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NARAYANA NUMBERS AND SCHUR-SZEGÖ COMPOSITION

VLADIMIR P. KOSTOV AND BORIS Z. SHAPIRO

Abstract. In the present paper we find a new interpretation of Narayana
polynomials Nn(x) which are the generating polynomials for the Narayana
numbers Nn,k counting Dyck paths of length n and with exactly k peaks,
see e.g. [16]. (These numbers appeared recently in a number of different
combinatorial situations, [5, 14, 17].) Strangely enough Narayana polynomials
also occur as limits as n → ∞ of the sequences of eigenpolynomials of the
Schur-Szegö composition map sending (n − 1)-tuples of polynomials of the
form (x+1)n−1(x+a) to their Schur-Szegö product, see below. As a corollary
we obtain that every Nn(x) has all roots real and non-positive. Additionally,
we present an explicit formula for the density and the distribution function of
the asymptotic root-counting measure of the polynomial sequence {Nn(x)}.

1. Introduction

1.1. The Narayana numbers, triangle and polynomials. The Narayana num-
bers Nn,k, 1 ≤ k ≤ n, apparently introduced by G. Kreweras in [11] are given by:

Nn,k =
1

n
Ck−1

n Ck
n,

where Ci
j stands for the usual binomial coefficient, i.e. Ci

j =
j!

i!(j−i)! .

The latter formula immediately implies that for any fixed k the Narayana num-
bers Nn,k are given by a polynomial in n of degree 2k−2 divisible by n. It is known
that Nn,k counts, in particular, the number of expressions containing n pairs of
parentheses which are correctly matched and which contain exactly k distinct nest-
ings and also the number of Dyck paths of length n with exactly k peaks. (Recall
that a Dyck path is a staircase walk from (0, 0) to (n, n) that lies strictly above
(but may touch) the diagonal y = x.) Some other combinatorial interpretations of
Nn,k can be found in [16] and references therein.

The triangle

1
1 1

1 3 1
1 6 6 1

1 10 20 10 1

(1)

of Narayana numbers Nn,k read by rows is called the Narayana triangle. (Later we
will also interpret this triangle as an infinite lower-triangular matrix taking its left
side of ones as the first column and its right side of ones as the main diagonal, see
(12).)

The generating functions of the rows of the above triangle are called the Narayana
polynomials. More exactly, following the standard convention (see [2]) one defines
the n-th Narayana polynomial by the formula
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Nn(x) =

n
∑

k=1

Nn,kx
k .

In what follows we will use the following notions. If P (x) is a univariate polyno-
mial of degree n, then its reversion or the reverted polynomial PR(x) is defined as
PR(x) = xnP (1/x). A polynomial P (x) is called self-reciprocal if it coincides with
its revertion up to a sign, i.e. P (x) = ±PR(x). Hence for any self-reciprocal P (x)
if P (x) vanishes at x0 then P (x) vanishes at 1/x0 as well. A polynomial P (x) is
called hyperbolic if all its roots are real.

Remark 1. Each polynomial Nn(x) has a simple root at 0 and each Nn(x)/x is
self-reciprocal.

The following simple 3-term recurrence relation satisfied by Narayana polyno-
mials was found in [16, p. 2]:

(n+ 1)Nn(x) = (2n− 1)(1 + x)Nn−1(x) − (n− 2)(x− 1)2Nn−2(x), (2)

with the initial conditions N1(x) = x, N2(x) = x2 + x.

1.2. Schur-Szegö composition. The Schur-Szegö composition (CSS) of two de-
gree n polynomials P =

∑n
j=0 pjx

j and Q =
∑n

j=0 qjx
j is defined by the formula:

P ∗
n Q =

n
∑

j=0

pjqjx
j/Cj

n.

When the same P and Q are considered as polynomials of degree n+ k with van-
ishing k leading coefficients then in accordance with the above formula one gets:

P ∗
n+k Q =

n
∑

j=0

pjqjx
j/Cj

n+k.

Extending these formulas one defines the composition of s polynomials by the for-
mula:

P1
∗

n+k · · · ∗
n+k Ps =

n
∑

j=0

p1,j · · · ps,jxj/(Cj
n+k)

s−1 .

(For more details on CSS see [12, 13].)
Our main goal below will be a further study of a certain linear inhomogeneous

map Φn initially considered in [9, 1]. Namely, in these papers the first author of
the present paper has shown the possibility to present every monic polynomial of
degree n with complex coefficients and vanishing at (−1) in the form:

P = Ka1

∗
n · · · ∗

n Kan−1
(3)

where each composition factor Kai
equals (x+1)n−1(x+ ai), ai ∈ C. (For the sake

of convenience, we set K∞ := (x+ 1)n−1.) Now we can introduce the map Φn.

Notation 2. For any P (x) := (x+1)(xn−1 + c1x
n−2+ · · ·+ cn−2x+ cn−1) and for

ν = 1, . . . , n − 1 set σν :=
∑

1≤j1<···<jν≤n−1 aj1 · · ·ajν , i.e. define σν as the ν-th
elementary symmetric function of the roots of the composition factors presenting
P (x). Finally, denote by Φn the mapping (c1, . . . , cn−1) 7→ (σ1, . . . , σn−1).

