Approximation by Quasi-projection Operators in Besov Spaces

Rong-Qing Jia \dagger
Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Canada T6G 2G1
rjia@ualberta.ca

[^0]
Abstract

In this paper, we investigate approximation of quasi-projection operators in Besov spaces $B_{p, q}^{\mu}, \mu>0,1 \leq p, q \leq \infty$. Suppose I is a countable index set. Let $\left(\phi_{i}\right)_{i \in I}$ be a family of functions in $L_{p}\left(\mathbb{R}^{s}\right)$, and let $\left(\tilde{\phi}_{i}\right)_{i \in I}$ be a family of functions in $L_{\tilde{p}}\left(\mathbb{R}^{s}\right)$, where $1 / p+1 / \tilde{p}=1$. Let Q be the quasi-projection operator given by $$
Q f=\sum_{i \in I}\left\langle f, \tilde{\phi}_{i}\right\rangle \phi_{i}, \quad f \in L_{p}\left(\mathbb{R}^{s}\right)
$$

For $h>0$, by σ_{h} we denote the scaling operator given by $\sigma_{h} f(x):=f(x / h), x \in \mathbb{R}^{s}$. Let $Q_{h}:=\sigma_{h} Q \sigma_{1 / h}$. Under some mild conditions on the functions ϕ_{i} and $\tilde{\phi}_{i}(i \in I)$, we establish the following result: If $0<\mu<\nu<k$, and if $Q g=g$ for all polynomials of degree at most $k-1$, then the estimate $$
\left|f-Q_{h} f\right|_{B_{p, q}^{\mu}} \leq C h^{\nu-\mu}|f|_{B_{p, q}^{\nu}} \quad \forall f \in B_{p, q}^{\nu}\left(\mathbb{R}^{s}\right)
$$ is valid for all $h>0$, where C is a constant independent of h and f. Density of quasiprojection operators in Besov spaces is also discussed.

Key words and phrases. approximation order, moduli of smoothness, quasi-projection, quasi-interpolation, Sobolev spaces, Besov spaces.

Approximation by Quasi-projection Operators in Besov Spaces

§1. Introduction

A quasi-interpolant scheme can be described as follows. Suppose that $\left(\phi_{i}\right)_{i \in I}$ is a family of elements in a Banach space F, where I is a countable index set. Let $\left(\lambda_{i}\right)_{i \in I}$ be a family of continuous functionals on F. The quasi-interpolant associated with $\left(\lambda_{i}\right)_{i \in I}$ and $\left(\phi_{i}\right)_{i \in I}$ is the linear operator Q given by

$$
Q f:=\sum_{i \in I} \lambda_{i}(f) \phi_{i}, \quad f \in F
$$

When the ϕ_{i} 's are univariate splines, quasi-interpolants were introduced by de Boor and Fix [3] as efficient schemes of spline approximation. Similar schemes were discussed by Lyche and Schumaker [18]. For L_{p} approximation, de Boor [1] proposed approximation schemes using linear projectors induced by dual functionals. The idea of de Boor was developed by Jia and Lei [13] and applied to shift-invariant spaces. Furthermore, Lei, Jia, and Cheney [17] investigated approximation with scaled shift-invariant spaces by means of certain integral operators. For L_{2} approximation, Jetter and Zhou [8] also employed a projection method to realize the optimal approximation order as given in [2].

In this paper, we are interested in quasi-interpolation schemes in Besov spaces. Before going on, we introduce some notation. Let \mathbb{N}, \mathbb{Z}, and \mathbb{R} denote the set of positive integers, integers, and real numbers, respectively. For a complex-valued (Lebesgue) measurable function f on a measurable subset E of \mathbb{R}^{s}, let

$$
\|f\|_{p}(E):=\left(\int_{E}|f(x)|^{p} d x\right)^{1 / p} \quad \text { for } 1 \leq p<\infty
$$

and let $\|f\|_{\infty}(E)$ denote the essential supremum of $|f|$ on E. When $E=\mathbb{R}^{s}$, we omit the reference to E. For $1 \leq p \leq \infty$, by $L_{p}\left(\mathbb{R}^{s}\right)$ we denote the Banach space of all measurable functions f on \mathbb{R}^{s} such that $\|f\|_{p}<\infty$.

Suppose $1 \leq p \leq \infty$ and $1 / p+1 / \tilde{p}=1$. Let $\left(\phi_{i}\right)_{i \in I}$ be a family of functions in $L_{p}\left(\mathbb{R}^{s}\right)$, and let $\left(\tilde{\phi}_{i}\right)_{i \in I}$ be a family of functions in $L_{\tilde{p}}\left(\mathbb{R}^{s}\right)$. Each $\tilde{\phi}_{i}$ induces the continuous functional λ_{i} as follows:

$$
\lambda_{i}(f):=\left\langle f, \tilde{\phi}_{i}\right\rangle:=\int_{\mathbb{R}^{s}} f(x) \tilde{\phi}_{i}(x) d x, \quad f \in L_{p}\left(\mathbb{R}^{s}\right)
$$

Thus, we have

$$
\begin{equation*}
Q f=\sum_{i \in I}\left\langle f, \tilde{\phi}_{i}\right\rangle \phi_{i}, \quad f \in L_{p}\left(\mathbb{R}^{s}\right) . \tag{1.1}
\end{equation*}
$$

In this paper, Q is called a quasi-projection operator. We assume that there exists a constant $M>0$ such that $\left\|\phi_{i}\right\|_{p} \leq M$ and $\left\|\tilde{\phi}_{i}\right\|_{\tilde{p}} \leq M$ for all $i \in I$. Let $\left(c_{i}\right)_{i \in I}$ be a sequence of points in \mathbb{R}^{s} with the property that there exists a positive integer N such that each cube $\alpha+[0,1]^{s}\left(\alpha \in \mathbb{Z}^{s}\right)$ contains at most N points c_{i}. Suppose that there
exists a constant $K>0$ such that, for each $i \in I$, both ϕ_{i} and $\tilde{\phi}_{i}$ are supported on the cube $c_{i}+[-K, K]^{s}$. Under these assumptions, it can be easily proved that Q is a bounded operator on $L_{p}\left(\mathbb{R}^{s}\right)$ (see Lemmas 3.1 and 3.2 in [11]). Moreover, for a locally integrable function f on $\mathbb{R}^{s}, Q f$ is well defined.

Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. An element of \mathbb{N}_{0}^{s} is called a multi-index. The length of a mutliindex $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathbb{N}_{0}^{s}$ is given by $|\mu|:=\mu_{1}+\cdots+\mu_{s}$. For $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathbb{N}_{0}^{s}$ and $x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{s}$, define

$$
x^{\mu}:=x_{1}^{\mu_{1}} \cdots x_{s}^{\mu_{s}} .
$$

The function $x \mapsto x^{\mu}\left(x \in \mathbb{R}^{s}\right)$ is called a monomial and its (total) degree is $|\mu|$. A polynomial is a linear combination of monomials. The degree of a polynomial $g=\sum_{\mu} c_{\mu} x^{\mu}$ is defined to be $\operatorname{deg} g:=\max \left\{|\mu|: c_{\mu} \neq 0\right\}$. By Π_{k} we denote the linear space of all polynomials of degree at most k.

Polynomial reproducibility plays a vital role in approximation. Using Fourier analysis, Strang and Fix [21] gave conditions for polynomial reproduction of integer shifts of basis functions. In fact, Schoenberg [20] already obtained the same conditions for the univariate case. See the survey paper [12] for a comprehensive review on the Strang-Fix conditions and related problems of approximation by refinable vectors of functions. In the setting of shift-invariant spaces, the Strang-Fix conditions were used in Lemma 3.2 of [9] to guarantee that

$$
\begin{equation*}
Q g=g \quad \forall g \in \Pi_{k-1}, \tag{1.2}
\end{equation*}
$$

where k is a positive integer. Our study in this paper is not restricted to shift-invariant spaces. But the polynomial reproducibility in (1.2) will be required throughout the paper.

