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Abstract

Let 0 < α ≤ ∞ and let {B(x, ε)}ε , ε > 0, denote a net of intervals of the form (x − ε, x + ε) ⊂
[0, α). Let f ε(x) be any best constant approximation of f ∈ Λw,φ′ on B(x, ε). Weak inequalities for
maximal functions associated with { f ε(x)}ε , in Orlicz–Lorentz spaces, are proved. As a consequence
of these inequalities we obtain a generalization of Lebesgue’s Differentiation Theorem and the pointwise
convergence of f ε(x) to f (x), as ε → 0.
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let M0 be the class of all real extended µ-measurable functions on [0, α), 0 < α ≤ ∞,
where µ is the Lebesgue measure. As usual, for f ∈M0 we denote its distribution function by
µ f (s) = µ({x ∈ [0, α) : | f (x)| > s}), s ≥ 0, and its decreasing rearrangement by f ∗(t) =
inf{s : µ f (s) ≤ t}, t ≥ 0. For properties of µ f and f ∗, the reader can look at ([2], pp. 36–42).

Let φ : R+ → R+ be a differentiable and convex function, φ(0) = 0, φ(t) > 0, t > 0, and
let w : (0, α)→ (0,∞) be a weight function, non-increasing and locally integrable. If α = ∞,
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we also assume
∫
∞

0 wdµ = ∞. We denote by W : [0, α)→ [0,∞) the function

W (r) =
∫ r

0
w(t)dt.

For f ∈M0, let

Ψw,φ( f ) =
∫ µ f (0)

0
φ( f ∗)wdµ.

In [9,11–13], several authors studied geometric properties of the regular Orlicz–Lorentz space
{ f ∈M0 : Ψw,φ(λ f ) <∞ for some λ > 0}. We consider the following subspace:

Λw,φ := { f ∈M0 : Ψw,φ(λ f ) <∞ for all λ > 0}.

Under the Luxemburg norm given by ‖ f ‖w,φ = inf
{
ε > 0 : Ψw,φ

(
f
ε

)
≤ 1

}
, the

Orlicz–Lorentz space is a Banach space (see [11]). If w is constant, it is the Orlicz space Lφ
(see [20]). On the other hand, setting φ(t) = t p, 1 ≤ p < ∞, we obtain the Lorentz space

Lw,p and Ψw,φ( f ) = ‖ f ‖p
w,p. These spaces have been studied in [7]. If w(t) = p

q t
q
p−1,

1 ≤ q ≤ p <∞, a good reference for a description of these spaces is [10].
A function φ satisfies the ∆2-condition if there exists K > 0 such that φ(2t) ≤ Kφ(t) for all

t ≥ 0. We denote it briefly by φ ∈ ∆2. We recall that if φ ∈ ∆2, then the subspace Λw,φ is the
Orlicz–Lorentz space.

If φ′ is the derivative of the function φ, the space Λw,φ′ is analogously defined. We write
φ ∈ Φ0 if φ′(0) = 0, where φ′(0) is the right derivative of φ at 0.

For g ∈M0, we write N (g) := {|g| > 0} and Z(g) := {g = 0}.
We will denote by S the class of step functions in M0 with support in a set of finite measure,

i.e., g ∈ S if g =
∑m

k=1 akχUk , where ak are real numbers, Uk are finite measure intervals, and
χV is the characteristic function of set V .

Observe that the inequalities φ(x) ≤ xφ′(x) ≤ φ(2x), x ≥ 0, hold. Therefore

{ f ∈ Λw,φ : µ(N ( f )) <∞} ⊂ Λw,φ′ .

Let A ⊂ [0, α) be a finite measure set. For f ∈ Λw,φ , we write C( f, A) as the set of all
constants c minimizing the expression Ψw,φ (( f − c)χA). It is easy to see that C( f, A) is a
nonempty compact interval for every f ∈ Λw,φ (see [17]). Each element of C( f, A) is called a
best constant approximation of f on A. We put f A = min C( f, A) and f A

= max C( f, A).
We denote by TA the best constant approximant operator which assigns to each f ∈ Λw,φ

the set C( f, A) = [ f A, f A
]. In [17], TA is extended from an Orlicz–Lorentz space Λw,φ to

the space Λw,φ′ , in the following way: for f ∈ Λw,φ′ , TA( f ) = [ f A, f A
], f A = min{c :

γ+((c − f )χA, χA) ≥ 0}, and f A
= max{c : γ+(( f − c)χA, χA) ≥ 0}, where γ+(g, h) is

defined by (2.11) in ([16], Theorem 2.14) for g, h ∈ Λw,φ′ . Any c ∈ TA( f ) is said to be a best
constant approximation of f ∈ Λw,φ′ on A. Moreover, the monotonicity property in the sense of
Landers and Rogge (see [14]) of its extension is established.

