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Abstract. We study Cesàro (C, δ) means for two-variable Jacobi polynomials on the parabolic

biangle B = {(x1, x2) ∈ R
2 : 0 ≤ x21 ≤ x2 ≤ 1}. Using the product formula derived by

Koornwinder & Schwartz for this polynomial system, the Cesàro operator can be interpreted as

a convolution operator. We then show that the Cesàro (C, δ) means of the orthogonal expansion

on the biangle are uniformly bounded if δ > α + β + 1, α − 1
2 ≥ β ≥ 0. Furthermore, for

δ ≥ α+ 2β + 3
2 the means define positive linear operators.

Keywords. orthogonal expansion, Cesàro summability, parabolic biangle, two-variable or-

thogonal polynomials, positive linear operators, convolution operators

1 Introduction

Multivariate analogs of classical orthogonal polynomials are of great interest in many
areas of applied analysis and approximation. Although, there is a beautiful theory of
orthogonal polynomials in one variable (cf. [10]), it is much harder to develop a picture
as comprehensive as in the univariate case for orthogonal polynomials in several variables
(cf. [3]). Among classical orthogonal polynomials in one variable the family of Jacobi
polynomials plays a special role. Their importance is partly due to the fact that there
are connections of these polynomials to group representations and the eigensystem of the
Laplace-Beltrami operator for certain compact symmetric spaces. In the two-dimensional
setting, Koornwinder [5, 6] discusses seven classes of Jacobi polynomials in two variables,
derived by either expressions in terms of univariate Jacobi polynomials, studying spherical
functions on homogeneous spaces of rank 2, or using quadratic transformations of known
examples of Jacobi polynomials, as well as analytic continuation with respect to some
parameters. Among these classes, there are bivariate Jacobi polynomials on the biangle.
The parabolic biangle is the closed subset of R2 defined by

B = {x = (x1, x2) ∈ R
2 : 0 ≤ x21 ≤ x2 ≤ 1}.
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The system of bivariate orthogonal polynomials defined on the set B has first been in-
troduced by Agahanov [1]. The polynomials can be explicitly expressed in terms of the
univariate Jacobi polynomials. In order to provide the explicit formulae let us recall some
basic facts for Jacobi polynomials.

For α, β > −1 and n ∈ N0 the Jacobi polynomials are defined as

P (α,β)
n (x) =

(α + 1)n
n!

F

(
−n, n + α + β + 1;α + 1;

1− x

2

)
,

where F (a, b; c; x) denotes the Gaussian hypergeometric function. Given the weight func-
tion w(α,β) defined as

w(α,β)(x) =
Γ(α+ β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)
(1− x)α(1 + x)β, x ∈ [−1, 1],

the Jacobi polynomials satisfy the following orthogonality relation.

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)w(α,β)(x) dx = δn,mh
(α,β)
n ,

where

h(α,β)n =
(α + 1)n(β + 1)n(α + β + 1)

n!(α + β + 2)n(α + β + 2n+ 1)n
. (1.1)

We are now ready to define the orthogonal polynomials system on B. For α, β > −1 and
n ≥ k ≥ 0 let

P α,β
n,k (x) = P

(α− 1

2
,β+k)

n−k (2x2 − 1) · x
k
2

2 P
(β− 1

2
,β− 1

2
)

k (x1x
− 1

2

2 ), x = (x1, x2) ∈ B. (1.2)

Note that the polynomial is of degree k in x1 and of degree n− k in x2 and thus, of total
degree n. Furthermore,

P α,β
n,k (e) =

(
α + 1

2

)
n−k

(
β + 1

2

)
k

(n− k)!k!
,

where e = (1, 1) ∈ B. Moreover, for α, β fixed these polynomials are orthogonal with
respect to the weight function

W α,β(x) =
Γ
(
α + β + 3

2

)

Γ
(
1
2

)
Γ
(
α + 1

2

)
Γ
(
β + 1

2

) (1−x2)α−
1

2 (x2−x21)β−
1

2 , x = (x1, x2) ∈ B. (1.3)

Thus, for the L2−norm of the polynomials P α,β
n,k we obtain the expression

(gα,βn,k )
−1 =

∫

B

|P α,β
n,k (x)|2W α,β(x) dx

= h
(α− 1

2
,β+k)

n−k h
(β− 1

2
,β− 1

2
)

k .

(1.4)

To keep the notation simple we write Lp(B) for the Lebesgue spaces Lp(B,W α,β), 1 ≤
p ≤ ∞, where for p = ∞ the space L∞(B) is understood to be the space of continuous
functions on B with the supremum norm.
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We want to study Cesàro means of orthogonal expansions with respect to the system
{P α,β

n,k : 0 ≤ k ≤ n}, n ∈ N0, on B.

