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Abstract

For standard subdivision algorithms and generic input data, near an

extraordinary point the distance from the limit surface to the control

polyhedron after m subdivision steps is shown to decay dominated by

the mth power of the subsubdominant eigenvalue. Conversely, for Loop

subdivision we exhibit generic input data so that the Hausdorff distance at

the mth step is greater or equal to the mth power of the subsubdominant

eigenvalue.

In practice, it is important to closely predict the number of subdivision

steps necessary so that the control polyhedron approximates the surface to

within a fixed distance. Based on the above analysis, two such predictions

are evaluated. The first is a popular heuristic that analyzes the distance

only for control points and not for the facets of the control polyhedron. For

a set of test polyhedra this prediction is remarkably close to the distance

verified by a posteriori measurement. However, a concrete example shows

that the prediction is not safe but can prescribe too few steps. – The

second approach is to first locally, per vertex neighborhood, subdivide the

input net and then apply tabulated bounds on the eigenfunctions of the

subdivision algorithm. This yields always safe predictions that are close

for a set of test data.

keywords: subdivision surface, control polyhedron, convergence, distance, char-
acteristic spline, lower bound, box spline
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1 Introduction

m?

ℓℓℓ0 x

Figure 1: Predicting m, the number
of subdivision steps necessary to en-
sure that the control polyhedron ℓℓℓm is
within ǫ of the limit subdivision surface
x.

Alongside splines, recursive subdivi-
sion is increasingly used to represent
higher-order design surfaces. A key
property of subdivision surfaces for
applications such as rendering on the
computer, is that a so-called control
polyhedron (Figure 1,left) can be used
as a proxy for the surface (Figure
1,right). Much of the appeal of sub-
division surfaces lies in the intuitive
refinability of this proxy representa-
tion to obtain an ever closer approxi-
mation of the limit surface (see Figure
2). It is therefore of interest both to
clearly define this representation and
to understand its approximation prop-
erties. In particular, unless the control polyhedron defines a regular (box-)spline,
to date no estimate is published that closely and correctly predicts m, the min-
imal number of subdivision steps necessary to ensure that every point of the
subdivision surface is within a given tolerance of a control polyhedron. Predict-
ing m, as opposed to measuring m after each refinement, is practically relevant
since it helps preallocating resources, guiding adaptive refinement and optimiz-
ing rendering. Evidently, too few subdivision steps result in a visual lack of
smoothness, while too many steps are costly due to exponential growth of the
number of facets if we refine uniformly – as we must without good local predic-
tions of m to guide adaptive subdivision. For example, estimating the number
loosely to be m = 10 when the sharp estimate is m = 5 means computing and
processing millions instead of thousands of facets for each original facet.

ℓℓℓ0 ℓℓℓ1 ℓℓℓ2 ℓℓℓ3

Figure 2: Four steps of Catmull-Clark subdivision (from [SP05]).

The most popular subdivision schemes are Catmull-Clark subdivision [CC78],
with a control polyhedron consisting of quadrilateral facets as shown in Figure
2, and Loop subdivision [Loo87], with a control polyhedron consisting of trian-
gles, as illustrated in Figure 1. For these two prototypical schemes and their
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generalizations, this paper yields the following four insights.

(i) For generic input data, the convergence of the control polyhedron to the
limit surface near extraordinary points is dominated by powers of the
subsubdominant eigenvalue (Corollaries 2 and 3, page 11). The upper
bound estimate also applies when each control point (vertex of the control
polyhedron) is replaced by its limit point on the surface and the distance
between this interpolant and the surface is measured. — Conversely, for
Loop subdivision we exhibit generic input data so that the Hausdorff dis-
tance between control polyhedron and surface at the mth step is greater
or equal to the mth power of the subsubdominant eigenvalue.

(ii) The easily-computed heuristic prediction of the distance, as the distance
between control points and their limit, is in many cases a good guide (Fig-
ure 6,top, page 16, measurement results labeled heuristic), but is unsafe
since the maximal distance between the subdivision surface and the con-
trol polyhedron is in general not taken on at iterates of the control points
(Figure 5).

(iii) Precomputed and tabulated bounds on eigenfunctions can efficiently be
combined for predictions that are sharp for specific cases (Equation (15)).
However, when applied to the input control polyhedra of typical graph-
ics models (Figure 7), the distance in the first few subdivision steps is
overestimated (Figure 6,top, measurement results labeled tab-approx).

(iv) Local subdivision, without refining data structures, followed by the pre-
dictions in (iii) yields safe estimates that, when tested on the polyhedra
of Figure 7, are a small and decreasing multiple of the measured distance
(Figure 6,top, measurements labeled tab-approx(1) and tab-approx(2)).

Fact (i) has two implications. First, convergence of the control polyhedron
to the box-spline under binary subdivision by a factor of 1

4 in each subdivision
step can be viewed as convergence governed by the subsubdominant eigenvalue
1
4 of the binary subdivision matrix. Second, convergence of the control poly-
hedron to the surface near points of high valence n can be much slower than
1
4 . For example, for Loop subdivision, if we order the eigenvalues by decreasing
size, the subsubdominant eigenvalue λ3 := (3 + 2 cos 4π

n )/8 is close to 5/8 for
large valence n. And where four steps of subdivision suffice for the regular,
box-spline control polyhedron, close to twelve are necessary near high-valence
vertices, since (5

8 )12 ≈ (1
4 )4.

