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Abstract

In this paper, we investigate approximation of quasi-projection operators in Besov
spaces Bµp,q, µ > 0, 1 ≤ p, q ≤ ∞. Suppose I is a countable index set. Let (φi)i∈I be a
family of functions in Lp(IRs), and let (φ̃i)i∈I be a family of functions in Lp̃(IRs), where
1/p+ 1/p̃ = 1. Let Q be the quasi-projection operator given by

Qf =
∑
i∈I

〈f, φ̃i〉φi, f ∈ Lp(IRs).

For h > 0, by σh we denote the scaling operator given by σhf(x) := f(x/h), x ∈ IRs.
Let Qh := σhQσ1/h. Under some mild conditions on the functions φi and φ̃i (i ∈ I), we
establish the following result: If 0 < µ < ν < k, and if Qg = g for all polynomials of degree
at most k − 1, then the estimate

|f −Qhf |Bµ
p,q

≤ Chν−µ|f |Bν
p,q

∀ f ∈ Bνp,q(IR
s)

is valid for all h > 0, where C is a constant independent of h and f . Density of quasi-
projection operators in Besov spaces is also discussed.

Key words and phrases. approximation order, moduli of smoothness, quasi-projection,
quasi-interpolation, Sobolev spaces, Besov spaces.
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Approximation by Quasi-projection Operators in Besov Spaces

§1. Introduction

A quasi-interpolant scheme can be described as follows. Suppose that (φi)i∈I is a
family of elements in a Banach space F , where I is a countable index set. Let (λi)i∈I be
a family of continuous functionals on F . The quasi-interpolant associated with (λi)i∈I
and (φi)i∈I is the linear operator Q given by

Qf :=
∑
i∈I

λi(f)φi, f ∈ F.

When the φi’s are univariate splines, quasi-interpolants were introduced by de Boor and
Fix [3] as efficient schemes of spline approximation. Similar schemes were discussed by
Lyche and Schumaker [18]. For Lp approximation, de Boor [1] proposed approximation
schemes using linear projectors induced by dual functionals. The idea of de Boor was
developed by Jia and Lei [13] and applied to shift-invariant spaces. Furthermore, Lei, Jia,
and Cheney [17] investigated approximation with scaled shift-invariant spaces by means
of certain integral operators. For L2 approximation, Jetter and Zhou [8] also employed a
projection method to realize the optimal approximation order as given in [2].

In this paper, we are interested in quasi-interpolation schemes in Besov spaces. Before
going on, we introduce some notation. Let IN, ZZ, and IR denote the set of positive integers,
integers, and real numbers, respectively. For a complex-valued (Lebesgue) measurable
function f on a measurable subset E of IRs, let

‖f‖p(E) :=
(∫

E

|f(x)|p dx
)1/p

for 1 ≤ p <∞,

and let ‖f‖∞(E) denote the essential supremum of |f | on E. When E = IRs, we omit the
reference to E. For 1 ≤ p ≤ ∞, by Lp(IRs) we denote the Banach space of all measurable
functions f on IRs such that ‖f‖p <∞.

Suppose 1 ≤ p ≤ ∞ and 1/p + 1/p̃ = 1. Let (φi)i∈I be a family of functions in
Lp(IRs), and let (φ̃i)i∈I be a family of functions in Lp̃(IRs). Each φ̃i induces the continuous
functional λi as follows:

λi(f) := 〈f, φ̃i〉 :=
∫

IRs

f(x)φ̃i(x) dx, f ∈ Lp(IRs).

Thus, we have
Qf =

∑
i∈I

〈f, φ̃i〉φi, f ∈ Lp(IRs). (1.1)

In this paper, Q is called a quasi-projection operator. We assume that there exists
a constant M > 0 such that ‖φi‖p ≤ M and ‖φ̃i‖p̃ ≤ M for all i ∈ I. Let (ci)i∈I be
a sequence of points in IRs with the property that there exists a positive integer N such
that each cube α + [0, 1]s (α ∈ ZZs) contains at most N points ci. Suppose that there

3



exists a constant K > 0 such that, for each i ∈ I, both φi and φ̃i are supported on the
cube ci+[−K,K]s. Under these assumptions, it can be easily proved that Q is a bounded
operator on Lp(IRs) (see Lemmas 3.1 and 3.2 in [11]). Moreover, for a locally integrable
function f on IRs, Qf is well defined.

Let IN0 := IN∪{0}. An element of INs
0 is called a multi-index. The length of a mutli-

index µ = (µ1, . . . , µs) ∈ INs
0 is given by |µ| := µ1 + · · · + µs. For µ = (µ1, . . . , µs) ∈ INs

0

and x = (x1, . . . , xs) ∈ IRs, define

xµ := xµ1
1 · · ·xµs

s .

The function x 7→ xµ (x ∈ IRs) is called a monomial and its (total) degree is |µ|. A
polynomial is a linear combination of monomials. The degree of a polynomial g =

∑
µ cµx

µ

is defined to be deg g := max{|µ| : cµ 6= 0}. By Πk we denote the linear space of all
polynomials of degree at most k.