For δ ≥ 0, the Cesàro (C, δ) means sδn of a sequence (cn)
∞
n=0 are defined as

sδn =
1(

n+δ
n

)
n∑

k=0

(
n− k + δ − 1

n− k

)
sk =

1(
n+δ
n

)
n∑

k=0

(
n− k + δ

n− k

)
ck, (1.5)

where sn denotes the n-th partial sum
∑n

k=0 ck. The sequence (sn)
∞
n=0 is called (C, δ)

summable if sδn converges for n→ ∞. For simplicity, we set Aδ
n =

(
n+δ
n

)
.

The study of Cesàro means for orthogonal expansions has a long history. It is worthwhile
to note that in the multivariate setting, there is a strong influence of the domain of
definition, which is up to now not fully understood. For example, the Cesàro means
for the Chebyshev weight function 1/

√
(1− x2)(1− y2) converge uniformly on the unit

square for all δ > 0. On the unit ball, there is in contrast a critical index for the weight
1/
√
1− ‖x‖2, which means, uniform convergence does not hold if δ ≤ d−1

2
. The same

is true for the standard simplex (cf. [2, 9] for further details). The parabolic biangle is
in some sense an intermediate region having both, a smooth curved boundary as well as
singularities. As we will show below, for 1/

√
(1− x2)(x2 − x21) on this region uniform

convergence holds if δ > 1.

In the following section we will introduce the Cesàro means for the orthogonal expansion
on the biangle. Since one crucial point for our following discussion is the fact that the
Cesàro means can be interpreted as a convolution operator, we recall some facts on the
convolution structure on the parabolic biangle. In Section 3 our main results are stated,
while the proof of Theorem 3.2, our main result, is given in the last section. Throughout
the paper we will use the letter c for a generic constant which does not have to be the
same in every occurrence.

2 Cesàro means on the biangle

The Fourier coefficient of a function f ∈ L1(B) with respect to the orthogonal system
{P α,β

n,k : 0 ≤ k ≤ n}, n ∈ N0, is given by

f̂(n, k) =

∫

B

f(y)P α,β
n,k (y) W

α,β(y) dy, (2.1)

where 0 ≤ k ≤ n, n ∈ N0.

The projection of f onto the space of polynomials of degree n is given by

Pnf(x) =

n∑

k=0

f̂(n, k)P α,β
n,k (x)g

α,β
n,k =

∫

B

f(x)Pn(x,y)W
α,β(y) dy, (2.2)

with kernel

Pn(x,y) =

n∑

k=0

P α,β
n,k (x)P

α,β
n,k (y)g

α,β
n,k .
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We want to study approximate expansions of functions using summability methods. Let
us therefore recall the definition of Cesàro means.

The Cesàro (C, δ) means of the expansion (2.2) are given by

Sδ
nf(x) =

n∑

k=0

Aδ
n−k

Aδ
n

Pkf(x) =

∫

B

f(y)Kδ
n(x,y)W

α,β(y) dy, (2.3)

where the summability kernel is given by

Kδ
n(x,y) =

n∑

k=0

Aδ
n−k

Aδ
n

Pk(x,y) =

n∑

k=0

k∑

l=0

Aδ
n−k

Aδ
n

P α,β
n,k (x)P

α,β
n,k (y)g

α,β
n,k

=

n∑

k=0

Aδ−1
n−k

Aδ
n

Kk(x,y).

(2.4)

Here and for the remaining part of the paper we simply write Sn for S0
n and Kn for K0

n.
Now, a key observation is that the operators Pn and Sδ

n can be written as convolution
operators. In order to see how this works, we need to outline some facts concerning the
convolution structure on B associated with the polynomial system {P α,β

n,k : 0 ≤ k ≤ n}.

Convolution structures are commonly based on product formulas. For the polynomials
P α,β
n,k such a construction was given by Koornwinder and Schwartz [7]. We need some

notation. For x = (x1, x2) with |x1|, |x2| ∈ [0, 1], 0 ≤ r ≤ 1, and ψ, ψj ∈ [0, π], j = 1, 2, 3,
define

D(x; r, ψ) = x1x2 + (1− x21)
1/2(1− x22)

1/2 r cosψ,

E(x; r, ψ) = (x21x
2
2 + (1− x21)(1− x22)r

2 + 2x1x2(1− x21)
1/2(1− x22)

1/2 r cosψ)1/2,

and, setting y = (y1, y2),

F (x,y; r, ψ1, ψ2, ψ3) = E(x; r, ψ1)D

[
D(x; r, ψ1)