Observation (ii) gives a handy heuristic, but not a bound as has been suggested
in [WSQ04] and in some manuscripts. Figure 5 shows a concrete example that
the simple heuristic is unsafe.
Observations (iii) and (iv) point to a practical compromise between worst-case
prediction and practically useful bounds: predictions become both more accu-
rate and more stable after one or two refinement steps. These steps can be
computed locally, without actual allocation and refinement of data structures.
Followed by the conservative pre-tabulate estimates of (iii), they predict just
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one more step than the minimum m for some typical, large test objects (Figure
7).
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Figure 3: (bottom) A piece Σ =
⋃

∞

m=0 Σ0/2m of the domain Sn := Σ ×
{0, 1, . . . , n − 1}; (left) characteristic spline χ : Sn → D ( R2, and an alter-
native embedding φ : Sn → D; (top) control polyhedron ℓℓℓm : D → R3 and
(right) the spline x : Sn → R3. (top,right) The spline surface x for n = 5 is the
union of a sequence of nested spline rings xm.

1.1 Review of Subdivision Basics

Subdivision surfaces are spline surfaces with isolated singularities [PR08]. The
word spline is used in a general sense that includes, for example, box-splines.
Singularities occur because n copies of the natural domain of a spline piece can
only be rigidly embedded in R2 to surround the origin without overlap if n is a
specific number of pieces. For box-splines this is the valence of the vertices of
the shift-invariant lattice defined by the box-spline convolution directions. For
example, the C2 three-direction box-spline [dHR93] underlying Loop subdivision
[Loo87] has exactly n = 6 three-sided polynomial patches join. For Catmull-
Clark subdivision [CC78] exactly four quadrilateral patches join. This is the
regular, tensor-product bicubic spline configuration visible almost everywhere
in the meshes of Figure 2. Near the singularities, a subdivision surface is best
viewed as a union of rings xm (see Figure 3):

xm : S0
n → Rd, S0

n := Σ0 × {1, 2, . . . , n}
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and their limit x∞, called extraordinary point or central point (cf. Figure 3,
right). For Catmull-Clark subdivision, Σ is the square [0, 1]2 and Σ0 := Σ−Σ/2.
For Loop subdivision, Σ is the unit triangle and Σ0 := Σ−Σ/2. For subdivision
surfaces in R3, d = 3. Both Catmull-Clark and Loop subdivision are symmetric
standard subdivision algorithms.

Standard subdivision algorithms are linear and stationary and defined by a
pair (A, G). The first entry, A ∈ Rῑ×ῑ, is a subdivision matrix that maps ῑ points
in Rd to ῑ new points, has all rows summing to 1 and values depending on n.
The second entry is a vector G of ῑ generating rings. Generating rings will be
(at least) C1 maps gi : S0

n → R that form a partition of unity. For a given vector
of control points Q ∈ Rῑ×d, the sequence of spline rings is then computed by
iterated application of the subdivision matrix: xm := GAmQ. Each application
corresponds to one subdivision step. Now let vi be an eigenvector of A with
corresponding eigenvalue λi and let the eigenvalues be sorted so that |λl| ≥
|λl+1|. For a standard subdivision algorithm, we have additionally that

1 = λ0 > λ1 = λ2 > |λ3|, Amvi = λm
i vi, i = 0, . . . , 2. (1)

Of the decomposition A = V JV −1 into the matrix V of eigenvectors and the
Jordan matrix J , we will assume, that also the other Jordan blocks are singletons
so that Amvi = λm

i vi, i = 0, . . . , ῑ. Without loss of generality, we may assume
that all eigenvectors are effective [PR08]. That is

for no vi 6= 0 with Amvi = λm
i vi and λi 6= 0 is Gvi = 0.

A spline in subdivision form is then the union of spline rings and their limit
point x∞:

x : Sn → Rd, Sn := Σ× {1, 2, . . . , n},

with a central singularity at (0, 0, j), for j ∈ {1, . . . , n}. If d = 3, the spline is
a surface piece. If d = 2, we call the spline an embedding if it is injective and
continuous. Analogous to splines built from B-splines, we can define x in terms
of the vector of generating splines B

x = BQ, B(σ, j) := G(2mσ, j)Am for σ ∈ Σ0/2m.

So, while G is used in defining a spline ring xm, B defines a whole spline (cap)
x made up of a sequence of spline rings plus a central point. Since Am only
determines the refined control points AmQ near the central point, we use a
second, non-square matrix Mm of size ῑm × ῑ that defines all ῑm control points
MmQ after m subdivision steps.