Let {B(x, ε)}ε , ε > 0, denote a net of intervals of the form (x − ε, x + ε) ⊂ [0, α). For
f ∈ Λw,φ′ , we define by M f : (0, α)→ R the maximal function

M f (x) = sup
{

Ψw,φ′( f χB(x,ε))

Ψw,φ′(χB(x,ε))
: ε > 0 and B(x, ε) ⊂ (0, α)

}
.
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In [1], weak inequalities for M f have been studied for when Λw,φ′ is the Lorentz space L p,q ,
1 ≤ p, q <∞.

Let f ε(x) be any best constant approximation of f ∈ Λw,φ′ on B(x, ε). For f ∈ L2, it
is easy to check that f ε(x) is the average 1

µ(B(x,ε))

∫
B(x,ε) f . From [5], we have that if f is

differentiable at x , then these averages converge to f (x) a.e., as ε → 0. A more adequate version
of this fact is given by Lebesgue’s Differentiation Theorem, which says that f ε(x)→ f (x), as
ε → 0, for every locally integrable function f (see [22]). In [15] the authors extend the best
approximation operator from L p to L p−1, when p > 1 and the approximation class is a σ
lattice of functions. They studied almost everywhere convergence of best approximants. In [19],
Lebesgue’s Differentiation Theorem was generalized using best approximation by constants over
balls in the L p(Rn) spaces with 1 ≤ p <∞. They extended the best approximation operator by
constants over balls from L p(Rn) to L p−1(Rn)+ L∞(Rn), for 1 ≤ p <∞, and they showed the
convergence of best constant approximations when the diameters of the balls shrink to 0. Similar
results in a subspace of the Orlicz space Lφ′(Rn) have appeared in [6].

Other generalizations of the classical Lebesgue’s Differentiation Theorem can be considered;
for example to prove that certain integral averages of a function g from the space converge to
g a.e.. The convergence of integral averages of a function from L p, 1 ≤ p < ∞, can be seen
in [22,23].

In Section 2, we present a certain type of Dominated Convergence Theorem in Λw,φ′ .
Moreover, the density of the simple functions and also that of the step functions are established.
In Section 3, we show weak inequalities for the maximal function M f . As a consequence
of these inequalities we prove the convergence of integral averages of a function from Λw,φ′ ,
i.e., a generalization of Lebesgue’s Differentiation Theorem. In Section 4, weak inequalities are
proved for the maximal function associated with the family { f ε(x)}ε , which are used in the
study of pointwise convergence of f ε(x) to f (x), as ε → 0, another extension of Lebesgue’s
Differentiation Theorem. The results of this paper generalize [19,6] for the case of one-variable
functions.

2. Dominated convergence and density in Λw,φ′

We begin this section by proving a type of Dominated Convergence Theorem in Λw,φ′ .
Let h ∈ Λw,φ′ and let D ⊂ [0, α) be a measurable set such that N (h) ⊂ D. Let

ρ : D→ [0, µ(D)) be any measure preserving transformation (m.p.t.). It is easy to see that

(w(ρ))∗ = w, on (0, µ(D))

(see [2], pp. 80), and

(φ′(|h|)χN (h))
∗
= φ′(h∗)χ[0,µh(0)), on [0, α).

From the Hardy and Littlewood’s inequality (see [2], pp. 44) it follows that∫
B
w(ρ)φ′(h)dµ ≤

∫ µ(B)

0
φ′(h∗)w ≤ Ψw,φ′ (h) , (1)

for every measurable set B ⊂ N (h).