E(x; r, ψ1)
, D

(
x1
x2
,
y1
y2
; 1, ψ2

)
; 1, ψ3

]
,

where x,y 6= 0. Moreover, we define the following measures

dmα,β(r, ψ) =
2Γ(α + 1/2)Γ(β + 1/2)

Γ(α− β)Γ(β + 1/2)Γ(β)Γ(1/2)
(1− r2)α−β−1r2β sin2β−1 ψ dr dψ

and

dµα,β(r, ψ1, ψ2, ψ3) = cα,β(1− r2)α−β−3/2r2β

× sin2β−1 ψ2 sin2β−1 ψ3 sin2β ψ1 drdψ1 dψ2 dψ3,

where cα,β is a constant so that dµα,β is a probability measure.

Koornwinder and Schwartz [7] proved the following product formula for the orthogonal
polynomials on the parabolic biangle.
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Theorem 2.1 Let α− 1
2
≥ β ≥ 0. Assume that 0 ≤ |x1| ≤ x2 ≤ 1 and 0 ≤ |y1| ≤ y2 ≤ 1.

Then if x = (x1, x2),y = (y1, y2) ∈ B \ {0}, we have that

P α,β
n,k (x1, x

2
2)P

α,β
n,k (y1, y

2
2) =

P α,β
n,k (e)

∫

[0,1]×[0,π]3
P α,β
n,k (E

2(x; r, ψ), F (x,y; r, ψ1, ψ2, ψ3)) dµ
α,β(r, ψ1, ψ2, ψ3).

If 0 ≤ |x1| ≤ x2 ≤ 1 and y = 0 we have that

P α,β
n,k (x1, x

2
2)P

α,β
n,k (0) = P α,β

n,k (e)

∫

[0,1]×[0,π]3
P α,β
n,k (E

2(x; r, ψ), D(x; r, ψ1)) dm
α,β+1/2(r, ψ1).

For our aim we do not need the product formula in its explicit form, rather than its
existence, which gives rise to the convolution structure on the parabolic biangle. Thus,
let us restate the product formula in a convenient form:

P α,β
n,k (x)P

α,β
n,k (y) = P α,β

n,k (e)

∫

B

P α,β
n,k (z) dωx,y(z), (2.5)

where dωx,y(z) is a probability measure.

Formula (2.5) gives rise to a generalized translation operator on B in the following way.
For f ∈ C(B) we define

Txf(y) =

∫

B

f(z) dωx,y(z), x,y ∈ B.

It can be shown that Tx extends to a bounded linear operator on Lp(B) with ‖Tx‖p ≤ 1,
x ∈ B, for every 1 ≤ p ≤ ∞. The convolution of functions f, g ∈ L1(B) is then defined as

f ∗ g(x) =

∫

B

f(y)Txg(y) W
α,β(y) dy, x ∈ B. (2.6)

This convolution product is associative and commutative. Moreover, the following esti-
mate holds true for all f, g ∈ Lp(B):

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p, 1 ≤ p ≤ ∞. (2.7)

In view of formulae (2.5) and (2.6) it becomes obvious that the operator Sδ
n can be written

as convolution operator. To be precise, we have the following result.

Proposition 2.1 If α− 1
2
≥ β ≥ 0, δ > 0, and x ∈ B, then for every f ∈ Lp(B) we have

that

Sδ
nf(x) = Kδ

n ∗ f(x), (2.8)

where Kδ
n(x) = Kδ

n(x, e) and e = (1, 1).

Proof. From equations (2.3) and (2.4) we obtain, using the product formula (2.5), that

Sδ
nf(x) =

∫

B

f(y)
n∑

k=0

k∑

l=0

Aδ
n−k

Aδ
n

P α,β
n,k (e)TxP

α,β
n,k (y)W

α,β(y) dy

= Kδ
n ∗ f(x).
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�

Now from inequality (2.7) an estimate for the operator norm of Sδ
n follows, i.e., ‖Sδ

n‖p ≤
‖Kδ

n‖1, 1 ≤ p ≤ ∞. Notice that Kδ
n(x) is the kernel Kδ

n(x,y) when y = e. The uniform
convergence of the (C, δ) means on B is reduced to convergence at a point. We state this
formerly as a corollary.

Corollary 2.2 If α − 1
2
≥ β ≥ 0, δ > 0, and f ∈ Lp(B), the Cesàro (C, δ) means Sδ

nf
converge uniformly on B if Sδ

nf converges at the point e, which holds, in turn, if

‖Kδ
n‖1 =

∫

B

|Kδ
n(x)|W (α,β)(x)dx ≤ c <∞ (2.9)

uniformly in n.

