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Abstract. We study the reverse triangle inequalities for suprema of logarithmic potentials
on compact sets of the plane. This research is motivated by the inequalities for products of
supremum norms of polynomials. We find sharp additive constants in the inequalities for
potentials, and give applications of our results to the generalized polynomials.

We also obtain sharp inequalities for products of norms of the weighted polynomials
wnPn, deg(Pn) ≤ n, and for sums of suprema of potentials with external fields. An im-
portant part of our work in the weighted case is a Riesz decomposition for the weighted
farthest-point distance function.
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1 Products of polynomials and sums of potentials

Let E be a compact set in the complex plane C. Given the bounded above functions fj, j =
1, . . . ,m, on E, we have by a standard inequality that

sup
E

m∑
j=1

fj ≤
m∑
j=1

sup
E
fj.

It is not possible to reverse this inequality for arbitrary functions, even if one introduces
additive or multiplicative “correction” constants. However, we are able to prove the reverse
inequalities for logarithmic potentials, with sharp additive constants. For a positive Borel
measure µ with compact support in the plane, define its (subharmonic) potential [18, p. 53]
by

p(z) :=

∫
log |z − t| dµ(t).
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Let νj, j = 1, . . . ,m, be positive compactly supported Borel measures with potentials pj. We
normalize the problem by assuming that the total mass of ν :=

∑m
j=1 νj is equal to 1, and

consider the inequality

m∑
j=1

sup
E
pj ≤ CE(m) + sup

E

m∑
j=1

pj. (1.1)

Clearly, if (1.1) holds true, then CE(m) ≥ 0. One may also ask whether (1.1) holds with
a constant CE independent of m. The motivation for such inequalities comes directly from
inequalities for the norms of products of polynomials. Indeed, if P (z) =

∏n
j=1(z − aj) is

a monic polynomial, then log |P (z)| = n
∫

log |z − t| dτ(t). Here, τ = 1
n

∑n
j=1 δaj

is the
normalized counting measure in the zeros of P , with δaj

being the unit point mass at aj. Let
‖P‖E := supE |P | be the uniform (sup) norm on E. Thus (1.1) takes the following form for
polynomials Pj, j = 1, . . . ,m,

m∏
j=1

‖Pj‖E ≤ enCE(m)

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
E

,

where n is the degree of the product polynomial
∏m

j=1 Pj. We outline a brief history of such
inequalities below.

Kneser [8] proved the first sharp inequality for norms of products of polynomials on
[−1, 1] (see also Aumann [1] for a weaker result)

‖P1‖[−1,1]‖P2‖[−1,1] ≤ K`,n‖P1P2‖[−1,1], degP1 = `, degP2 = n− `, (1.2)

where

K`,n := 2n−1
∏̀
k=1

(
1 + cos

2k − 1

2n
π

) n−∏̀
k=1

(
1 + cos

2k − 1

2n
π

)
. (1.3)

Observe that equality holds in (1.2) for the Chebyshev polynomial t(x) = cosn arccosx =
P1(x)P2(x), with a proper choice of the factors P1(x) and P2(x). Borwein [3] generalized this
to the multifactor inequality

m∏
j=1

‖Pj‖[−1,1] ≤ 2n−1

[n
2
]∏

k=1

(
1 + cos

2k − 1

2n
π

)2
∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
[−1,1]

, (1.4)

where n is the degree of
∏m

j=1 Pj. We remark that

2n−1

[n
2
]∏

k=1

(
1 + cos

2k − 1

2n
π

)2

∼ (3.20991 . . .)n as n→∞. (1.5)

Another inequality of this type for E = D, where D := {w : |w| ≤ 1} is the closed unit
disk, was proved by Gelfond [7, p. 135] in connection with the theory of transcendental
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numbers:
m∏
j=1

‖Pj‖D ≤ en

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
D

. (1.6)

Mahler [12] later replaced e by 2:

m∏
j=1

‖Pj‖D ≤ 2n

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
D

. (1.7)

It is easy to see that the base 2 cannot be decreased, if m = n and n→∞. However, Kroó
and Pritsker [9] showed that, for any m ≤ n,

m∏
j=1

‖Pj‖D ≤ 2n−1

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
D

, (1.8)

where equality holds in (1.8) for each n ∈ N, with m = n and
∏m

j=1 Pj = zn − 1. On the
other hand, Boyd [4, 5] proved that, given the number of factors m in (1.7), one has

m∏
j=1

‖Pj‖D ≤ (Cm)n

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
D

, (1.9)

where

Cm := exp

(
m

π

∫ π/m

0

log

(
2 cos

t

2

)
dt

)
(1.10)

is asymptotically best possible for each fixed m, as n→∞.
For a compact set E ⊂ C, a natural general problem is to find the smallest constant

ME > 0 such that
m∏
j=1

‖Pj‖E ≤ (ME)n

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
E

(1.11)

holds for arbitrary polynomials {Pj(z)}mj=1 with complex coefficients, where n = deg(
∏m

j=1 Pj).
The solution of this problem is based on the logarithmic potential theory (cf. [18] and [20]).
Let cap(E) be the logarithmic capacity of a compact set E ⊂ C. For E with cap(E) > 0,
denote the equilibrium measure of E by µE. We remark that µE is a positive unit Borel
measure supported on the outer boundary of E (see [20, p. 55]). Define

dE(z) := max
t∈E
|z − t|, z ∈ C, (1.12)

which is clearly a positive and continuous function in C. It is easy to see that the loga-
rithm of this distance function is subharmonic in C. Moreover, it has the following integral
representation

log dE(z) =

∫
log |z − t|dσE(t), z ∈ C,
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where σE is a positive unit Borel measure in C with unbounded support, see Lemma 5.1
of [14] and [10]. Further study of the representing measure σE is contained in the work of
Gardiner and Netuka [6]. This integral representation is the key fact used by the first author
to prove the following result.

