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Abstract. The zero sets of (D + a)ng(t) with D = d/dt in the (t, a)-
plane are investigated for g(t) = teαt(et

−1)−1 and g(t) = eθt(et +1)−1.
The results are used to determine entire interpolations to functions

xn

+e−λx, which give representations for the best approximation and best
one-sided approximation from the class of functions of exponential type
η > 0 to xn

+e−λx.

1. Introduction

Let λ > 0 and n ∈ N0, and let x+ be the positive part of x. This
article treats the problem of finding the best upper and lower one-sided
approximation by entire functions of fixed exponential type η to

fλ,n(x) := xn
+e

−λx.

The term one-sided upper approximation refers to a function A such that
A(x) ≥ f(x) for all real x, and the approximation error is defined as the
L1(R) norm of A − f . Lower approximations are defined analogously. An
entire function A is said to be of exponential type η > 0 if for every ε > 0
exists Cε such that A satisfies the inequality

|A(z)| ≤ Cεe
|z|(η+ε)

in the complex plane. The class of these functions will be denoted by A(η).
For λ = 0 and n = 0 this problem is considered by A. Beurling [1], and

by A. Selberg in chapter 20 of Selberg [12] in connection with a form of the
large sieve inequality. Further applications are given by J. D. Vaaler [13].
S. W. Graham and J. D. Vaaler [2] consider the case n = 0 and λ > 0 in
connection with Tauberian theorems (see also Korevaar [7]). The case of
several variables is considered in Holt and Vaaler [6]. The case of arbitrary
n ∈ N0 and λ = 0 is treated by the author in [8] and [9].

Best approximations are frequently obtained as corollaries of interpolation
theorems. The idea is as follows: let F be an entire function that is real
on the real line and has only real zeros, then find an entire function G
that interpolates f at the zeros of F (with the correct multiplicity) and
nowhere else. Best one-sided approximations are obtained by using F (z) =
sin2 π(z − α) with a parameter α ∈ R.

The interpolation theorems often require F to be a Laguerre-Pólya en-
tire function (see Definition 3.3). By a result of I.J. Schoenberg [11], the
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reciprocal F (z)−1 is representable as a two-sided Laplace transform of some
totally positive function g (see Definition 3.2) in some vertical strip in the
complex plane. This property of g is helpful when proving that F (x) and
G(x) − f(x) have the same sign for all real x.

For given F it is therefore the goal to find an entire function Gλ,n,F which
interpolates fλ,n at the zeros of F . It is shown in Lemma 4.2 that under
some conditions such an interpolation is given by the formula

Gλ,n,F (z) :=
F (z)

z

∫ ∞

−∞
e−ztg(n+1)(t− λ)dt, (1)

provided

g(n)(−λ) = 0 (2)

holds.
It is shown in Section 4 that the techniques of [8] are applicable to this

problem. Most of the properties of (1) are corollaries of the interpolation
theorems in [8]. The remaining difficulty is to ensure that (2) is satisfied.
We consider (2) for the functions

gα(t) := teαt(et − 1)−1,

hθ(t) := eθt(et + 1)−1.

As a consequence of the interpolation formula (1), a representation for the
one-sided best approximation from the set of entire functions of exponential
type η to fλ,n is obtained. The function F in (1) turns out to be of the form
sin2 π(z − α). As is shown in Section 4, equation (2) needs to hold for gα

and gives an implicit relation that defines the parameter α as a function of
λ.

In fact, the best approximation to fλ,n (without the one-sided condition)
can be obtained as a corollary of (1) as well. In this case (2) needs to hold
for hθ and (2) implicitly defines θ as a function of λ. For n = 0, the best
approximation was first obtained by U. Haagerup and L. Zsido [4].

2. Results

The zero sets of g
(n)
α (t) are plotted in Figure 1 for different n. The behavior

in the horizontal strip 0 ≤ α ≤ 1 is of main interest for the interpolation
problem described above, and we will restrict our investigation to this region.

We have gα(t) ≥ 0 for all α and t. The zero set of g′α(t) in the (t, α)-plane
is parametrized by the curve

α =
e−t − 1 + t

t(1 − et)
. (3)

Proposition 2.1. Let n ≥ 2 and recall gα(t) = teαt(et − 1)−1.