Obviously, Φn is linear inhomogeneous. The following theorem was proven in
[10].

Theorem 3. (1) The mapping Φn has n−1 distinct real eigenvalues λ1,n = 1,

λ2,n = n
n−1 , λ3,n = n2

(n−1)(n−2) , . . ., λn−1,n = nn−2

(n−1)! .
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(2) The corresponding eigenvectors are monic polynomials of degree n− 1 van-
ishing at (−1) and have the form: (x+1)n−1, x(x+1)n−2, x(x+1)n−3Q1,n(x),
. . ., x(x+1)Qn−3,n(x) where degQj,n(x) = j, j = 1, . . . , n− 3, Qj,n(−1) 6=
0. The coefficients of each polynomial Qj,n(x) are rational numbers.

(3) Each Qj,n(x) is self-reciprocal. More exactly, (Qj,n(x))
R = (−1)jQj,n(x).

(4) The roots of each Qj,n(x), 1 ≤ j ≤ n− 3, are positive and distinct.
(5) For j odd (resp. for j even) one has Qj,n(1) = 0 (resp. Qj,n(1) 6= 0).

Additionally, the middle coefficient in (x+ 1)n−j−2Qj,n(x) vanishes if n is
even and j is odd.

(6) For any j fixed and n → ∞ the sequence of polynomials Qj,n(x) converges
coefficientwise to the monic polynomial Q∗

j (x) of degree j which has ra-

tional coefficients, all roots positive, and satisfies the equality (Q∗
j (x))

R =

(−1)jQ∗
j (x) and the condition Q∗

j (1) = 0 for j odd.

Remark 4. In Theorem 3 we consider the action of Φn of the affine (n − 1)-
dimensional space of all monic polynomials of degree n−1. If we extend this action
to the ambient linear space of all polynomials of degree at most (n − 1) then we
acquire one more eigenvalue and eigenvector. Namely, the polynomial (x + 1)n−2

is the eigenvector of Φn with the eigenvalue 1.

1.3. Main results. Set Mj(x) = (−1)j−1xQ∗
j−1(−x). The most important result

of the present paper (with a rather lengthy proof) is as follows, see details in
Subsection 2.3.

Theorem 5. For any positive integer j the polynomial Mj(x) coincides with the
Narayana polynomial Nj(x).

Part (6) of the above Theorem 3 then implies the following.

Corollary 6. Narayana polynomials are hyperbolic for any n ≥ 1.

More information about the roots of Nn(x) is given below. For its proof consult
Subsection 2.4.

Theorem 7. (1) The number (−1) is a simple root of Nn(x) for any positive
even integer n. For n odd one has Nn(−1) 6= 0;

(2) All roots of Nn(x) are distinct and nonpositive;
(3) The roots of Nn−1(x)/x interlace with the ones of Nn(x)/x. Except for the

origin the polynomials Nn−1(x) and Nn(x) have no root in common.

Our final result is as follows, see details in Subsection 2.5. Given a polynomial

P (x) of degree l define its root-counting measure µP = 1
l

∑l
i=1 δ(x − xi) where

{x1, . . . , xl} is the set of all roots of P (x) listed with possible repetitions (equal
to the respective multiplicities) and δ(x − xi) is the standard Dirac delta-function
supported at xi. Given a sequence {Pn(x)}, degPn(x) = n, n = 1, 2, . . . we call
asymptotic root-counting measure of this sequence the weak limit µ = limn→∞ µPn

(if it exists) understood in the sense of distribution theory.

Theorem 8. The density ρ(x) and the distribution function κ(x) of the asymptotic
root-counting measure of the sequence {Nn(x)} of the Narayana polynomials are
given by:

ρ(x) =
1

π

1

(1− x)
√−x

; κ(x) = 1− 2

π
arctan

√
−x, x ≤ 0. (4)

Remark 9. Notice that self-reciprocity of Nn(x) translates in the following (easily
testable) property of ρ(x):

x2ρ(x) = ρ

(

1

x

)

.
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Figure 1. The theoretical distribution κ(x) and the empirical dis-
tribution of roots of N100(x) on the interval [−1, 0].
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2. Proofs

2.1. Preliminaries. To prove Theorems 5 and 7 we will need a detailed study of
the map Φn and, especially, of the equations defining its eigenvectors which in their
turn give our polynomials Qj,n(x).

Notation 10. Set ek(j) = σk(1, 2, . . . , j) to be the value of the k-th symmetric func-
tion on the j-tuple of numbers (1, 2, . . . , j), i.e. ek(j) =

∑

1≤ν1<···<νk≤j ν1 · · · νk,
k = 1, . . ., j. Denote by φk(j) the sum 1k + 2k + · · ·+ jk.

Remark 11. The quantity ek(j) (resp. φk(j)) is a polynomial in j of degree 2k
(resp. of degree k + 1) divisible by j(j + 1).

Let Qj,n(x) := xj + q1x
j−1 + · · ·+ qj−1x+ (−1)j be the polynomial introduced

in Theorem 3 and set lj = (n− 1) · · · (n− j). Then by (1) of Theorem 3 one has

λj+2,n = nj+1/lj+1.