Lemma 2.1. Let f, g ∈ Λw,φ′ be nonnegative functions. If min{ f, g} = 0, then Ψw,φ′( f + g) ≤
Ψw,φ′( f )+Ψw,φ′(g).
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Proof. Since limt→∞( f + g)∗(t) = 0, there is a m.p.t. ρ : N ( f + g)→ [0, µ f+g(0)) such that
f +g = ( f +g)∗◦ρ, a.e. on N ( f +g) (see [2], pp. 83). By hypothesis, N ( f +g) = N ( f )∪N (g)
and N ( f ) ∩ N (g) = ∅. Therefore

Ψw,φ′( f + g) =
∫

N ( f+g)
w(ρ)φ′( f + g)dµ

=

∫
N ( f )

w(ρ)φ′( f )dµ+
∫

N (g)
w(ρ)φ′(g)dµ.

Finally, the proof follows from (1). �

Remark 2.2. We observe that Ψw,φ′( f ) ≤ Ψw,φ′(g) if | f | ≤ |g|, a.e. on [0, α).

Lemma 2.3. Let f, g ∈ Λw,φ′ . Then Ψw,φ′( f + g) ≤ Ψw,φ′(2 f ) + Ψw,φ′(2g). In addition, if
φ ∈ ∆2 then there exists C > 0 such that Ψw,φ′( f + g) ≤ C

(
Ψw,φ′( f )+Ψw,φ′(g)

)
.

Proof. From Lemma 2.1 it follows that

Ψw,φ′( f + g) ≤ Ψw,φ′(| f | + |g|) = Ψw,φ′
(
(| f | + |g|)χ| f |≥|g| + (| f | + |g|)χ| f |<|g|

)
≤ Ψw,φ′(2 f )+Ψw,φ′(2g).

Now, we assume φ ∈ ∆2. Then there exists K > 0 such that φ(2t) ≤ Kφ(t), t > 0. According
to ([6], Lemma 13), we have

φ′(a + b) ≤
K 2

2
(φ′(a)+ φ′(b)), a, b > 0. (2)

Therefore, Ψw,φ′( f + g) ≤ K 2
(
Ψw,φ′( f )+Ψw,φ′(g)

)
. �

Theorem 2.4 (Dominated Convergence). Let g ∈ Λw,φ′ . If fn , n ∈ N, and f are measurable
functions satisfying | fn| ≤ |g|, and limn→∞ fn = f a.e., then

lim
n→∞

µ fn− f (s) = 0 and lim
n→∞

∫ µ fn− f (s)

0
φ′(( fn − f )∗)w = 0, s > 0. (3)

In addition, if φ ∈ Φ0 then limn→∞Ψw,φ′( fn − f ) = 0.

Proof. Let s > 0 and set hn(x) = supk≥n | fk(x)− f (x)|, n ∈ N. Clearly | fn− f | ≤ |hn| ≤ 2|g|
a.e., which gives µ fn− f ≤ µhn ≤ µ2g . Since hn ↓ 0 a.e. and µh1(s) < ∞, we see that
µhn (s) ↓ 0 and so limn→∞ µ fn− f (s) = 0.
Now, the inequality∫ µ fn− f (s)

0
φ′(( fn − f )∗)w ≤

∫ µ fn− f (s)

0
φ′(2g∗)w

implies the second part of (3).
Finally, we assume φ ∈ Φ0. From ([11], Lemma 2.1) we have h∗n ↓ 0, and consequently
limn→∞ φ

′(( fn − f )∗) = 0. Since

Ψw,φ′( fn − f ) ≤
∫ µ2g(0)

0
φ′(( fn − f )∗)w,

the Lebesgue Dominated Convergence Theorem implies limn→∞Ψw,φ′( fn − f ) = 0. �



Author's personal copy

F.E. Levis / Journal of Approximation Theory 162 (2010) 239–251 243

Next, we prove that the sets of simple functions and step functions are dense.

Lemma 2.5. Let f be a simple function with finite measure support. Then for each ε > 0, there
exists g ∈ S such that µg− f (s) < ε, for all s ≥ 0 and Ψw,φ′(g − f ) < ε.