Theorem 1.1 [14] Let E ⊂ C be a compact set, cap(E) > 0. Then the best constant ME in
(1.11) is given by

ME =

exp

(∫
log dE(z)dµE(z)

)
cap(E)

. (1.13)

It is not difficult to see that ME is invariant under the similarity transformations of the set
E in the plane.

For the closed unit disk D, we have that cap(D) = 1 and that dµD = dθ/(2π), where dθ
is the arclength on ∂D [20, p. 84]. Thus Theorem 1.1 yields

MD = exp

(
1

2π

∫ 2π

0

log dD(eiθ) dθ

)
= exp

(
1

2π

∫ 2π

0

log 2 dθ

)
= 2,

so that we immediately obtain Mahler’s inequality (1.7).
If E = [−1, 1] then cap([−1, 1]) = 1/2 and dµ[−1,1] = dx/(π

√
1− x2), x ∈ [−1, 1], which

is the Chebyshev distribution (see [20, p. 84]). Using Theorem 1.1, we obtain

M[−1,1] = 2 exp

(
1

π

∫ 1

−1

log d[−1,1](x)√
1− x2

dx

)
= 2 exp

(
2

π

∫ 1

0

log(1 + x)√
1− x2

dx

)
= 2 exp

(
2

π

∫ π/2

0

log(1 + sin t)dt

)
≈ 3.2099123,

which gives the asymptotic version of Borwein’s inequality (1.4)-(1.5).
Considering the above analysis of Theorem 1.1, it is natural to conjecture that the sharp

universal bounds for ME are given by

2 = MD ≤ME ≤M[−1,1] ≈ 3.2099123, (1.14)

for any bounded non-degenerate continuum E, see [15]. This problem was treated in the
recent papers of the first author and Ruscheweyh [16] and [17], where the lower bound
ME ≥ MD = 2 is proved for all compact sets E, and the upper bound is proved for certain
special classes of continua. A general approach to this type of extremal problem was proposed
by Baernstein, Laugesen and Pritsker [2]. We show in the next section that all results about
ME are directly applicable to the constants CE and CE(m) in the inequality for potentials
(1.1).

The assumption that E is of positive capacity is vital for our results. For example, when
E consists of a finite number of points {zj}Nj=1, N ≥ 2, then no inequality of the type (1.11)
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is possible with any constant. Indeed, if m = n ≥ N then we consider Pj(z) = z − zj, j =
1, . . . , N, and Pj(z) ≡ 1, j > N, which gives ‖Pj‖E > 0, j = 1, . . . ,m, but ‖

∏m
j=1 Pj‖E = 0.

For infinite countable sets E we have cap(E) = 0, and the constants in the inequalities
for norms of products of polynomials may grow arbitrarily fast.

Theorem 1.2 Let {An}∞n=1 be any increasing sequence satisfying An ≥ 1. There exists an
infinite countable set E such that

sup
Pj

∏m
j=1 ‖Pj‖E

‖
∏m

j=1 Pj‖E
≥ An, n = deg

(
m∏
j=1

Pj

)
∈ N. (1.15)

Thus one should expect faster-than-exponential growth of constants, if the assumption
cap(E) > 0 is lifted.

2 Main results

Our first inequality stated in Theorem 2.1 includes the constant CE that is independent of
the number of potentials m. In fact, Theorem 2.1 may be deduced from our Theorem 2.4,
which takes m into account, and gives a sharp version of (1.1).

Theorem 2.1 Let E ⊂ C be a compact set, cap(E) > 0. Suppose that νj, j = 1, . . . ,m, are
positive compactly supported Borel measures with potentials pj, such that the total mass of∑m

j=1 νj is equal to 1. We have

m∑
j=1

sup
E
pj ≤ CE + sup

E

m∑
j=1

pj, (2.1)

where

CE :=

∫
log dE(z)dµE(z)− log cap(E) (2.2)

cannot be replaced by a smaller constant.

Since CE is independent of m, it is possible to extend (2.1) to infinite sums of potentials.
One should ensure the absolute convergence of the series

∑∞
j=1 pj on E for this purpose.

We note that CE is invariant under the similarity transforms of the plane. It is obvious
from (1.13) that CE = logME. Hence the results of [2, 16, 17] apply here, and we obtain
the following.

Corollary 2.2 Let E ⊂ C be an arbitrary compact set, cap(E) > 0. Then CE ≥ log 2,
where equality holds if and only if ∂U ⊂ E ⊂ U , where U is a closed disk.
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Corollary 2.3 Let E ⊂ C be a connected compact set, but not a single point. Suppose that
z, w ∈ E satisfy diamE = |z − w| and the line segment [z, w] joining z to w lies in E. If E
is contained in the disk with diameter [z, w], then

CE ≤
2

π

∫ 2

0

log(2 + x)√
4− x2

dx = C[−2,2] ≈ log 3.2099123.

Furthermore, this inequality holds for any centrally symmetric continuum E that contains
its center of symmetry.

We conjecture in line with (1.14) (see [15, 16]) that CE ≤ C[−2,2] for all non-degenerate
continua E.

We now explore the dependence of CE(m) in (1.1) on m. The key results for a polynomial
analog are due to Boyd [4, 5] for the unit disk, see (1.9)-(1.10). The polynomial case for
general sets was touched upon in [14], and developed further in [17].