(the coefficients qν depend also on j and n, but we prefer to avoid double indices.)
By definition the polynomial Qj,n(x) satisfies the following relation:

x(x + 1)n−j−2Qj,n(x) =

= λj+2,nx(x+1)n−1 ∗
n (x+ a1)(x+1)n−1 ∗

n · · · ∗
n (x+ aj)(x+1)n−1 ∗

n (x+1)n−1,

where {−a1, . . . ,−aj} is the set of all roots of Qj,n(x). After multiplication of both
sides of the latter relation by lj+1 one gets that the coefficient Rk of xk, k ≥ 1, in
the right-hand side equals

Rk := nj+1Ck−1
n−1(C

k
n−1a1 + Ck−1

n−1) · · · (Ck
n−1aj + Ck−1

n−1)C
k
n−1/(C

k
n)

j+1 .

The corresponding coefficient Lk in the left-hand side equals

Lk := (n−1) · · · (n−j−1)((−1)jCk−1
n−j−2+Ck−2

n−j−2qj−1+ · · ·+C0
n−j−2qj−k+1). (5)

Therefore one has qν = σν (see Notation 2) and, finally,



NARAYANA NUMBERS AND SCHUR-SZEGÖ COMPOSITION 5

Rk = nj+1Ck−1
n−1C

k
n−1((C

k−1
n−1)

j+

j−1
∑

ν=1

(Ck−1
n−1)

j−ν (Ck
n−1)

νqν+(−1)j(Ck
n−1)

j)/(Ck
n)

j+1.

(6)
Thus the coefficients qν , ν = 1, . . . , j − 1 of Qj,n(x) solve the system of equations

(Σ) : { Lk = Rk , k = 1, . . . , n− 1 }. (7)

Lemma 12. The coefficients qν can be expanded in convergent series:

qν = q(0)ν +
q
(1)
ν

n− 1
+

q
(2)
ν

(n− 1)2
+ · · · (8)

with respect to 1
n−1 , where the numbers q

(i)
ν ∈ R are uniquely defined and indepen-

dent of n.

Proof: The coefficients qν solve system (Σ). They are uniquely defined because the
polynomials Qj,n(x) are uniquely defined by the eigenvectors of the mapping Φn.
They can be expanded in convergent series in 1

n−1 because the same property holds

for the coefficients of system (Σ). As qν are uniquely defined, thus q
(i)
ν are also

uniquely defined. ✷

Remark 13. We choose to expand qν as a series in 1
n−1 (and not in 1

n
) because

the eigenpolynomials of Φn (see (2) of Theorem 3) are all of degree n− 1. Besides,
numerical computations show that it is the factor n − 1 and not n which appears
most often in the denominators of the eigenvectors of the mapping Φn.

Proposition 14. One has q
(0)
1 = (−1)jq

(0)
j−1 = −j(j + 1)/2.

Proof: For k = 1 one has

L1 = (−1)j(n− 1) · · · (n− j− 1) , R1 = (n− 1)(1+

j−1
∑

ν=1

(n− 1)νqν +(−1)j(n− 1)j) .

The equality L1 = R1 can be written in the form

(−1)j(n− 1) · · · (n− j − 1) = (−1)j(n− 1)j+1 + (n− 1)jq
(0)
j−1 + o((n− 1)j) .

Hence q
(0)
j−1 + o(1) = (−1)j((n − 1) · · · (n− j − 1)− (n− 1)j+1)/(n− 1)j . Observe

that

(n− 1) · · · (n− j − 1) = (n− 1)j+1 − (1 + 2 + · · ·+ j)(n− 1)j + o((n− 1)j) .

The quantity q
(0)
j−1 depends on j, but not on n. Therefore (−1)jq

(0)
j−1 = −(1 + 2 +

· · ·+ j) = −j(j + 1)/2. ✷

The next statement is central.

Proposition 15. (1) For each (ν, i) fixed the coefficient q
(i)
ν is given by a real

polynomial in j of degree 2(ν + i).
(2) For i = 0 this polynomial is divisible by j(j + 1).

2.2. Proof of Proposition 15 . 10. To prove part (1) of the proposition we use
induction on ν + i. Proposition 14 constitutes the base of induction. The step of
induction is explained in 20 – 30.

Recall that the coefficients qν give the unique solution to system (Σ). From
now on we assume that system (Σ) is infinite, i.e. k = 1, 2, . . .. Substituting the
expansions (8) of the coefficients qν in (Σ) we obtain a new system (denoted by

(x)) with variables q
(i)
ν , ν = 1, . . . , j − 1, i = 0, 1, . . .. After this substitution
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the equation Lk = Rk of system (Σ) transforms into an equation of the form
∑∞

l=l0
Ak,l/(n − 1)l = 0 where the quantities Ak,l are some linear inhomogeneous

functions of the variables q
(i)
ν . (Notice that Ak,l depend on j but not on n.) The

latter equation holds for all n ∈ N if and only if all Ak,l vanish. (The equation
{Ak,l = 0} is denoted by (Ak,l).)

20. The solution to system (x) is unique (which follows from the uniqueness of
the polynomials Qj,n(x) for every fixed n, see Theorem 3). This solution depends

only on j. The self-reciprocity of Qj,n(x) implies that q
(i)
ν = (−1)jq

(i)
j−ν .