Proof. Let ε > 0. If f = 0, it is obvious. Without loss of generality we can assume that
f =

∑m
k=1 akχEk , where the sets Ek are pairwise disjoint subsets of (0, α) with finite measure,

ak 6= 0, 1 ≤ k ≤ m, and ai 6= a j if i 6= j . Since limr→0+ W (r) = 0, there exists δ, 0 < δ < ε,
such that

W (δ) ≤
ε

φ′(m‖ f ‖∞)
. (4)

For each k, 1 ≤ k ≤ m, let Uk be a finite union of open intervals such that µ(Uk M Ek) <
δ
m .

Set g =
∑m

k=1 akχUk . It is clear that g ∈ S and |g − f | ≤ m‖ f ‖∞χ⋃m
k=1 UkMEk

. Therefore, we
have µg− f ≤ δχ[0,m‖ f ‖∞) < ε and

Ψw,φ′(g − f ) ≤ φ′(m‖ f ‖∞)W

(
µ

(
m⋃

k=1

(Uk M Ek)

))
< φ′(m‖ f ‖∞)W (δ) < ε. �

Theorem 2.6. Let f ∈ Λw,φ′ . If φ ∈ ∆2, then there exists a sequence { fn}n ⊂ S such that

lim
n→∞

µ fn− f (s) = 0 and lim
n→∞

∫ µ fn− f (s)

0
φ′(( fn − f )∗)w = 0, s > 0.

In addition, if φ ∈ Φ0, then limn→∞Ψw,φ′( fn − f ) = 0.

Proof. Let s > 0 and let {hn}n be a sequence of simple functions, each with support in a set of
finite measure such that |hn| ≤ | f | for all n and limn→∞ hn = f a.e.. According to Lemma 2.5,
there exists a sequence { fn}n ⊂ S such that

µ fn−hn ≤
1
n

and Ψw,φ′( fn − hn) <
1
n
. (5)

Since µ fn− f (s) ≤ µ fn−hn

( s
2

)
+ µhn− f

( s
2

)
, by Theorem 2.4 we get

lim
n→∞

µ fn− f (s) = 0. (6)

On the other hand, ( fn − f )∗(t) ≤ ( fn − hn)
∗
( t

2

)
+ (hn − f )∗

( t
2

)
, t > 0. From (2) it follows

that there is a K > 0 satisfying

φ′(( fn − f )∗(t)) ≤
K 2

2

(
φ′
(
( fn − hn)

∗

(
t

2

))
+ φ′

(
(hn − f )∗

(
t

2

)))
, t > 0.

As w is a non-increasing function,

φ′(( fn − f )∗(t))w(t) ≤
K 2

2

(
φ′
(
( fn − hn)

∗

(
t

2

))
+ φ′

(
(hn − f )∗

(
t

2

)))
w

(
t

2

)
,

t > 0, and consequently∫ µ fn− f (s)

0
φ′(( fn − f )∗)w ≤ K 2

∫ 1
2µ fn− f (s)

0

(
φ′(( fn − hn)

∗)+ φ′((hn − f )∗)
)
w. (7)
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It is easy to see that∫ 1
2µ fn− f (s)

0
φ′((hn − f )∗)w ≤

∫ 1
2µ fn− f (s)

0
φ′(2 f ∗)w. (8)

We observe that if µ fn−hn (0) <
1
2µ fn− f (s),∫ 1

2µ fn− f (s)

0
φ′(( fn − hn)

∗)w = Ψw,φ′( fn − hn)+

∫ 1
2µ fn− f (s)

µ fn−hn (0)
φ′(( fn − hn)

∗)w.

Since ( fn − hn)
∗(t) = 0, for t ≥ µ fn−hn (0), we get∫ 1

2µ fn− f (s)

0
φ′(( fn − hn)

∗)w ≤ Ψw,φ′( fn − hn)+ φ
′(0)W

(
1
2
µ fn− f (s)

)
. (9)

Otherwise, (9) is obvious, because∫ 1
2µ fn− f (s)

0
φ′(( fn − hn)

∗)w ≤ Ψw,φ′( fn − hn).