(1) The function α 7→ g
(n)
α (t) has two simple and no multiple zeros in

0 ≤ α < 1.
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Figure 1. The zeros of (t, α) 7→ g
(n)
α (t) for n ∈ {4, 6, 9}

(2) The function t 7→ g
(n)
α (t) has n simple zeros t1,n(α) < t2,n(α) < ... <

tn,n(α), and no multiple zeros. Viewed as functions of α, these zeros

are continuous and monotonically increasing on (0, 1). Moreover,

lim
α→1−

tn,n−1(α) = lim
α→1−

tn,n(α) = ∞

lim
α→0+

tn,1(α) = lim
α→0+

tn,2(α) = −∞,

and the limits of the remaining tn,j as α → 0+ and α → 1− are

finite.

The proof of Proposition 2.1 is given in Section 3.

The applications in Section 4 require the change of variable λ = −t
and inversion of the functions tj,n. Hence for n ≥ 2, denote the two ze-

ros of α 7→ g
(n)
α (−λ), 0 ≤ α < 1, by αn(λ) and βn(λ), respectively, where

g
(n+1)
αn(λ) (−λ) > 0 and g

(n+1)
βn(λ) (−λ) < 0. We obtain after inverting the functions

tn,j of Proposition 2.1 and substituting λ = −t in the inverted functions:

Corollary 2.2. Let n ≥ 2. The functions αn and βn are piecewise continu-

ous and monotonically decreasing on their intervals of continuity, and they

satisfy

lim
λ→−∞

αn(λ) = lim
λ→−∞

βn(λ) = 1,

lim
λ→+∞

αn(λ) = lim
λ→+∞

βn(λ) = 0.

Moreover, for any λ such that αn(λ) = 0 we have αn(λ+) = 1, and the same

statement holds for βn(λ).

Definition 2.3. We extend the definition of αn and βn to n ∈ {0, 1} by
setting α0(λ) = 1, β0(λ) = α1(λ) = 0, and β1(λ) = (eλ−λ−1)λ−1(eλ−1)−1.

The corresponding statements for the function hθ(t) = eθt(et + 1)−1 are
as follows. Examples are plotted in Figure 2.

Proposition 2.4. Let n ≥ 1 and recall hθ(t) = eθt(et + 1)−1.

(1) The function θ 7→ h
(n)
θ (t) has one simple and no multiple zeros in

0 ≤ θ < 1.
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Figure 2. The zeros of (t, θ) 7→ h
(n)
θ (t) for n ∈ {4, 7}

(2) The function t 7→ h
(n)
θ (t) has n simple zeros τ1,n(θ) < τ2,n(θ) < ... <

τn,n(θ), and no multiple zeros. Viewed as functions of θ, these zeros

are continuous and monotonically increasing on (0, 1). Moreover,

lim
θ→1−

τn,n(θ) = ∞

lim
θ→0+

τn,1(θ) = −∞,

and the limits of the remaining τn,j as θ → 0+ and θ → 1− are

finite.

The proof of Proposition 2.4 is given in Section 3.

Let θn(λ) be the zero of t 7→ h
(n)
θ (−λ) in 0 ≤ θ < 1. Proposition 2.4

implies

Corollary 2.5. Let n ≥ 1. The function θn is piecewise continuous and

monotonically decreasing on its intervals of continuity, and it satisfies

lim
λ→−∞

θn(λ) = 1,

lim
λ→+∞

θn(λ) = 0.

Moreover, for any λ such that θn(λ) = 0 we have θn(λ+) = 1.