In what follows we consider subsystems of system (x) of the form {(Ak,l), l =
l0, . . . , l1}, i.e. systems defined in accordance with the filtration of the space of
Laurent series in 1

n−1 by the degree of 1
n−1 . We set l = s− j − k.

Notation 16. Denote by Ia,b the set of variables {q(0)a , q
(1)
a+1, . . ., q

(b)
a+b}.

To settle part (1) of Proposition 15 we need Lemmas 17 and 18 whose proofs are
given after that of Proposition 15.

Lemma 17. The linear inhomogeneous form Ak,s−j−k depends only on the vari-
ables in the set Jj−s,s−1 := Ij−s,s−1 ∪ Ij−s+1,s−2 ∪ · · · ∪ Ij−1,0.

30. Suppose that the variables belonging to the set Jj−s+1,s−2 are already de-

termined. (For s = 2 one has Jj−s+1,s−2 = Ij−s+1,s−2 = Ij−1,0 = {q(0)j−1}; see
Proposition 14.) The system of s linear equations (A) := {(Ak,s−j−k), k = 1, . . . , s}
is a system with s unknown variables, namely, those in the set Ij−s,s−1. This sys-
tem has a unique solution (which follows from the existence and uniqueness of the
polynomials Qj,n(x), see Theorem 3). Hence the variables in the set Ij−s,s−1 are
uniquely defined.

Lemma 18. The solution to system (A) is an s-vector consisting of real polynomials
in j of degree 2s.

This concludes the proof of the step of induction in part (1) of Proposition 15.
40. For ν = 1 part (2) of the proposition follows from Proposition 14. When

solving the linear system (x) we express the variables in the set Ij−s,s−1 as affine
functions of the ones in the set Jj−s+1,s−2. Suppose that all variables in that set
are shown to be polynomials divisible by j(j + 1). Then the variables in the set
Ij−s,s−1 will be divisible by j(j + 1) if and only if this is the case of the constant
terms of system (A) (we call them CTs for short).

The CTs are the coefficients of (n − 1)s−j−k of the expression (−1)jU1 − U2 −
(−1)jU3 where

U1 = (n− 1) · · · (n− j − 1)Ck−1
n−j−2 , U2 = nj+1Ck−1

n−1C
k
n−1(C

k−1
n−1)

j ,

U3 = nj+1Ck−1
n−1C

k
n−1(C

k
n−1)

j/(Ck
n)

j+1 ,

see (5) and (6). In this difference the product U2 is irrelevant. Indeed, the highest

power of (n − 1) multiplying any of the variables q
(0)
ν in Rk is higher than the

highest power of (n− 1) in U2, see (6).

Set (n− 1) · · · (n− j− 1) = (n− 1)j+1+V . Hence U1 = ((n− 1)j+1+V )Ck−1
n−j−2.

By Remark 11 the quantity V is a polynomial divisible by j(j + 1). Therefore for

j = 0 one has U1 = (n− 1)Ck−1
n−2 = nCk−1

n−1C
k
n−1/C

k
n = U3, and for j = −1 one has

U1 = Ck−1
n−1 = U3. Hence the CTs are divisible by j(j + 1). This completes the

proof of Proposition 15. Now we settle Lemmas 17 and 18.

Proof of Lemma 17: 10. Using the equalities Ck−1
n−1/C

k
n = k/n and Ck

n−1/C
k
n =

(n− k)/n, one can present the equality Lk = Rk (see (5) and (6)) in the form

(n− 1) · · · (n− j − 1)((−1)jCk−1
n−j−2 + Ck−2

n−j−2qj−1 + · · ·+ C0
n−j−2qj−k+1) =
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= (n− k)Ck−1
n−1(k

j +

j−1
∑

ν=1

(n− k)νkj−νqν + (−1)j(n− k)j). (9)

Replace in (9) the quantities qν by their expansions (8). Consider the right-hand
side Rk of (9) as a Laurent series in 1

n−1 . Observe that if the integer k is bounded,
then the following relations hold:

(n−k)Ck−1
n−1 =

(n− 1)k

k!
+O((n−1)k−1) , (n−k)νkj−ν = kj−ν((n−1)ν+O((n−1)ν−1).

We use the last equality for ν = j − s. The coefficient of (n − 1)j−s+k in Rk is
of the form:

1

k!
(ksq

(0)
j−s + ks−1q

(1)
j−s+1 + · · ·+ kq

(s−1)
j−1 +H+ r),

where H is a linear form in the variables q
(m)
µ with µ − m > j − s and r is a

real number. Hence the form H contains only variables belonging to the union

Jj−s+1,s−2 (because µ ≤ j − 1, m ≥ 0) while the linear form (1/k!)(ksq
(0)
j−s +

ks−1q
(1)
j−s+1+ · · ·+kq

(s−1)
j−1 ) depends only on the variables in the set Ij−s,s−1. Hence

Rk depends only on the variables in the set Jj−s,s−1.
20. Consider now the left-hand side Lk of (9). One can write

B(n, j) := (n− 1) · · · (n− j − 1) = (n− 1)j+1

(

1− e1(j)

n− 1
+

e2(j)

(n− 1)2
− · · ·

)

,

see Notation 10. For each ν = j − k + 1, . . . , j the product B(n, j)Cν−j+k−1
n−j−2 is a

polynomial in the variable (n− 1) of degree ν + k. More precisely,

B(n, j)Cν−j+k−1
n−j−2 =

(n− 1)ν+k

(ν − j + k − 1)!