Thus, (5)–(9) imply limn→∞
∫ µ fn− f (s)

0 φ′(( fn − f )∗)w = 0.
Finally, we assume φ ∈ Φ0. By Theorem 2.4, we get limn→∞Ψw,φ′(hn − f ) = 0. So, the proof
follows from (5) and Lemma 2.3. �

3. Lebesgue’s differentiation theorem in Λw,φ′

In this section, we study weak inequalities for the maximal function M f . As a consequence,
we prove the convergence of integral averages of a function from Λw,φ′ . More precisely, we
extend ([23], Lemma 5). In addition, we also extend ([22], pp. 25) for the case of one-variable
functions.
For φ ∈ Φ0, it is easy to see that (φ′(| f |))∗ = φ′( f ∗), Ψw,φ′( f ) =

∫
∞

0 (φ′(| f |))∗w, and

φ′( f ∗(t)) ≤
1

W (t)
Ψw,φ′( f ), t > 0. (10)

So, from ([4], Theoerem 2.1) we obtain

Ψw,φ′( f ) =
∫
∞

0
W
(
µφ′(| f |)(s)

)
ds, f ∈ Λw,φ′ . (11)

Definition 3.1. Λw,φ′ is said to satisfy a lower W -estimate if there exists a constant N <∞ such
that, for every choice of functions { fk}

n
k=1 in Λw,φ′ with pairwise disjoint supports, we have

NΨw,φ′

(
n∑

k=1

fk

)
≥ λW

(
n∑

k=1

W−1
(

Ψw,φ′( fk)

λ

))
, λ > 0. (12)

Remark 3.2. In a special case when W (t)=t and φ′(t) = t p, 1 < p < ∞, we recover the

well known notion of a lower p-estimate in L p (see [18]). If W (r) = r
q
p and φ′(t) = tq ,

1 ≤ q ≤ p < ∞, then Λw,φ′ is the Lorentz space L p,q and it satisfies a lower W -estimate
(see [1]).
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Proposition 3.3. If W (r) = c r
1
a , a ≥ 1, c > 0, and φ ∈ Φ0, then Λw,φ′ satisfies a lower

W -estimate.

Proof. If a = 1, it is obvious. Now assume a > 1. Let λ > 0 and let { fk}
n
k=1 be functions in

Λw,φ′ with pairwise disjoint supports. From (11) and Minkowski’s vector-valued inequality ([8],
pp. 148), we have

λW

(
n∑

k=1

W−1
(

Ψw,φ′( fk)

λ

))
= c

∥∥∥∥{∫ ∞
0

(
µφ′(| fk |)(s)

) 1
a ds

}n

k=1

∥∥∥∥
la(Rn)

≤ c
∫
∞

0

∥∥∥∥{(µφ′(| fk |)(s)
) 1

a

}n

k=1

∥∥∥∥
la(Rn)

ds

= c
∫
∞

0

(
n∑

k=1

µφ′(| fk |)(s)

) 1
a

ds. (13)

Since φ ∈ Φ0 and { fk}
n
k=1 have pairwise disjoint supports, it is clear that

n∑
k=1

µφ′(| fk |)(s) = µ n∑
k=1

φ′(| fk |)
(s) = µ

φ′

(
n∑

k=1
| fk |

)(s), s > 0.

So, (11) and (13) imply (12). �

Let f ∈ Λw,φ′ and ε > 0. We denote by fε : (0, α)→ R the function

fε(x) =
Ψw,φ′

(
f χB(x,ε)

)
Ψw,φ′

(
χB(x,ε)

) .
Lemma 3.4. Let f ∈ Λw,φ′ and ε > 0. If φ ∈ Φ0, then fε is a measurable function on (0, α).

Proof. Let h =
∑n

k=1 akχEk be a nonnegative simple function where the sets Ek are
pairwise disjoint subsets of (0, α) with a1 > a2 > · · · > an > 0. Then,

(
hχB(x,ε)

)∗
=∑n

k=1 akχ[mk−1(x),mk (x)), where m0 = 0 and

mk(x) =
k∑

i=1

µ(Ei ∩ B(x, ε)), 1 ≤ k ≤ n.

Thus, hε(x) =
∑n

k=1
φ′(ak )

φ′(1)W (2ε) (W (mk(x))−W (mk−1(x))). Since {mk}
n
k=0 are measurable

functions, it follows that hε is a measurable function. Now, let { fn}
∞

n=1 be a sequence of
nonnegative simple functions such that fn ↑ | f |. Then(

fnχB(x,ε)
)∗
↑
(
| f |χB(x,ε)

)∗
, x ∈ (0, α).