For a vector $y=\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{R}^{s}$, its norm is defined as $|y|:=\max _{1 \leq j \leq s}\left|y_{j}\right|$. We use D_{y} to denote the differential operator given by

$$
D_{y} f(x):=\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t}, \quad x \in \mathbb{R}^{s} .
$$

Moreover, we use ∇_{y} to denote the difference operator given by $\nabla_{y} f=f-f(\cdot-y)$. Let e_{1}, \ldots, e_{s} be the unit coordinate vectors in \mathbb{R}^{s}. For $j=1, \ldots, s$, we write D_{j} for $D_{e_{j}}$. For a multi-index $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right), D^{\mu}$ stands for the differential operator $D_{1}^{\mu_{1}} \cdots D_{s}^{\mu_{s}}$. For a measurable subset E in \mathbb{R}^{s}, we define

$$
\|f\|_{k, p}(E):=\sum_{j=0}^{k}|f|_{j, p}(E) \quad \text { with } \quad|f|_{j, p}(E):=\sum_{|\mu|=j}\left\|D^{\mu} f\right\|_{p}(E) .
$$

When $E=\mathbb{R}^{s}$, we omit the reference to E. For $1 \leq p \leq \infty$, the Sobolev space $W_{p}^{k}\left(\mathbb{R}^{s}\right)$ consists of all functions $f \in L_{p}\left(\mathbb{R}^{s}\right)$ such that $\|f\|_{k, p}<\infty$

We are in a position to discuss approximation by quasi-projection operators in Sobolev spaces. For $h>0$, by σ_{h} we denote the scaling operator given by $\sigma_{h} f(x):=f(x / h)$, $x \in \mathbb{R}^{s}$. Let $Q_{h}:=\sigma_{h} Q \sigma_{1 / h}$. We have

$$
\begin{equation*}
Q_{h} f(x)=\sum_{i \in I}\left\langle f, h^{-s / \tilde{p}} \tilde{\phi}_{i}(\cdot / h)\right\rangle h^{-s / p} \phi_{i}(x / h), \quad x \in \mathbb{R}^{s} . \tag{1.3}
\end{equation*}
$$

Evidently, $\left\|Q_{h}\right\|_{p}=\|Q\|_{p}$. Suppose that $I=\mathbb{Z}^{s}$ and, for each $i \in \mathbb{Z}^{s}, \phi_{i}=\phi(\cdot-i)$ and $\tilde{\phi}_{i}=\tilde{\phi}(\cdot-i)$, where $\phi \in L_{p}\left(\mathbb{R}^{s}\right)$ and $\tilde{\phi} \in L_{\tilde{p}}\left(\mathbb{R}^{s}\right), 1 / p+1 / \tilde{p}=1$. Under some mild decay conditions on ϕ and $\tilde{\phi}$, it was proved in [13] that there exists a positive constant C independent of h and f such that

$$
\left\|f-Q_{h} f\right\|_{p} \leq C h^{k}|f|_{k, p} \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right)
$$

provided $Q g=g$ for all $g \in \Pi_{k-1}$. Furthermore, it was shown by Kyriazis [16] that for $0 \leq j<k$,

$$
\begin{equation*}
\left|f-Q_{h} f\right|_{j, p} \leq C h^{k-j}|f|_{k, p} \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right) \tag{1.4}
\end{equation*}
$$

We will see that (1.4) remains true in the general setting.
Let us turn to the study of approximation in Besov spaces. For a positive integer k, the k th modulus of smoothness of a function f in $L_{p}\left(\mathbb{R}^{s}\right)$ is defined by

$$
\omega_{k}(f, h)_{p}:=\sup _{|y| \leq h}\left\|\nabla_{y}^{k} f\right\|_{p}, \quad h \geq 0
$$

In particular, $\omega(f, h)_{p}:=\omega_{1}(f, h)_{p}$ is the modulus of continuity of f in $L_{p}\left(\mathbb{R}^{s}\right)$. For $\mu>0$ and $1 \leq p, q \leq \infty$, the Besov space $B_{p, q}^{\mu}=B_{p, q}^{\mu}\left(\mathbb{R}^{s}\right)$ is the collection of those functions $f \in L_{p}\left(\mathbb{R}^{s}\right)$ for which the following semi-norm is finite:

$$
|f|_{B_{p, q}^{\mu}}:= \begin{cases}\left(\int_{0}^{\infty}\left[t^{-\mu} \omega_{m}(f, t)_{p}\right]^{q} \frac{1}{t} d t\right)^{1 / q}, & \text { for } 1 \leq q<\infty \\ \sup _{t>0}\left\{t^{-\mu} \omega_{m}(f, t)_{p}\right\}, & \text { for } q=\infty\end{cases}
$$

where m is an integer greater than μ. It is easily seen that

$$
|f|_{B_{p, q}^{\mu}} \approx \begin{cases}\left(\sum_{j \in \mathbb{Z}}\left[2^{j \mu} \omega_{m}\left(f, 2^{-j}\right)_{p}\right]^{q}\right)^{1 / q}, & \text { for } 1 \leq q<\infty \\ \sup _{j \in \mathbb{Z}}\left\{2^{j \mu} \omega_{m}\left(f, 2^{-j}\right)_{p}\right\}, & \text { for } q=\infty\end{cases}
$$

In view of this equivalent semi-norm, we have $|f|_{B_{p, \infty}^{\mu}} \leq C|f|_{B_{p, q}}$ and $B_{p, q}^{\mu} \subseteq B_{p, \infty}^{\mu}$. The norm for $B_{p, q}^{\mu}$ is

$$
\|f\|_{B_{p, q}^{\mu}}:=\|f\|_{L_{p}}+|f|_{B_{p, q}^{\mu}} .
$$

The main result of this paper is the following. Suppose that $0<\mu<\nu<k$ and $1 \leq p, q \leq \infty$. Let Q be the quasi-projection operator given in (1.1). If $Q g=g$ for all $g \in \Pi_{k-1}$, then the estimate

$$
\begin{equation*}
\left|f-Q_{h} f\right|_{B_{p, q}^{\mu}} \leq C h^{\nu-\mu}|f|_{B_{p, q}^{\nu}} \quad \forall f \in B_{p, q}^{\nu}\left(\mathbb{R}^{s}\right) \tag{1.5}
\end{equation*}
$$

is valid for all $h>0$, where C is a constant independent of h and f. This result will be proved in $\S 5$. We review local polynomial approximation in $\S 2$ and discuss approximation by quasi-projection operators in $\S 3$. In order to prove (1.5), in $\S 4$ we establish some crucial estimates for moduli of smoothness.

For Triebel-Lizorkin spaces $F_{p, q}^{\mu}$, results similar to (1.5) were obtained by Kyriazis in [15] and [16]. Recently, DeVore and Ron [5] investigated approximation in Triebel-Lizorkin spaces by using scattered shifts of a multivariate function. For basic properties of Besov spaces and Triebel-Lizorkin spaces the reader is referred to the monograph [6] of Frazier, Jawerth and Weiss.

§2. Preliminaries

In this section we review local polynomial approximation and related properties of moduli of smoothness.

For a measurable function f on \mathbb{R}^{s}, there exists a maximal open set G in \mathbb{R}^{s} such that f vanishes almost everywhere on G. The complement of G in \mathbb{R}^{s} is called the support of f, and denoted $\operatorname{supp} f$. If $\operatorname{supp} f$ is a compact set in \mathbb{R}^{s}, then we say that f is compactly supported.

By $C\left(\mathbb{R}^{s}\right)$ we denote the space of all continuous functions on \mathbb{R}^{s}. For a nonnegative integer k, we use $C^{k}\left(\mathbb{R}^{s}\right)$ to denote the linear space of those functions $f \in C\left(\mathbb{R}^{s}\right)$ for which $D^{\mu} f \in C\left(\mathbb{R}^{s}\right)$ for all $|\mu| \leq k$. Moreover, by $C_{c}^{k}\left(\mathbb{R}^{s}\right)$ we denote the linear space of all functions in $C^{k}\left(\mathbb{R}^{s}\right)$ with compact support.