We define for λ > 0, non-negative integers n, and α ∈ [0, 1],

Iλ,n(α) :=
∞∑

k=0

(k + α)ne−λ(k+α), (4)

and we set for ℜz < α

Gλ,n,α(z) :=
sin2 π(z − α)

π2z

∫ 0

−∞
e−ztg(n+1)

α (t− λ)dt. (5)

Let δ > 0. Corollary 2.2 is used to find the best one-sided approximations
to xn

+e
−λx from the class of entire functions of exponential type δ. The case

n = 0 was first proved by S.W. Graham and J.D. Vaaler [2]. In order to
avoid excessive notation, Theorem 2.6 considers δ = 2π. The general case
is given in Corollary 2.7.
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Theorem 2.6. Let A(δ) be the class of entire functions of exponential type

δ. Let n ∈ N0 and λ > 0. The inequality

Gλ,n,αn(λ)(x) ≤ xn
+e

−λx ≤ Gλ,n,βn(λ)(x) (6)

holds for all x ∈ R. Moreover,

(i) for any A+ ∈ A(2π) satisfying A+(x) ≥ xn
+e

−λx

∫ ∞

−∞
A+(x)dx ≥ Iλ,n(βn(λ)) (7)

with equality if and only if A+ = Gλ,n,βn(λ).

(ii) for any A− ∈ A(2π) satisfying A−(x) ≤ xn
+e

−λx

∫ ∞

−∞
A−(x)dx ≤ Iλ,n(αn(λ)) (8)

with equality if and only if A− = Gλ,n,αn(λ).

The proof of the general version is given in Section 4. A scaling argument
gives

Corollary 2.7. The unique best lower and upper one-sided L1(R) – approxi-

mation from A(2πδ) to xn
+e

−λx is given by

δ−nGδ−1λ,n,αn(δ−1λ)(δx) ≤ xn
+e

−λx ≤ δ−nGδ−1λ,n,βn(δ−1λ)(δx).

Let θ0(λ) = 0 for all λ. We define for n ∈ N0

Hλ,n,θ(z) :=
sinπ(z − θ)

πz

∫ 0

−∞
e−zth

(n+1)
θ (t− λ)dt (9)

and the Fourier series

Jλ,n(x) =
n!

π

∑

µ∈Z

1

(µ+ 1
2 )(λ− 2πi(µ + 1

2))n+1
e−πix(2µ+1). (10)

It is shown in Section 4 that Corollary 2.5 can be used to give the best
approximation from A(δ) to xn

+e
−λx in the L1(R)–norm. The following

theorem gives the statement for δ = π, the general case can be obtained
with a scaling argument. The case n = 0 of Theorem 2.8 was solved with a
different method by U. Haagerup and L. Zsido [4].

Theorem 2.8. Let n ∈ N0 and λ > 0. The inequality
∫ ∞

−∞
|A(x) − xn

+e
−λx| dx ≥ |Jλ,n(θn(λ))| (11)

holds for all A ∈ A(π) with equality if and only if A = Hλ,n,θn(λ).
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3. Zeros of Generalized Bernoulli Functions

Recall that gα(t) = teαt(et − 1)−1. To analyze the behavior of g
(n)
α (t) for

fixed t it is convenient to define auxiliary functions

Bn(α, t) := e−αtg(n)
α (t).

A power series expansion of gα(z + t) in z implies the identity

(z + t)eαz(ez+t − 1)−1 =
∞∑

n=0

Bn(α, t)

n!
zn (|z + t| < 2π). (12)

Differentiating (12) with respect to α and comparing coefficients for n ≥ 1
gives

nBn−1(α, t) =
d

dα
Bn(α, t), (13)

and integrating (12) gives for n ≥ 1
∫ 1

0
eαtBn(α, t)dα = 0. (14)

The classical Bernoulli polynomials are given by α 7→ Bn(α, 0), and it is
shown in the proof of the following lemma that for every real t the function
Bn(α, t) is a polynomial of degree n in α.

Lemma 3.1. Let n ≥ 2. We have etBn(1, t) = Bn(0, t). For fixed t ∈ R the

function α 7→ Bn(α, t) has two simple and no multiple zeros in [0, 1).

Proof. We start with

d

dα

[
etαBn(α, t)

]
= etα

( d

dα
Bn(α, t) + tBn(α, t)

)

and integrate from α = 0 to α = 1. This gives with (13)

etBn(1, t) −Bn(0, t) = n

∫ 1

0
etαBn−1(α, t)dα + t

∫ 1

0
etαBn(α, t)dα,

and the first statement of the lemma follows from (14).
By definition B0(α, t) = e−αtgα(t) = t(et − 1)−1. Since

Bn(α, t) = n

∫ α

0
Bn−1(x, t)dx+ Cn,

we know in particular that B1 is a polynomial of degree 1 in α. (In fact, (13)
implies that Bn(α, t) is a polynomial of degree n in α since B0 is constant
in α.)