We can split Q =
∑ῑ−1

i=0 pivi, and correspondingly the spline x as follows:

x =
ῑ−1
∑

i=0

piei, where ei(
σ

2m
, j) := λm

i (Gvi)(σ, j), for σ ∈ Σ0. (2)

The weights pi ∈ Rd are called eigencoefficients, the functions Gvi eigenrings
and the functions ei eigensplines. If d = 3 and any triple of eigencoefficients
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spans Rd then we call Q generic. For example, this rules out the case where all
control points lie in one plane. Since there are no ineffective eigenvectors, eigen-
splines corresponding to non-zero eigenvalues are linearly independent [PR08,
Lemma 4.25] and

ei(
σ

2m
, j) = λm

i ei(σ, j). (3)

In particular, since the generating splines form a partition of unity, e0 ≡ 1; and
if

χ := (e1, e2)

is an embedding and normalized, it is called characteristic spline. (Normaliza-
tion means that we need only consider a unique χ in the following and no lin-
ear transformations thereof. For example, the characteristic spline of Catmull-
Clark-subdivision can be normalized by setting χ(1, 1, 0) = (1, 0).) The charac-
teristic spline consists of a nested sequence of scaled copies of the characteristic
ring.

1.2 Review of Related Work

A general result, that applies to box splines relevant in our context, is [dHR93,
Thm 30]: The convergence of the control polyhedron to its spline is propor-

tional to
(

1
2

)2m
in m binary subdivision steps. A few references character-

ize additionally the constants of proportionality that are of interest when fo-
cusing on few refinement steps. Tight estimates are, for example, derived in
[PK94, NPL99, Rei00].

For subdivision surfaces, estimates of convergence proportional to the sub-
dominant eigenvalues λ1 and λ2 of A or estimates proportional to first control-
net differences predict considerably more subdivision steps than necessary. For
example, [ZC06] predicts, for Catmull-Clark and n = 8, a decrease of the dis-
tance with each subdivision step by ca .8125. If this bound were sharp, 12
subdivision steps would be necessary to cut the distance to 10% of the ini-
tial. This means generating 412 facets for each original facet, i.e. the estimate
does not match observations and is not practically useful. Similar estimates,
ever more sophisticated in the details, can be found in [CC06, CY06, CCY06,
HW07b, HW07a].

It is possible to obtain estimates proportional to the maximum of 1/4 and
the smallest subsubdominant eigenvalue λ3 instead. For this, it is necessary
to make use of the characteristic spline [Rei95] near extraordinary points. The
estimate based on n = 8 and hence λ3 = .5 predicts only four steps or 44 facets
to cut the distance to 10% of the initial. It is well-known that x ◦ χ−1 is a
good way to parameterize a subdivision surface x near a singularity. However,
computing estimates based on χ−1, the inverse of a piecewise polynomial map
is cumbersome [BMZ04]. A better approach for characterizing distance, taken
in this paper, is to reparameterize the control polyhedron ℓℓℓ by χ, i.e. to measure
the distance between x and the composition ℓℓℓ◦χ of the control polyhedron and
the characteristic map. Chapter 8.1 of [PR08] builds on this approach and the
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present paper to obtain tight bounds on the distance between subdivision sur-
faces and their proxy splines near extraordinary points. Mimicking subdivision
surfaces, proxy splines have generators that form a partition of unity and con-
verge under refinement so that, just like the control polyhedron, a proxy surface
approximates its subdivision surface.

The papers [WSQ04, HK04] base their estimates on the hypothesis that the
maximal distance between limit surface and control polyhedron is taken on for
the iterates of the initial control points. This hypothesis is false. However,
Section 5 shows that measuring distance at the control points provides a heuris-
tic that is often good. Despite its seemingly relevant name “Determining a
geometric error of a polygon in a subdivision surface”, US patent 7054796 is
just a simple heuristic for comparing facet normals and approximate normals at
vertices to gauge flatness of the facet from the viewing direction.

There are a number of a posteriori estimates both for the regular control
polyhedra and for specific subdivision schemes [FMM86, LP01, Kob98, GS01].
To compare results, we combine dense evaluation with tight and safe one-sided
a posteriori bounds on the distance between the subdivision surface and its
control polyhedron, based on the paper [WP04a] and the software [WP04b].

2 Problem statement

Where there is no singularity, the distance between the spline surface and the
control polyhedron, defined as interpolant of the control points in Q, is assumed
to be known. In particular, for box-splines the distance between the spline
and its control polyhedron is well understood in terms of second derivatives
[PK94, NPL99, Rei00]: Under subdivision, due to the scaling of the parametriza-
tion and hence also of the second derivatives, this distance decays like γm for
a constant γ < 1. If several singularities are close together, one or more sub-
division steps isolate the singularities. We therefore focus on splines with one
isolated singularity at the center and consisting of n patches as depicted in
Figure 3.

Definition 2.1 (Control polyhedron) Given a triangulation (quadrangula-
tion) of the convex hull D ( R2 of the m-times refined control points of χ,

wm := (Mmv1, M
mv2) ∈ Rῑm×2,

the mth control polyhedron for Q ∈ Rῑ×d,

ℓℓℓm
[Q] : D → Rd,

is defined as the interpolant of (MmQ)(k) at wm(k) and varying linearly over
each triangle (bilinearly over each quadrangle).