(

1− e1(ν + k − 1)

n− 1
+

e2(ν + k − 1)

(n− 1)2
− · · ·

)

.

(10)

Therefore, the coefficient of (n − 1)j−s+k in the term B(n, j)Cν−j+k−1
n−j−2 qν of Lk is

of the form

1

(ν − j + k − 1)!
(q(ν−j+s)

ν −q(ν−j+s−1)
ν e1(ν+k−1)+· · ·+(−1)ν−j+sq(0)ν eν−j+s(ν+k−1)).

(11)
The index ν takes the values j − k + 1, . . . , j − 1, see (9). Hence Lk is also a linear
inhomogeneous form of the variables in the set Jj−s,s−1. ✷

Proof of Lemma 18: 10. Consider equation (Ak,s−j−k). Recall that its unknown

variables are the ones in the set Ij−s,s−1. Present this equation in the form α1q
(0)
j−s+

· · ·+αsq
(s−1)
j−1 = β+G where the term β depends on j but not on the variables q

(i)
ν

and G is a linear form in the variables q
(i)
ν from the set Jj−s+1,s−2.

20. The quantity β is obtained by adding the terms (n − 1)j−s+k from the

Laurent series of the expressions : A := (n − 1) · · · (n − j − 1)(−1)jCk−1
n−j−2, D :=

−(n − k)Ck−1
n−1k

j and W := Ck−1
n−1(−1)j(n − k)j+1 in equation (9). The coefficient

of (n− 1)j−s+k in A equals (−1)j+ses(j + k − 1)/(k − 1)! (see equation (10) with
ν = j) which is a degree 2s polynomial in j, see Lemma 11. Its coefficient in W is
a polynomial in j of degree s. Indeed,

W = (−1)jCk−1
n−1((n− 1)− (k− 1))j+1 = (−1)jCk−1

n−1

j+1
∑

γ=0

Cγ
j+1(n− 1)γ(k− 1)j+1−γ ,
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where (−1)jCk−1
n−1 is a polynomial in (n− 1) of degree k − 1 and Cj−s+1

j+1 = Cs
j+1 is

a polynomial in j of degree s. As k ≤ s < j, there is no term (n − 1)j−s+k in D.
Hence β is a polynomial in j of degree 2s.

30. The linear form G is obtained from certain expressions in both sides of

equality (9). First, one considers the terms B(n, j)Cν−j+k−1
n−j−2 qν in Lk and their

coefficients of (n − 1)j−s+k given by formula (11). Recall that (see Lemma 17)
the index ν takes values ≥ j − s. Set θ := j − ν. Hence θ ≤ s. In formula (11)

the term σ := q
(δ)
ν eν−j+s−δ = q

(δ)
ν es−θ−δ is the product of the degree 2(s− θ − δ)

polynomial es−θ−δ in the variable j (see Remark 11) and of ±q
(δ)
j−ν = ±q

(δ)
θ which

is a polynomial of degree 2(θ + δ) by inductive assumption. Thus σ (and, hence,
the whole contribution of Lk to the linear form G) is a polynomial in j of degree
2s.

40. Secondly, consider in Rk the product

S := Ck−1
n−1(n− k)ν+1kj−νqν = Ck−1

n−1k
θ((n− 1) + (1 − k))ν+1

∞
∑

η=0

q(η)ν (n− 1)−η .

The quantity q
(η)
ν = ±q

(η)
θ is a polynomial in j of degree 2(θ + η).

Our goal now is to show that the coefficient of (n − 1)k+ν−r in the product

Ck−1
n−1(n − k)ν+1 is a polynomial in j of degree r. (We prove this statement in 50

below.) This implies that the coefficient of (n − 1)j−s+k in S is a finite sum of
polynomials in j of degrees τ := 2(θ + η) + r. To obtain a term (n − 1)j−s+k we
multiply the terms (n− 1)k+ν−r and (n− 1)−η. In other words, one has (k + ν −
r) − η = j − s+ k, i.e. ν = j + r + η − s and τ = 2(j − ν + η) + r = 2s− r < 2s.
Thus the contribution of Rk to the linear form G is a polynomial in j of degree
< 2s. The lemma is proved.

50. Proof of the latter statement. One has (n− k)ν+1 =
∑ν+1

r=0 C
r
ν+1(1− k)r(n−

1)ν+1−r and Cr
ν+1 is a degree r polynomial in ν, and therefore, also in the variable

j−θ and thus in the variable j as well. The binomial coefficient Ck−1
n−1 is a polynomial

in (n−1) of degree (k−1) . Thus Ck−1
n−1(n−k)ν+1 is of the form

∑k+ν
r=0 dr(n−1)k+ν−r

where dr is a polynomial in j of degree r. ✷
Now we finally return to our main results formulated in the introduction.