Lemma 2.1. Let u be a vector in \mathbb{R}^{s}. Then the following inequality is valid for $1 \leq p \leq \infty$:

$$
\begin{equation*}
\left\|\nabla_{u}^{k} f\right\|_{p} \leq\left\|D_{u}^{k} f\right\|_{p} \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right) \tag{2.1}
\end{equation*}
$$

Proof. It suffices to prove (2.1) for $k=1$, since the general case can be verified by induction on k. Suppose $f \in W_{p}^{1}\left(\mathbb{R}^{s}\right), 1 \leq p \leq \infty$. Choose a function $\rho \in C_{c}^{1}\left(\mathbb{R}^{s}\right)$ such that $\rho(x) \geq 0$ for all $x \in \mathbb{R}^{s}$ and $\int_{\mathbb{R}^{s}} \rho(x) d x=1$. For $\varepsilon>0$, let $f_{\varepsilon}:=f * \rho_{\varepsilon}$, where $\rho_{\varepsilon}(x):=\rho(x / \varepsilon) / \varepsilon^{s}, x \in \mathbb{R}^{s}$. Then $f_{\varepsilon} \in C^{1}\left(\mathbb{R}^{s}\right)$ and

$$
\nabla_{u} f_{\varepsilon}(x)=\int_{0}^{1} D_{u} f_{\varepsilon}(x-t u) d t, \quad x \in \mathbb{R}^{s}
$$

Applying the Minkowski inequality to the above integral, we obtain

$$
\left\|\nabla_{u} f_{\varepsilon}\right\|_{p} \leq\left\|D_{u} f_{\varepsilon}\right\|_{p}, \quad 1 \leq p \leq \infty
$$

But $\left\|D_{u} f_{\varepsilon}\right\|_{p} \leq\left\|D_{u} f\right\|_{p}$. For $1 \leq p<\infty$, we have $\lim _{\varepsilon \rightarrow 0}\left\|f_{\varepsilon}-f\right\|_{p}=0$. Hence,

$$
\begin{equation*}
\left\|\nabla_{u} f\right\|_{p} \leq\left\|D_{u} f\right\|_{p} . \tag{2.2}
\end{equation*}
$$

For $p=\infty$, we have $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}(x)=f(x)$, whenever x is a Lebesgue point of f (see, e.g., [7, Theorem 10.1]). Therefore, for almost every $x \in \mathbb{R}^{s}$,

$$
\left|\nabla_{u} f(x)\right|=\lim _{\varepsilon \rightarrow 0}\left|\nabla_{u} f_{\varepsilon}(x)\right| \leq\left\|D_{u} f\right\|_{\infty} .
$$

This shows that (2.2) is also valid for $p=\infty$.
For $c \in \mathbb{R}^{s}$ and $a>0$, let $E_{a}(c)$ denote the cube $c+[-a, a]^{s}$. With a slight modification of the preceding proof we can establish the following inequality for $1 \leq p \leq \infty$:

$$
\begin{equation*}
\left\|\nabla_{u}^{k} f\right\|_{p}\left(E_{a}(c)\right) \leq\left\|D_{u}^{k} f\right\|_{p}\left(E_{a+k b}(c)\right) \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right) \quad \text { and } \quad|u| \leq b . \tag{2.3}
\end{equation*}
$$

Let ψ be an element of $C_{c}^{k}\left(\mathbb{R}^{s}\right)$ such that $\int_{\mathbb{R}^{s}} \psi(x) d x=1$. For $h>0$, let $A_{\psi, h}$ be the linear operator on $L_{p}\left(\mathbb{R}^{s}\right)(1 \leq p \leq \infty)$ given by

$$
\begin{equation*}
\left(A_{\psi, h} f\right)(x):=\int_{\mathbb{R}^{s}}\left(f-\nabla_{u}^{k} f\right)(x) \psi_{h}(u) d u, \quad f \in L_{p}\left(\mathbb{R}^{s}\right), x \in \mathbb{R}^{s} \tag{2.4}
\end{equation*}
$$

where $\psi_{h}:=\psi(\cdot / h) / h^{s}$. If there is no ambiguity about $\psi, A_{\psi, h}$ will be abbreviated as A_{h}.
When the dimension $s=1$ and ψ is a properly normalized B-spline, these operators were studied in classical approximation theory under the name "generalized Steklov functions" (see [19, p. 50]). These operators were also used to study K-functionals (see [14] and [4, Chap. 6]). In its general form, the following lemma was proved in [10].

Lemma 2.2. Suppose $f \in L_{p}\left(\mathbb{R}^{s}\right)$ for $1 \leq p<\infty$ or $f \in C\left(\mathbb{R}^{s}\right)$ for $p=\infty$. Then the following two inequalities are valid for $h>0$:

$$
\begin{equation*}
\left\|f-A_{h} f\right\|_{p} \leq C \omega_{k}(f, h)_{p} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{h} f\right|_{k, p} \leq C \omega_{k}(f, h)_{p} / h^{k} \tag{2.6}
\end{equation*}
$$

where C is a constant independent of h and f.
We observe that

$$
f-\nabla_{u}^{k} f=\sum_{m=1}^{k}(-1)^{m-1}\binom{k}{m} f(\cdot-m u)
$$

Hence,

$$
A_{\psi, h} f(x)=\sum_{m=1}^{k}(-1)^{m-1}\binom{k}{m} \int_{\mathbb{R}^{s}} f(x-m h u) \psi(u) d u, \quad x \in \mathbb{R}^{s}
$$

Since $\psi \in C_{c}^{k}\left(\mathbb{R}^{s}\right)$, we have $A_{\psi, h} f \in C^{k}\left(\mathbb{R}^{s}\right)$.
Local polynomial approximation on intervals was studied by Whitney [22]. Whitney's results were extended by Johnen and Scherer [14] to bounded domains in \mathbb{R}^{s}. The following lemma gives an explicit scheme of approximation by polynomials on cubes. In what follows, we use $C_{j}(j \in \mathbb{N})$ to denote a constant independent of h and f.
Lemma 2.3. Suppose $f \in W_{p}^{k}\left(\mathbb{R}^{s}\right)$ for $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. For $c \in \mathbb{R}^{s}$ and $h>0$, there exists a polynomial $g \in \Pi_{k-1}$ such that

$$
\begin{equation*}
|f-g|_{j, p}\left(c+[-h, h]^{s}\right) \leq C h^{k-j}|f|_{k, p}\left(c+[-2 h, 2 h]^{s}\right), \quad 0 \leq j<k \tag{2.7}
\end{equation*}
$$

where C is a constant independent of h and f.
Proof. Choose $\psi \in C^{k}\left(\mathbb{R}^{s}\right)$ such that $\int_{\mathbb{R}^{s}} \psi(x) d x=1$ and $\operatorname{supp} \psi \subseteq[-1 / k, 1 / k]^{s}$. Let $f_{h}:=A_{\psi, h} f$ be as defined in (2.4), and let g be the Taylor polynomial of f_{h} of degree $k-1$ at c. In order to prove (2.7), it suffices to show that

$$
\begin{equation*}
\left|f-f_{h}\right|_{j, p}\left(c+[-h, h]^{s}\right) \leq C h^{k-j}|f|_{k, p}\left(c+[-2 h, 2 h]^{s}\right), \quad 0 \leq j<k \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{h}-g\right|_{j, p}\left(c+[-h, h]^{s}\right) \leq C h^{k-j}|f|_{k, p}\left(c+[-2 h, 2 h]^{s}\right), \quad 0 \leq j<k \tag{2.9}
\end{equation*}
$$

Let us prove (2.8) first. In view of the definition of f_{h}, we have

$$
f(x)-f_{h}(x)=\int_{\mathbb{R}^{s}} \nabla_{u}^{k} f(x) \psi_{h}(u) d u, \quad x \in \mathbb{R}^{s}
$$

For $\mu \in \mathbb{N}_{0}^{s}$ with $|\mu|=j$, we deduce that

$$
D^{\mu}\left(f-f_{h}\right)(x)=\int_{\mathbb{R}^{s}} \nabla_{u}^{k} D^{\mu} f(x) \psi_{h}(u) d u, \quad x \in \mathbb{R}^{s}
$$

By Minkowski's inequality for integrals, we obtain

$$
\left\|D^{\mu}\left(f-f_{h}\right)\right\|_{p}\left(E_{h}(c)\right) \leq \int_{\mathbb{R}^{s}}\left\|\nabla_{u}^{k} D^{\mu} f\right\|_{p}\left(E_{h}(c)\right)\left|\psi_{h}(u)\right| d u
$$

