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ORTHOGONALITY OF JACOBI AND LAGUERRE
POLYNOMIALS FOR GENERAL PARAMETERS VIA

THE HADAMARD FINITE PART

RODICA D. COSTIN

Abstract. Orthogonality of the Jacobi and of Laguerre polyno-

mials, P
(α,β)
n and L

(α)
n , is established for α, β ∈ C \ Z

−
, α + β 6=

−2,−3, . . . using the Hadamard finite part of the integral which
gives their orthogonality in the classical cases. Riemann-Hilbert
problems that these polynomials satisfy are found.

The results are formally similar to the ones in the classical case
(when ℜα,ℜβ > −1).

1. Introduction

Orthogonality of classical polynomials is key for the study of many
properties of these polynomials and their applications, and it is impor-
tant to find constructive formulas for the bilinear functional that gives
orthogonality.
Such formulas have been usually obtained by taking the analytic

continuation (in the parameters) of the Borel measure of the classical
case. Carlson used an integral kernel to establish this continuation
and he proves the existence of Jacobi series for general parameters
[1]. More recently Kuijlaars, Mart́ınez-Finkelshtein and Orive find by
analytic continuation that orthogonality of Jacobi polynomials can be
established in some cases by integration on special paths in the complex
plane; they also derive an associated Riemann-Hilbert problem [9]; in
other cases incomplete or quasi-orthogonality is found, or even multiple
orthogonality conditions (see also [11]).
In the present paper analytic continuation is established using the

Hadamard finite part of (possibly) divergent integrals. Since these
can be manipulated much like integrals, the classical formulas which
are analytic in the parameters are formally similar. Orthogonality of

the Laguerre polynomials L
(α)
n is obtained in §3.1 for α ∈ C \ Z−.

Orthogonality of the Jacobi polynomials P
(α,β)
n is established in §4.1

for α, β ∈ C \ Z−, α + β 6= −2,−3, . . ..
1
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The existence of an associated Riemann-Hilbert problem for poly-
nomials orthogonal with respect to a Borel measure on the line, in-
troduced in [5], is now a well known result and technique which has
proved very useful in deducing properties of these polynomials - see [4],
[10], [8]. Associated Riemann-Hilbert problems in the present general-
ized context are found for the Laguerre polynomials in §3.2 and for the
Jacobi polynomials in §4.2.
It should be mentioned that once analyticiy in parameters of the

Hadamard finite part is established (in §2.2) the remaining results fol-
low by analytic continuation (direct proofs are given, just as a confirma-
tion, in the Appendix). However, classical boundary conditions of the
associated Riemann-Hilbert problems are not formulated in analytic
terms for non-positive parameters (see [10], [8]) and need reformula-
tion to insure uniqueness of the solution.

2. The Hadamard finite part of integrals
∫ x

0
tα−1f(t) dt

The concept of the finite part of a (possibly divergent) integral was
introduced by Hadamard [6] as a convenient way to express solutions
of differential equations. He showed that this finite part of an integral
(which coincides with the usual value if the integral is convergent)
can be combined and manipulated in much the same way as usual
integrals: they are additive on the interval of integration, changes of
variable are allowed, etc. (They do not behave well with respect to
inequalities.) The finite part can be calculated either by Taylor series,
or by integration along closed paths in the complex plane.
Subsequently the Hadamard finite part has been interpreted in terms

of distributions (see, e.g. [12]) and it turned out that many problems of
mathematical physics have solutions expressible as the Hadamard finite
part of (divergent) integrals, and numerical methods of calculations
have been subsequently developed (see for example [3]).
The present section contains some properties of the Hadamard finite

part of integrals of the type
∫ x

0
tα−1f(t) dt with f analytic at 0; when

ℜα ≤ 0, α 6∈ (−N), its Hadamard finite part is denoted here by

6

∫ x

0

tα−1f(t) dt

2.1. Notations. N = {0, 1, 2, . . .}. Z− = {−1,−2,−3, . . .}.

2.2. Analiticity in α. For r > 0 denote by D0 the disk

D0 = {x ∈ C; |x| < r}
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Let H(D0) the Banach space of functions which are analytic on the
disk D0 and continuous on D0 with the sup norm.
For α ∈ C, α 6∈ −N define the operator Jα on H(D0) by

(1) if f(x) =

∞
∑

n=0

fnx
n then Jαf (x) =

∞
∑

n=0

fn
n+ α

xn

Remark 1. Jαf solves the linear nonhomogeneous equation

(2)
du

dx
+

α

x
u =

1

x
f(x)

and it is its only solution which is analytic at x = 0.