The mean value condition (14) implies that B1(0, t) and B1(1, t) have
opposite sign. An induction over n is used to prove that α 7→ Bn(α, t) has
two simple and no multiple zeros for n ≥ 2 and 0 ≤ α < 1. The proof uses
(13), (14), and etBn(1, t) = Bn(0, t). Since it is essentially the proof for
the Bernoulli polynomials (cf. Nörlund [10], p. 22), the steps are omitted
here. �
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The next step is the investigation of the zeros of t 7→ g
(n)
α (t) for fixed

α ∈ (0, 1). The main ingredient is a structural property of the functions gα

called total positivity. Denote by S−[a1, ..., an] the number of sign changes
of the sequence a1, ..., an. (Zero values do not count as changes.) For f :
R → R, we set

S−[f ] = sup{S−[f(x1, ..., xn)] | −∞ < x1 < ... < xn <∞, n ∈ N}.

Definition 3.2. A non-negative, integrable function f : R → R is called
totally positive (or variation diminishing) if S−[f ∗ ϕ] ≤ S−[ϕ] for every
bounded continuous function ϕ : R → R.

Definition 3.3. An entire function F is called a Laguerre-Pólya entire func-
tion if it has the form

F (z) = C exp(−cz2 + dz)zk
∞∏

k=1

(
1 −

z

ak

)
exp(z/ak),

where c ≥ 0, k ∈ N0, d, ak (k ∈ N), and C are real, and
∑
a−2

k <∞.

I.J. Schoenberg [11] gives the following characterziation for totally positive
functions (see also Hirschman and Widder [5]):

Lemma 3.4. An integrable function g : R → R is totally positive if and

only if for some Laguerre-Pólya entire function F the identity

F (z)−1 =

∫ ∞

−∞
eztg(t)dt

holds in an open vertical strip containing the origin.

Proof. This is IV 2.1 and IV 4.1 in [5]. �

For future reference we record two particular Laguerre-Pólya entire func-
tions. These expansions imply in particular that hθ and gα are totally pos-
itive functions.

Lemma 3.5. Let α ∈ R. In the strip α−1 < ℜz < α we have the expansions

−
π

sinπ(z − α)
=

∫ ∞

−∞
e−zthα(t)dt, (15)

π2

sin2 π(z − α)
=

∫ ∞

−∞
e−ztgα(t)dt. (16)

Proof. Equation (15) for α = 1/2 can be found on page 69 of [5]. Equation
(16) for α = 0 can be found in III.9.7 on page 72 of [5]. The statements for
arbitrary α follow with a translation. �

Lemma 3.6. Let g be a totally positive function which is analytic on a set

containing the real line, and let n ∈ N. The derivative g(n) has n simple and

no multiple zeros on the real line.
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Proof. From Theorem 5.3 in Chapter IV of [5] we obtain that g(n) has n
sign changes and that these sign changes are simple zeros. If n is the least
non-negative integer with the property that g(n) has an additional zero of
even multiplicity, then g(n+1) would have ≥ n+ 3 changes of sign. �

Let α ∈ (0, 1). As mentioned above, Lemma 3.5 implies that gα is totally

positive. Since g
(n)
α (t) and Bn(α, t) have the same zero sets, Lemma 3.6

implies that the function t 7→ Bn(α, t) has n simple and no multiple zeros.
We label the zeros in increasing order,

tn,1(α) < tn,2(α) < ... < tn,n(α).

If n is fixed, we suppress the first subscript and write tj for tn,j.

Lemma 3.7. Let (α, t) ∈ (0, 1) × R. If there exists a sequence αk with

αk → α and η > 0 such that the union of line segments {αk} × [t− η, t+ η]
contains no zero of Bn, then (α, t) is not a zero of Bn.