We note that Mm, v1, v2 and hence wm and ℓℓℓm
[Q] depend on n and that ℓℓℓm

[Q]

maps to R when Q = vi, i.e. d = 1. The layout of most triangles (quadrangles)
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φ(Σ) = Σ

φ = χ

Figure 4: Lemma 1: Only reparametrization by χ allows the characteristic
control polyhedron to match the the characteristic spline.

is determined by the knot lines of G. But since the partition of unity of G only
guarantees that χ(Sn) lies within D, we define ℓℓℓm

[Q] over the full convex hull.

As an example, for Catmull-Clark subdivision, ℓℓℓm
[Q] bilinearly interpolates

always four control points. When n is the regular valence, for example n = 4
for Catmull-Clark-subdivision, then χ is a rigid embedding and the definition
coincides with the standard definition of a tensor-product B-spline control poly-
hedron. Moreover, ℓℓℓm

[Q] ◦χ reproduces the first terms of the eigenexpansion (2),

as one implication of the following lemma shows (cf. Figure 4).

Lemma 1 (Choice of embedding) Let φ : Sn 7→ D be an embedding. Then
for each m ≥ 0

ℓℓℓm
[vi]

◦ φ = ei, i = 1, 2, (4)

if and only if φ = χ.

Proof By definition of ℓℓℓm
[Q], for every characteristic control point wm(k),

[ℓℓℓm
[v1]

, ℓℓℓm
[v2]]

(

wm(k)
)

=
(

Mmw0
)

(k) = wm(k).

By (bi-)linear interpolation, [ℓℓℓm
[v1]

, ℓℓℓm
[v2]

] is therefore the identity on D. This

implies the claim. |||
Given the definition of the control polyhedron, we can now define the dis-

tance to be minimized.

Definition 2.2 (Distance to the control polyhedron) Let φ : Sn → D be
an embedding and x : Sn → Rd a spline with control points Q. The distance
between the control polyhedron ℓℓℓm

[Q] and x is measured as

min
φ

‖x− ℓℓℓm
[Q] ◦ φ‖ (5)

where ‖ · ‖ := max(σ,j)∈Sn
‖ · ‖2 and ‖ · ‖2 is the Euclidean norm in Rd.

That is, for the neighborhood Sn of each isolated singularity, ‖ · ‖ measures the
maximal distance of a point on the spline to a point on its control polyhedron
parameterized by the embedding φ. For a given step m, we want to minimize
this norm by choice of φ.
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3 Distance and Bounds

To estimate the norm in (5) for the special case φ = χ we define

δ(m, n,Q) : (σ, j) ∈ Sn 7→ (x − ℓℓℓm
[Q] ◦ χ)(σ, j) ∈ Rd. (6)

Note that ℓℓℓm
[Q] and χ depend on n.

Lemma 2 (Vanishing δ) For i = 0, 1, 2,

δ(m, n, vi) = 0. (7)

Proof Constant terms are reproduced since ℓℓℓm
[v0]

≡ 1 = G1 where 1 is a vector
of ones, the eigenvector v0 of the leading eigenvalue 1. The remainder of the
claim follows from (4). |||

When parameterized by χ, the control polyhedron has a scaling property
analogous to that of the eigensplines.

Lemma 3 (Scaling of δ) For (σ, j) ∈ S0
n and i = 0, . . . , ῑ − 1,

δ(m, n, vi)
( σ

2m
, j

)

= λm
i δ(0, n, vi)(σ, j). (8)

Proof For any characteristic control point (v1(k), v2(k)),

ℓℓℓm
[vi]

(

λm
1 v1(k), λm

2 v2(k)
)

=(1) ℓℓℓm
[vi]

(

(Amv1)(k), (Amv2)(k)
)

=Def2.1 Amvi(k) =(1) λm
i vi(k) =Def2.1 λm

i ℓℓℓ0[vi]

(

v1(k), v2(k)
)

. (9)

By the convex hull property, for every (σ, j) ∈ S0
n, there exist nonnegative

weights α(kl) ∈ R, l = 1, . . . , l̄ so that χ(σ, j) =
∑l̄

l=1 α(kl)(v1(kl), v2(kl)),
i.e. χ(σ, j) lies in some triangle (l̄ = 3) or quadrangle (l̄ = 4) with vertices
(v1(kl), v2(kl)). The (bi-)linearity of the control polyhedron then implies

ℓℓℓm
[vi]

(λm
1

l̄
∑

l=1

α(kl)(v1(kl), v2(kl))) =
l̄

∑

l=1

α(kl)ℓℓℓ
m
[vi]

(λm
1 (v1(kl), v2(kl))). (10)

Together with (9) this yields

(

ℓℓℓm
[vi]

◦ χ
)( σ

2m
, j

)

=(3) ℓℓℓm
[vi]

◦ λm
1 χ(σ, j)

=(10)
l̄

∑

l=1

α(kl)ℓℓℓ
m
[vi]

(λm
1 v1(kl), λ

m
2 v2(kl)))

=(9) λm
i ℓℓℓ0[vi]

(

l̄
∑

l=1

α(kl)(v1(kl), v2(kl)))

= λm
i

(

ℓℓℓ0[vi]
◦ χ

)

(σ, j) (11)
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so that

δ(m, n, vi)
( σ

2m
, j

)

= (ei − ℓℓℓm
[vi]

◦ χ)
( σ

2m
, j

)

(12)

=(3),(11) λm
i (ei − ℓℓℓ0

[vi]
◦ χ)

(

σ, j
)

= λm
i δ(0, n, vi)

(

σ, j
)

as claimed. |||
The lemma suggests the following expansion of δ(m, n,Q).