Note that $\nabla_{u}^{k} D^{\mu} f=\nabla_{u}^{k-j} \nabla_{u}^{j} D^{\mu} f$. For $u \in \operatorname{supp} \psi_{h} \subseteq[-h / k, h / k]^{s},(2.3)$ gives

$$
\left\|\nabla_{u}^{k} D^{\mu} f\right\|_{p}\left(E_{h}(c)\right) \leq\left\|D_{u}^{k-j} \nabla_{u}^{j} D^{\mu} f\right\|_{p}\left(E_{(2-j / k) h}(c)\right) \leq 2^{j}\left\|D_{u}^{k-j} D^{\mu} f\right\|_{p}\left(E_{2 h}(c)\right) .
$$

But $D_{u}=u_{1} D_{1}+\cdots+u_{s} D_{s}$ for $u=\left(u_{1}, \ldots, u_{s}\right)$. Hence, with $|u| \leq h / k$ we have

$$
\left\|D_{u}^{k-j} D^{\mu} f\right\|_{p}\left(E_{2 h}(c)\right) \leq C_{1} h^{k-j}|f|_{k, p}\left(E_{2 h}(c)\right) .
$$

Combining the above estimates together, we conclude that

$$
\left\|D^{\mu}\left(f-f_{h}\right)\right\|_{p}\left(E_{h}(c)\right) \leq C_{2} h^{k-j}|f|_{k, p}\left(E_{2 h}(c)\right)
$$

This is true for every $\mu \in \mathbb{N}_{0}^{s}$ with $|\mu|=j$. Therefore, (2.8) is valid.
To prove (2.9) we observe that

$$
\left|f_{h}-g\right|_{j, p}\left(c+[-h, h]^{s}\right) \leq(2 h)^{s / p}\left|f_{h}-g\right|_{j, \infty}\left(c+[-h, h]^{s}\right)
$$

The Taylor theorem tells us that

$$
\left|f_{h}-g\right|_{j, \infty}\left(c+[-h, h]^{s}\right) \leq C_{3} h^{k-j}\left|f_{h}\right|_{k, \infty}\left(c+[-h, h]^{s}\right) .
$$

Recall that $f_{h}=\sum_{m=1}^{k}(-1)^{m-1}\binom{k}{m} v_{m}$, where

$$
v_{m}(x):=\int_{\mathbb{R}^{s}} f(x-m u) \psi_{h}(u) d u, \quad x \in \mathbb{R}^{s} .
$$

By Hölder's inequality, for $|\nu|=k$ we obtain

$$
\left\|D^{\nu} v_{m}\right\|_{\infty}\left(c+[-h, h]^{s}\right) \leq C_{4}\left\|D^{\nu} f\right\|_{p}\left(c+[-2 h, 2 h]^{s}\right) h^{-s+s / \tilde{p}}
$$

where $1 / \tilde{p}+1 / p=1$. Consequently,

$$
\left|f_{h}\right|_{k, \infty}\left(c+[-h, h]^{s}\right) \leq C_{5}|f|_{k, p}\left(c+[-2 h, 2 h]^{s}\right) h^{-s / p} .
$$

Finally, (2.9) follows from the above estimates.

§3. Quasi-projection Operators

Let Q be the quasi-projection operator defined in (1.1). For $h>0$, let Q_{h} be the operator given in (1.3). In this section we study approximation by quasi-projection operators in Sobolev spaces.

Throughout this paper we assume that, for each $i \in I$, both ϕ_{i} and $\tilde{\phi}_{i}$ are supported on the cube $c_{i}+[-K, K]^{s}$, where $\left(c_{i}\right)_{i \in I}$ is a sequence of points in \mathbb{R}^{s} with the property that each cube $\alpha+[0,1]^{s}\left(\alpha \in \mathbb{Z}^{s}\right)$ contains at most N points c_{i}. Consequently, $\sigma_{h}\left(\phi_{i}\right)$ and $\sigma_{h}\left(\tilde{\phi}_{i}\right)$ are supported on $E_{K h}\left(c_{i} h\right)$.

Theorem 3.1. Let j and k be two integers such that $0 \leq j<k$. Suppose that there exists a constant $M>0$ such that $\left\|\phi_{i}\right\|_{j, p} \leq M$ and $\left\|\tilde{\phi}_{i}\right\|_{\tilde{p}} \leq M$ for all $i \in I$, where $1 \leq p, \tilde{p} \leq \infty$ and $1 / p+1 / \tilde{p}=1$. If $Q g=g$ for all $g \in \Pi_{k-1}$, then

$$
\begin{equation*}
\left|f-Q_{h} f\right|_{j, p} \leq C h^{k-j}|f|_{k, p} \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right), \tag{3.1}
\end{equation*}
$$

where C is a constant independent of f and h.
Proof. Fix $\alpha \in \mathbb{Z}^{s}$ for the time being. For $x \in E_{h}(\alpha h)$ we have

$$
Q_{h} f(x)=\sum_{i \in I_{\alpha}}\left\langle f, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle h^{-s / p} \sigma_{h} \phi_{i}(x),
$$

where $I_{\alpha}:=\left\{i \in I: E_{h}(\alpha h) \cap E_{K h}\left(c_{i} h\right) \neq \emptyset\right\}$. In light of our assumption on the supports of $\phi_{i}(i \in I)$, there exists an integer $N^{\prime}>0$ such that $\# I_{\alpha} \leq N^{\prime}$ for all $\alpha \in \mathbb{Z}^{s}$, where $\# I_{\alpha}$ denotes the cardinality of I_{α}. Hence, there exists a constant $K^{\prime \prime} \geq 1$ such that

$$
\bigcup_{i \in I_{\alpha}} E_{K h}\left(c_{i} h\right) \subseteq E_{K^{\prime \prime} h}(\alpha h) \quad \forall \alpha \in \mathbb{Z}^{s} .
$$

Let $K^{\prime}:=2 K^{\prime \prime}$. By Lemma 2.3, there exists some $g_{\alpha, h} \in \Pi_{k-1}$ such that

$$
\begin{equation*}
\left|f-g_{\alpha, h}\right|_{j, p}\left(E_{K^{\prime \prime} h}(\alpha h)\right) \leq C_{1} h^{k-j}|f|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right), \quad 0 \leq j<k . \tag{3.2}
\end{equation*}
$$

For $\mu \in \mathbb{N}_{0}^{s}$ with $|\mu|=j$, we have

$$
D^{\mu}\left(Q_{h}\left(f-g_{\alpha, h}\right)\right)(x)=\sum_{i \in I_{\alpha}}\left\langle f-g_{\alpha, h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle h^{-j} h^{-s / p} D^{\mu} \phi_{i}(x / h), \quad x \in E_{h}(\alpha h) .
$$

Note that $\operatorname{supp}\left(\sigma_{h} \tilde{\phi}_{i}\right) \subseteq E_{K^{\prime \prime} h}(\alpha h)$ for $i \in I_{\alpha}$. Taking (3.2) into account, we obtain

$$
\left|\left\langle f-g_{\alpha, h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle\right| \leq M\left\|f-g_{\alpha, h}\right\|_{p}\left(E_{K^{\prime \prime} h}(\alpha h)\right) \leq C_{1} M h^{k}|f|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right) .
$$

Moreover, $\left\|h^{-j} h^{-s / p} D^{\mu} \phi_{i}(\cdot / h)\right\|_{p} \leq M h^{-j}$. Therefore,

$$
\begin{equation*}
\left|Q_{h}\left(f-g_{\alpha, h}\right)\right|_{j, p}\left(E_{h}(\alpha h)\right) \leq C_{2} h^{k-j}|f|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right) . \tag{3.3}
\end{equation*}
$$

Since $Q_{h} g_{\alpha, h}=g_{\alpha, h}$, we have

$$
Q_{h} f-f=Q_{h}\left(f-g_{\alpha, h}\right)-\left(f-g_{\alpha, h}\right) .
$$

Thus, (3.2) and (3.3) tell us that

$$
\begin{equation*}
\left|Q_{h} f-f\right|_{j, p}\left(E_{h}(\alpha h)\right) \leq C_{3} h^{k-j}|f|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right) . \tag{3.4}
\end{equation*}
$$

This verifies (3.1) for the case $p=\infty$. For $1 \leq p<\infty$, we have

$$
\left|Q_{h} f-f\right|_{j, p}^{p} \leq \sum_{\alpha \in \mathbb{Z}^{s}}\left|Q_{h} f-f\right|_{j, p}^{p}\left(E_{h}(\alpha h)\right) \leq\left[C_{3} h^{k-j}\right]^{p} \sum_{\alpha \in \mathbb{Z}^{s}}|f|_{k, p}^{p}\left(E_{K^{\prime} h}(\alpha h)\right)
$$

