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ABSTRACT

Quasi-interpolation is a important tool, used both in theory and in practice, for the
approximation of smooth functions from univariate or multivariate spaces which contain
Πm = Πm(IRd) the d–variate polynomials of degree ≤ m. In particular, the reproduction
of Πm leads to an approximation order of m + 1. Prominent examples include Lagrange
and Bernstein type approximations by polynomials, the orthogonal projection onto Πm

for some inner product, finite element methods of precision m, and multivariate spline
approximations based on macroelements or the translates of a single spline.

For such a quasi-interpolation operator L which reproduces Πm(IRd) and any r ≥ 0, we
give an explicit construction of a quasi-interpolant Rr+m

m L = L+A which reproduces Πm+r,
together with an integral error formula which involves only the (m+ r+1)–st derivative of
the function approximated. The operator Rm+r

m L is defined on functions with r additional
orders of smoothness than those on which L is defined. This very general construction
holds in all dimensions d. A number of representative examples are considered.
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1. Introduction

A quasi-interpolant for a space F of approximating functions is a linear map L onto F

which is bounded (in some relevant norm), local, and reproduces some polynomial space,
see, e.g., [S05]. When F is a univariate or multivariate space of polynomials or splines,
quasi-interpolants provide useful approximations of smooth functions. These have both
practical and theoretical advantages, e.g., the reproduction of the space Πm = Πm(IRd) of
d–variate polynomials of degree ≤ m leads to an approximation order of m+1. Some well
known examples include Lagrange and Bernstein type approximations by polynomials, the
orthogonal projection onto Πm for some inner product, finite element methods of precision
m, and multivariate spline approximations based on macroelements or the translates of a
single spline.

The main result of this paper is the following. For any quasi-interpolant L which
reproduces Πm(IRd) and r ≥ 0, we explicitly construct a quasi-interpolant

Rr+m
m L = L + A

which reproduces Πm+r, together with an integral error formula which involves only the
(m + r + 1)–st derivative of the function approximated. The quasi-interpolant Rm+r

m L

allows the order of approximation by L to be increased by r, with the trade off being that
it is defined on functions with r additional orders of smoothness than those on which L is
defined. The operation L 7→ Rm+r

m L has many nice properties, including being defined for
all dimensions d, being continuous (in an appropriate sense), and satisfying

Rm+r1+r2

m+r1
Rm+r1

m L = Rm+r1+r2

m L. (1.1)

The paper is set out as follows. In the remainder of this section, we give precise
definitions and establish notation. Next we give a multivariate divided difference involving
two points upon which our results are based. The following section then uses this to prove
the main result, and gives some representative examples. The final section establishes the
remarkable formula (1.1), which requires some technical calculations.

Basic definitions and notation

The (directional) derivative of a function f in the direction v ∈ IRd at a point x ∈ IRd

is denoted by

Dvf(x) := lim
t→0

f(x + tv) − f(x)

t
.

We note that v 7→ Dvf(x) is linear. In particular, for the univariate case d = 1 one has

Dk
x−yf = (x − y)kf (k), x, y ∈ IR, (1.2)

where f (k) denotes the k–th derivative of a univariate function, and Dk
v := (Dv)k. Let

Dj := Dej
, where ej is the j–th standard basis vector in IRd. Then the α–th partial

derivative Dαf of a function f with a k–th derivative is

Dαf := Dα1

1 Dα2

2 · · ·Dαn
n f, |α| := α1 + · · · + αn = k.
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We call Dkf := (Dαf)|α|=k the k–th derivative of f .
In this paper, a quasi-interpolant is defined to be a linear map L of the form

Lf(x) =

n∑

i=1

λi(f)φi(x), λi(f) :=

∫

qi(x,Dkif(x)) dµi(x), (1.3)

where qi is some continuous function of x and Dkif(x), and µi is some finite Borel measure
on IRd with compact support, which reproduces Πm(IRd), i.e., Lf = f , ∀f ∈ Πm. In
practice, the linear functionals f 7→ λi(f) can usually be taken to be a weighted integral
over some simplex (which includes point evaluation) of a partial derivative Dαf .

For a given linear map L of the form (1.3), we will refer to the (largest) natural domain
on which it is well defined as a space of sufficiently smooth functions. This common
convention simplifies the presentation, and should cause no confusion. For example, if
the linear functionals f 7→ λi(f) were function evaluation at the points x1, . . . , xn, then
a sufficiently smooth function would need to be defined at least at these points, and one
could conveniently take the space of continuous functions.