This is easy to see by searching for solutions of (2) as power series at
x = 0. On the other hand, solving (2) using an integrating factor we
see that

Remark 2. If ℜα > 0 then

(3) Jαf (x) = x−α

∫ x

0

tα−1f(t) dt

Proposition 3 shows that all the functions defined by the integral (3)
can be analytically continued in α except for α ∈ −N where they have
poles of order one (manifestly seen in (1)).
Let 0 < r′ < r and denote D′

0 = {x ∈ C; |x| < r′}.

Proposition 3. The linear operator Jα : H(D0) → H(D′
0) defined by

(1) is compact and analytic in α on C \ (−N).

Proof.

For N ∈ N denote by J
[N ]
α the following finite rank and analytic in

α operators on H(D0):

J [N ]
α f (x) =

N
∑

n=0

fn
n + α

xn

Let δ > 0 and consider α such that dist(α,−N) ≥ δ.
We have |fn| ≤ ‖f‖r−n, therefore if |x| < r′ we have

∣

∣Jαf (x)−J [N ]
α f (x)

∣

∣ ≤ ‖f‖(r′/r)N
∞
∑

k=0

(r′/r)k

|k +N + α|
≤ ‖f‖

(r′/r)N

δ (1− r′/r)

which shows that J
[N ]
α converge to Jα in norm, and uniformly in α on

compact subsets of C \ (−N). �

Definition. For f ∈ H(D0) we denote

(4) 6

∫ x

0

tα−1f(t) dt = xαJαf (x)
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Note that the operator (4) is a bona fide integral for ℜα > 0, other-
wise it is possibly divergent. For ℜα ≤ 0, (4) is the Hadamard finite
part of the corresponding singular integral [6].
Remark. If f(x) is a multiple of x (or higher powers of x) there may

be an ambiguity in the choice of α in (4). For example, if f(t) = tg(t)
then

(5) 6

∫ x

0

tα−1f(t) dt = 6

∫ x

0

tαg(t) dt = xα+1Jα+1g (x)

The two results in (4) and (5) are nevertheless the same, since we have

Jα [xg] = xJα+1g

2.3. Usual properties of integrals. The Hadamard finite part (4)
satisfies usual properties of integrals: it is additive on intervals, shown
in Proposition 4, satisfies a (generalized) Fundamental Theorem of Cal-
culus, and as a consequence, integration by parts holds, shown by
Proposition 5.

Proposition 4. For f ∈ H(D0) and x, ξ ∈ D′
0 we have

6

∫ ξ

0

tα−1f(t) dt +

∫ x

ξ

tα−1f(t) dt = 6

∫ x

0

tα−1f(t) dt

The proof is found in §5.1.

Proposition 5. Let f, f ′, g, g′ ∈ H(D0) and x ∈ D′
0.

(i) We have

(6) 6

∫ x

0

d

dt
[tαf(t)] dt = xαf(x)

(ii) As a consequence, integration by parts holds:

(7) 6

∫

0

x

f(t)
d

dt
[tαg(t)] dt = xαf(x)g(x) − 6

∫

0

x

tαf ′(t) g(t) dt

The proof is found in §5.2.

2.4. A Riemann-Hilbert problem on half line. Let α ∈ C \ Z−

with (possibly) ℜα ≤ −1.
If f is a function analytic on1 [0,+∞) and f ∈ L1(0,+∞) we can

define

(8) 6

∫ ∞

0

tαf(t) dt = 6

∫ ξ

0

tαf(t) dt +

∫ ∞

ξ

tαf(t) dt

1In fact, analiticity of f is only required at x = 0.
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where ξ > 0 is any positive number so that f is analytic on the disk
|z| < ξ and the usual branch of tα is considered (i.e. |tα| = tℜα for
t > 0).
Note that (8) is analytic in α. Note that

6

∫ ∞

0

xαe−x dx = Γ(α + 1)