Let $\chi_{\alpha}(x):=1$ for $x \in E_{K^{\prime} h}(\alpha h)$ and $\chi_{\alpha}(x):=0$ otherwise. For $\nu \in \mathbb{N}_{0}^{s}$ with $|\nu|=k$, we have

$$
\sum_{\alpha \in \mathbb{Z}^{s}}\left\|D^{\nu} f\right\|_{p}^{p}\left(E_{K^{\prime} h}(\alpha h)\right)=\int_{\mathbb{R}^{s}}\left|D^{\nu} f(x)\right|^{p} \sum_{\alpha \in \mathbb{Z}^{s}} \chi_{\alpha}(x) d x \leq\left(2 K^{\prime \prime}+2\right)^{s} \int_{\mathbb{R}^{s}}\left|D^{\nu} f(x)\right|^{p} d x
$$

Consequently, it follows from (3.4) that

$$
\left|Q_{h} f-f\right|_{j, p} \leq C_{3}\left(2 K^{\prime \prime}+2\right)^{s / p} h^{k-j}|f|_{k, p} .
$$

This shows (3.1) for the case $1 \leq p<\infty$.
As a corollary of Theorem 3.1, we have the following result.
Theorem 3.2. Suppose that $f \in L_{p}\left(\mathbb{R}^{s}\right)$ for $1 \leq p<\infty$ or $f \in C\left(\mathbb{R}^{s}\right)$ for $p=\infty$. If $Q g=g$ for all $g \in \Pi_{k-1}$, then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|f-Q_{h} f\right\|_{p} \leq C \omega_{k}(f, h)_{p} \quad \forall f \in W_{p}^{k}\left(\mathbb{R}^{s}\right) \tag{3.5}
\end{equation*}
$$

Proof. Let $f_{h}:=A_{h} f$, where $A_{h}=A_{\psi, h}$ be the operator defined in (2.4). We have

$$
f-Q_{h} f=\left(f-f_{h}\right)+\left(f_{h}-Q_{h} f_{h}\right)+\left(Q_{h} f_{h}-Q_{h} f\right) .
$$

By (2.5), $\left\|f-f_{h}\right\|_{p} \leq C_{1} \omega_{k}(f, h)_{p}$. Moreover,

$$
\left\|Q_{h} f_{h}-Q_{h} f\right\|_{p} \leq\left\|Q_{h}\right\|\left\|f_{h}-f\right\|_{p}=\|Q\|\left\|f_{h}-f\right\|_{p} .
$$

Hence, it remains to estimate $\left\|f_{h}-Q_{h} f_{h}\right\|_{p}$. Theorem 3.1 tells us that

$$
\left\|f_{h}-Q_{h} f_{h}\right\|_{p} \leq C_{2} h^{k}\left|f_{h}\right|_{k, p} .
$$

But it follows from (2.6) that $h^{k}\left|f_{h}\right|_{k, p} \leq C_{3} \omega_{k}(f, h)_{p}$. Combining the above estimates together, we obtain (3.5).

§4. Estimates of Moduli of Smoothness

In order to study approximation of quasi-projection operators in Besov spaces, we need some estimates of moduli of smoothness.

For $\nu>0$, the Besov space $B_{p, \infty}^{\nu}\left(\mathbb{R}^{s}\right)$ is the same as the generalized Lipschitz space $\operatorname{Lip}^{*}\left(\nu, L_{p}\left(\mathbb{R}^{s}\right)\right)$. By the very definition of $B_{p, \infty}^{\nu}\left(\mathbb{R}^{s}\right)$, we have $\omega_{k}(\phi, t) \leq t^{\nu}|\phi|_{B_{p, \infty}^{\nu}}$ for $0<\nu<k$ and $t>0$. The following lemma was proved in [11, §3].
Lemma 4.1. Let $\left(\phi_{i}\right)_{i \in I}$ be a family of functions in $L_{p}\left(\mathbb{R}^{s}\right)$ such that $\left\|\phi_{i}\right\|_{B_{p, \infty}^{\nu}} \leq M$ for all $i \in I$. Let $E_{i}:=\operatorname{supp} \phi_{i}$, and let χ_{i} be the function on \mathbb{R}^{s} given by $\chi_{i}(x)=1$ for $x \in E_{i}$ and $\chi_{i}(x)=0$ otherwise. If $\sum_{i \in I} \chi_{i}(x) \leq A$ for all $x \in \mathbb{R}^{s}$, and if k is an integer greater than ν, then

$$
\omega_{k}\left(\sum_{i \in I} b_{i} \phi_{i}, t\right)_{p} \leq((k+1) A)^{1-1 / p}\left(\sum_{i \in I}\left|b_{i}\right|^{p}\right)^{1 / p} M t^{\nu} \quad \forall t>0
$$

Let ϕ be a function defined on \mathbb{R}^{s}. For $k \in \mathbb{N}, h>0$, and $u \in \mathbb{R}^{s}$, we have

$$
\nabla_{u}^{k}\left(\sigma_{h} \phi\right)(x)=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} \phi\left(\frac{x-m u}{h}\right)=\sigma_{h}\left(\nabla_{u / h}^{k} \phi\right)(x), \quad x \in \mathbb{R}^{s}
$$

It follows that $\left\|\nabla_{u}^{k}\left(\sigma_{h} \phi\right)\right\|_{p}=h^{s / p}\left\|\nabla_{u / h}^{k} \phi\right\|_{p}$. Consequently,

$$
\begin{equation*}
\left|h^{-s / p} \sigma_{h} \phi\right|_{B_{p, q}^{\nu}}=h^{-\nu}|\phi|_{B_{p, q}^{\nu}} . \tag{4.1}
\end{equation*}
$$

The following lemma gives an estimate for moduli of smoothness, which will be needed in the next section.
Lemma 4.2. Suppose $0<\nu<k, 1 \leq p \leq \infty$ and $1 / p+1 / \tilde{p}=1$. Let Q be the quasiprojection operator given in (1.1), and let $Q_{h}:=\sigma_{h} Q \sigma_{1 / h}$ be as given in (1.3). Suppose that there exists a constant $M>0$ such that $\left\|\phi_{i}\right\|_{B_{p, \infty}^{\nu}} \leq M$ and $\left\|\tilde{\phi}_{i}\right\|_{\tilde{p}} \leq M$ for all $i \in I$. Let $f \in L_{p}\left(\mathbb{R}^{s}\right)$ for $1 \leq p<\infty$ or $f \in C\left(\mathbb{R}^{s}\right)$ for $p \stackrel{p, \infty}{=}$. If $Q g=g$ for all $g \in \Pi_{k-1}$, then

$$
\begin{equation*}
\omega_{k}\left(Q_{h} f, t\right)_{p} \leq C \omega_{k}(f, h)_{p}\left(\frac{t}{h}\right)^{\nu}, \quad 0<t \leq h \tag{4.2}
\end{equation*}
$$

where C is a constant independent of f, t, and h.
Proof. Let $f_{h}:=A_{\psi, h} f$ be as given in (2.4), where ψ is a function in $C^{k}\left(\mathbb{R}^{s}\right)$ with $\operatorname{supp} \psi \subseteq[-1 / k, 1 / k]^{s}$. Write $Q_{h} f=Q_{h}\left(f-f_{h}\right)+Q_{h} f_{h}$. We have

$$
Q_{h}\left(f-f_{h}\right)=\sum_{i \in I}\left\langle f-f_{h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle h^{-s / p} \sigma_{h} \phi_{i} .
$$

Taking (4.1) into account, we obtain

$$
\begin{equation*}
\omega_{k}\left(h^{-s / p} \sigma_{h} \phi_{i}, t\right)_{p} \leq t^{\nu}\left|h^{-s / p} \sigma_{h} \phi_{i}\right|_{B_{p, \infty}^{\nu}}=t^{\nu} h^{-\nu}\left|\phi_{i}\right|_{B_{p, \infty}^{\nu}} \leq M\left(\frac{t}{h}\right)^{\nu} \tag{4.3}
\end{equation*}
$$