Polynomial reproducibility plays a vital role in approximation. Using Fourier analysis,
Strang and Fix [21] gave conditions for polynomial reproduction of integer shifts of basis
functions. In fact, Schoenberg [20] already obtained the same conditions for the univariate
case. See the survey paper [12] for a comprehensive review on the Strang-Fix conditions
and related problems of approximation by refinable vectors of functions. In the setting of
shift-invariant spaces, the Strang-Fix conditions were used in Lemma 3.2 of [9] to guarantee
that

Qg = g ∀ g ∈ Πk−1, (1.2)

where k is a positive integer. Our study in this paper is not restricted to shift-invariant
spaces. But the polynomial reproducibility in (1.2) will be required throughout the paper.

For a vector y = (y1, . . . , ys) ∈ IRs, its norm is defined as |y| := max1≤j≤s |yj |. We
use Dy to denote the differential operator given by

Dyf(x) := lim
t→0

f(x+ ty)− f(x)
t

, x ∈ IRs.

Moreover, we use ∇y to denote the difference operator given by ∇yf = f − f(· − y). Let
e1, . . . , es be the unit coordinate vectors in IRs. For j = 1, . . . , s, we write Dj for Dej . For
a multi-index µ = (µ1, . . . , µs), Dµ stands for the differential operator Dµ1

1 · · ·Dµs
s . For a

measurable subset E in IRs, we define

‖f‖k,p(E) :=
k∑
j=0

|f |j,p(E) with |f |j,p(E) :=
∑
|µ|=j

‖Dµf‖p(E).

When E = IRs, we omit the reference to E. For 1 ≤ p ≤ ∞, the Sobolev space W k
p (IRs)

consists of all functions f ∈ Lp(IRs) such that ‖f‖k,p <∞
We are in a position to discuss approximation by quasi-projection operators in Sobolev

spaces. For h > 0, by σh we denote the scaling operator given by σhf(x) := f(x/h),
x ∈ IRs. Let Qh := σhQσ1/h. We have

Qhf(x) =
∑
i∈I

〈f, h−s/p̃φ̃i(·/h)〉h−s/pφi(x/h), x ∈ IRs. (1.3)

4



Evidently, ‖Qh‖p = ‖Q‖p. Suppose that I = ZZs and, for each i ∈ ZZs, φi = φ(· − i) and
φ̃i = φ̃(· − i), where φ ∈ Lp(IRs) and φ̃ ∈ Lp̃(IRs), 1/p + 1/p̃ = 1. Under some mild
decay conditions on φ and φ̃, it was proved in [13] that there exists a positive constant C
independent of h and f such that

‖f −Qhf‖p ≤ Chk|f |k,p ∀ f ∈W k
p (IRs),

provided Qg = g for all g ∈ Πk−1. Furthermore, it was shown by Kyriazis [16] that for
0 ≤ j < k,

|f −Qhf |j,p ≤ Chk−j |f |k,p ∀ f ∈W k
p (IRs). (1.4)

We will see that (1.4) remains true in the general setting.
Let us turn to the study of approximation in Besov spaces. For a positive integer k,

the kth modulus of smoothness of a function f in Lp(IRs) is defined by

ωk(f, h)p := sup
|y|≤h

∥∥∇k
yf

∥∥
p
, h ≥ 0.

In particular, ω(f, h)p := ω1(f, h)p is the modulus of continuity of f in Lp(IRs). For
µ > 0 and 1 ≤ p, q ≤ ∞, the Besov space Bµp,q = Bµp,q(IR

s) is the collection of those
functions f ∈ Lp(IRs) for which the following semi-norm is finite:

|f |Bµ
p,q

:=

{(∫∞
0

[
t−µωm(f, t)p

]q 1
t dt

)1/q
, for 1 ≤ q <∞,

supt>0

{
t−µωm(f, t)p

}
, for q = ∞,

where m is an integer greater than µ. It is easily seen that

|f |Bµ
p,q

≈


(∑

j∈ZZ

[
2jµωm(f, 2−j)p

]q)1/q

, for 1 ≤ q <∞,

supj∈ZZ

{
2jµωm(f, 2−j)p

}
, for q = ∞.

In view of this equivalent semi-norm, we have |f |Bµ
p,∞

≤ C|f |Bµ
p,q

and Bµp,q ⊆ Bµp,∞. The
norm for Bµp,q is

‖f‖Bµ
p,q

:= ‖f‖Lp + |f |Bµ
p,q
.

The main result of this paper is the following. Suppose that 0 < µ < ν < k and
1 ≤ p, q ≤ ∞. Let Q be the quasi-projection operator given in (1.1). If Qg = g for all
g ∈ Πk−1, then the estimate

|f −Qhf |Bµ
p,q

≤ Chν−µ|f |Bν
p,q

∀ f ∈ Bνp,q(IR
s) (1.5)

is valid for all h > 0, where C is a constant independent of h and f . This result will be
proved in §5. We review local polynomial approximation in §2 and discuss approximation
by quasi-projection operators in §3. In order to prove (1.5), in §4 we establish some crucial
estimates for moduli of smoothness.