3 Summability of Cesàro expansions on the biangle

As shown in Corollary 2.2, it is sufficient to establish (2.9). For this purpose, it is essential
to derive a closed formula for the kernel Kδ

n, which we state below.

Theorem 3.1 For α, β > −1
2
and x ∈ B we have that

Kn(x) = P
(α+β+ 1

2
,β)

n (1) (3.1)

×
∫ 1

−1

P
(α+β+ 1

2
,β)

n (
1

2
(1 + t)2 + (1− t2)x1 +

1

2
(1− t)2x2 − 1) w(α+β+ 1

2
,β)(t) dt.

Proof. We derive this formula from the addition formula for Jacobi polynomials P
(α,β)
n

established by Koornwinder (cf. [5, (4.14)]).

P
(α,β)
n (1

2
(1 + ξ)(1 + η) + 1

2
(1− ξ)(1− η)r2 + (1− ξ2)1/2(1− η2)1/2 r cosψ − 1)

=

n∑

k=0

k∑

l=0

a
(α,β)
n,k,l (1− ξ)(k+l)/2(1 + ξ)(k−l)/2P

(α+k+l,β+k−l)
n−k (ξ)

· (1− η)(k+l)/2(1 + η)(k−l)/2P
(α+k+l,β+k−l)
n−k (η)

· P
(α−β−1,β+k−l)
l (2r2 − 1) rk−l P

(β−1/2,β−1/2)
k−l (cosψ),

(3.2)

where the coefficients a
(α,β)
n,k,l are given by

a
(α,β)
n,k,l = (k + l + α)(k − l + β) (3.3)

× (n+ α + β + 1)k(2β + 1)k−l(n− l + β + 1)l(n− k)!

22k(k + α)(1
2
(k − l) + β)(β + 1)k(k + α + 1)n−k+l(β + 1/2)k−l

.

By definition (2.4) we have that

Kn(x, e) =

n∑

k=0

k∑

l=0

P α,β
k,l (x)P

α,β
k,l (e)g

α,β
n,k .
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From the fact that P
(α,β)
n (1) = (α + 1)n/n!, it follows that

P α,β
k,l (e) = P

(α− 1

2
,β+k)

k−l (1)P
(β− 1

2
,β− 1

2
)

l (1) =
(α+ 1

2
)k−l(β + 1

2
)l

(k − l)!l!
.

In the addition formula (3.2), set ξ = η = t, r =
√
x2, r cosψ = x1, and replace α by

α + β + 1/2 to obtain

P
(α+β+ 1

2
,β)

n

(
1
2
(1 + t)2 + (1− t2)x1 +

1
2
(1− t)2x2 − 1

)

=

n∑

k=0

k∑

l=0

a
(α+β+ 1

2
,β)

n,k,l (1− t)k+l(1 + t)k−l
[
P

(α+β+k+l+ 1

2
,β+k−l)

n−k (t)
]2

×P
(α− 1

2
,β+k−l)

l (2x2 − 1)x
k−l
2

2 P
(β− 1

2
,β− 1

2
)

k−l

(
x1√
x2

)
.

The product of the last three terms in the sum is precisely P α,β
k,k−l. Integrating the above

equation with respect to w(α+β+ 1

2
,β)(t)dt gives

∫ 1

−1

P
(α+β+ 1

2
,β)

n

(
1
2
(1 + t)2 + (1− t2)x1 +

1
2
(1− t)2x2 − 1

)
w(α+β+ 1

2
,β)(t)dt

=

n∑

k=0

k∑

l=0

a
(α+β+ 1

2
,β)

n,k,l b
(α,β)
n,k,l P

α,β
k,k−l(x),

where

b
(α,β)
n,k,l =

∫ 1

−1

[
P

(α+β+k+l+ 1

2
,β+k−l)

n−k (t)
]2
(1− t)k+l(1 + t)k−lw(α+β+ 1

2
,β)(t)dt.

Using (1.1) and the explicit formula of a
(α+β+ 1

2
,β)

n,k,l it can be verified that

a
(α+β+ 1

2
,β)

n,k,l b
(α,β)
n,k,l = gα,βk−l,kP

α,β
k,k−l(e)[P

(α+β+ 1

2
,β)

n (1)]−1h
(α+β+ 1

2
,β)

n .

This proves the stated formula. �

We will use the abbreviation z(x; t) for the argument of the univariate Jacobi polynomial
in equation (3.1), i.e.,

z(x; t) = 1
2
(1 + t)2 + (1− t2)x1 +

1
2
(1− t)2x2 − 1, x = (x1, x2) ∈ B.

Using Theorem 3.1 we obtain the following form of the Cesàro kernel.