Theorem 1 (Distance and subsubdominant eigenvalue) Let (A, G) be a
standard subdivision algorithm without generalized eigenvectors. Then for σ ∈
Σ0

δ(m, n,Q)
( σ

2m
, j

)

=

ῑ−1
∑

i=3

piλ
m
i δ(0, n, vi)(σ, j). (13)

Proof We apply, in turn, the eigenexpansion (2), Lemma 2, and the scaling of
Lemma 3 to obtain for σ ∈ Σ0

δ(m, n,Q)
( σ

2m
, j

)

=(2)
ῑ−1
∑

i=0

piδ(m, n, vi)
( σ

2m
, j

)

=(7)
ῑ−1
∑

i=3

piδ(m, n, vi)
( σ

2m
, j

)

=(8)
ῑ−1
∑

i=3

piλ
m
i δ(0, n, vi)(σ, j). (14)

|||
Since the first two equalities of Equation (14) hold for all σ in Σ, we can

bound (5) first by ‖δ(m, n,Q)‖ and then apply the triangle inequality to obtain
an upper bound in terms of eigensplines.

Corollary 1 (Upper bound) Let (A, G) be a standard subdivision algorithm
without generalized eigenvectors. Then

min
φ:Sn→D

‖x − ℓℓℓm
[Q] ◦ φ‖ ≤ ‖δ(m, n,Q)‖ ≤

ῑ−1
∑

i=3

‖pi‖2‖δ(m, n, vi)‖. (15)

The bound of Corollary 1 need not be sharp, because we applied the triangle in-
equality and because we replace δ(m, n, vi) by a maximal absolute value over Sn

and this value is taken on at different parameters (σ, j) for different eigenvectors
vi.

The last equality of (14) can only be used to derive an upper bound near
the singularity and does not necessarily determine the convergence rate: for
low valences and Loop subdivision, λ3 < 1/4 but the convergence is domi-
nated by regular spline subdivision and by powers of 1/4. Defining ‖ · ‖m :=
max(σ,j),σ∈Σ0/2m ‖ · ‖2, we can use the last equality of Equation (14) to bound
near the singularity.
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Corollary 2 (Asymptotic Upper bound)

min
φ:Sn→D

‖x− ℓℓℓm
[Q] ◦ φ‖m ≤

ῑ−1
∑

i=3

‖pi‖2|λi|
m‖δ(0, n, vi)‖0. (16)

Since the eigensplines are linearly independent, δ(0, n, vi) 6= 0 for i ≥ 3
and, without loss of generality, we can scale vi (and inversely scale pi) so that
‖δ(0, n, vi)‖0 = 1. Then, for an important family of input points, we can give
the exact distance under characteristic reparameterization.

Corollary 3 (A sharp bound) Let (A, G) be a standard subdivision algorithm,

0 ∈ Rd−1, Q :=
∑2

i=0 pivi + (0, v3) and v3 scaled so that ‖δ(0, n, v3)‖0 = 1.
Then

‖δ(m, n,Q)‖m = |λ3|
m.

Proof By (14), for σ ∈ Σ0,

δ(m, n,Q)(
σ

2m
, j) = λm

3 δ(0, n, (0, v3))(σ, j)

and hence ‖δ(m, n,Q)‖m = |λm
3 |‖δ(0, n, v3)‖0 = |λ3|

m. |||
Since generic data Q has a component corresponding to an eigenvalue of

size |λ3|, the asymptotic convergence as m → ∞ is generically proportional
to |λ3|

m. Indeed, in the example below, λm
3 is shown to bound the Hausdorff

distance from below.

Example 1 (Hausdorff distance of Loop Subdivision) For Loop subdivi-
sion, n = 4 and Q := (v1, v2, v3), λm

3 bounds from below the Hausdorff distance
between the surface and its control polyhedron.

Proof The control points Q define the surface (e1, e2, e3). The eigenvalue cor-
responding to v3 is λ3 = 1

4 and its Fourier block is 0 indicating elliptic shape.
We may assume that v3 is scaled so that the central control point and its n = 4
neighbors have coordinates

q0 := (0, 0, 1), qi := (cos(
2π

4
i), sin(

2π

4
i),−1), i = 1, 2, 3, 4.

All other control points then have a third coordinate less or equal to -1. For
Loop subdivision and n = 4

x∞ =
1

2
(q0 +

1

n

n
∑

i=1

qi) = (0, 0, 0).

Applying one step of Loop subdivision, the new central control point and its
neighbors are at

q1
0 =

5

8
q0 +

3

8

∑n
i=1 qi

4
=

1

4
(0, 0, 1) and q1

i :=
1

4
(
3

2
cos(

π

2
i),

3

2
sin(

π

2
i),−1).