For Triebel-Lizorkin spaces Fµp,q, results similar to (1.5) were obtained by Kyriazis in
[15] and [16]. Recently, DeVore and Ron [5] investigated approximation in Triebel-Lizorkin
spaces by using scattered shifts of a multivariate function. For basic properties of Besov
spaces and Triebel-Lizorkin spaces the reader is referred to the monograph [6] of Frazier,
Jawerth and Weiss.
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§2. Preliminaries

In this section we review local polynomial approximation and related properties of
moduli of smoothness.

For a measurable function f on IRs, there exists a maximal open set G in IRs such that
f vanishes almost everywhere on G. The complement of G in IRs is called the support of
f , and denoted suppf . If suppf is a compact set in IRs, then we say that f is compactly
supported.

By C(IRs) we denote the space of all continuous functions on IRs. For a nonnegative
integer k, we use Ck(IRs) to denote the linear space of those functions f ∈ C(IRs) for
which Dµf ∈ C(IRs) for all |µ| ≤ k. Moreover, by Ckc (IRs) we denote the linear space of
all functions in Ck(IRs) with compact support.

Lemma 2.1. Let u be a vector in IRs. Then the following inequality is valid for 1 ≤ p ≤ ∞:

‖∇k
uf‖p ≤ ‖Dk

uf‖p ∀ f ∈W k
p (IRs). (2.1)

Proof. It suffices to prove (2.1) for k = 1, since the general case can be verified by
induction on k. Suppose f ∈ W 1

p (IRs), 1 ≤ p ≤ ∞. Choose a function ρ ∈ C1
c (IR

s) such
that ρ(x) ≥ 0 for all x ∈ IRs and

∫
IRs ρ(x) dx = 1. For ε > 0, let fε := f∗ρε, where

ρε(x) := ρ(x/ε)/εs, x ∈ IRs. Then fε ∈ C1(IRs) and

∇ufε(x) =
∫ 1

0

Dufε(x− tu) dt, x ∈ IRs.

Applying the Minkowski inequality to the above integral, we obtain

‖∇ufε‖p ≤ ‖Dufε‖p, 1 ≤ p ≤ ∞.

But ‖Dufε‖p ≤ ‖Duf‖p. For 1 ≤ p <∞, we have limε→0 ‖fε − f‖p = 0. Hence,

‖∇uf‖p ≤ ‖Duf‖p. (2.2)

For p = ∞, we have limε→0 fε(x) = f(x), whenever x is a Lebesgue point of f (see, e.g.,
[7, Theorem 10.1]). Therefore, for almost every x ∈ IRs,

|∇uf(x)| = lim
ε→0

|∇ufε(x)| ≤ ‖Duf‖∞.

This shows that (2.2) is also valid for p = ∞.

For c ∈ IRs and a > 0, let Ea(c) denote the cube c+[−a, a]s. With a slight modification
of the preceding proof we can establish the following inequality for 1 ≤ p ≤ ∞:

‖∇k
uf‖p(Ea(c)) ≤ ‖Dk

uf‖p(Ea+kb(c)) ∀ f ∈W k
p (IRs) and |u| ≤ b. (2.3)

Let ψ be an element of Ckc (IRs) such that
∫
IRs ψ(x) dx = 1. For h > 0, let Aψ,h be the

linear operator on Lp(IRs) (1 ≤ p ≤ ∞) given by

(Aψ,hf)(x) :=
∫

IRs

(
f −∇k

uf
)
(x)ψh(u) du, f ∈ Lp(IRs), x ∈ IRs, (2.4)

where ψh := ψ(·/h)/hs. If there is no ambiguity about ψ, Aψ,h will be abbreviated as Ah.
When the dimension s = 1 and ψ is a properly normalized B-spline, these operators

were studied in classical approximation theory under the name “generalized Steklov func-
tions” (see [19, p. 50]). These operators were also used to study K-functionals (see [14]
and [4, Chap. 6]). In its general form, the following lemma was proved in [10].
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Lemma 2.2. Suppose f ∈ Lp(IRs) for 1 ≤ p < ∞ or f ∈ C(IRs) for p = ∞. Then the
following two inequalities are valid for h > 0:

‖f −Ahf‖p ≤ Cωk(f, h)p, (2.5)

and
|Ahf |k,p ≤ Cωk(f, h)p/hk, (2.6)

where C is a constant independent of h and f .

We observe that

f −∇k
uf =

k∑
m=1

(−1)m−1

(
k

m

)
f(· −mu).

Hence,

Aψ,hf(x) =
k∑

m=1

(−1)m−1

(
k

m

) ∫
IRs

f(x−mhu)ψ(u) du, x ∈ IRs.

Since ψ ∈ Ckc (IRs), we have Aψ,hf ∈ Ck(IRs).
Local polynomial approximation on intervals was studied by Whitney [22]. Whitney’s

results were extended by Johnen and Scherer [14] to bounded domains in IRs. The following
lemma gives an explicit scheme of approximation by polynomials on cubes. In what follows,
we use Cj (j ∈ IN) to denote a constant independent of h and f .