Corollary 3.1 Let α − 1
2
≥ β ≥ 0 and δ > 0. Then for all x ∈ B and f ∈ Lp(B),

1 ≤ p ≤ ∞, we have that

Kδ
n(x) =

n∑

k=0

Aδ−1
n−k

Aδ
n

h
(α+β+ 1

2
,β)

k P
(α+β+ 1

2
,β)

k (1)

∫ 1

−1

P
(α+β+ 1

2
,β)

k (z(x; t))w(α+β+ 1

2
,β)(t) dt

=
Aδ−1

n

Aδ
n

∫ 1

−1

kδ−1
n (z(x; t))w(α+β+ 1

2
,β)(t) dt, (3.4)



4 PROOF OF THEOREM 3.2 8

where kδn is the univariate Cesàro (C, δ) kernel,

kδn(t) =

n∑

k=0

Aδ
n−k

Aδ
n

h
(α+β+ 1

2
,β)

k P
(α+β+ 1

2
,β)

k (1)P
(α+β+ 1

2
,β)

k (t).

Equation (3.4) allows us to establish (2.9) by working with the univariate kernel kδn. This
leads to our main result in this paper.

Theorem 3.2 Let α − 1
2

≥ β ≥ 0. The (C, δ) means of the orthogonal expansions

with respect to W α,β
B converge uniformly to f on B for every continuous function f if

δ > α + β + 1.

The proof of Theorem 3.2 will be stated in Section 4. The proof involves sharp estimates
on various pieces, which indicates that the order δ > α + β + 1 is sharp. In other words,
we conjecture that the convergence fails if δ ≤ α + β + 1.

The compact formula (3.4) also allows us to deduce positivity of the (C, δ) means on B
from its counterpart of univariate Jacobi expansions.

Theorem 3.3 Let α − 1
2
≥ β ≥ 0. The (C, α + 2β + 3/2) means of the orthogonal

expansions with respect to W α,β
B define positive linear operators.

Proof. In [4] it is proved that the (C, µ+ ν +2) means of the univariate Jacobi expansion

∞∑

n=0

[hµ,νn ]−1P (µ,ν)
n (1)P (µ,ν)

n (x)

are nonnegative for −1 ≤ x ≤ 1, µ ≥ ν ≥ −1/2. By Corollary 3.1, the (C, δ) means of

Kn(x) are the integrals of the (C, δ − 1) means of the Jacobi expansions for w(α+β+ 1

2
,β),

which shows that Kδ
n(x) is nonnegative for δ = α + 2β + 3/2. By the product formula,

Kδ
n(x,y) = TxKn(e,y), and Tx is an integral against a nonnegative measure, it follows

that Kδ
n(x,y) ≥ 0 for δ = α + 2β + 3/2. �

We note that if the (C, δ0) means are nonnegative, then the (C, δ) means are nonnegative
for all δ ≥ δ0. The positivity implies ‖Kδ

n‖1 = 1, hence, convergence of the means.
However, since convergence of the (C, δ) means implies the convergence of the (C, δ′)
means for δ′ > δ, the convergence also follows form Theorem 3.2.

4 Proof of Theorem 3.2

We start with a result in [10, p. 261, (9.4.13)] and its extension in [8] given in the following
lemma.
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Lemma 4.1 Let kδn(w
(ξ,η); u), u ∈ [−1, 1], denote the kernel for the univariate Cesàro

(C, δ) means of the Jacobi expansion with respect to the weight function w(ξ,η) on [−1, 1].
Then for any ξ, η > −1 such that ξ + η + δ + 3 > 0 we have that

kδn(w
(ξ,η); t) =

J∑

j=0

bj(ξ, η, δ, n)P
(ξ+δ+j+1,η)
n (t) +Gδ

n(t),

where J is a fixed integer and

Gδ
n(t) =

∞∑

j=J+1

dj(ξ, η, δ, n)k
δ+j
n (w(ξ,η), 1, t).

Moreover, the coefficients satisfy the inequalities

|bj(ξ, η, δ, n)| ≤ cnξ+1−δ−j and |dj(ξ, η, δ, n)| ≤ cj−ξ−η−δ−4.

Furthermore, we will need an estimate for the univariate kernel which was proved in [9,
Lemma 5.2].

Lemma 4.2 Let kδn(w
(ξ,η); u), u ∈ [−1, 1], denote the kernel for the univariate Cesàro

(C, δ) means of the Jacobi expansion with respect to the weight function w(ξ,η) on [−1, 1].
Let further ξ, η > −1 and δ ≥ ξ + η + 2. Then

|kδn(w(ξ,η); t)| ≤ cn−1(1− t− n−2)−(ξ+3/2).