Therefore, the Monotone Convergence Theorem implies limn→∞( fn)ε = fε , on (0, α). So, fε
is a measurable function. �

Lemma 3.5. Let f ∈ Λw,φ′ . If φ ∈ Φ0, then M f is a measurable function.

Proof. Given ε > 0, it is easy to see that for each x ∈ (0, α), limr→ε− fr (x) = fε(x). Therefore,
M f (x) = sup { fε(x) : ε > 0, ε ∈ Q and B(x, ε) ⊂ (0, α)}. Since the family is countable, from
Lemma 3.4, M f is a measurable function. �
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Theorem 3.6. Let f ∈ Λw,φ′ . If φ ∈ Φ0 and Λw,φ′ satisfies a lower W -estimate, then there
exists a constant C > 0 such that

W
(
µM f (s)

)
≤

C

s
Ψw,φ′( f ), s > 0. (14)

Proof. Let s > 0. For each x ∈ Ωs := {M f > s}, there exists εx > 0 such that B(x, εx ) ⊂ (0, α)
and

fεx (x) > s. (15)

Let c < µ(Ωs) and let B :=
⋃

x∈Ωs
B(x, εx ). Then c < µ(B). As µ is a regular measure, there

exists a compact set K ⊂ B such that c < µ(K ). Since C = {B(x, εx )}x∈Ωs is an open covering
of K , we can extract a finite subcovering D ⊂ C. Therefore, by Lemma 7.3 in [21], there is a
pairwise disjoint finite collection {B(xk, εxk )}

n
k=1 ⊂ D such that

c < 3
n∑

k=1

µ(B(xk, εxk )). (16)

As W (3r) ≤ 3W (r), r > 0, from (15) and (16) we obtain

W (c) < 3W

(
n∑

k=1

µ(B(xk, εxk ))

)
≤ 3W

(
n∑

k=1

W−1
(Ψw,φ′( f χB(xk ,εxk )

)

sφ′(1)

))
.

Since, by the hypotheses, there exists N > 0 satisfying (12), we have

W (c) ≤
3N

sφ′(1)
Φw,φ′

(
n∑

k=1

f χB(xk ,εxk )

)
≤

3N

sφ′(1)
Ψw,φ′( f ).

Finally, if c ↑ µ(Ωs), the proof is complete. �

Corollary 3.7. Let f ∈ Λw,φ′ . If φ ∈ Φ0 and Λw,φ′ satisfies a lower W -estimate, then there
exists a constant C > 0 such that

(M f )∗(t) ≤
C

W (t)
Ψw,φ′( f ), t > 0. (17)

Proof. Since

sup
s>0

sW (µh(s)) = sup
t>0

W (t)h∗(t), h ∈M0 (18)

(see [3]), the corollary is an immediate consequence of Theorem 3.6. �

Theorem 3.8. Let f ∈ Λw,φ′ . If φ ∈ Φ0 ∩∆2 and Λw,φ′ satisfies a lower W -estimate, then

lim
ε→0

Ψw,φ′
(
( f − f (x))χB(x,ε)

)
Ψw,φ′

(
χB(x,ε)

) = 0 a.e. x ∈ (0, α).

Proof. For h ∈ Λw,φ′ , we denote by Lh : (0, α)→ R the function Lh(x) = lim supε→0 hε(x).
Let c ∈ R and g ∈ S. For a.e. x ∈ (0, α), there exists ε(x) > 0 such that

(g − c)χB(x,ε) = (g(x)− c)χB(x,ε), 0 < ε < ε(x). (19)

Let x ∈ (0, α), and let ε(x) > 0 satisfy (19). Assume 0 < ε < ε(x).
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If g(x) = c, we get

Ψw,φ′
(
(g − c)χB(x,ε)

)
= 0,

because µ(g−c)χB(x,ε)(0) = 0.
If g(x) 6= c, then µ(g−c)χB(x,ε)(0) = µ(B(x, ε)) and

(
(g − c)χB(x,ε)

)∗
= |g(x)−c|χ[0,µ(B(x,ε))].

In consequence,

Ψw,φ′
(
(g − c)χB(x,ε)

)
= φ′(|g(x)− c|)W (µ(B(x, ε))).