Lemma 2.3. Suppose f ∈ W k
p (IRs) for k ∈ IN and 1 ≤ p ≤ ∞. For c ∈ IRs and h > 0,

there exists a polynomial g ∈ Πk−1 such that

|f − g|j,p(c+ [−h, h]s) ≤ Chk−j |f |k,p(c+ [−2h, 2h]s), 0 ≤ j < k, (2.7)

where C is a constant independent of h and f .

Proof. Choose ψ ∈ Ck(IRs) such that
∫
IRs ψ(x) dx = 1 and suppψ ⊆

[
−1/k, 1/k

]s. Let
fh := Aψ,hf be as defined in (2.4), and let g be the Taylor polynomial of fh of degree k−1
at c. In order to prove (2.7), it suffices to show that

|f − fh|j,p(c+ [−h, h]s) ≤ Chk−j |f |k,p(c+ [−2h, 2h]s), 0 ≤ j < k, (2.8)

and
|fh − g|j,p(c+ [−h, h]s) ≤ Chk−j |f |k,p(c+ [−2h, 2h]s), 0 ≤ j < k. (2.9)

Let us prove (2.8) first. In view of the definition of fh, we have

f(x)− fh(x) =
∫

IRs

∇k
uf(x)ψh(u) du, x ∈ IRs.

For µ ∈ INs
0 with |µ| = j, we deduce that

Dµ(f − fh)(x) =
∫

IRs

∇k
uD

µf(x)ψh(u) du, x ∈ IRs.
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By Minkowski’s inequality for integrals, we obtain

‖Dµ(f − fh)‖p(Eh(c)) ≤
∫

IRs

‖∇k
uD

µf‖p(Eh(c))|ψh(u)| du.

Note that ∇k
uD

µf = ∇k−j
u ∇j

uD
µf . For u ∈ suppψh ⊆ [−h/k, h/k]s, (2.3) gives

‖∇k
uD

µf‖p(Eh(c)) ≤ ‖Dk−j
u ∇j

uD
µf‖p(E(2−j/k)h(c)) ≤ 2j‖Dk−j

u Dµf‖p(E2h(c)).

But Du = u1D1 + · · ·+ usDs for u = (u1, . . . , us). Hence, with |u| ≤ h/k we have

‖Dk−j
u Dµf‖p(E2h(c)) ≤ C1h

k−j |f |k,p(E2h(c)).

Combining the above estimates together, we conclude that

‖Dµ(f − fh)‖p(Eh(c)) ≤ C2h
k−j |f |k,p(E2h(c)).

This is true for every µ ∈ INs
0 with |µ| = j. Therefore, (2.8) is valid.

To prove (2.9) we observe that

|fh − g|j,p(c+ [−h, h]s) ≤ (2h)s/p|fh − g|j,∞(c+ [−h, h]s).

The Taylor theorem tells us that

|fh − g|j,∞(c+ [−h, h]s) ≤ C3h
k−j |fh|k,∞(c+ [−h, h]s).

Recall that fh =
∑k
m=1(−1)m−1

(
k
m

)
vm, where

vm(x) :=
∫

IRs

f(x−mu)ψh(u) du, x ∈ IRs.

By Hölder’s inequality, for |ν| = k we obtain

‖Dνvm‖∞(c+ [−h, h]s) ≤ C4‖Dνf‖p(c+ [−2h, 2h]s)h−s+s/p̃,

where 1/p̃+ 1/p = 1. Consequently,

|fh|k,∞(c+ [−h, h]s) ≤ C5|f |k,p(c+ [−2h, 2h]s)h−s/p.

Finally, (2.9) follows from the above estimates.
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§3. Quasi-projection Operators

Let Q be the quasi-projection operator defined in (1.1). For h > 0, let Qh be the op-
erator given in (1.3). In this section we study approximation by quasi-projection operators
in Sobolev spaces.

Throughout this paper we assume that, for each i ∈ I, both φi and φ̃i are supported
on the cube ci + [−K,K]s, where (ci)i∈I is a sequence of points in IRs with the property
that each cube α + [0, 1]s (α ∈ ZZs) contains at most N points ci. Consequently, σh(φi)
and σh(φ̃i) are supported on EKh(cih).

Theorem 3.1. Let j and k be two integers such that 0 ≤ j < k. Suppose that there exists
a constant M > 0 such that ‖φi‖j,p ≤M and ‖φ̃i‖p̃ ≤M for all i ∈ I, where 1 ≤ p, p̃ ≤ ∞
and 1/p+ 1/p̃ = 1. If Qg = g for all g ∈ Πk−1, then

|f −Qhf |j,p ≤ Chk−j |f |k,p ∀ f ∈W k
p (IRs), (3.1)

where C is a constant independent of f and h.

Proof. Fix α ∈ ZZs for the time being. For x ∈ Eh(αh) we have

Qhf(x) =
∑
i∈Iα

〈f, h−s/p̃σhφ̃i〉h−s/pσhφi(x),

where Iα := {i ∈ I : Eh(αh) ∩EKh(cih) 6= ∅}. In light of our assumption on the supports
of φi (i ∈ I), there exists an integer N ′ > 0 such that #Iα ≤ N ′ for all α ∈ ZZs, where
#Iα denotes the cardinality of Iα. Hence, there exists a constant K ′′ ≥ 1 such that⋃

i∈Iα

EKh(cih) ⊆ EK′′h(αh) ∀α ∈ ZZs.