2. A multivariate divided difference involving two points

For x, y ∈ IRd define

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y,...,y
︸︷︷︸

r+1

]

f :=
1

r!m!

∫ 1

0

f(tx + (1 − t)y) tm(1 − t)r dt. (2.1)

This is motivated (see [MM80] and [BHS93]) by the following instance of the Hermite–
Genocchi formula for the divided difference of a univariate function f

[x, . . . , x
︸ ︷︷ ︸

m+1

, y, . . . , y
︸ ︷︷ ︸

r+1

]f =

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y,...,y
︸︷︷︸

r+1

]

f (m+r+1). (2.2)

In the univariate case, (2.1) can be written

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y,,...,y
︸ ︷︷ ︸

r+1

]

f =
1

r!m!

1

(x − y)m+r+1

∫ x

y

(t − y)m(x − t)rf(t) dt. (2.3)

The following can be viewed as a “lifted” version (cf [W97]) of the expansion of the
divided difference in (2.2) in terms of f(x), f ′(x), . . . , f (m)(x) and f(y), f ′(y), . . . , f (r)(y).
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Lemma 2.4. If the restriction of f to the line segment between the points x and y in IRd

is Cm+r+1, then

r∑

j=0

(
r
j

)

(
m+r

j

)
D

j
x−yf(y)

j!
−

m∑

k=0

(
m
k

)

(
m+r

k

)
Dk

y−xf(x)

k!
=

r!m!

(m + r)!
(−1)m+1

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y,...,y
︸︷︷︸

r+1

]

Dm+r+1
x−y f.

Proof: The divided difference of a univariate function g at the points 0 repeated
r + 1 times and 1 repeated m + 1 times can be expressed as

(−1)m+1[0, . . . , 0
︸ ︷︷ ︸

r+1

, 1, . . . , 1
︸ ︷︷ ︸

m+1

]g =
r∑

j=0

(
m + r − j

r − j

)
g(j)(0)

j!
−

m∑

k=0

(
m + r − k

m − k

)

(−1)k g(k)(1)

k!

=
(−1)m+1

m!r!

∫ 1

0

g(m+r+1)(t) tm(1 − t)r dt.

The first expression follows from the divided difference identities, and the second is the
well known Peano kernel representation in terms of a B–spline with knots 0, . . . , 0, 1 . . . , 1.

Suppose without loss of generality that x 6= y, and let g : [0, 1] → IR be defined by

g(t) := f(tx + (1 − t)y).

If the univariate function obtained by restricting f to the line segment from x to y is Cj ,
then we can differentiate g to obtain

g(j)(t) = D
j
x−yf(tx + (1 − t)y). (2.5)

Substituting (2.5) into the formulas for the divided difference gives

r∑

j=0

(
m + r − j

r − j

)
D

j
x−yf(y)

j!
−

m∑

k=0

(
m + r − k

m − k

)

(−1)k
Dk

x−yf(x)

k!

=
(−1)m+1

r!m!

∫ 1

0

D
(m+r+1)
x−y f(tx + (1 − t)y) tm(1 − t)r dt.

(2.6)

Multiplying (2.6) by r!m!
(m+r)! , and using (−1)kDk

x−yf = Dk
y−xf and (2.1) gives the desired

formula.

For r = 0 the formula of Lemma 2.4 reduces to the integral form of the error at y in
Taylor interpolation of degree m to f at the point x, i.e.,

f(y) − Tm,xf(y) = Rm,xf(y),

where

Tm,xf(y) :=
m∑

k=0

Dk
y−xf(x)

k!
, Rm,xf(y) :=

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y]

Dm+1
y−x f. (2.7)
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3. The main result

We now give the main result. The truncated power function (·)k
+ is defined by

(x)k
+ :=

{

xk, x ≥ 0;
0, x < 0.

Theorem 3.1. Fix r ≥ 0. Let L be a quasi-interpolant which reproduces Πm(IRd). Then

for all sufficiently smooth functions f , we have

f(x) − Lf(x) − Af(x) = E(f, x), (3.2)

where Af is the function in span{Πr ran(L)} given by

Af(x) :=
r∑

j=1

(
r
j

)

(
m+r

j

)
1

j!