It is well known that the Jacobi polynomials satisfy the following estimate ([10, (7.32.5)
and (4.1.3)]).

Lemma 4.3 For α, β > −1 and t ∈ [0, 1],

|P (α,β)
n (t)| ≤ cn−1/2(1− t+ n−2)−(α+1/2)/2. (4.5)

The estimate on [−1, 0] follows from the fact that P
(α,β)
n (t) = (−1)nP

(β,α)
n (−t). In partic-

ular, for all t ∈ [−1, 1], we have the estimate

|P (α,β)
n (t)| ≤ cn−1/2

[
(1− t+ n−2)−(α+1/2)/2 + (1− t+ n−2)−(β+1/2)/2

]
. (4.6)

The central part of the proof is the following proposition.

Proposition 4.4 If δ > α + β + 1 then

∫

B

∫ 1

−1

|P (α+β+δ+ 1

2
,β)

n (z(x; t))|w(α+β+ 1

2
,β)(t) dtW α,β(x) dx ≤ cnδ−α−β−3/2.
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Proof. Using the inequality (4.6), we see that it is sufficient to show that

J1 :=

∫

B

∫ 1

−1

w(α+β+ 1

2
,β)(t)

(1− z(x; t) + n−2)
α+β+δ+1

2

dtW α,β(x) dx ≤ cnδ−α−β−1, (4.7)

and

J2 :=

∫

B

∫ 1

−1

w(α+β+ 1

2
,β)(t)

(1 + z(x; t) + n−2)
β+1/2

2

dtW α,β(x) dx ≤ cnδ−α−β−1. (4.8)

We start with J1. Its estimate is divided into several cases, according to the decomposi-
tions [−1, 1] = [−1, 0] ∪ [0, 1] and

B = B+∪B−, B+ := {x = (x1, x2) ∈ B : x1 ≥ 0}, B− := {x = (x1, x2) ∈ B : x1 ≤ 0}.
To simplify notation, we further denote

γ := (α + β + δ + 1)/2

throughout this proof. The following basic identity can be easily verified,

1− z(x; t) = (1− t2)(1− x1) +
1

2
(1− t)2(1− x2). (4.9)

Case 1. The integral over x ∈ B and t ∈ [0, 1].

Since t ≥ 0, by (4.9), 1 − z(x; t) ≥ (1− t)(1− x1), and w
(α+β+ 1

2
,β)(t) ≤ c(1 − t)α+β+1, so

that ∫ 1

0

w(α+β+ 1

2
,β)(t)

(1− z(x; t) + n−2)γ
dt ≤

∫ 1

0

(1− t)α+β+1

[(1− t)(1− x1) + n−2]γ
dt =: f(x1).

Since f depends on x1 only, it readily follows that
∫

B

f(x1)W
α,β(x) dx =

∫ 1

−1

f(x1)

∫ 1

x2
1

W α,β(x)dx2dx1 = c

∫ 1

−1

f(x1)(1− x21)
α+βdx1,

where we used the fact that
∫ 1

x2
1

(1− x2)
α−1/2(x2 − x21)

β−1/2 dx2 =
Γ(α + 1

2
)Γ(β + 1

2
)

Γ(α + β + 1)
(1− x21)

α+β.

Thus, it follows that this part of the integral in J1 is bounded by
∫

B

∫ 1

0

· · · ≤ c

∫ 1

−1

∫ 1

0

(1− t)α+β+ 1

2

[(1− t)(1− x1) + n−2]γ
dt(1− x21)

α+βdx1 := I+1 + I−1 ,

where we split of the integral over [−1, 1] as two integrals over [0, 1] and [−1, 0], respec-
tively, and define I+1 and I−1 accordingly. For I+1 , we have

I+1 =

∫ 1

0

∫ 1

0

sα+β+ 1

2 (1− x2)α+β

[s(1− x) + n−2]γ
ds dx =

∫ 1

0

∫ x

0

uα+β+ 1

2 (2 + x)α+β

(u+ n−2)γ
du x−

3

2dx

≤
∫ 1

0

uα+β+ 1

2

(u+ n−2)γ

∫ 1

u

x−
3

2dx du ≤ c

∫ 1

0

uα+β

(u+ n−2)γ
du

= cn2γ−2α−2β−2

∫ n2

0

vα+β

(1 + n2v)γ
dv ≤ cnδ−α−β−1,
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as the last integral is bounded if γ > α+ β + 1. For I−1 , we have 1− x1 ≥ 1, so that

I−1 ≤ c

∫ 1

0

(1− t)α+β+ 1

2

[(1− t) + n−2]γ
dt

∫ 0

−1

(1− x21)
α+βdx1 ≤ c

∫ 1

0

uα+β+1

(u+ n−2)γ
du,

which has the same bound as I+1 if we use uα+β+1 ≤ uα+β.