2.3. Proof of Theorem 5. 10. Consider the lower triangular matrixM whose j-th
row contains the coefficients of the polynomial Mj(x) (starting with the coefficient
of the linear term) followed by zeros. Let us turn the Narayana triangle (1) into an
infinite lower triangular matrix of the form

N =



















1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 3 1 0 0 · · ·
1 6 6 1 0 · · ·
1 10 20 10 1 · · ·
...

...
...

...
...

. . .



















(12)

Theorem 5 claims that the matrices M and N coincide. Denote by Ml and Nl

their l-th columns and by Ml and N l their l-th diagonals (i.e. the sets of entries
in positions (r, r + l− 1), r = 1, 2, . . . in M and N respectively).

The polynomials Mj(x) are monic and self-reciprocal with positive coefficients
by definition. Therefore, one has M1 = N1, M1 = N 1.
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20. Suppose that the first m columns (and, hence, the first m diagonals as well)
of M coincide with the first m columns (respectively, diagonals) of N . The first m
entries of Mm+1 and of Nm+1 vanish. Their next m entries belong to the first m
diagonals, hence, they coincide as well.

30. The entries ofMm+1 and the ones ofNm+1 (denoted respectively byMm+1,j

and Nm+1,j) are the values of polynomials Rm+1
M and Rm+1

N in j of the same degree
2m. For Mm+1,j this follows from Proposition 15, and for Nm+1,j it follows from
the next formula for the Narayana numbers:

Nj,m+1 =
1

j
Cm

j Cm+1
j =

(j − 1)(j − 2) · · · (j −m+ 1)

m!

j(j − 1) · · · (j −m)

(m+ 1)!
. (13)

For j = 1, . . . , 2m one has Rm+1
M (j) = Rm+1

N (j), see 20. For j = 0 one has
Nj,m+1 = Nm+1,j = 0 = Mm+1,j. The first two equalities follow from formula (13),
the last one can be deduced from part (2) of Proposition 15. This proposition im-
plies that Mm+1,j is divisible by j(j−1) (recall that Mj(x) = (−1)j−1xQ∗

j−1(−x)).

Hence Rm+1
M (x) = Rm+1

N (x). ✷

2.4. Proof of Theorem 7 . 10. For n = 2 and 3 all statements of the theorem
can be checked directly. Observe that Nn(x)/x has all coefficients positive. By
Corollary 6 all roots of Nn(x)/x are real, hence negative, and 0 is a simple root of
Nn(x).

For any even n it follows from Nn(x)/x being self-reciprocal, of odd degree and
with positive coefficients that Nn(−1) = 0. For n odd the polynomial Nn(x) does
not vanish at (−1). This can be proved by induction on n. Namely, if Nn−2(x)
does not vanish at (−1), then the same holds for Nn(x), see (2).

20. We prove the rest of the theorem using induction on n. Suppose that its
statements hold for N2(x), . . ., Nn−1(x). Denote by ξi the i-th root of Nn−1(x),
ξi < ξi+1, ξn−1 = 0. By part (3) of the theorem (proved for Nn−1(x)) one has
Nn−2(ξi)/ξi 6= 0 and the sign of Nn−2(ξi)/ξi changes alternatively. By equal-
ity (2) so does the sign of Nn(ξi)/ξi as well (equality (2) implies that the signs
of Nn−2(ξi)/ξi and Nn(ξi)/ξi are opposite). As Nn−2(ξn−2)/ξn−2 > 0, one has
Nn(ξn−2)/ξn−2 < 0. The leading coefficient of the polynomial Nn(x)/x is positive,
hence it has a root in (ξn−2, 0) and by self-reciprocity a root in the interval (−∞, ξ1)
as well.

The polynomial Nn(x)/x is of degree (n− 1) and has at least one root in each of
the intervals (−∞, ξ1), (ξ1, ξ2), . . ., (ξn−2, ξn−1). Hence all these roots are simple
(including (−1) for n even) and they interlace with the roots of Nn−1(x)/x. Thus
the only root in common for Nn(x) and Nn−1(x) is 0 which is simple for both of
them, see part 1) of Remark 1. ✷

2.5. On root asymptotics of Narayana polynomials. In this subsection we

prove Theorem 8. Define Ψn(x) =
Nn+1(x)
Nn(x)

and Θn(x) =
N ′

n
(x)

nNn(x)
, n = 1, 2, . . .. Set

Ψ(x) = limn→∞ Ψn(x) and Θ(x) = limn→∞ Θn(x) where these limits exist. Ψ(x)
is called the asymptotic quotient and Θ(x) is called the asymptotic logarithmic
derivative of the sequence {Nn(x)}.
Lemma 19. The sequence {Ψn(x)} of rational functions converges in C \R≤0 to
the function Ψ(x) = x + 1 + 2

√
x = (

√
x + 1)2 where

√
x is the usual branch of

the square root which attains positive values for positive x. (Here R≤0 denotes the
half-axis of non-positive numbers.)