(
L(Dj

x−·f)
)
(x), (3.3)

and the error E(f, x) can be expressed as the following integral of Dm+r+1f

E(f, x) :=
r!m!

(m + r)!
(−1)mL

(∫

[x,...,x
︸ ︷︷ ︸

m+1

,·,...,·
︸︷︷︸

r+1

]

Dm+r+1
x−· f

)

(x)

=
1

(m + r)!
(−1)m

∫ 1

0

L
(
Dm+r+1

x−· f(tx + (1 − t)·)
)
(x) tm(1 − t)r dt.

(3.4)

In the univariate case E(f, x) has the Peano kernel representation

E(f, x) =

∫ b

a

f (m+r+1)(t)K(t) dt, K(t) :=
(x − t)r

(m + r)!

(
(1 − L)(· − t)m

+

)
(x). (3.5)

Proof: By Lemma 2.4, for x fixed, and f sufficiently smooth, we may write

f + Bf − Pf = Rf, (3.6)

where

Bf :=
r∑

j=1

(
r
j

)

(
m+r

j

)
D

j
x−·f

j!
, Pf :=

m∑

k=0

(
m
k

)

(
m+r

k

)
Dk

·−xf(x)

k!
,

and

Rf :=
r!m!

(m + r)!
(−1)m+1

∫

[x,...,x
︸ ︷︷ ︸

m+1

,·,...,·
︸︷︷︸

r+1

]

Dm+r+1
x−· f.

The key features of the decomposition (3.6) are:

(i) P maps into Πm.
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(ii) (Pf)(x) = f(x).
(iii) Rf is an integral of the (m + r + 1)–st derivative of f .

Apply −L to (3.6), and use (i), to get

−Lf − LBf + Pf = −LRf,

then evaluate at x, using (ii), to obtain

−Lf(x) − LBf(x) + f(x) = −LRf(x).

This gives (3.2), where Af(x) := LBf(x) and E(f, x) := −LRf(x). The second formula
for E(f, x) given in (3.4) follows from the interchange of the integral given by (2.1) and
the linear functional λ : f 7→ (Lf)(x) which is justified as per [W99].

Using the multinomial and binomial expansions, the function D
j
x−·f can be expanded

in terms of the partial derivatives Dαf , |α| = j, α ∈ ZZd
+ as follows

D
j
x−tf(t) =

∑

|α|=j

(
j

α

)

Dαf(t)(x − t)α =
∑

|α|=j

(
j

α

)

Dαf(t)
∑

β≤α

(
α

β

)

xβ(−t)α−β ,

where the above uses standard multiindex notation. Therefore

(
L(Dj

x−·f)
)
(x) =

∑

|α|=j

(
j

α

)
∑

β≤α

(
α

β

)

xβ
(
L((−·)α−βDαf)

)
(x), (3.7)

and so Af ∈ span{Πr ran(L)}.
Finally, for the univariate case (d = 1) we compute the Peano kernel representation

of E(f, x) from (3.4). From (2.2), (2.3) and

∫ x

y

g(t) dt =

∫ b

a

(
(x − t)0+ − (y − t)0+

)
g(t) dt, a ≤ x, y ≤ b (3.8)

we obtain

∫

[x,...,x
︸ ︷︷ ︸

m+1

,y,,...,y
︸ ︷︷ ︸

r+1

]

Dm+r+1
x−y f =

(−1)m

r!m!

∫ b

a

(
(x − t)0+ − (y − t)0+

)
(y − t)m(x − t)rf (m+r+1)(t) dt.

Since (y − t)0+(y − t)m = (y − t)m
+ , substituting the above into (3.4) gives

E(f, x) =
1

(m + r)!
L

(∫ b

a

(
(x − t)0+(· − t)m − (· − t)m

+

)
(x − t)rf (m+r+1)(t) dt

)

(x)

=
1

(m + r)!

∫ b

a

L
(
(x − t)0+(· − t)m − (· − t)m

+

)
(x)(x − t)rf (m+r+1)(t) dt,
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where the interchange of the integral and the linear functional λ : f 7→ (Lf)(x) is justified
as per [W99]. Hence the Peano kernel is given by

K(t) :=
(x − t)r

(m + r)!
L

(
(x − t)0+(· − t)m − (· − t)m

+

)
(x).