11



Iterating, we find qm
0 = (0, 0, 4−m) and therefore the distance of the central

control point to the limit surface at (0, 0) after m steps is 4−m = λm
3 . Since e3

has its maximum at the central limit point, the distance between the surface
and the central control point is minimal at (0, 0). The Hausdorff distance from
control polyhedron to the limit surface is therefore at least λm

3 . |||

4 Generalizations

A notationally more involved but analoguous analysis establishes analoguous
results when the two subdominant eigenvalues are not equal, when the rings are
not differentiable across patch boundaries and, by using bounds on the Jordan
decomposition when there are eigenspaces spanned by multiple vectors. Also
the analysis of the alternative distance

min
φ̃

‖x ◦ φ̃ − ℓℓℓm‖∞, where φ̃ : R2 → Sn, and ‖ · ‖∞ := max
range(χ)

‖ · ‖2, (17)

parallels the analysis in Section 3 if we substitute φ̃ = χ−1.
Dropping linearity or stationarity on the other hand, implies loss of the

eigendecomposition (2) used in the analysis. For applications, the functions in
G should form a non-negative partition of unity so that the control polyhedron
outlines the surface and has the convex hull property.

The distance estimates of Section 3 transfer to the interpolating control poly-
hedron obtained by applying the projection P that maps control points to their
limit on the surface under subdivision. The distance at the vertices is now
zero, but the distance between the interpolating polyhedron and the surface
needs to be estimated. We then redefine ℓℓℓm to map Pwm 7→ PMmQ, and re-
play the analysis. Approximating (control polyhedron-based) and interpolating
(projected polyhedron-based) distances are closely related as evidenced by rows
tab-approx and tab-interp in Figure 6.

One would like to combine Corollary 2 with estimates for box-splines away
from the center. For example, one would expect the bound at σ ∈ Σ0/2m̃

after m steps to be a multiple of 1
4m−m̃ λm̃

3 . But proving this turns out to be
tricky: to prevent subdominant eigenvectors from influencing the error, initial
refinement steps need to be estimated using φ = χ for the specific valence,
while subsequent standard box-spline estimates are based on an rigid embedding
that corresponds to the regular valence. Such a switch of parameterizations is
addressed in Chapter 8.1 of [PR08] in the setting of proxy surfaces.

5 Predictions for few Subdivision Steps

We now discuss a number of measurements to support claims (ii), (iii) and
(iv) of the introduction. The estimates are applied to the data sets (control
polyhedra) of Figure 7 and Loop’s subdivision. For exact measurement, we
applied the efficient and tightly sandwiching bounds of [WP04a, WP04b] to
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.08

.14

Figure 5: Three views of the relevant parts of the control polyhedron and two
patches of the normalized eigenspline e5 of Loop subdivision for n = 8. The
central enlargement pinpoints the minimal distance .14 between the patches and
the control facets. The maximal distance at a vertex, 0.08, underestimates this
Hausdorff distance.

the ten times refined control net (reducing the width between upper and lower
bound of the ‘sandwich’ to at most 10−6 times the initial width) and then chose
the conservative distance of the farther bound to the control polyhedron. These
measurements are labeled measured in Table 1 and Figure 6.

The rows marked heuristic in Table 1 and Figure 6 record the reduction of
the maximal distance after m subdivision steps of a control point to its limit.
For Loop subdivision and Catmull-Clark subdivision, the limit is easily com-
puted as the average of the extraordinary node and its neighbors. The results
are remarkably close to the row labeled measured. While Table 1 shows that the
heuristic does underestimate the measured distance, the measured distance rep-
resents the two-norm of the coordinates and might itself be an overestimate. To
prove that the heuristic is not safe requires showing that the heuristic underes-
timates the Hausdorff distance. Figure 5 shows exactly such an underestimate,
for a simple saddle-shaped patch of an eigenspline. The extremum was found
by exhaustive comparison using tight conservative, one-sided bounds between
points on the surface and points on the facets of the control polyhedron. The
extremum is taken on at a nondescript parameter value in the interior, not at
the vertices or some vertex after a few binary refinements. Therefore, it is not
a matter of applying a few steps of subdivision to make the heuristic safe. A
similar example can be constructed for Catmull-Clark subdivision.
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The remaining nine types of estimates are based on Equation (14). For
valences n = 3, . . . , 30 and refinements m = 0, . . . , 5, we used the bounds of
[WP04a] to each eigenfunction and tabulated

δm,n,i := ‖δ(m, n, vi)‖.

Then we can apply the bound of Corollary 1, (15):

‖δ(m, n,Q)‖ ≤

ῑ−1
∑

i=3

‖pi‖2δm,n,i. (18)

This bound is listed as tab-approx 0 in Table 1. Applying one local subdivision
step followed by the estimate (15) for m − 1 yields the estimate listed as tab-

approx 1. By definition, this row has no entry for m = 0. Similarly tab-approx

2 uses two local subdivision steps, implemented as a sparse matrix product, and
bounds the result to level m − 2. By definition, there are no entries for m = 0
and m = 1.