Case 2. The integral over x ∈ B+ and t ∈ [−1, 0].

For t ≤ 0, by (4.9), 1− z(x; t) ≥ (1 + t)(1− x1) +
1
2
(1− x2) and w

(α+β+1,β)(t) ≤ c(1+ t)β.
Hence, this portion of the integral in J1 is bounded by

I := c

∫

B+

∫ 0

−1

(1 + t)β

[(1 + t)(1− x1) + (1− x2) + n−2]γ
dtW α,β(x) dx.

Changing variables u = (1 + t)(1− x1) shows that

I = c

∫

B+

∫ 1−x1

0

uβ

[u+ (1− x2) + n−2]γ
du

W α,β(x)

(1− x1)β
dx

= c

∫ 1

0

∫ √
x2

0

∫ x1

0

uβ

[u+ (1− x2) + n−2]γ
du

(x2 − x21)
β− 1

2

(1− x1)β+1
dx1(1− x2)

α− 1

2dx2.

Let us first consider the two inner integrals. Changing the order of integration shows that

∫ √
x2

0

∫ 1−x1

0

dudx1 =

∫ 1−
√
x2

0

∫ √
x2

0

dx1du+

∫ 1

1−
√
x2

∫ 1−u

0

dx1du.

Now, using x2 +
√
x1 ∼

√
x2 and β + 1

2
> 0, integration by parts once gives,

∫ √
x2

0

(x2 − x21)
β− 1

2

(1− x1)β+1
dx1 ≤ cx

β− 1

2

2

∫ √
x2

0

(
√
x2 − x1)

β− 1

2

(1− x1)β+1
dx1

= c
√
x2

β− 1

2

[√
x2

β+ 1

2

β + 1
2

+
β + 1

β + 1
2

∫ √
x2

0

1

(1− x1)
3

2

dx1

]
≤ c

√
x2

β− 1

2

(1− x2)
1

2

.

Analogously, using
√
x2 ≤ √

x2 + x1 ≤ 2 and integration by parts once, we have the
estimate

∫ 1−u

0

(x2 − x21)
β− 1

2

(1− x1)β+1
dx1 ≤ cmax{1,√x2β−

1

2}
∫ 1−u

0

(
√
x2 − x1)

β− 1

2

(1− x1)β+1
dx1

≤ cmax{1,√x2β−
1

2} 1√
u
.

Adding the two parts together, we obtain that for a generic function f(u),

∫ √
x2

0

∫ 1−x1

0

f(u)du
(x2 − x21)

β− 1

2

(1− x1)β+1
dx1

≤ cmax{1,√x2β−
1

2}
∫ 1

0

f(u)max{(1− x2)
− 1

2 , u−
1

2}du.
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Consequently, we conclude that

I ≤ c

∫ 1

0

∫ 1

0

uβ max{1,√x2β−
1

2}
[u+ (1− x2) + n−2]γ

du
[
(1− x2)

− 1

2 + u
1

2

]
(1− x2)

α− 1

2dx2.

We note that the term max{1,√x2β−
1

2}, which matters only if β < 1
2
, is integrable as

β > −1/2 and it plays a minor role. In fact, if we split the integral of x2 as an integral
over [0, 1

2
] and [1

2
, 1], then the part over x2 ∈ [0, 1

2
] is bounded as u+ (1− x2) + n−2 ≥ 1

2
.

Hence, we only need to estimate the sum

∫ 1

0

∫ 1

0

uβxα−1

(u+ x+ n−2)γ
du dx+

∫ 1

0

∫ 1

0

uβ−
1

2xα−
1

2

(u+ x+ n−2)γ
du dx := I1 + I2.

For I1 we change variables v = u+ x and then exchange the order of the integrals,

I1 =

∫ 1

0

∫ x+1

x

(v − x)βxα−1

(v + n−2)γ
dv dx =

∫ 1

0

1

(v + n−2)γ

∫ v

0

(v − x)βxα−1 dx dv

+

∫ 2

1

1

(v + n−2)γ

∫ 1

v−1

(v − x)βxα−1 dx dv.

The second term is bounded by a constant as v ≥ 1, whereas the inner integral of the
first term is a Beta integral and equals vβ+αB(β + 1, α), so that

I1 ≤ c

(
1 +

∫ 1

0

vα+β

(v + n−2)γ
dv

)
≤ cnδ−α−β−1,

where the second inequality follows from the last step in the estimate for I+1 of Case 1.
Notice that I2 becomes I1 if we replace (α, β) by (α− 1

2
, β + 1

2
), so that I2 has the same

upper bound.