Proof. By assumption, Bn is either negative or positive on the union of the
sets {αk} × [t − η, t + η]. By continuity, Bn is either non-positive or non-
negative on {α} × [t− ε, t+ ε], hence Bn(α, t) = 0 would contradict Lemma
3.6. �

Lemma 3.8. Let 0 < α < 1 and Bn(α, t) = 0. For every sequence αk → α
there exists ηk → 0 and k0 ∈ N such that {αk} × [t − ηk, t + ηk] contains

exactly one zero of Bn.

Proof. There exists a sequence of line segments with length converging to
zero so that each segment contains at least one zero by Lemma 3.7. If a se-
quence of such line segment existed where each segment contained two zeros
of Bn, then by the pidgeonhole principle there would exist (α, s) satisfying
the assumptions, but not the conclusion of Lemma 3.7. �

Proof of Proposition 2.1. It only remains to show (2), since (1) follows from
Lemma 3.6. The continuity is an immediate consequence of Lemma 3.8, since
by the pidgeonhole principle the zero approximating tj(α) will be tj(αk) for
αk → α from Lemma 3.8.

Assume that tj(= tn,j) has a minimum at α0 ∈ (0, 1). Since tj−1(α0) <
tj(α0) < tj+1(α0), there exists a neighborhood U of (α0, tj(α0)) in R2 which

contains only zeros (α, tj(α)). Since (α, t) 7→ g
(n)
α (t) is of one sign on U ∩

{(α, t) : α < α0}, the function α→ Bn(α, tj(α0)) would have an even order
zero at α = α0, which contradicts Lemma 3.1. Similarly, tj cannot have a
maximum for α ∈ (0, 1). It follows that tj is monotonic.

The zero of B1 is given by

α(t) =
e−t − (1 − t)

te−t(et − 1)
,

hence its inverse t1,1 is increasing. Equation (13) implies that the two zeros of
α 7→ Bn(α, t) in [0, 1) are separated by one of the zeros of α 7→ Bn−1(α, t),
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hence since t1,1 is increasing, all tn,j are increasing. By Lemma 3.1 the
function α 7→ Bn(α, t) has two zeros for α ∈ [0, 1). Together with the
monotonicity behavior of λj(α), it follows that

t2(0+) = t1(0+) = −∞,

tn−1(1−) = tn(1−) = ∞,

and the remaining limits are finite.
Lemma 3.5 implies after two integration by parts that the Laplace trans-

forms of g′′0 and g′′1 represent (πx)−2 csc2 πx and (π(x−1))−2 csc2 πx, respec-

tively. Hence Lemma 3.6 implies that g
(n)
0 and g

(n)
1 have n − 2 simple and

no multiple zeros for n ≥ 2. By continuity, these zeros are the limits of the
functions tj at α = 0 and α = 1. �

The argumentation for the function h(x) = eθt(et+1)−1 goes along similar
lines as above, so we sketch the outline, but leave the steps to the reader.
The auxiliary functions in this case are given by

En(θ, t) := e−θth
(n)
θ (t),

and a power series expansion of hθ(z + t) in z gives

eθz(1 + ez+t)−1 =

∞∑

n=0

En(θ, t)
zn

n!
, (17)

where |z + t| < 2π. For θ = 0 we obtain En(θ, t) = 2−1En(t) with the Euler
polynomials En. We have

d

dθ
En(θ, t) = nEn−1(θ, t).

Lemma 3.9. The identity −En(0, t) = etEn(1, t) holds for all real t. For

fixed t ∈ R, the function θ → En(θ, t) has a simple and no multiple zeros for

0 ≤ θ < 1.

Proof. From the identity

u

∫ 1

0
eθu(eu + 1)−1dθ = 1 − 2(eu + 1)−1

we obtain after substituting u = t+ z, replacing the generating functions by
their power series expansions and a comparison of coefficients of zn,

−2En(0, t) = t

∫ 1

0
etθEn(θ, t)dθ + n

∫ 1

0
etθEn−1(θ, t)dθ

=

∫ 1

0

d

dθ
[h

(n)
θ (t)]dθ = h

(n)
1 (t) − h

(n)
0 (t).