This can be written in the form (3.5), by using the fact L reproduces (· − t)m, to calculate

L
(
(x − t)0+(· − t)m − (· − t)m

+

)
(x) = (x − t)0+(x − t)m − L

(
(· − t)m

+

)
(x)

= (x − t)m
+ − L

(
(· − t)m

+

)
(x) = (1 − L)

(
(· − t)m

+

)
(x).

Since the formula (3.4) for f − (Lf + Af) involves only Dm+r+1f , it follows that

Rm+r
m L := L + A

is a quasi-interpolant which reproduces Πm+r. With eα : x 7→ xα, (3.7) can be expanded

Rm+r
m Lf =

r∑

j=0

(
r
j

)

(
m+r

j

)
1

j!

∑

|α|=j

(
j

α

)
∑

β≤α

(
α

β

)

eβ(−1)α−βL(eα−βDαf)

=
∑

|α|≤r

(
r
|α|

)

(
m+r
|α|

)

∑

β≤α

(−1)α−β

β!(α − β)!
eβL(eα−βDαf).

(3.9)

Thus Rm+r
m L is defined on functions with r additional orders of smoothness than required

for L, and the operation L 7→ Rm+r
m L is continuous (for an appropriate norm).

As in [H03], the formula (3.2) can be interpreted as an asymptotic expansion of the
error in approximation by L, i.e.,

f(x) − Lf(x) = Af(x) + E(f, x).

Example 1. Han [H03] considers linear operators on C[a, b] of the form

Lf(x) :=
n∑

i=0

f(xi)φi(x), a = x0 < x1 < · · · < xn = b, φi ∈ C[a, b], (3.10)

which reproduce Πm. For this choice, (3.3) becomes

Af(x) =
r∑

j=1

(
r
j

)

(
m+r

j

)
1

j!

n∑

i=0

D
j
x−xi

f(xi)φi(x) =
n∑

i=0

φi(x)
r∑

j=1

(
r
j

)

(
m+r

j

)
1

j!
(x − xi)

jf (j)(xi).

Han denotes the operator L + A by Hnr. The error formula for Hnr given by (3.4) is

E(f, x) =
r!m!

(m + r)!
(−1)m

n∑

i=0

φi(x)

∫

[x,...,x
︸ ︷︷ ︸

m+1

,xi,...,xi
︸ ︷︷ ︸

r+1

]

Dm+r+1
x−xi

f.
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Using (1.2), (2.2) and (2.3), this can be written

E(f, x) =
1

(m + r)!

n∑

i=0

φi(x)

∫ x

xi

(xi − t)m(x − t)rf (m+r+1)(t) dt,

which is the Theorem 1 of [H03].

Example 2. Han’s results were extended from L of the form (3.10) to an arbitrary
bounded linear map on C[a, b] by [B05]. The expansion for A is that of (3.3), i.e.,

Af(x) =

r∑

j=1

(
r
j

)

(
m+r

j

)
(
L

( (x − ·)j

j!
f (j)

))
(x). (3.11)

By Theorem 3.1, this further extends to any linear map defined a space of sufficiently
smooth functions, e.g., on Ck[a, b].

The Peano kernel representation (3.5) extends the corresponding results of [H03:Th.
2] and [B05]. It is interesting to observe that the Peano kernel of the error (3.4) given by
the general theory (cf [W99]) has the form

K(t) =
(
(1 − L − A)

(· − t)m+r
+

(m + r)!

)
(x).

The simplified form of K(t) given by (3.5) is convenient for determining the sign of the
Peano kernel from the error in approximation by L + A from that for L (cf [H03:Th. 3]).

Example 3. For r = 0, and d arbitrary, (3.4) gives the error formula of [W98:Th. 3.15],
i.e.,

f(x) − Lf(x) = −(LRm,xf)(x),

where Rm,xf is given by (2.7). This work also explores (for r = 0) other error formulas
that can be obtained by taking other maps P in the proof of Theorem 3.1 which satisfy
(i),(ii),(iii), and formulas for the derivatives of the error which can be applied to E(f, x).

Example 4. Let L be Lagrange interpolation at the points 0, 1 ∈ IR, i.e.,

Lf(x) = f(0)(1 − x) + f(1)x.