Case 3. The integral over x ∈ B− and t ∈ [−1, 0].

Just like in Case 2, this portion of the integral in J1 is bounded by

I := c

∫

B
−

∫ 0

−1

(1 + t)β

[(1 + t)(1− x1) + (1− x2) + n−2]γ
dtW α,β(x) dx.

For x ∈ B−, we have that 1 − x1 ≥ 1 so that we can drop the factor 1 − x1 in the
denominator. Changing variables u = 1 + t then shows that

I ≤ c

∫

B
−

∫ 0

−1

uβ

[u+ (1− x2) + n−2]γ
du(1− x2)

α− 1

2 (x2 − x21)
β− 1

2 dx

≤ c

∫ 1

0

∫ 1

0

uβ du

(u+ (1− x2) + n−2)γ
(1− x2)

α− 1

2

∫ 0

−
√
x2

(x2 − x21)
β− 1

2 dx1 dx2

≤ c

∫ 1

0

∫ 1

0

uβ(1− x2)
α−1/2

(u+ (1− x2) + n−2)γ
xβ2 du dx2 ≤ c

∫ 1

0

∫ 1

0

uβxα−1/2

(u+ x+ n−2)γ
du dx.

Comparing to I2 in Case 2 and using uβ ≤ uβ−
1

2 , we see that I is bounded by cnδ−α−β−1

as before.
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Putting these cases together completes the proof of (4.7).

We now prove (4.8). A straightforward computation shows that

1 + z(x; t) =
1

2

[
(1 + t + (1− t)x1)

2 + (1− t)2(x2 − x21)
]
≥ 1

2
(1− t)2(x2 − x21).

Using this inequality in J2, we obtain that

J2 ≤ c

∫

B

∫ 1

−1

(1− t)α+β+ 1

2 (1 + t)β

[(1− t)
√
x2 − x21 + n−1]β+

1

2

dt(1− x2)
α− 1

2 (x2 − x21)
β− 1

2 dx

≤ c

∫

B

∫ 1

−1

((1− t)
√
x2 − x21)

β+ 1

2

[(1− t)
√
x2 − x21 + n−1]β+

1

2

(1− t)α+
1

2 (1 + t)β dt

·(1− x22)
α− 1

2 (x2 − x21)
β−

3
2

2 dx

≤ c

∫

B

∫ 1

−1

(1− t)α+
1

2 (1 + t)β dt(1− x22)
α− 1

2 (x2 − x21)
β−

3
2

2 dx ≤ c.

Hence, for δ > α + β + 1, J2 is bounded and this completes the proof. �

Proof of Theorem 3.2. By Corollary 2.2, it is sufficient to show that

‖Kδ
n‖1 =

∫

B

|Kδ
n(x)|W α,β(x) dx ≤ c

under the condition that δ > α+ β +1. We set J = α+2β + 3
2
in Lemma 4.1 and obtain

that

|kδn(t)| ≤
J∑

j=0

|bj(α + β + 1
2
, β, δ, n)P

(α+β+δ+j+ 3

2
,β)

n (t)|

+

∞∑

j=J+1

|dj(α+ β + 1
2
, β, δ, n)kδ+j

n (t)|.

Using Corollary 3.1 together with Proposition 4.4, and taking into account the estimate
for the coefficients given in Lemma 4.1, we obtain that

‖Kδ
n‖1 ≤ Aδ−1

n

Aδ
n

[
cn +

∞∑

j=J+1

|dj(α + β + 1
2
, β, δ, n)|

×
∫

B

∫ 1

−1

|kδ+j
n (z(x; t))|w(α+β+ 1

2
,β)(t) dtW α,β(x) dx

]
.

To estimate the second sum, we use Lemma 4.2. Thus, we have to derive an upper bound
for the integral

I := n−1

∫

B

∫ 1

−1

w(α+β+ 1

2
,β)(t)

(1− z(x; t) + n−2)α+β+2
dtW α,β(x) dx.

Setting γ = α + β + 2, we already proved (cf. (4.7)) that
∫

B

∫ 1

−1

w(α+β+ 1

2
,β)(t)

(1− z(x; t) + n−2)γ
dtW α,β(x) dx ≤ cn2γ−2α−2β−2 = cn2,

provided that γ > α+ β +1. Hence, we obtain the bound I ≤ cn. From
(
n+δ−1

n

)
/
(
n+δ
n

)
=

δ
n+δ

it follows that ‖Kδ
n||1 is bounded uniformly in n. �
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