Let K ′ := 2K ′′. By Lemma 2.3, there exists some gα,h ∈ Πk−1 such that

|f − gα,h|j,p(EK′′h(αh)) ≤ C1h
k−j |f |k,p(EK′h(αh)), 0 ≤ j < k. (3.2)

For µ ∈ INs
0 with |µ| = j, we have

Dµ
(
Qh(f − gα,h)

)
(x) =

∑
i∈Iα

〈f − gα,h, h
−s/p̃σhφ̃i〉h−jh−s/pDµφi(x/h), x ∈ Eh(αh).

Note that supp(σhφ̃i) ⊆ EK′′h(αh) for i ∈ Iα. Taking (3.2) into account, we obtain∣∣〈f − gα,h, h
−s/p̃σhφ̃i〉

∣∣ ≤M‖f − gα,h‖p(EK′′h(αh)) ≤ C1Mhk|f |k,p(EK′h(αh)).

Moreover, ‖h−jh−s/pDµφi(·/h)‖p ≤Mh−j . Therefore,

|Qh(f − gα,h)|j,p(Eh(αh)) ≤ C2h
k−j |f |k,p(EK′h(αh)). (3.3)
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Since Qhgα,h = gα,h, we have

Qhf − f = Qh(f − gα,h)− (f − gα,h).

Thus, (3.2) and (3.3) tell us that

|Qhf − f |j,p(Eh(αh)) ≤ C3h
k−j |f |k,p(EK′h(αh)). (3.4)

This verifies (3.1) for the case p = ∞. For 1 ≤ p <∞, we have

|Qhf − f |pj,p ≤
∑
α∈ZZs

|Qhf − f |pj,p(Eh(αh)) ≤
[
C3h

k−j]p ∑
α∈ZZs

|f |pk,p(EK′h(αh)).

Let χα(x) := 1 for x ∈ EK′h(αh) and χα(x) := 0 otherwise. For ν ∈ INs
0 with |ν| = k, we

have∑
α∈ZZs

‖Dνf‖pp(EK′h(αh)) =
∫

IRs

|Dνf(x)|p
∑
α∈ZZs

χα(x) dx ≤ (2K ′′ + 2)s
∫

IRs

|Dνf(x)|p dx.

Consequently, it follows from (3.4) that

|Qhf − f |j,p ≤ C3(2K ′′ + 2)s/phk−j |f |k,p.

This shows (3.1) for the case 1 ≤ p <∞.

As a corollary of Theorem 3.1, we have the following result.

Theorem 3.2. Suppose that f ∈ Lp(IRs) for 1 ≤ p < ∞ or f ∈ C(IRs) for p = ∞. If
Qg = g for all g ∈ Πk−1, then there exists a constant C > 0 such that

‖f −Qhf‖p ≤ Cωk(f, h)p ∀ f ∈W k
p (IRs). (3.5)

Proof. Let fh := Ahf , where Ah = Aψ,h be the operator defined in (2.4). We have

f −Qhf = (f − fh) + (fh −Qhfh) + (Qhfh −Qhf).

By (2.5), ‖f − fh‖p ≤ C1ωk(f, h)p. Moreover,

‖Qhfh −Qhf‖p ≤ ‖Qh‖‖fh − f‖p = ‖Q‖‖fh − f‖p.

Hence, it remains to estimate ‖fh −Qhfh‖p. Theorem 3.1 tells us that

‖fh −Qhfh‖p ≤ C2h
k|fh|k,p.

But it follows from (2.6) that hk|fh|k,p ≤ C3ωk(f, h)p. Combining the above estimates
together, we obtain (3.5).
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§4. Estimates of Moduli of Smoothness

In order to study approximation of quasi-projection operators in Besov spaces, we
need some estimates of moduli of smoothness.

For ν > 0, the Besov space Bνp,∞(IRs) is the same as the generalized Lipschitz space
Lip∗(ν, Lp(IRs)). By the very definition of Bνp,∞(IRs), we have ωk(φ, t) ≤ tν |φ|Bν

p,∞
for

0 < ν < k and t > 0. The following lemma was proved in [11, §3].

Lemma 4.1. Let (φi)i∈I be a family of functions in Lp(IRs) such that ‖φi‖Bν
p,∞

≤M for
all i ∈ I. Let Ei := suppφi, and let χi be the function on IRs given by χi(x) = 1 for x ∈ Ei
and χi(x) = 0 otherwise. If

∑
i∈I χi(x) ≤ A for all x ∈ IRs, and if k is an integer greater

than ν, then

ωk

(∑
i∈I

biφi, t
)
p
≤

(
(k + 1)A

)1−1/p
(∑
i∈I

|bi|p
)1/p

Mtν ∀ t > 0.

Let φ be a function defined on IRs. For k ∈ IN, h > 0, and u ∈ IRs, we have

∇k
u(σhφ)(x) =

k∑
m=0

(−1)m
(
k

m

)
φ
(x−mu

h

)
= σh

(
∇k
u/hφ

)
(x), x ∈ IRs.