Since h
(n)
0 (t) = En(0, t) and h

(n)
1 (t) = etEn(1, t), we obtain −En(0, t) =

etEn(1, t).
For n = 1 it can be checked directly that E1(θ, t) is a polynomial of degree

1 in θ with a zero for 0 < θ < 1. The identities −En(0, t) = etEn(1, t) and
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nEn−1(θ, t) = d
dθEn(θ, t) can be used in an induction over n to show the

second statement of the lemma. �

Lemma 3.5 implies that hθ is totally positive. Lemma 3.6 implies that
t 7→ En(θ, t) has n simple and no multiple zeros for all θ ∈ [0, 1). The
statements of Lemma 3.7 and Lemma 3.8 hold for En(θ, t), the proofs are
essentially unchanged. The proof of Proposition 2.4 is analogous to the proof
of Proposition 2.1 and is omitted.

4. Approximations to truncated exponential functions

We use the notation

L[g](z) :=

∫ ∞

−∞
e−ztg(t)dt.

Let n ∈ N0 and λ > 0. Recall that xn
+ equals xn for x ≥ 0 and 0

for x < 0. In this section we consider the problem of finding best one-
sided approximations to xn

+e
−λx from the class A(δ) of entire functions of

exponential type δ. The approximations are obtained from the results of
Section 3 using techniques from [8].

Definition 4.1. Let F be a Laguerre-Pólya entire function which satisfies
F (z)−1 = L[g](z) for g : R → R in some strip a < ℜz < b. The numbers a
and b are two consecutive zeros of F . If g is analytic on a set containing the
real line, then we call (F, g) an admissible pair on (a, b).

Let (F, g) be an admissible pair on (a, b) with a ≤ 0 ≤ b. For ℜz < b we
define

Gλ,n,F (z) :=
F (z)

z

∫ 0

−∞
e−ztg(n+1)(t− λ)dt. (18)

Lemma 4.2. Let λ ≥ 0, and let (F, g) be an admissible pair on (a, b) with

a ≤ 0 ≤ b. If at least one of the conditions F (0) = 0 or g(n)(−λ) = 0
is satisfied, then Gλ,n,F has an analytic continuation to the entire complex

plane, and the estimate

|Gλ,n,F (x) − xn
+e

−λx| ≪ |x|−2|F (x)| (19)

holds for all real x with |x| ≥ (a+ b)/2. Moreover,

|Gλ,n,F (z)| ≪ 1 + |z|n + |F (z)| (20)

for every z ∈ C.

Proof. If F (z)−1 = L[g](z) in a vertical strip whose closure contains the
origin, then (eλzF (z))−1 = L[g(. − λ)](z). From Theorem 4.3 of [8] we
obtain that

Tλ,n,F (z) :=
eλzF (z)

z

∫ 0

−∞
e−ztg(n+1)(t− λ)dt
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has an entire continuation, provided F (0) = 0 or g(n)(−λ) = 0. Moreover,
|Tλ,n,F (z) − xn

+| ≤ c|x|−2|eλxF (x)|, hence (19) follows after multiplication

with e−λx. Equation (20) follows from investigating the growth ofG = Tλ,n,F

in (4.5) and (4.7) of [8] after multiplication by e−λz. �

Define

Rλ,n,F (z) :=






−z−1

∫ ∞

0
g(n+1)(t− λ)e−ztdt for ℜz > 0,

z−1

∫ 0

−∞
g(n+1)(t− λ)e−ztdt for ℜz < 0.

(21)

We obtain from equation (4.9) of [8] that the identity

Gλ,n,F (z) − zn
+e

−λz = F (z)Rλ,n,F (z) (22)

holds in C\{z : ℜz = 0}.

Lemma 4.3. Let (F, g) be an admissible pair on (a, b).

(1) If 0 ∈ {a, b}, then

g′(−λ)Rλ,0,F (x) < 0

for all real x 6= 0.
(2) If 0 ∈ {a, b} such that the zero of F at the origin has multiplicity at

least two, then

g′′(−λ)Rλ,1,F (x) < 0

for all real x 6= 0.
(3) Assume either 0 ∈ (a, b), or 0 ∈ {a, b} and F has a zero of order two

at the origin. If g(n)(−λ) = 0, then

g(n+1)(−λ)Rλ,n,F (x) < 0

for all real x 6= 0.