A closed set S ⊂ E is called dominant if

dE(z) = max
t∈S
|z − t| for all z ∈ supp(µE). (2.3)

When E has at least one finite dominant set, we define a minimal dominant set DE as a
dominant set with the smallest number of points card(DE). Of course, E might not have
finite dominant sets at all, in which case we can take any dominant set as the minimal
dominant set with card(DE) =∞, e.g., DE = ∂E.

Theorem 2.4 Let E ⊂ C be compact, cap(E) > 0. Suppose that νj, j = 1, . . . ,m, are
positive compactly supported Borel measures with potentials pj, such that the total mass of∑m

j=1 νj is equal to 1. Then

m∑
j=1

sup
E
pj ≤ CE(m) + sup

E

m∑
j=1

pj, (2.4)

where

CE(m) := max
ck∈∂E

∫
log max

1≤k≤m
|z − ck| dµE(z)− log cap(E) (2.5)

cannot be replaced by a smaller constant for each fixed m ≥ 2. Furthermore, if m < card(DE)
then CE(m) < CE, while CE(m) = CE for m ≥ card(DE). When DE is infinite, CE(m) <
CE holds for all m ∈ N, m ≥ 2.

Since |z − ck| ≤ dE(z), ck ∈ ∂E, it is clear from (2.2) and (2.5) that CE(m) ≤ CE for all
E and all m ∈ N. Thus Theorem 2.1 is an immediate consequence of Theorem 2.4. If the
sets {ck}mk=1 are dense in ∂E as m → ∞, then lim

m→∞
max

1≤k≤m
|z − ck| = dE(z), z ∈ C. Hence

lim
m→∞

CE(m) = CE. However, the following result shows that we always have strict inequality

for smooth sets.
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Corollary 2.5 If E ⊂ C is a compact set bounded by finitely many C1-smooth curves, then
CE(m) < CE for all m ∈ N, m ≥ 2.

On the other hand, we have CE(m) = CE for m ≥ s for every polygon with s vertices.
Furthermore, not all vertices may belong to the minimal dominating set. For example, if
E is an obtuse triangle, then DE consists of only two vertices that are the endpoints of the
longest side. Hence CE(m) = CE for m ≥ 2 as in the segment case. Any circular arc of
angular measure at most π has its endpoints as the minimal dominating set, which gives
CE(m) = CE for m ≥ 2 here too. However, if the angular measure of this arc is greater than
π, then one immediately obtains that DE is infinite, and CE(m) < CE for all m ≥ 2.

Finding the exact values of CE(m) for general sets is very complicated. It is analogous
to finding solutions of discrete energy problems. Following Boyd [4, 5], we give the values of
CD(m), where D is a disk, see (1.9)-(1.10).

Corollary 2.6 If E is a closed disk D, then

CD(m) =
m

π

∫ π/m

0

log

(
2 cos

t

2

)
dt, m ≥ 2.

It is easy to see that CD(m) < CD = log 2, m ≥ 2.
We conclude this section with an application of our results for potentials to generalized

polynomials of the form Pj(z) =
∏kj

k=1 |z − zk,j|rk , where kj ∈ N and zk,j ∈ C, rk > 0, k =

1, . . . , kj. Let nj :=
∑kj

k=1 rk be the degree of the generalized polynomial Pj.

Corollary 2.7 Let E ⊂ C be a compact set, cap(E) > 0. If Pj, j = 1, . . . ,m, are the
generalized polynomials of the corresponding degrees nj, then

m∏
j=1

‖Pj‖E ≤ enCE(m)

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
E

≤ enCE

∥∥∥∥∥
m∏
j=1

Pj

∥∥∥∥∥
E

,

where n =
∑m

j=1 nj, and where CE and CE(m) are defined by (2.2) and (2.5) respectively.

We remind the reader that CE = logME , so that the above corollary extends Theorem 1.1.

3 Weighted polynomials and potentials

In this section, we assume that E ⊂ C is any closed set, which is not necessarily bounded.
Let w : E → [0,∞) be an admissible weight function [19, p. 26] in the sense of potential
theory with external fields. This means that

• w is upper semicontinuous on E

• cap ({z ∈ E : w(z) > 0}) > 0
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• If E is unbounded then lim
|z|→∞,z∈E

|z|w(z) = 0

It is implicit that cap(E) > 0 in this case. We study certain analogs of our main results
for weighted polynomials of the form wk(z)P (z), deg(P ) ≤ k, as well as for potentials with
external fields. In order to state such analogs, we need the notions of the weighted equilibrium
measure µw and the modified Robin’s constant Fw. Recall that µw is a positive unit Borel
measure supported on a compact set Sw ⊂ E, that is characterized by the inequalities∫

log |z − t| dµw(t) + logw(z) + Fw ≥ 0, z ∈ Sw = supp(µw),

and ∫
log |z − t| dµw(t) + logw(z) + Fw ≤ 0, for q.e. z ∈ E,

where q.e. (quasi everywhere) means that the above inequality holds with a possible excep-
tional set of zero capacity (cf. Theorem 1.3 of [19, p. 27]). We refer to [19] for a detailed
survey of potential theory with external fields. The weighted farthest-point distance function

dwE(z) := sup
t∈E

w(t)|z − t|, z ∈ C, (3.1)

plays an important role in our results, resembling the role of its predecessor dE(z) defined
in (1.12).