Notation. Let O0 be the set of germs of analytic functions at 0. We
write f(z) = zαO0 + O(1) for z → 0 to mean that there is f0 ∈ O0 so
that f(z)−zαf0(z) = O(1) for z → 0. (Obviously, it can be equivalently
required that f0(z) be a polynomial of degree ≥ −ℜα.)
Let p(x) be a polynomial. Consider the following Riemann-Hilbert

problem on (0,+∞):
(i) f is analytic on C \ [0,+∞) and the following limits exist for x > 0:

f+(x) = lim
z→x;ℜz>0

f(z), f−(x) = lim
z→x;ℜz<0

f(z)

(ii) f+(x) = f−(x) + p(x)xαe−x for x > 0.
(iii∞) f(z) = O

(

z−1
)

for z → ∞;
(iii0) f(z) = zαO0 +O(1) for z → 0.

Theorem 6. The Riemann-Hilbert problem (i)-(iii) has the unique so-
lution f = Cα[p] where

(9) Cα[p] (z) =
1

2πi
6

∫ ∞

0

tαp(t)e−t

t− z
dt

Proof of Theorem6.
Existence. We first establish that the function (9) satisfies (i)-(iii∞).
Let z0 ∈ C\ [0,+∞) and x > 0. Let ξ so that 0 < ξ < x and ξ < |z0|.
Write the Hadamard finite part in (9) as

(10) 6

∫ ∞

0

tαp(t)e−t

t− z
dt = 6

∫ ξ

0

tαp(t)e−t

t− z
dt+

∫ ∞

ξ

tαp(t)e−t

t− z
dt

The first term on the right side of (10) is analytic in z for |z| > ξ
(therefore it is analytic at z0): we can expand (t−z)−1 = −z−1

∑

n t
n/zn,

an absolutely convergent series which is obviously O (z−1) for z → ∞.
The last integral in (10) satisfies (i)-(iii∞) for |z| > ξ by the classical

theory (see, e.g. [10], [8]).
To establish that (9) satisfies (iii0) note that Cβ[1] (for any β 6∈ Z−)

satisfies the differential equation

(11)
dφ

dz
=

(

β

z
− 1

)

φ−
a

z
where a =

Γ(β + 1)

2πi
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(see §5.3 for details) having the general solution φ(z) = φan(z)+Czβe−z

with φan a function analytic at z = 0. Therefore Cβ [1] = zβO0 +O(1)
for z → 0. If p(x) is a polynomial with p(x) =

∑

k pkx
k then Cα[p] =

∑

k pkCα+k[1] = zαO0 +O(1) for z → 0.
Uniqueness. Let f be any function satisfying (i)-(iii). Then g =

f − Cα[p] is analytic on C \ [0,+∞) and g+(x) = g−(x) for x > 0,
therefore g is analytic on C \ {0} hence g(z) = ge(z) +

∑

n≥1
gn
zn

where
ge is an entire function and the Laurent series converges absolutely
for z 6= 0. Since g(z) = O (z−1) for z → ∞ then ge = 0. Since
g(z) = O (zα) for z → 0 then g(z) =

∑

1≤n≤−ℜα gn/z
n. Since, more

precisely, g(z) = zαO0 + O (1) for z → 0 and α 6∈ −N then g(z) ≡ 0,
establishing uniqueness. �

2.5. A Riemann-Hilbert problem on [0, 1]. Obviously, after a lin-
ear change of variable we can define the Hadamard singular part at any
point: if, say, we change t to 1 − t, then we can define for f analytic
at 1

6

∫ 1

x

(1− t)βf(t) dt := 6

∫ 1−x

0

sβ f(1− s) ds

representing the analytic continuation of the usual integral, defined for
β ∈ C \ Z−, and having the usual properties of integrals.
Let α, β ∈ C \ Z− (possibly with real parts less than −1).
For functions f analytic on [0, 1] define

(12) 6

∫ 1

0

tα(1− t)βf(t) dt := 6

∫ ξ0

0

tα(1− t)βf(t) dt

+

∫ ξ1

ξ0

tα(1− t)βf(t) dt+ 6

∫ 1

ξ1

tα(1− t)βf(t) dt

where 0 < ξ0 ≤ ξ1 < 1 are any numbers so that f is analytic on the
disks |z| < ξ0 and |1 − z| < 1 − ξ1, and the usual branches of tα and
(1− t)β are chosen.
Formula (12) gives the analytic continuation in α and β of the inte-

gral
∫ 1

0
tα(1− t)βf(t) dt beyond the region ℜα > −1, ℜβ > −1.