Proof. These statements are Propositions 4.4, 4.5 and 4.7 in [8] applied to
the pair (eλzF (z), g(t − λ)). �

We define for λ ≥ 0 and α ∈ R

Fα(z) := π−2 sin2 π(z − α), (23)

and recall gα(t) = teαt(et−1)−1. Lemma 3.5 implies after a translation that
these functions are connected by the formula

eλzF−1
α (z) =

∫ ∞

−∞
e−ztgα(t− λ)dt for α− 1 < ℜz < α.

We write Gλ,n,α instead of Gλ,n,Fα
, i.e., for ℜz < α

Gλ,n,α(z) =
Fα(z)

z

∫ 0

−∞
e−ztg(n+1)

α (t− λ)dt. (24)

In the following, αn(λ) and βn(λ) have the same meaning as in Section 3
and Definition 2.3.
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Proof of Theorem 2.6. Lemma 4.2 implies that the integrands in (7) and (8)
are integrable, and that Gλ,n,αn(λ), Gλ,n,βn(λ) ∈ A(2π) for all n ∈ N0.

Next, we show (6). An application of Lemma 4.3 (1) together with

g′0(−λ) = e−λ(e−λ − 1)−2
(
1 + λ− eλ

)
< 0,

g′1(−λ) = e−λ(e−λ − 1)−2
(
e−λ − 1 + λ

)
> 0

for all λ > 0 implies (6) for n = 0 since β0(λ) = 0 for all λ by Definition 2.3.
For n = 1, the lower best approximation follows from Lemma 4.3 (2) with

g′′0 (−λ) = −e−λ(e−λ − 1)−3
(
(2 + λ)e−λ + λ− 2

)
> 0,

whereas the upper approximation follows with aid of Lemma 4.3 (3); note
that 0 < β1(λ) < 1 for λ ≥ 0. Hence to finish the proof in this case, we need
to show that g′β1(λ)(−λ) = 0 and that g′′β1(λ)(−λ) < 0.

The first part follows immediately, since

g′α(−λ) = eλ(1 − αλ− eλ + αλeλ + λ)(1 − eλ)−2

is a linear polynomial in α with zero α = β1(λ).
For all λ ≥ 0, the function t 7→ gβ1(λ)(t − λ) is a variation diminishing

function which is analytic on a set containing the real line, hence each of its
derivatives can have only simple zeros (Lemma 3.6). Since g′β1(λ)(−λ) = 0,

we must have g′′β1(λ)(−λ) 6= 0 for all λ. Since g′′1/2(0) = B2(1/2) = −1/12 < 0

and λ 7→ g′′β1(λ)(−λ) is continuous, the statement g′′β1(λ)(−λ) < 0 follows for

all λ ≥ 0.
For n ≥ 2, (6) follows with aid of Lemma 4.3 (3) and the results about

αn and βn from Section 3.
The integral values in (7) and (8) are obtained similarly to equations (7.6)

and (7.7) in [8]. By construction, for α ∈ {αn(λ), βn(λ)} the functionsGλ,n,α

interpolate e−λxxn
+ at α+ Z and an application of Poisson summation with

the Paley-Wiener theorem gives
∫ ∞

−∞
Gλ,n,α(x)dx = Ĝλ,n,α(0) =

∑

k∈Z

Gλ,n,α(k + α) =
∑

k∈Z

(k + α)n+e
−λ(k+α).