Let $b_{i}:=\left\langle f-f_{h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle, i \in I$. An application of Lemma 4.1 gives

$$
\omega_{k}\left(Q_{h}\left(f-f_{h}\right), t\right)_{p} \leq C_{1}\left(\sum_{i \in I}\left|b_{i}\right|^{p}\right)^{1 / p}\left(\frac{t}{h}\right)^{\nu} .
$$

By [11, Lemma 3.1] we have

$$
\left(\sum_{i \in I}\left|b_{i}\right|^{p}\right)^{1 / p} \leq C_{2}\left\|f-f_{h}\right\|_{p}
$$

But Lemma 2.2 tells us that $\left\|f-f_{h}\right\|_{p} \leq C_{3} \omega_{k}(f, h)_{p}$. Therefore,

$$
\begin{equation*}
\omega_{k}\left(Q_{h}\left(f-f_{h}\right), t\right)_{p} \leq C \omega_{k}(f, h)_{p}\left(\frac{t}{h}\right)^{\nu}, \quad 0<t \leq h . \tag{4.4}
\end{equation*}
$$

It remains to estimate $\omega_{k}\left(Q_{h} f_{h}, t\right)_{p}$. Fix $\alpha \in \mathbb{Z}^{s}$ for the time being. For $y \in \mathbb{R}^{s}$ we have

$$
\nabla_{y}^{k}\left(Q_{h} f_{h}\right)(x)=\sum_{i \in I_{\alpha}}\left\langle f_{h}, h^{-s / \tilde{p}^{2}} \sigma_{h} \tilde{\phi}_{i}\right\rangle \nabla_{y}^{k}\left(h^{-s / p} \sigma_{h} \phi_{i}\right)(x), \quad x \in E_{h}(\alpha h)
$$

where $I_{\alpha}:=\left\{i \in I: \operatorname{supp}\left(\nabla_{y}^{k}\left(\sigma_{h} \phi_{i}\right)\right) \cap E_{h}(\alpha h) \neq \emptyset\right\}$. Suppose $|y| \leq t \leq h$. Then $\operatorname{supp}\left(\nabla_{y}^{k}\left(\sigma_{h} \phi_{i}\right)\right) \subseteq E_{(K+k) h}\left(c_{i} h\right)$. Hence, there exists a positive integer N^{\prime} such that $\# I_{\alpha} \leq N^{\prime}$ for all $\alpha \in \mathbb{Z}^{s}$. Moreover, there exists a constant $K^{\prime \prime} \geq 1$ such that

$$
\cup_{i \in I_{\alpha}} E_{(K+k) h}\left(c_{i} h\right) \subseteq E_{K^{\prime \prime} h}(\alpha h) \quad \forall \alpha \in \mathbb{Z}^{s} .
$$

Let $K^{\prime}:=2 K^{\prime \prime}$. By Lemma 2.3, there exists some $g_{\alpha, h} \in \Pi_{k-1}$ such that

$$
\begin{equation*}
\left\|f_{h}-g_{\alpha, h}\right\|_{p}\left(E_{K^{\prime \prime} h}(\alpha h)\right) \leq C_{4} h^{k}\left|f_{h}\right|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right) . \tag{4.5}
\end{equation*}
$$

Since $Q_{h} g_{\alpha, h}=g_{\alpha, h}$ and $\nabla_{y}^{k} g_{\alpha, h}=0$, we have $\nabla_{y}^{k}\left(Q_{h} f_{h}\right)=\nabla_{y}^{k}\left(Q_{h}\left(f_{h}-g_{\alpha, h}\right)\right)$. Note that

$$
\nabla_{y}^{k}\left(Q_{h}\left(f_{h}-g_{\alpha, h}\right)\right)(x)=\sum_{i \in I_{\alpha}}\left\langle f_{h}-g_{\alpha, h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle \nabla_{y}^{k}\left(h^{-s / p} \sigma_{h} \phi_{i}\right)(x), \quad x \in E_{h}(\alpha h)
$$

For $|y| \leq t$, it follows from (4.3) that

$$
\left\|\nabla_{y}^{k}\left(h^{-s / p} \sigma_{h} \phi_{i}\right)\right\|_{p} \leq \omega_{k}\left(h^{-s / p} \sigma_{h} \phi_{i}, t\right)_{p} \leq M\left(\frac{t}{h}\right)^{\nu} .
$$

Moreover, for $i \in I_{\alpha}$ we have $\operatorname{supp}\left(\sigma_{h} \tilde{\phi}_{i}\right) \subseteq E_{K^{\prime \prime} h}(\alpha h)$. Hence,

$$
\left|\left\langle f_{h}-g_{\alpha, h}, h^{-s / \tilde{p}} \sigma_{h} \tilde{\phi}_{i}\right\rangle\right| \leq M\left\|f_{h}-g_{\alpha, h}\right\|_{p}\left(E_{K^{\prime \prime} h}(\alpha h)\right) \leq M C_{4} h^{k}\left|f_{h}\right|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right),
$$

where (4.5) has been used to derive the last inequality. Consequently,

$$
\left\|\nabla_{y}^{k}\left(Q_{h} f_{h}\right)\right\|_{p}\left(E_{h}(\alpha h)\right) \leq C_{5} h^{k}\left|f_{h}\right|_{k, p}\left(E_{K^{\prime} h}(\alpha h)\right)\left(\frac{t}{h}\right)^{\nu}
$$

Therefore, as was done in the proof of Theorem 3.1, we deduce that

$$
\left\|\nabla_{y}^{k}\left(Q_{h} f_{h}\right)\right\|_{p} \leq C h^{k}\left|f_{h}\right|_{k, p}\left(\frac{t}{h}\right)^{\nu}, \quad|y| \leq t
$$

This in connection with (2.6) yields

$$
\begin{equation*}
\omega_{k}\left(Q_{h} f_{h}, t\right)_{p} \leq C \omega_{k}(f, h)_{p}\left(\frac{t}{h}\right)^{\nu}, \quad 0<t \leq h \tag{4.6}
\end{equation*}
$$

The desired estimate (4.2) follows from (4.4) and (4.6) at once.

§5. Approximation in Besov Spaces

We are in a position to establish our main results on approximation of quasi-projection operators in Besov spaces.

In this section we assume that $k \in \mathbb{N}, 0<\mu<\nu<k$, and $1 \leq p, q \leq \infty$. Let Q be the quasi-projection operator given in (1.1) and, for $h>0$, let $Q_{h}:=\sigma_{h} Q \sigma_{1 / h}$ be as
 $\left\|\tilde{\phi}_{i}\right\|_{\tilde{p}} \leq M$ for all $i \in I$.

Let f be a function in $B_{p, q}^{\nu}\left(\mathbb{R}^{s}\right)$. If $Q g=g$ for all $g \in \Pi_{k-1}$, then Theorem 3.2 tells us that $\left\|f-Q_{h} f\right\|_{p} \leq C_{1} \omega_{k}(f, h)_{p}$. But $\omega_{k}(f, h)_{p} \leq h^{\nu}|f|_{B_{p, \infty}^{\nu}} \leq C_{2} h^{\nu}|f|_{B_{p, q}^{\nu}}$. Hence,

$$
\left\|f-Q_{h} f\right\|_{p} \leq C h^{\nu}|f|_{B_{p, q}^{\nu}} .
$$

In many applications, we need to estimate approximation of $Q_{h} f$ to f in Besov spaces. The following theorem provides such estimates.