Denote by O1 the germs of functions analytic at 1.
Let p(x) be a polynomial. Consider the following Riemann-Hilbert

problem on (0, 1):
(i’) f is analytic on C\ [0, 1] and the following limits exist for x ∈ (0, 1):

f+(x) = lim
z→x;ℜz>0

f(z), f−(x) = lim
z→x;ℜz<0

f(z)

(ii’) f+(x) = f−(x) + xα(1− x)βp(x) for x ∈ (0, 1).
(iii’∞) f(z) = O(z−1) for z → ∞,
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(iii’0) f(z) = zαO0 +O(1) for z → 0 and
(iii’1) f(z) = (1− z)βO1 +O(1) for z → 1.

Theorem 7. The Riemann-Hilbert problem (i’)-(iii’) has the unique
solution f = Cα,β [p] where

(13) Cα,β[p] (z) =
1

2πi
6

∫ 1

0

tα(1− t)βp(t)

t− z
dt

Proof of Theorem7.
The proof is similar to that of Theorem6.
Existence. Using a splitting (12) for the Hadamard finite part (13)

(where ξ0 and 1−ξ1 are arbitrarily small) the finite part from 0 to ξ0 is
analytic for |z| > ξ0, and is O(z−1) for z → ∞, the finite part from ξ1
to 1 is analytic for |1−z| > 1−ξ1, and is order O(z−1) for z → ∞, and
by classical results, the middle integral is analytic in z for z 6∈ [0, 1],
has the property (ii’) for ξ0 < x < ξ1, and satisfies (iii’∞).
To establish the behavior of (13) for z → 0 note that Cα,β[1] (for any

α, β 6∈ Z−) satisfies the differential equation

(14)
dφ

dz
=

(

α

z
+

β

z − 1

)

φ−
a0
z

+
a1

z − 1
(a0,1 6= 0 constants)

(see §5.4 for details) having the general solution φ(z) = φ0;an(z) +
Czα(z−1)β with φ0;an a function analytic at z = 0. Therefore Cα,β [1] =

zαO0+O(1) for z → 0. If p(x) is a polynomial with p(x) =
∑degp

k=0 p0,kx
k

then Cα,β[p] =
∑

k p0,kCα+k,β[1] = zαO0 +O(1) for z → 0.
Similarly, the general solution of (14) has the form φ(z) = φ1;an(z)+

Czα(z−1)β with φ1;an a function analytic at z = 1, which implies that

Cα,β[p] =
∑degp

k=0 p1,kCα,β+k[1] = (1− z)βO1 +O(1) for z → 1.
Uniqueness. Let f be any function satisfying (i’)-(iii’). Then g =

f − Cα,β [p] is analytic on C \ [0, 1] and g+(x) = g−(x) for x ∈ (0, 1),
therefore g is analytic on C \ {0, 1}. Take an integer N > −ℜα,−ℜβ.
Then the function g̃(z) = zN (z − 1)Ng(z) is entire, since by (iii’0) and
(iii’1) we have limz→0 g̃(z) = 0 = limz→1 g̃(z). Therefore g(z) has at
most pole singularities at z = 0 and z = 1. Using again (iii’0,1), since
α, β 6∈ Z− then g is entire. Finally, by (iii’∞), then g = 0, proving
uniqueness. �

3. Laguerre polynomials for general parameter

3.1. Orthogonality of Laguerre polynomials for general param-

eter. The definition used here for the Laguerre polynomials L
(α)
n is
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through their Rodrigues’ formula:

(15) L(α)
n (x) = w(x)−1 dn

dxn
[xnw(x)] where w(x) = xαe−x

which can be rewritten as a product of differential operators acting on
the constant function 1:

(16) L(α)
n (x) = A1A2 . . .An1, where Ak = k + α− x+ x∂x

(this is not hard to show; see [2] for details).

Using (16) it is clear that the leading monomial of L
(α)
n is (−1)nxn.