Proof of Lemma 19: We need to invoke the classical result of H. Poincaré, see [7, p.
287 - 298] and Theorem 24 and Remark 25 below. Indeed, dividing the recurrence
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relation (2) by n+ 1 we obtain the normalized reccurence

Nn(x) −
2n− 1

n+ 1
(x+ 1)Nn−1(x) +

n− 2

n+ 1
(x− 1)2Nn−2(x) = 0. (14)

Taking limits of its coefficients when n → ∞ we get from Poincaré’s theorem
that the asymptotic quotient Ψ(x) for each x when Ψ(x) exists should satisfy the
following quadratic characteristic equation:

Ψ2(x) − 2(x+ 1)Ψ+ (x − 1)2 = 0. (15)

The exceptional set E ⊂ C (called the equimodular discriminant, see [3]) of those
values of x for which the equation (15) does not hold consists of all x for which two
different solutions Ψ1(x) and Ψ2(x) of (15) have the same absolute value.

Let us show now that in the considered case E = R≤0. Indeed, two solutions of
(15) are given by Ψ1(x) = x+1+2

√
x and Ψ2(x) = x+1− 2

√
x for some choice of

the branch of square root. One can easily check that if |Ψ1(x)| = |Ψ2(x)| for some
value of x then x + 1 is orthogonal to

√
x as two vectors in R2 ≃ C. Denoting√

x = A+ iB one gets x+ 1 = A2 −B2 + 1+ i(2AB) and the latter orthogonality
condition is given by the relation:

A(A2 −B2 + 1) +B(2AB) = 0 ⇐⇒ A(A2 +B2 + 1) = 0 ⇐⇒ A = 0.

But the real part A of
√
x vanishes if and only if x is a negative real number

implying E = R≤0.
Thus the asymptotic quotient Ψ(x) satisfies the equation (15) in C \R≤0. To

show that Ψ(x) = x + 1 + 2
√
x, i.e. it chooses the correct branch of solutions to

(15) we check that Ψ(1) = 1 + 1 + 2 = 4 and we prove that Ψ(x) is continuous in
C \R≤0.

Indeed, one knows that Nn(1) =
∑n

k=1 Nn,k = Catn where Catn = 1
n+1

(

2n
n

)

is

the n-th Catalan number, see [16]. Thus Ψn(1) =
Nn+1(1)
Nn(1)

= 2(n+1)(2n+1)
(n+2)(n+1) . There-

fore, Ψ(1) = limn→∞ Ψn(1) = 4. In order to prove the required continuity (and
analiticity) we use the well-knownMontel’s theorem claiming that a locally bounded
family of analytic functions contains a subsequence converging to an analytic func-
tion, see e.g [4]. For us it is technically easier to work with the sequence of inverses

to Ψn(x), i.e. with the sequence { Nn(x)
Nn+1(x)

}. We show that { Nn(x)
Nn+1(x)

} is locally

bounded in any compact domain separated from R≤0. Thus since by Poincaré’s

theorem { Nn(x)
Nn+1(x)

} is pointwise converging in C \R≤0 one gets by Montel’s theo-

rem that { Nn(x)
Nn+1(x)

} converges to an analytic function implying the same fact for the

sequence {Ψn(x)}. Indeed, by (2) and (3) of Theorem 7 all roots of each Nn(x)/x
are simple, strictly negative and they interlace with that of Nn+1(x)/x. Therefore,

the partial fractional decomposition of Nn(x)
Nn+1(x)

has the form

Nn(x)

Nn+1(x)
=

n
∑

i=1

γi
x− ai,n+1

,

where every γi is positive with
∑n

i=1 γi = 1 and {a1,n+1, . . . , an,n+1} is the set of
all non-vanishing (and therefore strictly negative) roots of Nn+1(x). If x ∈ C is
any point denote by ν(x) its Eucledian distance to R≤0. Let us check that for any
x ∈ C \R≤0 and for any positive integer n one has

∣

∣

∣

∣

Nn(x)

Nn+1(x)

∣

∣

∣

∣

≤ 1

ν(x)
,
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which immediately implies the required local boundedness. Indeed,

∣

∣

∣

∣

Nn(x)

Nn+1(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

γi
x− ai,n+1

∣

∣

∣

∣

∣

≤
n
∑

i=1

γi
|x− ai,n+1|

≤
n
∑

i=1

γi
ν(x)

=
1

ν(x)
.

✷

Lemma 20. The sequence {Θn(x)} of rational functions converges in C \R≤0 to
the function Θ(x) = 1

x+
√
x
.

Proof of Lemma 20: Indeed, it is known, see [15], that in case when both the
asymptotic quotient Ψ(x) and the asymptotic ratio Θ(x) exist and have continuous
first derivatives in some open domain of C they satisfy there the relation

Θ(x) =
Ψ′(x)

Ψ(x)
. (16)

A short sketch of its proof is as follows. Consider the difference

Ψ′
n(x)

Ψn(x)
−Θn(x) =

p′n+1(x)

pn+1(x)
−
(

1 +
1

n

)

p′n(x)

pn(x)
.

Then one has,

Ψ′(x)

Ψ(x)
−Θ(x) = lim

n→∞

(

Ψ′
n(x)

Ψn(x)
−Θn(x)

)

= lim
n→∞

(n+1)

(

p′n+1(x)

(n+ 1)pn+1(x)
− p′n(x)

npn(x)

)

= 0.

Applying (16) to the formula for Ψ(x) in Lemma 19 we get

Θ(x) =
Ψ′(x)

Ψ(x)
=

2(
√
x+ 1)

2
√
x(
√
x+ 1)2

=
1√

x(
√
x+ 1)

=
1

x+
√
x
.