The bounds listed as tab-interp 0, tab-interp 1 and tab-interp 2 are obtained
by the same process except that tabulated distances δ(m, n, vi) are replaced by
distances between the eigenfunctions and the triangulation formed by mapping
the control points of the eigenfunction to their limit position, i.e. by the inter-
polating triangulation rather than the approximating control polyhedron.

The final set of estimates, listed as tab-eigen 0,1,2, combines the standard
decay estimate with the last equality of Equation (14) as discussed in the last
paragraph of Section 4. It measures

ῑ
∑

i=3

‖pi‖2 max{λm
i ,

1

4m
}δ0,n,i,

which turns out to be a weaker and less stable estimate than the upper bound
according to Corollary 1.

Cost of bound computations. Since the constants δm,n,i are pretabulated,
the main runtime cost when estimating m for a particular control polyhedron
is the eigendecomposition, i.e. the application of a ῑ × ῑ matrix of precomputed
eigenvectors to the control net (see e.g. [Sta98]). We could avoid the eigen-
decomposition by bounding and tabulating the maximal distance for functions
associated with each control point rather than the eigenfunctions. But this
would result in a poorer estimate due to a sum including also the subdominant
terms, not just those for i ≥ 3. The ῑ × ῑ matrices for n = 3, . . . , 30 consist of
16002 numbers. We also store another 3276 constants δm,n,i for m = 0, . . . , 5.
For example, for Loop subdivision and a patch with one node of valence n = 7
and subdivision depth m = 3, the total runtime cost per point coordinate is 180
adds and multiplications, including the cost of local subdivision.

In our implementation, a posteriori estimation costs at least three times
as much as the a priori estimation, already for two subdivision steps. The
advantage of prediction increases with subdivision depth m. For the venus model
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(5672 triangles), applying one local subdivision plus tab-approx prediction has
a total cost over all facets of .08s (seconds) plus .27s. By comparison, for
the same model and two steps of refinement, subdivision-followed-by-safely-
measured distance costs .43s (for subdivision) plus .63s (for measuring). Of
course in the a posteriori estimation all the subdivision work is already done –
but that may not be desirable for some applications, e.g. for very large inputs
with only a few patches requiring adaptive refinement.

Measurements: Table 1 lists the bounds for Loop subdivision applied to the
objects in Figure 7. The units are specific to each model and only the relative
reduction of the distances is relevant. From the raw data of Table 1, we extracted
the bar-graphs of Figure 6. First, we computed, for each object, the ratio of
the estimate to the measured distance. Then we selected the median to as
represented by the bars in Figure 6, top. Figure 6, bottom, shows the variance
of the ratios from the median. We can make the following observations.
(1) The estimator tab-eigen provides the loosest bounds and the bounds with
the most fluctuation over different models (The valence-3 spikes of the model
Star result in high deviation.)
(2) The heuristic has nearly half of the ratios below 1. The estimates are close
to measured.
(3) The estimator tab-interp is consistently slightly smaller than tab-approx.
The constant factor might be expected since the interpolating triangulation is
a linear offset from the control polyhedron.
(4) The variance in the entries of tab-approx 2 is low. Except for the model
Star where two more steps are predicted than required, only one unnecessary
step is predicted. This advertises tab-approx 2 (and, similarly, tab-interp 2) as
a practically useful safe distance predictor.

6 Conclusion

It is well-known that near points of high valence, standard subdivision algo-
rithms used in practice exhibit slow contraction of the control polyhedron,
dubbed ‘polar artifact’ [SB02]. Polar artifacts result from large values of λ1

and λ2. This paper explains the impact of large values of λ3. For high valences,
the subsubdominant eigenvalue is often closer to 1

2 than to 1
4 so that convergence

of the control polyhedron to the surface near such singularities (extraordinary
points) is much slower than for the rest of the control polyhedron. For example,
λ3 = 1

2 for Catmull-Clark subdivision when n = 8. For Loop subdivision λ3 = 1
2

when n = 12.
The well-known quadratic convergence of the control polyhedron to the box-

spline under binary subdivision by a factor of 1
4 in each subdivision step agrees

with the convergence according to the subsubdominant eigenvalue 1
4 .

Basing estimates on subsubdominant eigenvalues as opposed to first-order
estimates clearly improves the chances to closely predict the minimal number
of subdivision steps m so that every point of the limit surface is within a fixed
distance of the control polyhedron or its projection.
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Figure 6: (top) Ratio of estimates in Table 1 to measured. (bottom) Variance of
ratios.
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Figure 7: Test objects (number of input triangles): Demon (1096), Liver (1096),
Venus (5672), Star (96), Stomach (2136).