In the classical case, when ℜα > −1, the Lagrange polynomials are
orthogonal with respect to the bilinear functional

(17) Bα(f, g) =

∫ ∞

0

xαe−xf(x)g(x) dx

Analytic continuation in α of (17) gives orthogonality in general:

Theorem 8. Let α ∈ C\Z−. Consider the bilinear functional on C[x]:

(18) Bα(f, g) = 6

∫ ∞

0

xαe−xf(x)g(x) dx

We have

Bα

(

L(α)
n , L

(α)
k

)

= 0 for k 6= n and Bα

(

L(α)
n , L(α)

n

)

= n! Γ(α + 2)

The proof of Theorem8 is immediate by analytic continuation, or
directly, using the Rodrigues’ formula (15) and integration by parts
(Proposition 5). �

Corollary 9. If pn is a polynomial of degree n so that

Bα

(

pn, x
k
)

= 0 for all k = 0, 1, . . . n− 1

then pn is a scalar multiple of L
(α)
n .

3.2. A Riemann-Hilbert problem for the Laguerre polynomials
with general parameter.

Theorem 10. Let α ∈ C \ Z−.
The following Riemann-Hilbert problem on (0,+∞) for Y (z) ∈ M2(C):

(I) Y is analytic on C\ [0,+∞) and the following limits exist for x > 0:

Y +(x) = lim
z→x;ℜz>0

Y (z), Y −(x) = lim
z→x;ℜz<0

Y (z)

(II) Y +(x) = Y −(x)

(

1 xαe−x

0 1

)

for x > 0.

(III∞) Y (z) =
(

I +O
(

z−1
))

(

zn 0
0 z−n

)

for z → ∞
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(III0) Y (z) =

(

O(1) zαO0 +O(1)
O(1) zαO0 +O(1)

)

for z → 0

has the unique solution

Y =

(

πn Cα[πn]
cnπn−1 cnCα[πn−1]

)

where Cα is the integral operator defined by (9), πn are the monic La-

guerre polynomials: πn = (−1)nL
(α)
n (with L

(α)
n defined by (15)) and

cn = −2πi [(n− 1)!Γ(α+ n)]−1.

Note that the asymptotic boundary conditions (III) coincide with
the classical ones when ℜα > 0 , or −1 < α < 0. Note also that the
expression for Y is the analytic continuation in α of the one in the
classical case.
Proof. The proof of Theorem10 is similar to that in the classical

case (see [4], [10], [8]). Details are provided here for completeness.
Since Y +

11 = Y −
11 then Y11 is analytic on C \ {0} therefore Y11 is

given by a convergent McLaurin series Y11 =
∑

k≥0 akz
k +

∑

k≥1 bk/z
k.

Since Y11 = O(1) (z → 0) then all bk = 0 and since by (III∞) Y11 =
zn(1 + O(z−1)) (z → ∞) then Y11 = pn a monic polynomial of degree
n.
Then Y +

12 = Y −
12 + pn(x)x

αe−x with Y12 = O(z−n−1) for z → ∞
and Y12 = zαO0 + O(1) for z → 0, therefore, by Theorem6, we have
Y12 = Cα[pn]. To ensure better decay for z → ∞ writing

1

t− z
= −

n−1
∑

k=0

tk

zk+1
+

tn

zn(t− z)

we have

Cα[pn](z) = −
1

zk+1

n−1
∑

k=0

1

2πi
6

∫ ∞

0

tkpn(t)t
αe−t dt

(19) +
1

zn
1

2πi
6

∫ ∞

0

tnpn(t)t
αe−t

t− z
dt

The last Hadamard finite part in (19) isO(z−1) by Theorem6. There-
fore, the condition that Y12 = O(z−n−1) for z → ∞ is equivalent to

6

∫ ∞

0

tkpn(t)t
αe−t dt = 0 for all k = 0, 1, . . . , n− 1

By Corollary 9 then pn is a multiple of L
(α)
n , and since pn is monic then

pn = πn and Y12 = Cα[πn].
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Next, we have Y +
21 = Y −

21 , with Y21 = O(zn−1) for z → ∞ and
Y21 = O(1) for z → 0 therefore Y21 is a polynomial of degree at most
n− 1: Y21 = qn−1.
Finally, Y +

22 = Y −
22 + qn−1(x)x

αe−x with Y22 = O(z−n) for z → ∞
and Y22 = zαO0 + O(1) for z → 0. By Theorem6 then Y22 = Cα[qn−1].
Since we must have Y22 = z−n(1 +O(z−1)), then in the decomposition
(19) of Cα[qn−1] we must have