Theorem 3.1 Let E ⊂ C be a closed set, and let w be an admissible weight on E. If
Pj, j = 1, . . . ,m, are polynomials of the corresponding degrees nj, then

m∏
j=1

‖wnjPj‖E ≤ enC
w
E (m)

∥∥∥∥∥wn
m∏
j=1

Pj

∥∥∥∥∥
E

≤ enC
w
E

∥∥∥∥∥wn
m∏
j=1

Pj

∥∥∥∥∥
E

, (3.2)

where n =
∑m

j=1 nj. The constant

Cw
E (m) := sup

ck∈E

∫
log max

1≤k≤m
w(ck)|z − ck| dµw(z) + Fw (3.3)

cannot be replaced by a smaller value for each fixed m ≥ 2. Also,

Cw
E :=

∫
log dwE(z) dµw(z) + Fw (3.4)

cannot be replaced by a smaller value independent of m.

If w is continuous and E has positive capacity at each of its points, then any weighted
polynomial of the form wkP, deg(P ) ≤ k, attains its norm on Sw, which is often a proper
subset of E (cf. [13] and Section III.2 of [19]). More generally, the norm is always attained
on Sw∪Rw ⊂ E, where Rw := {z ∈ E :

∫
log |z−t| dµw(t)+logw(z)+Fw > 0}, see Theorem
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2.7 of [19, p. 158]. Thus all sup norms in Theorem 3.1 may be replaced by the norms on
Sw ∪ Rw. As a consequence for the weighted distance function dwE, we observe that for any
z ∈ C there exists ζz ∈ Sw ∪Rw such that

dwE(z) = ‖w(·)(z − ·)‖E = ‖w(·)(z − ·)‖Sw∪Rw
= w(ζz)|z − ζz|.

We give a couple of examples of the constant Cw
E for specific sets and weights below. It

is clear that any example of this kind heavily depends on the knowledge of the weighted
equilibrium measure µw and the modified Robin’s constant Fw. In addition, one should be
able to compute the weighted distance function dwE.

Examples
1. Incomplete polynomials of G. G. Lorentz: Let E = [0, 1] and w(x) = x. It is known
that

dµw(x) =
2

πx

√
x− 1/4

1− x
, x ∈ Sw = [1/4, 1],

see [19, p. 243]. We also have that Fw = 8 log 2 − 3 log 3 by [19, p. 206]. Furthermore, it
follows from a direct calculation that

dwE(x) =

{
1− x, 1/4 ≤ x ≤ 2(

√
2− 1),

x2/4, 2(
√

2− 1) ≤ x ≤ 1.

The approximate numerical value obtained from (3.4) is Cw
E ≈ 1.037550517, so that (3.2)

gives
m∏
j=1

‖xnjPj(x)‖[0,1] ≤ (2.8222954)n

∥∥∥∥∥xn
m∏
j=1

Pj(x)

∥∥∥∥∥
[0,1]

,

where degPj ≤ nj and n = n1 + . . .+nm. (The polynomials xnjPj(x) are special examples of
incomplete polynomials, a subject that was introduced by G. G. Lorentz in [11].) Note that
the above inequality is a significant improvement of the Borwein-Kneser inequality (1.4)-(1.5)
applied to the polynomials xnjPj(x) on [0, 1]. Indeed, since the degree of xnjPj(x) equals 2nj,
we obtain from (1.4)-(1.5) (or from (1.13)) that

m∏
j=1

‖xnjPj(x)‖[0,1] ≤ (10.303537)n

∥∥∥∥∥xn
m∏
j=1

Pj(x)

∥∥∥∥∥
[0,1]

,

where the constant comes from (M[0,1])
2 ≈ (3.2099123)2 < 10.303537.

2. Let E = C and w(z) = e−|z|. In this case, we have [19, p. 245] that

dµw(reiθ) =
1

2π
dr dθ, r ∈ [0, 1], θ ∈ [0, 2π),

dwE(z) = e|z|−1 for z ∈ Sw = {z : |z| ≤ 1}, and Fw = 1. Here we explicitly find that Cw
E = 1/2

and consequently, from (3.2),

m∏
j=1

‖e−nj |z|Pj(z)‖C ≤ en/2

∥∥∥∥∥e−n|z|
m∏
j=1

Pj(z)

∥∥∥∥∥
C

.
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With the notation of Theorems 2.1-2.4, we let αj := νj(C) be the total mass of the
measure νj. For the potentials with external fields pj(z) +αj logw(z), we have the following
estimates.

Theorem 3.2 Let E ⊂ C be a closed set, and let w be an admissible weight on E. Suppose
that νj, j = 1, . . . ,m, are positive compactly supported Borel measures with potentials pj,
such that νj(C) = αj and

∑m
j=1 αj = 1. Then

m∑
j=1

sup
E

(αj logw + pj) ≤ Cw
E (m) + sup

E

(
logw +

m∑
j=1

pj

)

≤ Cw
E + sup

E

(
logw +

m∑
j=1

pj

)
. (3.5)

The constants Cw
E and Cw

E (m) are defined by (3.3) and (3.4) respectively. They are sharp
here in the same sense as in Theorem 3.1.

Using a well known connection between polynomials and potentials of discrete measures,
we observe that Theorem 3.1 is a direct consequence of Theorem 3.2. For each poly-
nomial Pj(z) =

∏nj

k=1(z − zk,j), j = 1, . . . ,m, we associate the zero counting measure
νj := 1

n

∑nj

k=1 δzk,j
. Since

1

n
log |Pj(z)| =

∫
log |z − t| dνj(t) = pj(z) and

1

n
log ‖wnjPj‖E = sup

E

(nj
n

logw + pj

)
,

it is clear that (3.5) gives the log of (3.2) in this notation. Another immediate observation
is that Theorem 3.2 implies (2.1) and (2.4), if we set w ≡ 1 on E.

The key ingredient in our proofs of Theorems 3.1 and 3.2 is the following Riesz represen-
tation for log dwE(z), which may be of independent interest.