Since φ ∈ Φ0 and Ψw,φ′
(
χB(x,ε)

)
= φ′(1)W (µ(B(x, ε))) we have

hε(x) =
Ψw,φ′

(
(g − c)χB(x,ε)

)
Ψw,φ′

(
χB(x,ε)

) =
1

φ′(1)
φ′(|g(x)− c|), 0 < ε < ε(x).

Then,

L(g − c)(x) =
1

φ′(1)
φ′(|g(x)− c|) a.e. x ∈ (0, α).

From Lemma 2.3, there exists C > 0 such that

L( f − c)(x) ≤ C
(
L( f − g)(x)+ φ′(|g(x)− c|)

)
≤ C

(
M( f − g)(x)+ φ′(|g(x)− c|)

)
, a.e. x ∈ (0, α).

For f (x) in place of c, it follows that

L( f − f (x))(x) ≤ C
(
M( f − g)(x)+ φ′(|( f − g)(x)|)

)
, a.e. x ∈ (0, α). (20)

Set Es = {x ∈ (0, α) : L( f − f (x))(x) > sC}, s > 0. Then, (20) implies

µ(Es) ≤ µM( f−g)

( s

2

)
+ µφ′(| f−g|)

( s

2

)
, s > 0, (21)

Since

W (a + b) ≤ 2(W (a)+W (b)), a, b > 0, (22)

from (21) we have

W (µ(Es)) ≤ 2
(

W
(
µM( f−g)

( s

2

))
+W

(
µφ′(| f−g|)

( s

2

)))
, s > 0. (23)

As (φ′(| f − g|))∗ = φ′(( f − g)∗), according to (10) and (18), we get

W
(
µφ′(| f−g|)

( s

2

))
≤

2
s
Ψw,φ′( f − g), s > 0. (24)

By Theorem 3.6, there is C ′ > 0 satisfying (14). Thus, (23) and (24) show that

W (µ(Es)) ≤
4(C ′ + 1)

s
Ψw,φ′( f − g), s > 0.

In consequence, from Theorem 2.6, µ(Es) = 0, s > 0. The proof is complete. �

In [6], a family {B(x, ε)}ε is said to differentiate Lφ′ if for every f ∈ Lφ′ integrable locally,

lim
ε→0

1
µ(B(x, ε))

∫
B(x,ε)

φ′(| f − f (x)|) = 0 a.e. x ∈ (0, α).
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As an immediate consequence of Proposition 3.3 and Theorem 3.8 we have the following
corollary.

Corollary 3.9. If φ ∈ Φ0, then the family {B(x, ε)}ε differentiates Lφ′ .

4. Convergence of best constant approximants

In this section, we prove weak inequalities for the maximal function associated with the family
{ f ε(x)}ε of best constant approximants of f ∈ Λw,φ′ on B(x, ε), which are used in the study
of pointwise convergence of f ε(x) to f (x), another extension of Lebesgue’s Differentiation
Theorem.

Lemma 4.1. Let f ∈ Λw,φ′ be a nonnegative function and let A ⊂ [0, α) be a finite measure
set. If φ ∈ Φ0 ∩∆2, then there exists C > 0 such that

φ′( f A)W (µ(A)) ≤ CΨw,φ′ ( f χA) . (25)

Proof. From ([17], Theorem 2.9), f A
= max{c : γ+(( f − c)χA, χA) ≥ 0}. As γ+( f χA, χA) ≥

0, then f A
≥ 0.

By assumption, there exists K > 0, satisfying (2). Therefore

φ′( f A) ≤
K 2

2

(
φ′( f χA)+ φ

′(( f A
− f )χA)

)
, on { f < f A

} ∩ A. (26)

It follows easily that

φ′( f A)W (µ(A)) =
∫

A
w
(
ρ( f− f A)χA,χA

)
φ′( f A)dµ,

where ρ( f− f A)χA,χA
: A → [0, µ(A)) is the m.p.t. defined in [16]. For simplicity of notation,

we write ρ instead of ρ( f− f A)χA,χA
. Thus, (26) implies

φ′( f A)W (µ(A)) ≤
∫
{ f≥ f A}∩A

w(ρ)φ′( f A)dµ+
K 2

2

∫
{ f< f A}∩A

w(ρ)φ′( f χA)dµ

+
K 2

2

∫
{ f< f A}∩A

w(ρ)φ′(( f A
− f )χA)dµ. (27)