(20) 6

∫ ∞

0

tkqn−1(t)t
αe−t dt = 0 for k = 0, 1, . . . , n− 2

and

(21) −
1

2πi
6

∫ ∞

0

tn−1qn−1(t)t
αe−t dt = 1

By Corollary 9 relations (20) imply that qn−1 = cnπn−1 = (−1)n−1cnL
(α)
n−1

and then (21) gives the stated value for cn. �

4. The Jacobi polynomials for general parameters

4.1. Orthogonality of the Jacobi polynomials for general pa-

rameters. The Jacobi polynomials P
(α,β)
n are considered here on the

interval [0, 1], defined by the Rodrigues’ formula:
(22)

P (α,β)
n (x) = w(x)−1 dn

dxn

[

(x− x2)nw(x)
]

where w(x) = xα(1− x)β

which can be rewritten as a product of differential operators acting on
the constant function 1:

(23) P (α,β)
n (x) = A1 . . .An1 where

Ak = k + α− x(2k + α+ β) + (x− x2)∂x

(see [2] for details).

Using (23) it is clear that the leading monomial of P
(α,β)
n is found as

∏n

k=1(−(2k + α + β)x− x2∂x), which equals Cnx
n with

(24) Cn = (−1)n
n
∏

k=1

(k + n + α + β)

Note that if α+β ∈ {−n−1,−n−2,−n−3, . . .} then the polynomial

P
(α,β)
n has degree less than n.
In the classical setting, when ℜα,ℜβ > −1, the Jacobi polynomials

are orthogonal with respect to the bilinear functional

(25) Bα,β(f, g) =

∫ 1

0

xα(1− x)βf(x)g(x) dx
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Analytic continuation of (25) in the parameters α, β gives orthogo-
nality in general:

Theorem 11. Let α, β ∈ C \ Z− with α + β 6∈ {−2,−3,−4 . . .}.
Consider the bilinear functional on C[x]:

(26) Bα,β(f, g) = 6

∫ 1

0

xα(1− x)βf(x)g(x) dx

We have

Bα,β

(

P (α,β)
n , P

(α,β)
k

)

= 0 for k 6= n

and

Bα,β

(

P (α,β)
n , P (α,β)

n

)

= (−1)n n!Cn

Γ(α+ n + 1)Γ(β + n + 1)

Γ(α+ β + n + 2)
6= 0

with Cn given by (24).

The results of Theorem8 follow by analytic continuation in α, β of
the corresponding results in the classical case. Alternatively, they can
be immediately deduced using the Rodrigues’ formula (15), integration
by parts (Proposition 5) and (30). �

Corollary 12. Let α, β ∈ C \ Z− with α + β 6∈ {−2,−3,−4 . . .}.
If pn is a polynomial of degree n so that

Bα,β

(

pn, x
k
)

= 0 for all k = 0, 1, . . . n− 1

then pn is a multiple of P
(α,β)
n .

4.2. A Riemann-Hilbert problem for the Jacobi polynomials
with general parameters.

Theorem 13. Let α, β ∈ C \ Z− with α + β 6∈ {−2,−3,−4 . . .}.
The Riemann-Hilbert problem on C \ [0, 1] for Y (z) ∈ M2(C):

(I’) Y is analytic on C\[0, 1] and the following limits exist for x ∈ (0, 1):

Y +(x) = lim
z→x;ℜz>0

Y (z), Y −(x) = lim
z→x;ℜz<0

Y (z)

(II’) Y +(x) = Y −(x)

(

1 xα(1− x)β

0 1

)

for x ∈ (0, 1).

(III’∞) Y (z) =
(

I +O
(

z−1
))

(

zn 0
0 z−n

)

for z → ∞

(III’0) Y (z) =

(

O(1) zαO0 +O(1)
O(1) zαO0 +O(1)

)

for z → 0

(III’1) Y (z) =

(

O(1) (z − 1)βO1 +O(1)
O(1) (z − 1)βO1 +O(1)

)

for z → 1
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has the unique solution

Y =

(

πn Cα,β [πn]
cnπn−1 cnCα,β[πn−1]

)

where Cα,β is the integral operator (13), πn are the monic Jacobi polyno-

mials: πn = C−1
n P

(α,β)
n and cn = (−1)n2πiCn−1 [(n− 1)!B(α+ n, β + n)]−1

(with P
(α,β)
n defined by (22), Cn given by (24), and B given by (30)).