✷

Notation 21. Given a finite measure µ supported on C define its Cauchy transform
Cµ(x) as

Cµ(x) =
∫

C

dµ(ζ)

x − ζ
.

The Cauchy transform of the measure is analytic outside its support, its ∂
∂z̄
-

derivative coincides with the original measure and it has many more important
properties, see e.g. [6]. Notice that for any polynomial P (x) of degree l the Cauchy
transform CµP

of its root-counting measure µP is given by the formula CµP
(x) =

P ′(x)
l·P (x) . Therefore, given a polynomial sequence {Pn(x)}, degPn(x) = n, n = 1, 2, . . .

we have that the Cauchy transform Cµ of its asymptotic root-counting measure
µ = limn→∞ µPn

(if the latter measure exists) coincides with the limit Cµ(x) =

limn→∞
P ′

n
(x)

nPn(x)
.

The last result which we need to settle Theorem 8 and which is a particular case
of Theorem 3.1.9 of [8] is as follows.

Lemma 22. If ρµ(x), x ∈ R≤0 is the density of a finite measure µ supported on
R≤0 and Cµ(x), x ∈ C \ R≤0 is its Cauchy transform then for any x ∈ R≤0 one
has

ρµ(x) =
i

2π

(

C+
µ (x)− C−

µ (x)
)

,

where C+
µ (x) = limt→x Cµ(x) with t belonging to the upper halfplane, C−

µ (x) =

limt→x Cµ(x) with t belonging to the lower halfplane, and Z denotes the usual con-
jugate of Z.
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Finally, applying the latter formula to our case we get the required density
formula in the statement of Theorem 8. Namely,

ρ(x) =
i

2π

(

1

x+ i
√−x

− 1

x− i
√−x

)

=
i

2π(x2 − x)

(

(x− i
√
−x)− (x+ i

√
−x)

)

=

=
i

2π(x2 − x)
· −2i

√
−x =

−i2

π

√−x

x2 − x
=

1

π(1− x)
√−x

.

Integrating the obtained formula for ρ(x) one gets the expression for the distribution
function κ(x) from the statement of Theorem 8, see Fig. 1. ✷

3. Appendix. Poincaré’s theorem, [7, p. 287]

1. Set-up. We consider a linear homogeneous difference equation of order k

f(t+ k) + a1f(t+ k − 1) + a2f(t+ k − 2) + · · ·+ akf(t) = 0 (17)

with constant coefficients. Denote by

λ1, . . . , λk

the roots of the characteristic equation

λk + a1λ
k−1 + a2λ

k−2 + · · ·+ ak = 0,

and assume that λi have different absolute values denoted by ξi = |λi|. We can
then assume that

ξ1 > ξ2 > · · · > ξk. (18)

Since the roots λi are all distinct then the general solution of (17) is given by

f(t) = C1λ
t
1 + C2λ

t
2 + · · ·+ Ckλ

t
k.

Let us choose one single solution of (17), i.e. assign some fixed values to the
constants Ci. Let Cp be the first nonvanishing among Ci’s, i.e.

C1 = C2 = · · · = Cp−1 = 0 and Cp 6= 0.

Then one can show that

lim
t→∞

f(t+ 1)

f(t)
= λp

where f(t) is the considered solution of (17). Indeed, one has

f(t+ 1)

f(t)
=

Cpλ
t+1
p + Cp+1λ

t+1
p+1 + · · ·+ Ckλ

t+1
k

Cpλt
p + Cp+1λt

p+1 + · · ·+ Ckλt
k

For t → ∞ one has through (18) that the limits of
(

λp+1

λp

)t

,

(

λp+2

λp

)t

, . . . ,

(

λk

λp

)t

equal 0, and we obtain

lim
t→∞

f(t+ 1)

f(t)
= λp

that is the following statement is valid

Theorem 23. If f(t) is an arbitrary (nontrivial) solution of the equation (17) then

the limit of the ratio f(t+1)
f(t) for t → ∞ equals one the roots of the characteristic

equation if only these roots have distinct absolute values.
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We cannot say which root will be involved without the knowledge of the solution.
One can only say that this root will have the number p of the first nonvanishing
coefficient Cp in the considered solution. The following theorem of Poincaré presents
a generalization of this statement.

2. Poincaré’s theorem.

Theorem 24. If the coefficients Pi(t), i = 0, 1, . . . , k − 1 of a linear homogeneous
difference equation

f(t+ k) + Pk−1(t)f(t+ k − 1) + Pk−2(t)f(t+ k − 2) + · · ·+ P0(t)f(t) = 0 (19)

have limits limt→∞ Pi(t) = ai, i = 0, 1, . . . , k− 1 and if the roots of the character-
istic equation

λk + ak−1λ
k−1 + · · ·+ a0 = 0 (20)

have different absolute values then the limit of the ratio f(t+1)
f(t) for t → ∞ of any

solution f(t) of the equation (19) equals one of the roots

λ1, λ2, . . . , λk

of the equation (20), i.e.

lim
t→∞

f(t+ 1)

f(t)
= λp.

Remark 25. In the present paper the role of the quantities f(t+ i) is played by the
values of the polynomials Nn for each x fixed. The parameter t is discrete – this is
the index n.
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