Our experiments illustrate that a simple heuristic can yield tight estimates
– but an example shows that the heuristic is unsafe. More sophisticated, safe
estimates predict more subdivision steps than a posteriori measurement proves
necessary. This indicates that safe and exact prediction is difficult to achieve.
Combining safe prediction with one or two local subdivision steps appears to
be the most effective strategy to avoid the cost of subdividing and measuring
the entire refined mesh. Together, the experiments and the measurements re-
veal a scale of options for trading quality (correctness and tightness) for cost:
subdivide-followed-by-measured is exact but expensive, the heuristic is cheap
but not safe, and the tabulated predictions are safe but not as tight is measur-
ing after subdivision.
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mesh estimate m = 0 1 2 3 4 5

star tab-eigen 0 9.602865 6.412230 1.603057 0.400764 0.100191 0.025048

tab-eigen 1 1.189783 0.792618 0.198155 0.049539 0.012385

tab-eigen 2 0.148528 0.098793 0.024698 0.006175

tab-approx 0 9.602865 2.520464 0.624280 0.156891 0.038926 0.009289

tab-approx 1 1.189783 0.312280 0.077330 0.019439 0.004823

tab-approx 2 0.148528 0.038983 0.009652 0.002427

tab-interp 0 5.587574 1.735903 0.456955 0.127762 0.035283 0.008853

tab-interp 1 0.693271 0.215440 0.056655 0.015838 0.004374

tab-interp 2 0.086626 0.026923 0.007077 0.001978

heuristic 0.493182 0.082623 0.020656 0.005164 0.001291 0.000323

measured 0.492493 0.089411 0.022129 0.005563 0.001380 0.000329

demon tab-eigen 0 24.765944 16.506170 4.126542 1.031636 0.257909 0.064477

tab-eigen 1 3.095206 2.060041 0.515010 0.128753 0.032188

tab-eigen 2 0.741884 0.342345 0.085586 0.021397

tab-approx 0 24.765944 6.500835 1.609795 0.404699 0.100407 0.023958

tab-approx 1 3.095206 0.812431 0.201164 0.050577 0.012698

tab-approx 2 0.741884 0.191016 0.048463 0.012573

tab-interp 0 14.433803 4.485724 1.179442 0.329698 0.091071 0.022840

tab-interp 1 1.805383 0.561142 0.147485 0.041224 0.011652

tab-interp 2 0.535782 0.151316 0.041203 0.011504

heuristic 1.416932 0.394898 0.120230 0.047276 0.022095 0.011099

measured 1.517119 0.404152 0.124367 0.044160 0.018061 0.007068

venus tab-eigen 0 0.593524 0.370544 0.092636 0.023159 0.005790 0.001447

tab-eigen 1 0.126580 0.061122 0.015281 0.004121 0.001435

tab-eigen 2 0.061062 0.029721 0.007430 0.001858

tab-approx 0 0.593524 0.149792 0.037612 0.010438 0.003224 0.001014

tab-approx 1 0.126580 0.032788 0.008344 0.002606 0.000880

tab-approx 2 0.061062 0.015708 0.003983 0.001001

tab-interp 0 0.390317 0.112818 0.031481 0.009628 0.003051 0.000969

tab-interp 1 0.086038 0.024413 0.007181 0.002444 0.000835

tab-interp 2 0.043881 0.012317 0.003329 0.000897

heuristic 0.155856 0.038964 0.009741 0.002727 0.001561 0.000868

measured 0.159851 0.039848 0.009971 0.002858 0.001006 0.000361

liver tab-eigen 0 1.842082 1.244349 0.311087 0.077772 0.019443 0.004861

tab-eigen 1 0.227004 0.152919 0.038230 0.009557 0.002389

tab-eigen 2 0.101263 0.043338 0.010835 0.002709

tab-approx 0 1.842082 0.483952 0.119934 0.030142 0.007480 0.001785

tab-approx 1 0.227004 0.059640 0.014776 0.003715 0.001322

tab-approx 2 0.101263 0.026036 0.006609 0.001661

tab-interp 0 1.074348 0.334355 0.088078 0.024616 0.006786 0.001702

tab-interp 1 0.132638 0.041295 0.010863 0.003035 0.001228

tab-interp 2 0.071502 0.020206 0.005492 0.001488

heuristic 0.132813 0.030822 0.011009 0.005372 0.002973 0.001761

measured 0.132811 0.029934 0.008812 0.003498 0.001538 0.000667

stomach tab-eigen 0 1.522140 1.030209 0.257552 0.064388 0.016097 0.004024

tab-eigen 1 0.189760 0.128229 0.032057 0.008014 0.002249

tab-eigen 2 0.061201 0.025930 0.006483 0.002249

tab-approx 0 1.522140 0.399672 0.098984 0.024884 0.006174 0.001784

tab-approx 1 0.189760 0.049824 0.012338 0.004588 0.001755

tab-approx 2 0.061201 0.015690 0.004398 0.001736

tab-interp 0 0.888613 0.276234 0.072625 0.020311 0.005604 0.001628

tab-interp 1 0.110888 0.034476 0.010681 0.004081 0.001590

tab-interp 2 0.043091 0.012198 0.003892 0.001569

heuristic 0.132700 0.033175 0.010174 0.003857 0.001909 0.001003

measured 0.133740 0.033384 0.012012 0.005087 0.002157 0.000887

Table 1: Distance predictions for m steps of Loop subdivision applied to the
objects shown in Figure 7. 20