Note that the asymptotic boundary conditions (III’) are the classical
ones if 0 6= ℜα,ℜβ > −1.
Proof.
The proof of Theorem13 is similar to that in the classical case (see

[4], [10], [8]). Details are provided here for completeness.
As in the proof of Theorem10 we obtain that Y11 = pn a monic

polynomial of degree n.
Then from Y +

12 = Y −
12 + pn(x)x

α(1 − x)β with Y12 = O(z−n−1) for
z → ∞ and Y12 = zαO0+O(1) for z → 0, and Y12 = (z−1)βO1+O(1)
for z → 1, by Theorem13, we have Y12 = Cα,β [pn]. To ensure better
decay for z → ∞ we need, as in the proof of Theorem10, that

(27) 6

∫ 1

0

tkpn(t)t
α(1− t)β

t− z
dt for all k = 0, 1, . . . , n− 1

By Corollary 12 then pn is a multiple of P
(α,β)
n and since pn is monic

then pn = πn and Y12 = Cα,β [πn].
Next, we have Y +

21 = Y −
21 , with Y21 = O(zn−1) for z → ∞ and

Y21 = O(1) for z → 0 therefore Y21 is a polynomial of degree at most
n− 1: Y21 = qn−1.
Finally, Y +

22 = Y −
22 + qn−1(x)x

α(1 − x)β with Y22 = O(z−n) for z →
∞, Y22 = zαO0 + O(1) for z → 0 and Y22 = (z − 1)βO1 + O(1) for
z → 1. By Theorem13 then Y22 = Cα,β[qn−1]. Since we must have
Y22 = z−n(1 +O(z−1)), then

(28) 6

∫ 1

0

tkqn−1(t)t
α(1− t)β dt = 0 for all k = 0, 1, . . . , n− 2

and

(29) −
1

2πi
6

∫ 1

0

tn−1qn−1(t)t
α(1− t)β dt = 1

By Corollary 12 relations (28) imply that qn−1 = cnπn−1 = cnC
−1
n−1L

(α)
n−1,

then (29) gives the stated value for cn. �
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5. Appendix

5.1. Proof of Proposition 4. The equality clearly holds for f(t) =
tn, n ∈ N and follows for all f by linearity, density of polynomials in
B(D0) and continuity of the operator Jα. �

5.2. Proof of Proposition 5. Note that d
dt
[tαf(t)] = tα−1[αf(t) +

tf ′(t)], so the definition (4) applies.
A simple calculation using (1) and (4) yields

6

∫

0

x d

dt
[tαf(t)] = 6

∫ x

0

d

dt

[

tα
∞
∑

n=0

fnt
n

]

dt = 6

∫ x

0

tα−1
∞
∑

n=0

(n+ α)fnt
n

=

∞
∑

n=0

fnx
n

�

5.3. Cβ [1] satisfies the equation (11). Denote

f(z) = 2πi Cβ [1](z) = 6

∫ ∞

0

tβe−t

t− z
dt

Differentiation and integration by parts give

f ′(z) = 6

∫ ∞

0

tβe−t

(t− z)2
dt = 6

∫ ∞

0

tβ(β/t− 1)e−t

t− z
dt

= 6

∫ ∞

0

β

z

(

1

t− z
−

1

t

)

tβe−t dt− 6

∫ ∞

0

tβe−t

t− z
dt

which gives (11).

5.4. Cα,β [1] satisfies the equation (14). Denote

f(z) = 2πi Cα,β[1] = 6

∫ 1

0

tα(1− t)β

t− z
dt

Differentiation and integration by parts give

f ′(z) = 6

∫ 1

0

tα(1− t)β

(t− z)2
dt = 6

∫ 1

0

tα(1− t)β

t− z

[

α

t
−

β

1− t

]

dt

= 6

∫ 1

0

tα(1− t)β
[

α

z

(

1

t− z
−

1

t

)

+
β

z − 1

(

1

t− z
+

1

1− t

)]

dt

which gives (14) with a0 = α
2πi

B(α, β + 1) and a1 = β

2πi
B(α + 1, β)

where

(30) B(r, s) = 6

∫ 1

0

tr−1(1− t)s−1 dt =
Γ(r)Γ(s)

Γ(r + s)
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(the last equality in (30) is valid by analytic continuation beyond the
region ℜr,ℜs > 0).
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