Theorem 3.3 Let E ⊂ C be a closed set. Suppose that w : E → [0,∞) is upper semi-
continuous on E, and that w 6≡ 0 on E. If E is unbounded then we also assume that

lim
|z|→∞,z∈E

|z|w(z) = 0. The function

log dwE(z) := sup
t∈E

(logw(t) + log |z − t|) = log ‖w(·)(z − ·)‖E, z ∈ C, (3.6)

is subharmonic in C, and

log dwE(z) =

∫
log |z − t| dσwE(t) + sup

E
logw, z ∈ C, (3.7)

where σwE is a positive unit Borel measure.
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Note that we relaxed conditions on the weight w in Theorem 3.3 by not requiring the set
{z ∈ E : w(z) > 0} be of positive capacity. Such weights are called quasi-admissible in [19].
Since the proofs of Theorems 3.1 and 3.3 only require (3.7) for a finite set E = {ck}mk=1,
we give a short and transparent proof of this special case. The complete general proof of
Theorem 3.3 will appear in our forthcoming work, together with a comprehensive study of
the weighted distance function.

We remark that dwE is Lipschitz continuous in C, which readily follows from triangle
inequality. Indeed, we have that |z1− t| ≤ |z1− z2|+ |z2− t| for all z1, z2 ∈ C and all t ∈ E.
Hence

dwE(z1) = sup
t∈E

w(t)|z1 − t| ≤ |z1 − z2| sup
t∈E

w(t) + sup
t∈E

w(t)|z2 − t| = |z1 − z2| sup
E
w + dwE(z2)

and
|dwE(z2)− dwE(z1)| ≤ |z2 − z1| sup

E
w,

after interchanging z1 and z2. If the set {z ∈ E : w(z) > 0} is not a single point, then dwE is
strictly positive in C, and log dwE is also Lipschitz continuous in C. In particular, this always
holds for admissible weights.

4 Proofs

Proof of Theorem 1.2. Without loss of generality we assume that An → ∞ as n → ∞.
Consider the sequence x1 = 1 and xn = 1/(2An), n ≥ 2, and let E := {xn}∞n=1 ∪ {0}.
Thus E is a compact subset of [0, 1]. Define Pj(x) := x − xj, j ∈ N. Note that ‖P1‖E = 1,
‖Pj‖E = 1− xj ≥ 1

2
, j ≥ 2, and∥∥∥∥∥

n∏
j=1

Pj

∥∥∥∥∥
E

=
n∏
j=1

xj ≤
1

2n−1An
, n ∈ N.

Hence ∏n
j=1 ‖Pj‖E∥∥∥∏n
j=1 Pj

∥∥∥
E

=

∏n
j=2(1− xj)∏n

j=1 xj
≥ 2−n+1

2−n+1A−1
n

= An.

Proofs of Theorems 2.1 and 2.4. Since any subharmonic potential pk is upper semicontinuous,
it attains a supremum on the compact set E. Furthermore, we can assume that the supremum
is attained on ∂E, by the maximum principle for subharmonic functions [18, p. 29]. Thus
for any k = 1, . . . ,m, there exists ck ∈ ∂E such that

sup
E
pk = pk(ck).

Applying Lemma 2 of [5] to the set {ck}mk=1, we obtain for the function

dm(z) := max
1≤k≤m

|z − ck|, z ∈ C,

11



that

log dm(z) =

∫
log |z − t|dσm(t), z ∈ C,

where σm is a probability measure on C. Let ν :=
∑m

k=1 νk, so that ν is a unit measure
with the potential p(z) =

∫
|z− t| dν(t) =

∑m
k=1 pk(z). We use the integral representation of

log dm and Fubini’s theorem in the following estimate:

m∑
k=1

sup
E
pk =

m∑
k=1

pk(ck) =
m∑
k=1

∫
log |ck − z| dνk(z) ≤

∫
log dm(z) dν(z)

=

∫ ∫
log |z − t| dσm(t) dν(z) =

∫
p(t) dσm(t). (4.1)

It is known [14] that the support of σm is unbounded, so that we need to estimate the growth
of p in the plane by its supremum on the set E. This is analogous to the Bernstein-Walsh

lemma for polynomials [18, p. 156]. Let g(t) :=

∫
log |t − z| dµE(z) − log cap(E), t ∈ C,

and note that g(t) ≥ 0, t ∈ E, by Frostman’s theorem [18, p. 59]. On the other hand, we
trivially have that p(t)− supE p ≤ 0, t ∈ E, which gives

g(t) ≥ p(t)− sup
E
p, t ∈ E.

By the Principle of Domination (see [19, p. 104]), we deduce that the last inequality holds
everywhere:

p(t) ≤ sup
E
p+ g(t), t ∈ C.

This inequality applied in (4.1) yields

m∑
k=1

sup
E
pk ≤

∫ (
sup
E
p+ g(t)

)
dσm(t) = sup

E
p+

∫
g(t) dσm(t)

= sup
E
p+

∫ (∫
log |z − t| dµE(z)− log cap(E)

)
dσm(t)

= sup
E
p+

∫ ∫
log |z − t| dµE(z) dσm(t)− log cap(E)

= sup
E
p+

∫ ∫
log |z − t| dσm(t) dµE(z)− log cap(E)

= sup
E
p+

∫
log dm(z)dµE(z)− log cap(E),

where we consecutively used σm(C) = 1, the representation of g via the potential of µE,
Fubini’s theorem, and the integral representation for log dm. Hence (2.4) follows from the
above estimate by taking maximum over all possible m-tuples of ck ∈ ∂E, k = 1, . . . ,m.

(Note that log dm is a continuous function in the variables ck, so that

∫
log dm(z)dµE(z) is

continuous too.) Furthermore, (2.1) is immediate after observing that dm(z) ≤ dE(z), z ∈ C.