It follows that ‖∇k
u(σhφ)‖p = hs/p‖∇k

u/hφ‖p. Consequently,∣∣h−s/pσhφ∣∣
Bν

p,q
= h−ν |φ|Bν

p,q
. (4.1)

The following lemma gives an estimate for moduli of smoothness, which will be needed
in the next section.

Lemma 4.2. Suppose 0 < ν < k, 1 ≤ p ≤ ∞ and 1/p + 1/p̃ = 1. Let Q be the quasi-
projection operator given in (1.1), and let Qh := σhQσ1/h be as given in (1.3). Suppose

that there exists a constant M > 0 such that ‖φi‖Bν
p,∞

≤M and ‖φ̃i‖p̃ ≤M for all i ∈ I.
Let f ∈ Lp(IRs) for 1 ≤ p <∞ or f ∈ C(IRs) for p = ∞. If Qg = g for all g ∈ Πk−1, then

ωk(Qhf, t)p ≤ Cωk(f, h)p
( t
h

)ν
, 0 < t ≤ h, (4.2)

where C is a constant independent of f , t, and h.

Proof. Let fh := Aψ,hf be as given in (2.4), where ψ is a function in Ck(IRs) with
suppψ ⊆ [−1/k, 1/k]s. Write Qhf = Qh(f − fh) +Qhfh. We have

Qh(f − fh) =
∑
i∈I

〈f − fh, h
−s/p̃σhφ̃i〉h−s/pσhφi.

Taking (4.1) into account, we obtain

ωk
(
h−s/pσhφi, t

)
p
≤ tν

∣∣h−s/pσhφi∣∣Bν
p,∞

= tνh−ν |φi|Bν
p,∞

≤M
( t
h

)ν
. (4.3)
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Let bi := 〈f − fh, h
−s/p̃σhφ̃i〉, i ∈ I. An application of Lemma 4.1 gives

ωk(Qh(f − fh), t)p ≤ C1

(∑
i∈I

|bi|p
)1/p( t

h

)ν
.

By [11, Lemma 3.1] we have (∑
i∈I

|bi|p
)1/p

≤ C2‖f − fh‖p.

But Lemma 2.2 tells us that ‖f − fh‖p ≤ C3ωk(f, h)p. Therefore,

ωk(Qh(f − fh), t)p ≤ Cωk(f, h)p
( t
h

)ν
, 0 < t ≤ h. (4.4)

It remains to estimate ωk(Qhfh, t)p. Fix α ∈ ZZs for the time being. For y ∈ IRs we
have

∇k
y(Qhfh)(x) =

∑
i∈Iα

〈fh, h−s/p̃σhφ̃i〉∇k
y

(
h−s/pσhφi

)
(x), x ∈ Eh(αh),

where Iα := {i ∈ I : supp(∇k
y(σhφi)) ∩ Eh(αh) 6= ∅}. Suppose |y| ≤ t ≤ h. Then

supp(∇k
y(σhφi)) ⊆ E(K+k)h(cih). Hence, there exists a positive integer N ′ such that

#Iα ≤ N ′ for all α ∈ ZZs. Moreover, there exists a constant K ′′ ≥ 1 such that

∪i∈IαE(K+k)h(cih) ⊆ EK′′h(αh) ∀α ∈ ZZs.

Let K ′ := 2K ′′. By Lemma 2.3, there exists some gα,h ∈ Πk−1 such that

‖fh − gα,h‖p(EK′′h(αh)) ≤ C4h
k|fh|k,p(EK′h(αh)). (4.5)

Since Qhgα,h = gα,h and ∇k
ygα,h = 0, we have ∇k

y(Qhfh) = ∇k
y(Qh(fh− gα,h)). Note that

∇k
y(Qh(fh − gα,h))(x) =

∑
i∈Iα

〈fh − gα,h, h
−s/p̃σhφ̃i〉∇k

y

(
h−s/pσhφi

)
(x), x ∈ Eh(αh).

For |y| ≤ t, it follows from (4.3) that∥∥∇k
y(h

−s/pσhφi)
∥∥
p
≤ ωk(h−s/pσhφi, t)p ≤M

( t
h

)ν
.

Moreover, for i ∈ Iα we have supp(σhφ̃i) ⊆ EK′′h(αh). Hence,∣∣〈fh − gα,h, h
−s/p̃σhφ̃i〉

∣∣ ≤M‖fh − gα,h‖p(EK′′h(αh)) ≤MC4h
k|fh|k,p(EK′h(αh)),

where (4.5) has been used to derive the last inequality. Consequently,∥∥∇k
y(Qhfh)

∥∥
p
(Eh(αh)) ≤ C5h

k|fh|k,p(EK′h(αh))
( t
h

)ν
.

Therefore, as was done in the proof of Theorem 3.1, we deduce that∥∥∇k
y(Qhfh)

∥∥
p
≤ Chk|fh|k,p

( t
h

)ν
, |y| ≤ t.

This in connection with (2.6) yields

ωk(Qhfh, t)p ≤ Cωk(f, h)p
( t
h

)ν
, 0 < t ≤ h. (4.6)

The desired estimate (4.2) follows from (4.4) and (4.6) at once.
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§5. Approximation in Besov Spaces

We are in a position to establish our main results on approximation of quasi-projection
operators in Besov spaces.