Since R1+r
1 L ⊂ Π1+r, it follows from (3.4) that R1+r

1 L is a linear projector onto Π1+r.
The first couple of quasi-interpolants with raised polynomial reproduction are given by

R2
1Lf(x) = Lf(x) +

1

2
{f ′(0)x(1 − x) + f ′(1)(x − 1)x},

R3
1Lf(x) = Lf(x) +

2

3
x(x − 1){f ′(1) − f ′(0)} +

1

6
{f ′′(0)x2(1 − x) + f ′′(1)(x − 1)2x}.

The interpolation conditions for these are

R1
1L : f(0), f(1)

R2
1L : f(0), f(1), f ′(1) − f ′(0)

R3
1L : f(0), f(1), 4f ′(1) − 4f ′(0) − f ′′(1), f ′′(1) − f ′′(0)
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We observe there is no interpolation condition for R3
1L which involves only f ′(0) and f ′(1).

Example 5. As Example 4 indicates, the operator Rm+r
m L may not preserve interpolation

conditions of L. However, if L interpolates at a point θ ∈ IRd, then so does Rm+r
m L, since

(Rm+r
m Lf)(θ) =

r∑

j=0

(
r
j

)

(
m+r

j

)
1

j!

(
L(Dj

θ−·f)
)
(θ) =

r∑

j=0

(
r
j

)

(
m+r

j

)
1

j!
D

j
θ−θf(θ) = f(θ).

Thus if L is Lagrange interpolation at set of points Θ ⊂ IRd, then Rm+r
m L interpolates at

Θ and matches various derivatives of up to order r at the points Θ, and so can be thought
of as a (multivariate) Hermite interpolation operator.

Example 6. Let L be bilinear interpolation at the vertices of the square, i.e.,

Lf(x, y) := f(0, 0)(1 − x)(1 − y) + f(1, 0)x(1 − y) + f(0, 1)(1 − x)y + f(1, 1)xy.

The quasi-interpolant R2
1L is given by

R2
1Lf(x, y) = Lf(x, y) +

(
xD1f(0, 0) + yD2f(0, 0)

)
(1 − x)(1 − y)

+
(
(x − 1)D1f(1, 0) + yD2f(1, 0)

)
x(1 − y)

+
(
xD1f(0, 1) + (y − 1)D2f(0, 1)

)
(1 − x)y

+
(
(x − 1)D1f(1, 1) + (y − 1)D2f(1, 1)

)
xy.

This is in fact a projector onto Π2 ⊕ span{x2y, y2x}, with interpolation conditions f(0, 0),
f(1, 0), f(0, 1), f(1, 1), together with

D1f(1, 0)−D1f(0, 0), D1f(1, 1)−D1f(0, 1), D2f(0, 1)−D2f(0, 0), D2f(1, 1)−D2f(1, 0).

Further examples of multivariate Bernstein and Lagrange operators (including sharp
error estimates) are explored in [GNS06].

4. Successive increases of the polynomial reproduction

If the polynomial reproduction of a quasi-interpolant L is raised in successive stages,
then it is natural to ask whether the resulting quasi-interpolant is the same as that obtained
by doing it all together, i.e., whether or not

Rm+r1+r2

m+r1
Rm+r1

m L = Rm+r1+r2

m L. (4.1)

Let Qj be defined by Qjf(x) :=
(
L(Dj

x−·f)
)
(x), then

QjQkf 6= Qj+kf,

in general, e.g., for Lf(x) := f(0), take f(x) = x, for which Q1Q1f = f 6= 0 = Q2f .
It is therefore somewhat remarkable, and consequently nontrivial to prove, that (4.1)

holds. To show this we need the following multivariate forms of the Chu–Vandermonde
convolution.
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Lemma 4.2. For multi-indices ξ, η, α with ξ − η ≥ 0,

∑

β≤α

(
η

β

)(
ξ − η

α − β

)

=

(
ξ

α

)

, (4.3)

and for ξ a multi-index, j, ℓ ≥ 0 integers,

∑

|α|=j

∑

|ǫ|=ℓ

(
ξ

α

)(
α

ǫ

)

=

(
|ξ|

j

)(
j

ℓ

)

. (4.4)

Proof: By the Chu–Vandermonde convolution

∑

β≤α

(
η

β

)(
ξ − η

α − β

)

=
∑

β1≤α1

· · ·
∑

βd≤αd

(
η1

β1

)(
ξ1 − η1

α1 − β1

)

· · ·

(
ηd

βd

)(
ξd − ηd

αd − βd

)

=
∑

β1≤α1

(
η1

β1

)(
ξ1 − η1

α1 − β1

)