Theorem 5.1. If $Q g=g$ for all $g \in \Pi_{k-1}$, then

$$
\left|f-Q_{h} f\right|_{B_{p, q}^{\mu}} \leq C h^{\nu-\mu}|f|_{B_{p, q}^{\nu}} \quad \forall f \in B_{p, q}^{\nu}\left(\mathbb{R}^{s}\right)
$$

where C is a constant independent of h and f.
Proof. Suppose $f \in B_{p, q}^{\nu}\left(\mathbb{R}^{s}\right)$. Let $b_{j}(f):=2^{j \mu} \omega_{k}\left(f, 2^{-j}\right)_{p}, j \in \mathbb{Z}$. Given $h>0$, we let j_{h} be the integer such that $h \leq 2^{-j_{h}}<2 h$. Then $2^{j_{h}} \leq h^{-1}$. By Theorem 3.2 we have

$$
\omega_{k}\left(f-Q_{h} f, 2^{-j}\right)_{p} \leq 2^{k}\left\|f-Q_{h} f\right\|_{p} \leq C_{1} \omega_{k}(f, h)_{p}
$$

It follows that $\sup _{j \leq j_{h}} b_{j}\left(f-Q_{h} f\right) \leq C_{1} h^{-\mu} \omega_{k}(f, h)_{p}$. Moreover,

$$
\left(\sum_{j=-\infty}^{j_{h}}\left[b_{j}\left(f-Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{1} \omega_{k}(f, h)_{p}\left(\sum_{j=-\infty}^{j_{h}}\left(2^{j \mu}\right)^{q}\right)^{1 / q}, \quad 1 \leq q<\infty .
$$

Consequently, for $1 \leq q \leq \infty$,

$$
\begin{equation*}
\left(\sum_{j=-\infty}^{j_{h}}\left[b_{j}\left(f-Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{2} h^{-\mu} \omega_{k}(f, h)_{p} \leq C_{2} h^{\nu-\mu}|f|_{B_{p, \infty}^{\nu}} \tag{5.1}
\end{equation*}
$$

Consider the case $j>j_{h}$. We observe that

$$
\omega_{k}\left(f-Q_{h} f, 2^{-j}\right)_{p} \leq \omega_{k}\left(f, 2^{-j}\right)_{p}+\omega_{k}\left(Q_{h} f, 2^{-j}\right)_{p}
$$

Note that $2^{-j}<h$ for $j>j_{h}$. By Lemma 4.2 we have

$$
\omega_{k}\left(Q_{h} f, 2^{-j}\right)_{p} \leq C_{3} \omega_{k}(f, h)_{p}\left(\frac{2^{-j}}{h}\right)^{\nu}
$$

It follows that

$$
\left(\sum_{j=j_{h}+1}^{\infty}\left[b_{j}\left(Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{3} h^{-\nu} \omega_{k}(f, h)_{p}\left(\sum_{j=j_{h}+1}^{\infty}\left[2^{-j(\nu-\mu)}\right]^{q}\right)^{1 / q}
$$

Therefore,

$$
\begin{equation*}
\left(\sum_{j=j_{h}+1}^{\infty}\left[b_{j}\left(Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{4} h^{-\mu} \omega_{k}(f, h)_{p} \leq C_{4} h^{\nu-\mu}|f|_{B_{p, \infty}^{\nu}} \tag{5.2}
\end{equation*}
$$

Since $\mu-\nu<0$ and $2^{j_{h}} \leq h^{-1}$, for $j>j_{h}$ we have $2^{j(\mu-\nu)} \leq 2^{j_{h}(\mu-\nu)} \leq h^{\nu-\mu}$. It follows that $2^{j \mu}=2^{j(\mu-\nu)} 2^{j \nu} \leq h^{\nu-\mu} 2^{j \nu}$ for $j>j_{h}$. Therefore,

$$
\begin{equation*}
\left(\sum_{j=j_{h}+1}^{\infty}\left[b_{j}(f)\right]^{q}\right)^{1 / q} \leq h^{\nu-\mu}\left(\sum_{j=j_{h}+1}^{\infty}\left[2^{j \nu} \omega_{k}\left(f, 2^{-j}\right)_{p}\right]^{q}\right)^{1 / q} \leq C_{5} h^{\nu-\mu}|f|_{B_{p, q}^{\nu}} \tag{5.3}
\end{equation*}
$$

Combining the estimates (5.1), (5.2) and (5.3) together, we obtain

$$
\left(\sum_{j=-\infty}^{\infty}\left[2^{j \mu} \omega_{k}\left(f-Q_{h} f, 2^{-j}\right)_{p}\right]^{q}\right)^{1 / q} \leq C h^{\nu-\mu}|f|_{B_{p, q}^{\nu}}
$$

This completes the proof of the theorem.
Suppose $\phi \in L_{p}\left(\mathbb{R}^{s}\right)$ and $\tilde{\phi} \in L_{\tilde{p}}\left(\mathbb{R}^{s}\right)$. In the case when $\phi_{i}=\phi(\cdot-i)$ and $\tilde{\phi}_{i}=\tilde{\phi}(\cdot-i)$, $i \in \mathbb{Z}^{s}$, Kyriazis in [16, Theorem 4.6] obtained results similar to Theorem 5.1 for the Triebel-Lizorkin spaces $F_{p, q}^{\mu}$. But the case $p=\infty$ was excluded there. Note that for $1 \leq p<\infty, B_{p, p}^{\mu}$ and $F_{p, p}^{\mu}$ are identical and have equivalent norms. In particular, for $p=2$, it is well known that $B_{2,2}^{\mu}\left(\mathbb{R}^{s}\right)$ is the same as the Sobolev space $H^{\mu}\left(\mathbb{R}^{s}\right)$. Here, $H^{\mu}=H^{\mu}\left(\mathbb{R}^{s}\right)$ is defined to be the space of all functions f in $L_{2}\left(\mathbb{R}^{s}\right)$ such that the semi-norm

$$
|f|_{H^{\mu}}:=\left(\int_{\mathbb{R}^{s}}|\hat{f}(\xi)|^{2}|\xi|^{2 \mu} d \xi\right)^{1 / 2}
$$

is finite, where \hat{f} denotes the Fourier transform of f. The norm in H^{μ} is defined by $\|f\|_{H^{\mu}}:=\|f\|_{L_{2}}+|f|_{H^{\mu}}$. Moreover, the semi-norms $|\cdot|_{B_{2,2}^{\mu}}$ and $|\cdot|_{H^{\mu}}$ are equivalent. Consequently, the norms $\|\cdot\|_{B_{2,2}^{\mu}}$ and $\|\cdot\|_{H^{\mu}}$ are equivalent.

Approximation by quasi-projection operators in the Lipschitz spaces $\operatorname{Lip}\left(\mu, L_{p}\left(\mathbb{R}^{s}\right)\right)$ $(\mu>0,1 \leq p \leq \infty)$ was discussed in [10]. When $\mu \notin \mathbb{N}$, we have $\operatorname{Lip}\left(\mu, L_{p}\left(\mathbb{R}^{s}\right)\right)=$ $\operatorname{Lip}^{*}\left(\mu, L_{p}\left(\mathbb{R}^{s}\right)\right)=B_{p, \infty}^{\mu}\left(\mathbb{R}^{s}\right)$. However, when $\mu \in \mathbb{N}$, the Lipschitz space $\operatorname{Lip}\left(\mu, L_{p}\left(\mathbb{R}^{s}\right)\right)$ is a proper subspace of the generalized Lipschitz space $\operatorname{Lip}^{*}\left(\mu, L_{p}\left(\mathbb{R}^{s}\right)\right)$. So the present paper does not completely cover the results in [10].

The following theorem gives a result on density of quasi-projection operators, which will be useful for multiresolution analysis of Besov spaces.

Theorem 5.2. Suppose $f \in B_{p, q}^{\mu}\left(\mathbb{R}^{s}\right)$, where $0<\mu<\nu<k, 1 \leq p \leq \infty$ and $1 \leq q<\infty$. If $Q g=g$ for all $g \in \Pi_{k-1}$, then

$$
\lim _{h \rightarrow 0}\left|Q_{h} f-f\right|_{B_{p, q}^{\mu}}=0 .
$$

Proof. Let $b_{j}(f):=2^{j \mu} \omega_{k}\left(f, 2^{-j}\right)_{p}, j \in \mathbb{Z}$. Then

$$
\left|Q_{h} f-f\right|_{B_{p, q}^{\mu}}=\left(\sum_{j=-\infty}^{\infty}\left[b_{j}\left(Q_{h} f-f\right)\right]^{q}\right)^{1 / q} .
$$

For $h>0$, let j_{h} be the integer such that $h \leq 2^{-j_{h}}<2 h$. We have $\lim _{h \rightarrow 0} j_{h}=\infty$. From the proof of (5.1) we see that

$$
\left(\sum_{j=-\infty}^{j_{h}}\left[b_{j}\left(f-Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{1} h^{-\mu} \omega_{k}(f, h)_{p} \leq C_{1} 2^{\mu} b_{j_{h}}(f)
$$

For $j>j_{h}$, we use the inequality $\omega_{k}\left(f-Q_{h} f, 2^{-j}\right)_{p} \leq \omega_{k}\left(f, 2^{-j}\right)_{p}+\omega_{k}\left(Q_{h} f, 2^{-j}\right)_{p}$. From the proof of (5.2) we deduce that

$$
\left(\sum_{j=j_{h}+1}^{\infty}\left[b_{j}\left(Q_{h} f\right)\right]^{q}\right)^{1 / q} \leq C_{2} h^{-\mu} \omega_{k}(f, h)_{p} \leq C_{2} 2^{\mu} b_{j_{h}}(f) .
$$

Since $f \in B_{p, q}^{\mu}$, we have $\sum_{j=-\infty}^{\infty}\left[b_{j}(f)\right]^{q}<\infty$. Consequently,

$$
\lim _{j_{h} \rightarrow \infty} b_{j_{h}}(f)=0 \quad \text { and } \quad \lim _{j_{h} \rightarrow \infty} \sum_{j=j_{h}+1}^{\infty}\left[b_{j}(f)\right]^{q}=0 .
$$

This shows $\lim _{h \rightarrow 0}\left|Q_{h} f-f\right|_{B_{p, q}^{\mu}}=0$, as desired.
The above theorem is no longer valid when $q=\infty$. This fact will be demonstrated by the following example.