In this section we assume that k ∈ IN, 0 < µ < ν < k, and 1 ≤ p, q ≤ ∞. Let Q
be the quasi-projection operator given in (1.1) and, for h > 0, let Qh := σhQσ1/h be as
given in (1.3). Suppose that there exists a constant M > 0 such that ‖φi‖Bν

p,∞
≤ M and

‖φ̃i‖p̃ ≤M for all i ∈ I.
Let f be a function in Bνp,q(IR

s). If Qg = g for all g ∈ Πk−1, then Theorem 3.2 tells
us that ‖f −Qhf‖p ≤ C1ωk(f, h)p. But ωk(f, h)p ≤ hν |f |Bν

p,∞
≤ C2h

ν |f |Bν
p,q

. Hence,

‖f −Qhf‖p ≤ Chν |f |Bν
p,q
.

In many applications, we need to estimate approximation of Qhf to f in Besov spaces.
The following theorem provides such estimates.

Theorem 5.1. If Qg = g for all g ∈ Πk−1, then

|f −Qhf |Bµ
p,q

≤ Chν−µ|f |Bν
p,q

∀ f ∈ Bνp,q(IR
s),

where C is a constant independent of h and f .

Proof. Suppose f ∈ Bνp,q(IR
s). Let bj(f) := 2jµωk(f, 2−j)p, j ∈ ZZ. Given h > 0, we let

jh be the integer such that h ≤ 2−jh < 2h. Then 2jh ≤ h−1. By Theorem 3.2 we have

ωk(f −Qhf, 2−j)p ≤ 2k‖f −Qhf‖p ≤ C1ωk(f, h)p.

It follows that supj≤jh bj(f −Qhf) ≤ C1h
−µωk(f, h)p. Moreover,

( jh∑
j=−∞

[
bj(f −Qhf)]q

)1/q

≤ C1ωk(f, h)p

( jh∑
j=−∞

(2jµ)q
)1/q

, 1 ≤ q <∞.

Consequently, for 1 ≤ q ≤ ∞,

( jh∑
j=−∞

[
bj(f −Qhf)

]q)1/q

≤ C2h
−µωk(f, h)p ≤ C2h

ν−µ|f |Bν
p,∞

. (5.1)

Consider the case j > jh. We observe that

ωk(f −Qhf, 2−j)p ≤ ωk(f, 2−j)p + ωk(Qhf, 2−j)p.

Note that 2−j < h for j > jh. By Lemma 4.2 we have

ωk(Qhf, 2−j)p ≤ C3ωk(f, h)p

(
2−j

h

)ν
.
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It follows that( ∞∑
j=jh+1

[
bj(Qhf)

]q)1/q

≤ C3h
−νωk(f, h)p

( ∞∑
j=jh+1

[
2−j(ν−µ)

]q)1/q

.

Therefore, ( ∞∑
j=jh+1

[
bj(Qhf)

]q)1/q

≤ C4h
−µωk(f, h)p ≤ C4h

ν−µ|f |Bν
p,∞

. (5.2)

Since µ − ν < 0 and 2jh ≤ h−1, for j > jh we have 2j(µ−ν) ≤ 2jh(µ−ν) ≤ hν−µ. It
follows that 2jµ = 2j(µ−ν)2jν ≤ hν−µ2jν for j > jh. Therefore,( ∞∑

j=jh+1

[
bj(f)

]q)1/q

≤ hν−µ
( ∞∑
j=jh+1

[
2jνωk(f, 2−j)p

]q)1/q

≤ C5h
ν−µ|f |Bν

p,q
. (5.3)

Combining the estimates (5.1), (5.2) and (5.3) together, we obtain( ∞∑
j=−∞

[
2jµωk(f −Qhf, 2−j)p

]q)1/q

≤ Chν−µ|f |Bν
p,q
.

This completes the proof of the theorem.

Suppose φ ∈ Lp(IRs) and φ̃ ∈ Lp̃(IRs). In the case when φi = φ(·−i) and φ̃i = φ̃(·−i),
i ∈ ZZs, Kyriazis in [16, Theorem 4.6] obtained results similar to Theorem 5.1 for the
Triebel-Lizorkin spaces Fµp,q. But the case p = ∞ was excluded there. Note that for
1 ≤ p < ∞, Bµp,p and Fµp,p are identical and have equivalent norms. In particular, for
p = 2, it is well known that Bµ2,2(IR

s) is the same as the Sobolev space Hµ(IRs). Here,
Hµ = Hµ(IRs) is defined to be the space of all functions f in L2(IRs) such that the
semi-norm

|f |Hµ :=
(∫

IRs

|f̂(ξ)|2|ξ|2µ dξ
)1/2

is finite, where f̂ denotes the Fourier transform of f . The norm in Hµ is defined by
‖f‖Hµ := ‖f‖L2 + |f |Hµ . Moreover, the semi-norms | · |Bµ

2,2
and | · |Hµ are equivalent.