· · ·
∑

βd≤αd

(
ηd

βd

)(
ξd − ηd

αd − βd

)

=

(
ξ1

α1

)

· · ·

(
ξd

αd

)

=

(
ξ

α

)

,

which is (4.3). It follows by induction on d, and the Chu–Vandermonde convolution, that

∑

|α|=j

(
ξ

α

)

=

j
∑

αd=0

(
ξd

αd

)
∑

α1+···+αd−1=j−αd

(
ξ1, . . . , ξd−1

α1, . . . , αd−1

)

=

j
∑

αd=0

(
ξd

αd

)(
ξ1 + · · · + ξd−1

j − αd

)

=

(
ξ1 + · · · + ξd

j

)

=

(
|ξ|

j

)

.

Applying this twice gives

∑

|α|=j

∑

|ǫ|=ℓ

(
ξ

α

)(
α

ǫ

)

=
∑

|α|=j

(
ξ

α

)
∑

|ǫ|=ℓ

(
α

ǫ

)

=
∑

|α|=j

(
ξ

α

)(
j

ℓ

)

=

(
|ξ|

j

)(
|α|

j

)

,

and we obtain (4.4).

Lemma 4.5. Let m, r1, r2 ≥ 0 and 0 ≤ i ≤ r1 + r2, then

∑

k,j,ℓ≥0

j+k−ℓ=i

(
r2

k

)

(
m+r1+r2

k

)

(
r1

j

)

(
m+r1

j

) (−1)ℓ

(
i

j

)(
j

ℓ

)

=

(
r1+r2

i

)

(
m+r1+r2

i

) .

9



Proof: We calculate

S(m, r1, r2, i) :=
∑

k,j,ℓ≥0

j+k−ℓ=i

(
r2

k

)

(
m+r1+r2

k

)

(
r1

j

)

(
m+r1

j

) (−1)ℓ

(
i

j

)(
j

ℓ

)

=
∑

j≥0

(
r1

j

)

(
m+r1

j

)

(
i

j

)
∑

ℓ≥0

(−j)ℓ

ℓ!

(
r2

ℓ+i−j

)

(
m+r1+r2

ℓ+i−j

)

=
∑

j≥0

(
r1

j

)

(
m+r1

j

)

(
i

j

) (
r2

i−j

)

(
m+r1+r2

i−j

)

∑

ℓ≥0

(−j)ℓ

ℓ!

(i − j − r2)ℓ

(i − j − m − r1 − r2)ℓ

=
∑

j≥0

(−r1)j

(−m − r)j

(
i

j

) (
r2

i−j

)

(
m+r1+r2

i−j

)
(−m − r1)j

(i − j − m − r1 − r2)j

=
∑

j≥0

(
i

j

) (
r2

i−j

)

(
m+r1+r2

i−j

)
(−r1)j

(i − j − m − r1 − r2)j

=
∑

j≥0

(−1)j(−i)j

j!

(
r2

i

)
(m + r1 + r2 − i + 1)j

(
m+r1+r2

i

)
(r2 − i + 1)j

(−r1)j

(i − j − m − r1 − r2)j

=

(
r2

i

)

(
m+r1+r2

i

)

∑

j

(−i)j(−r1)j

j!(r2 − i + 1)j

=

(
r2

i

)

(
m+r1+r2

i

)
(r1 + r2 − i + 1)i

(r2 − i + 1)i

=

(
r1+r2

i

)

(
m+r1+r2

i

) ,

which uses the following identities

(−1)ℓ

(
j

ℓ

)

=
(−j)ℓ

ℓ!
,

(
a

ℓ + b

)

=

(
a

b

)

(−1)ℓ (b − a)ℓ

(b + 1)ℓ

,

∑

ℓ≥0

(−j)ℓ

ℓ!

(a)ℓ

(b)ℓ

=
(b − a)j

(b)j

(Chu–Vandermonde).

Here (x)n := x(x + 1) · · · (x + n − 1) is the Pochhammer symbol.