(25)

It remains to prove uniqueness of the one-sided approximations. Assume
that A ∈ A(2π) is a lower best approximation to fλ,n(x) = xn

+e
−λx. Since

the integrals of A and Gλ,n,αn(λ) have to agree, it follows from (25) and the
Paley-Wiener theorem that

0 = ̂Gλ,n,αn(λ)(0) − Â(0) =
∑

k∈Z

[Gλ,n,αn(λ)(k + αn(λ)) −A(k + αn(λ)]

=
∑

k∈Z

[fλ,n(k + αn(λ)) −A(k + αn(λ))]. (26)

Since A ≤ fλ,n on the real line, it follows from (26) that A equals fλ,n on
αn(λ) + Z, and if n ≥ 2 or 0 /∈ αn(λ) + Z, it follows also that A′ equals f ′λ,n
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on αn(λ) + Z. The same statement is true for Gλ,n,αn(λ), hence by Theorem
9 of [13] we obtain A = Gλ,n,αn(λ). In the remaining case (when f ′λ,n(0) does

not exist) we obtain from Theorem 9 of [13] that

A(x) −Gλ,n,αn(λ)(x) = (A′(0) −G′
λ,n,αn(λ)(0))

sin2(πx)

π2x

and since the left-hand side is integrable, the right-hand side has to be inte-
grable as well. We obtain A′(0) = G′

λ,n,αn(λ)(0), and hence A = Gλ,n,αn(λ).

�

Proof of Theorem 2.8. By Lemma 4.2 the function Hλ,0,0 is entire and the

difference Hλ,0,0(x) − x0
+e

−λx is integrable. By construction g
(n)
θn(λ)(−λ) = 0

for n ≥ 1, hence Lemma 4.2 implies for these n that Hλ,n,θn(λ) is entire and

Hλ,n,θn(λ)(x) − xn
+e

−λx is integrable, and that Hλ,n,θn(λ) ∈ A(π).
As in the proof of Theorem 6.2 of [8], we define for A ∈ A(π) the difference

ϕλ,n,A(x) := A(x) − xn
+e

−λx and note that
∫

R

|ϕλ,n,A(x)|dx ≥
∣∣∣
∫

R

sgn sinπ(x− θn(λ))ϕλ,n,A(x)dx
∣∣∣,

with equality for any A for which

|ϕλ,n,A(x)| = sgn sinπ(x− θn(λ))ϕλ,n,A(x) (27)

for all real x holds. Lemma 4.3 implies that this is the case forA = Hλ,n,θn(λ).

To compute the value of the integral we define ψ(x) = e−πx2

. From
Theorem 8.36 in Folland [3] we have

σε(x) :=
2

πi

∑

µ∈Z

1

2µ+ 1
ψ(εµ)e2πix(µ+1/2) → sgn sinπx in L1([0, 2)).

The series is absolutely convergent for ε > 0, hence we obtain
∫

R

σε(x− θn(λ))ϕλ,n,A(x)dx

=

∫

R

2

πi

∑

µ∈Z

e2πi(x−θn(λ)(µ+1/2)

2µ+ 1
ψ(εµ)ϕλ,n,A(x)dx

=
1

πi

∑

µ

ψ(εµ)ϕ̂λ,n,A(−µ− 1/2)

µ+ 1/2
e−2πiθn(λ)(µ+1/2)

=
1

πi

∑

µ

ψ(εµ)

(λ− 2πi(µ+ 1
2 ))n+1(µ+ 1

2)
e−πiθn(λ)(2µ+1),

where we used that by the Paley-Wiener theorem the value of ϕ̂λ,n,A(t) for

|t| ≥ 1/2 equals the value of the transform of xn
+e

−λx. Since the last series
converges absolutely for every ε ≥ 0, we may take the limit ε → 0+ in the
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first and the last term to obtain

||ϕλ,n,A||1 =
∣∣∣
1

π

∑

µ

n!

(λ− 2πi(µ+ 1
2))n+1(µ+ 1

2)
e−πiθn(λ)(2µ+1)

∣∣∣.

It should be emphasized that this calculation is valid for every function
A ∈ A(π) which satisfies (27). It remains to show uniqueness of the best
approximation. If equality were to hold for another function A∗ ∈ A(π),
equation (27) would imply that A∗ and Hλ,n,θn(λ) would agree on the set
θn(λ) + Z. Since A∗ and Hλ,n,θn(λ) are best approximations to the same
function we obtain

A∗ −Hλ,n,θn(λ) ∈ L1(R),

and since the transform of this difference has bounded support, the difference
is in L2(R) as well. From (7.19) in Chapter XVI of [14] we obtain A∗ −
Hλ,n,θn(λ) = 0. �
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