Let $\phi(x):=\max \{1-|x|, 0\}$ for $x \in \mathbb{R}$, and let $\tilde{\phi}(x):=4-6 x$ for $0<x<1$ and $\tilde{\phi}(x):=0$ for $x \in \mathbb{R} \backslash(0,1)$. For $1 \leq p<\infty$, we have $\phi \in B_{p, \infty}^{\nu}$ for $\nu:=1+1 / p$ and $\tilde{\phi} \in B_{p, \infty}^{\mu}$ for $\mu:=1 / p$.

For $i \in \mathbb{Z}$, let

$$
\phi_{i}(x):=\phi(x-i) \quad \text { and } \quad \tilde{\phi}_{i}(x):=\tilde{\phi}(x-i), \quad x \in \mathbb{R} .
$$

Then $\left\langle\phi_{i}, \tilde{\phi}_{j}\right\rangle=\delta_{i j}, i, j \in \mathbb{Z}$, where $\delta_{i j}$ stands for the Kronecker sign: $\delta_{i j}=1$ for $i=j$ and $\delta_{i j}=0$ for $i \neq j$.

Consider the quasi-projection operator Q given by

$$
Q f:=\sum_{i \in \mathbb{Z}}\left\langle f, \tilde{\phi}_{i}\right\rangle \phi_{i},
$$

where f is a locally integrable function on \mathbb{R}. We have $Q \phi_{i}=\phi_{i}$ for all $i \in \mathbb{Z}$. In other words, Q is a projection operator. For a polynomial g in Π_{1}, g can be represented as $g=\sum_{i \in \mathbb{Z}} g(i) \phi_{i}$. Consequently, $Q g=g$ for all $g \in \Pi_{1}$.

For $h>0$, let

$$
Q_{h} f:=\sum_{i \in \mathbb{Z}}\left\langle f, h^{-1} \sigma_{h} \tilde{\phi}_{i}\right\rangle \sigma_{h} \phi_{i} .
$$

Let f be the function given by $f(x):=1$ for $0<x<1$ and $f(x):=0$ for $x \in \mathbb{R} \backslash(0,1)$. Then $f \in B_{p, \infty}^{\mu}$ for $\mu=1 / p$. For $i<0$ and $x>0$, we have $\sigma_{h} \tilde{\phi}_{i}(x)=\tilde{\phi}(x / h-i)=0$. Since f is supported on $[0,1]$, we deduce that $\left\langle f, h^{-1} \sigma_{h} \tilde{\phi}_{i}\right\rangle=0$ for $i<0$. Suppose $0<h<1 / 2$. For $i=0$ or $i=1$, we have

$$
\left\langle f, h^{-1} \sigma_{h} \tilde{\phi}_{i}\right\rangle=\frac{1}{h} \int_{0}^{1} \tilde{\phi}(x / h-i) d x=\int_{-i}^{1 / h-i} \tilde{\phi}(y) d y=\int_{0}^{1}(4-6 y) d y=1 .
$$

For $i \geq 2$ and $x<h$, we have $\sigma_{h} \phi_{i}(x)=\phi(x / h-i)=0$. Consequently,

$$
Q_{h} f(x)=\phi(x / h)+\phi(x / h-1) \quad \text { for } x<h .
$$

It follows that

$$
Q_{h} f(x)=1 \quad \text { and } \quad Q_{h} f(x-h)=\phi(x / h-1)=x / h \quad \text { for } 0<x<h .
$$

Hence,

$$
\nabla_{h}\left(Q_{h} f-f\right)(x)=-x / h \quad \text { for } 0<x<h .
$$

For $1 \leq p<\infty$, we thereby obtain

$$
\left\|\nabla_{h}\left(Q_{h} f-f\right)\right\|_{p} \geq\left[\int_{0}^{h}\left(\frac{x}{h}\right)^{p} d x\right]^{1 / p}=(p+1)^{-1 / p} h^{1 / p}
$$

Finally, with $\mu=1 / p$, we conclude that

$$
\left|Q_{h} f-f\right|_{B_{p, \infty}^{\mu}} \geq \frac{1}{h^{1 / p}}\left\|\nabla_{h}\left(Q_{h} f-f\right)\right\|_{p} \geq(p+1)^{-1 / p}
$$

References

[1] C. de Boor, Splines as linear combinations of B-splines: A survey, in Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, New York, 1976, pp. 1-47.
[2] C. de Boor, R. DeVore, and A. Ron, Approximation from shift-invariant subspaces of $L_{2}\left(\mathbb{R}^{d}\right)$, Trans. Amer. Math. Soc. 341 (1994), 787-806.
[3] C. de Boor and G. Fix, Spline approximation by quasiinterpolants, J. Approx. Theory 8 (1973), 19-45.
[4] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[5] R. A. DeVore and A. Ron, Approximation using scattered shifts of a multivariate function, preprint.
[6] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, Vol. 79, American Mathematical Society, 1991.
[7] R. F. Gariepy and W. P. Ziemer, Modern Real Analysis, PWS Publishing Company, Boston, 1994.
[8] K. Jetter and D. X. Zhou, Order of linear approximation from shift-invariant spaces, Constr. Approx. 11 (1995), 423-438.
[9] R. Q. Jia, Convergence rates of cascade algorithms, Proc. Amer. Math. Soc. 131 (2003), 1739-1749.
[10] R. Q. Jia, Approximation with scaled shift-invariant spaces by means of quasiprojection operators, J. Approx. Theory 131 (2004), 30-46.
[11] R. Q. Jia, Bessel sequences in Sobolev spaces, Applied and Computational Harmonic Analysis 20 (2006), 298-311.
[12] R. Q. Jia and Q. T. Jiang, Approximation power of refinable vectors of functions, in Wavelet Analysis and Applications, Donggao Deng, Daren Huang, Rong-Qing Jia, Wei Lin, and Jianzhong Wang (eds.), the American Mathematical Society and International Press, 2002, pp. 153-176.
[13] R. Q. Jia and J. J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993), 2-23.
[14] H. Johnen and K. Scherer, On the equivalence of the K-Functional and moduli of continuity and some applications, in Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller (eds.), Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1977, pp. 119-140.
[15] G. C. Kyriazis, Approximation from shift-invariant spaces, Constr. Approx. 11 (1995), 141-164.
[16] G. C. Kyriazis, Approximation of distribution spaces by means of kernel operators, The Journal of Fourier Analysis and Applications 3 (1996), 261-286.
[17] J. J. Lei, R. Q. Jia, and E. W. Cheney, Approximation from shift-invariant spaces by integral operators, SIAM J. Math. Anal. 28 (1997), 481-498.
[18] T. Lyche and L. L. Schumaker, Local spline approximation methods, J. Approx. Theory 15 (1975), 294-325.
[19] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge University Press, Cambridge, 1987.
[20] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), pp. 45-99, pp. 112-141.
[21] G. Strang and G. Fix, A Fourier analysis of the finite-element variational method, in Constructive Aspects of Functional Analysis, G. Geymonat (ed.), C.I.M.E. (1973), pp. 793-840.
[22] H. Whitney, On functions with n-th bounded differences, J. Math. Pure et Appl. 36 (1957), 60-92.

[^0]: \dagger Supported in part by NSERC Canada under Grant OGP 121336