Theorem 4.6. The polynomial reproduction raising operator satifies

Rm+r1+r2

m+r1
Rm+r1

m L = Rm+r1+r2

m L, m, r1, r2 ≥ 0.
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Proof: From (3.9), we obtain

Rm+r1+r2

m+r1
Rm+r1

m Lf =
∑

|γ|≤r2

(
r2

|γ|

)

(
m+r1+r2

|γ|

)

∑

δ≤γ

(−1)γ−δ

δ!(δ − γ)!
eδ(R

m+r1

m L)(eγ−δD
γf)

=
∑

|γ|≤r2

(
r2

|γ|

)

(
m+r1+r2

|γ|

)

∑

δ≤γ

(−1)γ−δ

δ!(δ − γ)!
eδ

∑

|α|≤r1

(
r1

|α|

)

(
m+r1

|α|

)

∑

β≤α

(−1)α−β

β!(α − β)!
eβ

× L(eα−βDα(eγ−δD
γf)).

Using the multivariate Leibniz formula

Dα(eγ−δD
γf) =

∑

ǫ≤α

(
α

ǫ

)

(Dα−ǫDγf)(Dǫeγ−δ) =
∑

ǫ≤α

(
α

ǫ

)(
γ − δ

ǫ

)

ǫ!eγ−δ−ǫD
α−ǫ+γf,

and the linearity of L, this gives

Rm+r1+r2

m+r1
Rm+r1

m Lf =
∑

|α|≤r1
|γ|≤r2

(
r1

|α|

)

(
m+r1

|α|

)

(
r2

|γ|

)

(
m+r1+r2

|γ|

)

∑

β≤α

δ≤γ

1

β!(α − β)!δ!(γ − δ)!

∑

ǫ≤α

(
α

ǫ

)(
γ − δ

ǫ

)

ǫ!(−1)ǫ(β + δ)!(α − ǫ + γ − δ − β)!

×
(−1)γ−δ+α−β−ǫ

(β + δ)!(α − ǫ + γ − δ − β)!
eβ+δL(eα−β+γ−δ−ǫD

α−ǫ+γf).

Thus

Rm+r1+r2

m+r1
Rm+r1

m Lf =
∑

|ξ|≤r1+r2

∑

η≤ξ

c(η, ξ)
1

η!(ξ − η)!
eη(1−)ξ−ηL(eξ−ηDξf),

where

C(η, ξ) :=
∑

α,γ,ǫ
α+γ−ǫ=ξ

(
r1

|α|

)

(
m+r1

|α|

)

(
r2

|γ|

)

(
m+r1+r2

|γ|

)

(
α

ǫ

)

(−1)ǫǫ!
∑

β≤α

δ≤γ
β+δ=η

(β + δ)!(α−ǫ+γ−δ−β)!

β!(α − β)!δ!(γ − δ)!

(
γ − δ

ǫ

)

.

In view of (3.9), it therefore suffices to show that

C(η, ξ) =

(
r1+r2

|ξ|

)

(
m+r1+r2

|ξ|

) .

The terms in C(η, ξ) involving δ and β can be summed by (4.3)

∑

β≤α

δ≤γ
β+δ=η

(β + δ)!(α − ǫ + γ − δ − β)!

β!(α − β)!δ!(γ − δ)!

(
γ − δ

ǫ

)

=
1

ǫ!

∑

β≤α

δ≤γ−ǫ
β+δ=η

(β + δ)!

β!δ!

(α − ǫ + γ − δ − β)!

(α − β)!(γ − δ − ǫ)!

=
1

ǫ!

∑

β≤α

(
η

β

)(
ξ − η

α − β

)

=
1

ǫ!

(
ξ

α

)

.
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Thus, by (4.4) and Lemma 4.5,

C(η, ξ) =
∑

α,γ,ǫ
α+γ−ǫ=ξ

(
r1

|α|

)

(
m+r1

|α|

)

(
r2

|γ|

)

(
m+r1+r2

|γ|

)

(
α

ǫ

)

(−1)ǫ

(
ξ

α

)

=
∑

j,k,ℓ≥0

j+k−ℓ=|ξ|

(
r2

k

)

(
m+r1+r2

k

)

(
r1

j

)

(
m+r1

j

) (−1)ℓ
∑

|α|=j

(
ξ

α

)
∑

|ǫ|=ℓ

(
α

ǫ

)

=
∑

j,k,ℓ≥0

j+k−ℓ=|ξ|

(
r2

k

)

(
m+r1+r2

k

)

(
r1

j

)

(
m+r1

j

) (−1)ℓ

(
|ξ|

j

)(
j

ℓ

)

=

(
r1+r2

|ξ|

)

(
m+r1+r2

|ξ|

) ,

which completes the proof.
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