Consequently, the norms ‖·‖Bµ
2,2

and ‖·‖Hµ are equivalent.
Approximation by quasi-projection operators in the Lipschitz spaces Lip(µ,Lp(IRs))

(µ > 0, 1 ≤ p ≤ ∞) was discussed in [10]. When µ /∈ IN, we have Lip(µ,Lp(IRs)) =
Lip∗(µ,Lp(IRs)) = Bµp,∞(IRs). However, when µ ∈ IN, the Lipschitz space Lip(µ,Lp(IRs))
is a proper subspace of the generalized Lipschitz space Lip∗(µ,Lp(IRs)). So the present
paper does not completely cover the results in [10].

The following theorem gives a result on density of quasi-projection operators, which
will be useful for multiresolution analysis of Besov spaces.
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Theorem 5.2. Suppose f ∈ Bµp,q(IR
s), where 0 < µ < ν < k, 1 ≤ p ≤ ∞ and 1 ≤ q <∞.

If Qg = g for all g ∈ Πk−1, then

lim
h→0

|Qhf − f |Bµ
p,q

= 0.

Proof. Let bj(f) := 2jµωk(f, 2−j)p, j ∈ ZZ. Then

|Qhf − f |Bµ
p,q

=
( ∞∑
j=−∞

[
bj(Qhf − f)

]q)1/q

.

For h > 0, let jh be the integer such that h ≤ 2−jh < 2h. We have limh→0 jh = ∞. From
the proof of (5.1) we see that( jh∑

j=−∞

[
bj(f −Qhf)

]q)1/q

≤ C1h
−µωk(f, h)p ≤ C12µbjh(f).

For j > jh, we use the inequality ωk(f −Qhf, 2−j)p ≤ ωk(f, 2−j)p +ωk(Qhf, 2−j)p. From
the proof of (5.2) we deduce that( ∞∑

j=jh+1

[
bj(Qhf)

]q)1/q

≤ C2h
−µωk(f, h)p ≤ C22µbjh(f).

Since f ∈ Bµp,q, we have
∑∞
j=−∞

[
bj(f)

]q
<∞. Consequently,

lim
jh→∞

bjh(f) = 0 and lim
jh→∞

∞∑
j=jh+1

[
bj(f)

]q = 0.

This shows limh→0 |Qhf − f |Bµ
p,q

= 0, as desired.

The above theorem is no longer valid when q = ∞. This fact will be demonstrated by
the following example.

Let φ(x) := max{1 − |x|, 0} for x ∈ IR, and let φ̃(x) := 4 − 6x for 0 < x < 1 and
φ̃(x) := 0 for x ∈ IR \ (0, 1). For 1 ≤ p < ∞, we have φ ∈ Bνp,∞ for ν := 1 + 1/p and
φ̃ ∈ Bµp,∞ for µ := 1/p.

For i ∈ ZZ, let

φi(x) := φ(x− i) and φ̃i(x) := φ̃(x− i), x ∈ IR.

Then 〈φi, φ̃j〉 = δij , i, j ∈ ZZ, where δij stands for the Kronecker sign: δij = 1 for i = j
and δij = 0 for i 6= j.

Consider the quasi-projection operator Q given by

Qf :=
∑
i∈ZZ

〈f, φ̃i〉φi,
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where f is a locally integrable function on IR. We have Qφi = φi for all i ∈ ZZ. In other
words, Q is a projection operator. For a polynomial g in Π1, g can be represented as
g =

∑
i∈ZZ g(i)φi. Consequently, Qg = g for all g ∈ Π1.

For h > 0, let
Qhf :=

∑
i∈ZZ

〈f, h−1σhφ̃i〉σhφi.

Let f be the function given by f(x) := 1 for 0 < x < 1 and f(x) := 0 for x ∈ IR \ (0, 1).
Then f ∈ Bµp,∞ for µ = 1/p. For i < 0 and x > 0, we have σhφ̃i(x) = φ̃(x/h− i) = 0. Since
f is supported on [0, 1], we deduce that 〈f, h−1σhφ̃i〉 = 0 for i < 0. Suppose 0 < h < 1/2.
For i = 0 or i = 1, we have

〈f, h−1σhφ̃i〉 =
1
h

∫ 1

0

φ̃(x/h− i) dx =
∫ 1/h−i

−i
φ̃(y) dy =

∫ 1

0

(4− 6y) dy = 1.

For i ≥ 2 and x < h, we have σhφi(x) = φ(x/h− i) = 0. Consequently,

Qhf(x) = φ(x/h) + φ(x/h− 1) for x < h.

It follows that

Qhf(x) = 1 and Qhf(x− h) = φ(x/h− 1) = x/h for 0 < x < h.

Hence,
∇h(Qhf − f)(x) = −x/h for 0 < x < h.

For 1 ≤ p <∞, we thereby obtain

∥∥∇h(Qhf − f)
∥∥
p
≥

[∫ h

0

(x
h

)p
dx

]1/p

= (p+ 1)−1/ph1/p.

Finally, with µ = 1/p, we conclude that

|Qhf − f |Bµ
p,∞

≥ 1
h1/p

∥∥∇h(Qhf − f)
∥∥
p
≥ (p+ 1)−1/p.
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