12



Suppose that

∫
log dm(z)dµE(z) attains its maximum on (∂E)m for some set c∗k ∈

∂E, k = 1, . . . ,m. We now show that CE(m) cannot be replaced by a smaller constant
for a fixed m ≥ 2. Let

d∗m(z) := max
1≤k≤m

|z − c∗k|, z ∈ C,

and define the sets
S1 := {z ∈ suppµE : |z − c∗1| = d∗m(z)}

and
Sk := {z ∈ suppµE \ ∪k−1

j=1Sj : |z − c∗k| = d∗m(z)}, k = 2, . . . ,m.

It is clear that

suppµE =
m⋃
k=1

Sk and Sk
⋂

Sj = ∅, k 6= j.

Hence the measures ν∗k := µE|Sk
give the decomposition

µE =
m∑
k=1

ν∗k .

If E is regular, then

∫
log |z − t| dµE(z) = log cap(E), t ∈ E, by Frostman’s theorem [18,

p. 59]. Thus we obtain that

m∑
k=1

sup
E
p∗k ≥

m∑
k=1

p∗k(c
∗
k) =

m∑
k=1

∫
log |c∗k − z| dν∗k(z) =

m∑
k=1

∫
log d∗m(z) dν∗k(z)

=

∫
log d∗m(z) dµE(z)− log cap(E) + sup

t∈E

∫
log |z − t| dµE(z).

= CE(m) + sup
E

m∑
k=1

p∗k.

Hence equality holds in (2.4) in this case.
An alternative proof that CE(m) cannot be replaced by a smaller constant for any set E

(that does not require E to be regular) may be given by using the n-th Fekete points Fn =

{al,n}nl=1 of E [18, p. 152]. Let {c∗k}mk=1 be the maximizers of

∫
log dm(z)dµE(z) on (∂E)m,

as before. We define a subset Fk,n ⊂ {al,n}nl=1, associated with each point c∗k, k = 1, . . . ,m,
so that al,n ∈ Fk,n if

d∗m(al,n) = |al,n − c∗k|, 1 ≤ l ≤ n. (4.2)

In the case that (4.2) holds for more than one c∗k, we assign al,n to only one set Fk,n, to avoid
an overlap of these sets. It is clear that, for any n ∈ N,

m⋃
k=1

Fk,n = Fn and Fk1,n
⋂
Fk2,n = ∅, k1 6= k2.

13



Define the measures

ν∗k,n :=
1

n

∑
al,n∈Fk,n

δal,n
,

so that for their potentials

p∗k,n(z) =
1

n

∑
al,n∈Fk,n

log |z − al,n|, k = 1, . . . ,m,

we have

sup
E
p∗k,n ≥

1

n

∑
al,n∈Fk,n

log |c∗k − al,n| =
1

n

∑
al,n∈Fk,n

log d∗m(al,n), k = 1, . . . ,m.

It follows from the weak* convergence of ν∗n :=
∑m

k=1 ν
∗
k,n = 1

n

∑n
l=1 δal,n

to µE, as n → ∞,
that

lim inf
n→∞

m∑
k=1

sup
E
p∗k,n ≥ lim

n→∞

1

n

n∑
k=1

log d∗m(ak,n)

=

∫
log d∗m(z)dµE(z).

Also, we have for the potential p∗n of ν∗n that [18, p. 155]

lim
n→∞

sup
E
p∗n = lim

n→∞
log

∥∥∥∥∥
n∏
k=1

(z − ak,n)

∥∥∥∥∥
1/n

E

= log cap(E),

which gives

lim inf
n→∞

m∑
k=1

sup
E
p∗k,n ≥ CE(m) + lim

n→∞
sup
E
p∗n.

Hence (2.4) turns into asymptotic equality as n→∞, with m ≥ 2 being fixed.
A similar argument with Fekete points shows that (2.1) turns into asymptotic equality

when m = n→∞.
Since dm(z) ≤ dE(z) for any z ∈ C, we immediately obtain that CE(m) ≤ CE. Sup-

pose that m < card(DE). Then there is z0 ∈ supp(µE) such that d∗m(z0) < dE(z0). As
both functions are continuous, the same strict inequality holds in a neighborhood of z0,

so that

∫
log d∗m(z) dµE(z) <

∫
log dE(z) dµE(z) and CE(m) < CE. When DE is infinite,

this argument gives that CE(m) < CE, m ≥ 2. Assume now that DE is finite and that
m ≥ card(DE). Then d∗m(z) = dE(z) for all z ∈ supp(µE), because one of the possible
choices of the points {ck}mk=1 ⊂ ∂E includes points of the set DE. It is immediate that∫

log d∗m(z) dµE(z) =

∫
log dE(z) dµE(z) and CE(m) = CE in this case.
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Proof of Corollary 2.2. Use CE = logME and apply Theorem 2.5 of [16].

Proof of Corollary 2.3. The first part when E is contained in the disk with diameter [z, w]
follows from CE = logME and Corollary 2.2 of [16]. The second part for centrally symmetric
E is a consequence of Corollary 6.3 from [2].

Proof of Corollary 2.5. We need to show that the minimal dominant set is infinite, hence
the result follows from Theorem 2.4. Suppose to the contrary that DE = {ζl}sl=1 is finite.
Let J ⊂ ∂E be a smooth closed Jordan curve. Define

Jl := {z ∈ J : dE(z) = |z − ζl|}. l = 1, . . . , s.

