularities
and local Lipschitz exponents has been demonstrated in a number of papers, in particular, [17, 18, 9].
We offer a numerical example to illustrate the construction of quadrature formulas based on scattered
data, using ideas described in further detail in [9] in the case of the sphere.

Given a set C and an integer n ≥ 1, we define a measure νC that associates the mass λn(µ; z) with
each z ∈ C. If {qk ∈ Πk} is the (finite) system of orthonormal polynomials with respect to νC , there exist
constants dj,k such that qk =

∑

j dj,kpj(µ). If P ∈ Πn then with m0 =
√

µ([−1, 1]),

∫ 1

−1

P (x)dµ(x) =

∫ 1

−1

∫ 1

−1

P (t)

n
∑

k=0

qk(x)qk(t)dνC(t)dµ(x) = m0

∫ 1

−1

P (t)

n
∑

k=0

d0,kqk(t)dνC(t)

=
∑

z∈C

{

m0λn(µ; z)
n
∑

k=0

d0,kqk(z)

}

P (z).
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If G is the matrix with Gj,k =
∫ 1

−1 pj(µ; t)pk(µ; t)dνC(t), and D is the matrix with (j, k)-th entry dj,k,

then the orthonormality of the system {qk} leads to G−1 = DDT . Hence, if e = (1, 0, · · · , 0)T ∈ Rn+1

and b = (b0, · · · , bn) satsifies Gb = e, then our quadrature formula is

∫ 1

−1

P (x)dµ(x) =
∑

z∈C







m0λn(µ; z)

n
∑

j=0

bjpj(µ; z)







P (z).

This algorithm will work as long as G is a positive definite matrix. In this case, the system Gb = e can be
solved using state of the art methods such as the conjugate gradient method. The speed of convergence
of this method as well as the quality of the quadrature formula depends upon the condition number of
G, which in turn, is the square of the ratio of the upper and lower bounds in the M–Z inequalities (3.11)
with νC in place of ν and p = 2. While Gram matrices are ill conditioned in general, they seem to be
quite well conditioned for the purpose of this application as long as the degree of the polynomial is not
too large in relation with the number of points considered.

As a numerical experiment, we chose 1024 points on the interval [−1, 1], chosing one point randomly
from each of the 1024 equal subintervals of [0, π], and taking the cosine transform to obtain points
on [−1, 1]. For various values of n, we attempted to obtain quadrature formulas exact for integrating
polynomials in Πn with respect to the Lebesgue measure, µ(0,0). The error in the construction was
measured by the norm of the difference between the identity matrix of order ⌊n/2⌋ and the matrix of
computed inner products (

∑

z wzpk
(0,0)(z)pℓ

(0,0)(z)), k, ℓ = 0, · · · , ⌊n/2⌋. Each computation was carried
out 30 times using Matlab 7.1 running on Intel Core 2 CPU with 2.13GHz, and 3GB RAM. The averages
of the various parameters of interest are summarized in Table 1. It is interesting to note that we were able
to obtain suprizingly accurate quadrature formulas even for degree 1023. Even though there were several
negative weights in this case, the total variation of the resulting discrete quadrature measure seems to
be surprisingly small.

n cond pos
∑ |wz | error time

256 1.5342 1024 2.0000 2e− 14 0.4769
512 3.3536 1023.92 2.0000 9e− 14 1.2441
768 25.2965 1012.28 2.0088 2.4e− 13 2.6159
896 76.8983 945.60 2.1471 3.8e− 13 3.7419
1023 11270.5423 885.64 2.6715 2.75e− 12 9.5317

Table 1: Averages for 30 trials of: n = degree of exactness, cond is the condition number of the original
Gram matrix, pos is the number of positive weights, error is the norm of the difference between the
matrices as described in the text, (xe-m means x∗10−m), time is the time required for each computation,
in seconds.
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