It is clear that J = ∪sl=1Jl. Observe that the segment [z, ζl], z ∈ Jl, is orthogonal to ∂E at ζl.
Hence each Jl is contained in the normal line to ∂E at ζl, l = 1, . . . , s. We thus obtain that
J is contained in a union of s straight lines, so that J cannot have a continuously turning
tangent, which contradicts the smoothness assumption.

Proof of Corollary 2.6. Apply Theorem 1 of [5], and use that CD(m) = logCm, where Cm is
given in (1.10).

Proof of Corollary 2.7. For Pj(z) =
∏kj

k=1 |z − zk,j|rk , define the zero counting measures

νj =
1

n

kj∑
k=1

rkδzk,j
, j = 1, . . . ,m,

where δz is a unit point mass at z. We obtain that

pj(z) =

∫
log |z − t| dνj(t) =

1

n
log |Pj(z)|, j = 1, . . . ,m.

Hence Corollary 2.7 follows by combining (2.1) and (2.4).

Proofs of Theorems 3.1 and 3.2. We follow some ideas used to prove Theorem 1.1 in [14] and
Theorems 2.1-2.4 of this paper, augmented with certain necessary facts on weighted poten-
tials and distance function. Note that admissibility of the weight w implies lim

z→∞,z∈E
logw(z)−

log |z| = −∞. Combining this observation with upper semicontinuity of logw and of the
potentials pj, we conclude that there exist points cj ∈ E satisfying

sup
E

(αj logw + pj) = αj logw(cj) + pj(cj), j = 1, . . . ,m.

Consider the weighted distance function

dwm(z) := max
1≤j≤m

w(cj)|z − cj|, z ∈ C,
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and write by Theorem 3.3 (with E = {cj}mj=1 there) that

log dwm(z) =

∫
log |z − t|dσwm(t) + max

1≤j≤m
logw(cj), z ∈ C, (4.3)

where σwm is a probability measure on C. Consider the unit measure ν :=
∑m

k=1 νk and its

potential p(z) =

∫
|z − t| dν(t) =

m∑
k=1

pk(z). Using (4.3) and Fubini’s theorem, we have

m∑
j=1

sup
E

(αj logw + pj) =
m∑
j=1

(αj logw(cj) + pj(cj))

=
m∑
j=1

(
αj logw(cj) +

∫
log |cj − z| dνj(z)

)
≤
∫

log dwm(z) dν(z)

=

∫ ∫
log |z − t| dσwm(t) dν(z) + max

1≤j≤m
logw(cj)

=

∫
p(t) dσwm(t) + max

1≤j≤m
logw(cj). (4.4)

We now need an estimate of p in C via the sup of logw+p on E. Obviously, logw(t)+p(t) ≤
supE(logw + p) for t ∈ Sw, as Sw ⊂ E. We also know from Theorem 1.3 of [19, p. 27] that∫

log |t− z| dµw(z) + Fw ≥ − logw(t), t ∈ Sw.

This gives

p(t) ≤ sup
E

(logw + p)− logw(t) ≤ sup
E

(logw + p) +

∫
log |t− z| dµw(z) + Fw, t ∈ Sw.

Hence we have the desired estimate

p(t) ≤ sup
E

(logw + p) +

∫
log |t− z| dµw(z) + Fw, t ∈ C,

by the Principle of Domination [19, p. 104]. We proceed with inserting the above inequality
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into (4.4), and estimate as follows

m∑
j=1

sup
E

(αj logw + pj) ≤
∫ (

sup
E

(logw + p) +

∫
log |t− z| dµw(z) + Fw

)
dσwm(t)

+ max
1≤j≤m

logw(cj)

= sup
E

(logw + p) + Fw + max
1≤j≤m

logw(cj)

+

∫ ∫
log |z − t| dσwm(t) dµw(z)

= sup
E

(logw + p) + Fw +

∫
log dwm(z) dµw(z),

where we again used σwm(C) = µw(C) = 1, the representation for log dwm, and Fubini’s theo-
rem. Hence the first inequality in (3.5) follows by taking sup over m-tuples of cj ∈ E, j =
1, . . . ,m. The second inequality is immediate from dwm(z) ≤ dwE(z), z ∈ C.

It was explained after the statement of Theorem 3.2 that Theorem 3.1 is its special case.
In particular, we have that (3.5) for the zero counting measures νj of polynomials Pj implies
(3.2). Thus (3.2) is also proved. On the other hand, if we show that the constants Cw

E (m)
and Cw

E are sharp in Theorem 3.1, then they are obviously sharp in Theorem 3.2 too. Hence
we select this path and prove sharpness for the weighted polynomial case, i.e., for discrete
measures in weighted Fekete points.

Since log dwm(z) is an upper semicontinuous function of cj ∈ E, j = 1, . . . ,m, we have

that

∫
log dwm(z) dµE(z) is also upper semicontinuous in those variables, and hence attains

its maximum on Em for some set c∗j ∈ E, j = 1, . . . ,m. We now show that CE(m) cannot
be replaced by a smaller constant for each fixed m, by adapting the proof of Theorem 4.1
from [14]. Let

d∗m(z) := max
1≤j≤m

w(c∗j)|z − c∗j |, z ∈ C.

Consider the weighted n-th Fekete points Fn = {al,n}nl=1 for the weight w on E, and the
corresponding polynomials (cf. Section III.1 of [19])

Fn(z) =
n∏
l=1

(z − al,n), n ∈ N.

We define a subset Fj,n ⊂ {al,n}nl=1 associated with each point c∗j , j = 1, . . . ,m, so that
al,n ∈ Fj,n if

d∗m(al,n) = w(c∗j)|al,n − c∗j |, 1 ≤ l ≤ n. (4.5)

If (4.5) holds for more than one c∗j , then we include al,n into only one set Fj,n, to avoid an
overlap of these sets. It is clear that, for any n ∈ N,

m⋃
j=1

Fj,n = {al,n}nl=1 and Fk1,n
⋂
Fk2,n = ∅, k1 6= k2.
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We next introduce the factors of Fn(z) by setting

Fj,n(z) :=
∏

al,n∈Fj,n

(z − al,n), j = 1, . . . ,m,

so that

‖wnjFj,n‖E ≥ wnj (c∗j)
∏

al,n∈Fj,n

|c∗j − al,n| =
∏

al,n∈Fj,n

d∗m(al,n), j = 1, . . . ,m,

where nj := deg(Fj,n). Since the normalized counting measures νFn in the weighted Fekete
points converge to the weighted equilibrium measure µw in the weak* topology, see Theorem
1.3 in [19, p. 145], it follows that

lim inf
n→∞

(
m∏
j=1

‖wnjFj,n‖E

)1/n

≥ lim
n→∞

(
n∏
l=1

d∗m(al,n)

)1/n

= lim
n→∞

exp

(
1

n

n∑
j=1

log d∗m(ak,n)

)

= exp

(∫
log d∗m(z) dµw(z)

)
,

because log d∗m(z) is continuous in C. We also have that lim
n→∞

‖wnFn‖1/nE = e−Fw by Theorem

1.9 of [19, p. 150], which gives

lim inf
n→∞

(∏m
j=1 ‖wnjFj,n‖E
‖wnFn‖E

)1/n

≥ eCE(m).

To show that CE cannot be replaced by a smaller constant independent of m, one should
essentially repeat the above argument with m = n→∞.

Proof of Theorem 3.3.
We present a proof for the finite set E = {ck}mk=1 here, which is sufficient for applications

in the proofs of Theorems 3.1 and 3.3. A proof of the general case will appear in a separate
paper.

Let M := {z ∈ E : w(z) = supE w = maxE w}. Our first goal is to show that dwE(z) =
dM(z) maxE w in a neighborhood of infinity. Since E is finite, there exists ε > 0 such that

w(z) < max
E

w − ε, z ∈ E \M.

Suppose that there is a sequence of points {zi}∞i=1 in the plane such that limi→∞ zi = ∞,
and the weighted distance function dwE(zi) is attained at the points of E \M for each i ∈ N.
It follows that

dwE(zi) = w(ti)|zi − ti| <
(

max
E

w − ε
)(
|zi|+ max

1≤k≤m
|ck|
)
,
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where ti ∈ E \M. Since M ⊂ E, we have that dwM(z) ≤ dwE(z), z ∈ C. Hence

dwM(zi) = max
t∈M

w(t)|zi − t| = max
E

wmax
t∈M
|zi − t| = dM(zi) max

E
w

≤ dwE(zi) <
(

max
E

w − ε
)(
|zi|+ max

1≤k≤m
|ck|
)
.

If we divide the above inequality by |zi| and let |zi| → ∞, then we come to the obvious
contradiction maxE w ≤ maxE w − ε. Thus there exists R > 0 such that

dwE(z) = max
t∈M

w(t)|z − t| = dM(z) max
E

w, |z| > R. (4.6)

Since logw(t) + log |z − t| is a subharmonic function of z in C, it follows that

log dwE(z) = max
t∈E

(logw(t) + log |z − t|) , z ∈ C,

is also subharmonic in the plane, cf. [18, p. 38]. Let Dr := {z ∈ C : |z| < r}, and write by
the Riesz Decomposition Theorem [18, p. 76]

log dwE(z) =

∫
log |z − t| dσwr (t) + hr(z), z ∈ Dr,

where σwr is a positive Borel measure on Dr, and where hr is harmonic in Dr. Considering a
sequence of disks Dr with r → ∞, we extend σwr to the measure σwE on the whole plane. It
is known [5, 14, 10] that

log dM(z) =

∫
log |z − t| dσM(t), z ∈ C,

where σM is a probability measure on C. Therefore,

log dwE(z) = log max
E

w + log dM(z) = log max
E

w +

∫
log |z − t| dσM(t), |z| > R,

by (4.6). For any function u that is subharmonic in C, one can find the Riesz measure of Dr

from the formula

µ(Dr) = r
d

dr
L(u; r)

except for at most countably many r, where

L(u; r) :=
1

2π

∫ 2π

0

u(reiθ) dθ,

see Theorem 1.2 of [19, p. 84]. We remark that Theorem 1.2 is stated in [19, p. 84] for
potentials of compactly supported measures, but the more general version we use here follows
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immediately by writing the Riesz decomposition of u on any disk into the sum of a potential
and a harmonic function. It is clear that

L(log dwE; r) = L(log dM ; r) + log max
E

w, r > R,

so that
σwE(Dr) = σM(Dr), r > R,

except for at most countably many r. Consequently, σwE(C) = σM(C) = 1.
We also have for any r > R that∫

log |z − t| dσwr (t) + hr(z) = log max
E

w +

∫
log |z − t| dσM(t), R < |z| < r.

Applying the Unicity Theorem [19, p. 97], we conclude that the two measures coincide in
R < |z| < r for any r > R, which gives

σwE ||z|>R = σM ||z|>R.

This implies that

hr(z) = log max
E

w +

∫
|t|≤2R

log |z − t| dσM(t)−
∫
|t|≤2R

log |z − t| dσwE(t), R < |z| < r,

for all r > R. But the right-hand side of this equation is harmonic and bounded for |z| > 2R,
with the limit value log maxE w at ∞. Thus hr is continued to a harmonic and bounded
function in C, and it must be identically equal to the constant log maxE w by Liouville’s
theorem.
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