From ([17], Theorem 2.9), we have∫
{ f< f A}∩A

w(ρ)φ′(( f A
− f )χA)dµ ≤

∫
{ f≥ f A}∩A

w(ρ)φ′(( f − f A)χA)dµ. (28)

But

φ′(( f − f A)χA) ≤ 2φ′( f χA), on { f ≥ f A
} ∩ A (29)

since

φ′(a)+ φ′(b) ≤ 2φ′(a + b), a, b ≥ 0. (30)

According to (27)–(29), and φ ∈ Φ0, we get

φ′( f A)W (µ(A)) ≤ C
∫

A
w(ρ)φ′( f χA)dµ = C

∫
N ( f )∩A

w(ρ)φ′( f χA)dµ,

where C = K 2
+ 1. Finally, (1) implies φ′( f A)W (µ(A)) ≤ CΨw,φ′ ( f χA) . �
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Remark 4.2. Let f ∈ Λw,φ′ and let A ⊂ [0, α) be a finite measure set. If φ ∈ Φ0 ∩ ∆2, then
there exists C > 0 such that

φ′(|m|)W (µ(A)) ≤ CΨw,φ′ ( f χA) , m ∈ TA( f ). (31)

In fact, from ([17], Theorems 2.9 and 3.9) we have max{| f A|, | f A
|} ≤ | f |A. Therefore, (31) is

an immediate consequence of Lemma 4.1.

Definition 4.3. Let f ∈ Λw,φ′ . Let Γ f : (0, α)→ R be the maximal function defined by

Γ f (x) = sup
{
|m| : m ∈ TB(x,ε)( f ), ε > 0 and B(x, ε) ⊂ (0, α)

}
.

Theorem 4.4. Let f ∈ Λw,φ′ . If φ ∈ ∆2, then there exists a constant C > 0 such that:

• W (µ∗({Γ f > s})) ≤ C
φ′(s)Ψw,φ′( f ), s > 0, if φ ∈ Φ0;

• W (µ∗({Γ f > s})) ≤ C
φ′(0)

∫ µ f (s)
0 φ′( f ∗)w, s > 0, if φ′(0) > 0,

where µ∗ is the Lebesgue outer measure.

Proof. Let H f : (0, α)→ R be the maximal function defined by

H f (x) = sup
{
| f |B(x,ε) : ε > 0 and B(x, ε) ⊂ (0, α)

}
.

From ([17], Theorems 2.9 and 3.9), we have max{| fB(x,ε)|, | f B(x,ε)
|} ≤ | f |B(x,ε). Then,

Γ f ≤ H f on (0, α). The proof is completed showing that the results hold for H f .
Let s > 0. For each x ∈ Ωs := {H f > s}, there exists εx > 0 such that B(x, εx ) ⊂ (0, α) and

| f |B(x,εx ) > s. (32)

Let c < µ∗(Ωs) and let B :=
⋃

x∈Ωs
B(x, εx ). Clearly c < µ(B). Analogously to the case for

the proof of Theorem 3.6, there is a pairwise disjoint finite collection {B(xk, εxk )}
n
k=1 such that

c < 3
∑n

k=1 µ(B(xk, εxk )). As W (3r) ≤ 3W (r), r > 0, we obtain

W (c) < 3W

(
n∑

k=1

µ(B(xk, εxk ))

)
= 3W (µ(B∗)), (33)

where B∗ :=
⋃n

k=1 B(xk, εxk ).
Suppose φ ∈ Φ0. From Lemma 4.1, there exists K > 0 such that

φ′(| f |B∗)W (µ(B∗)) ≤ KΨw,φ′
(

f χB∗

)
. (34)

As | f |χB(xk ,εxk )
≤ | f |χB∗ , 1 ≤ k ≤ n, by ([17], Theorem 3.9) we have | f |B(xk ,εk ) ≤ | f |B∗ ,

1 ≤ k ≤ n. Then, (32)–(34) imply φ′(s)W (c) ≤ 3KΨw,φ′( f ). Thus, if c ↑ µ∗(Ωs), the proof in
this case is complete.
Now suppose φ′(0) > 0. Since

φ′(0)W (µ(B∗)) ≤
∫

B∗
w
(
ρ(| f |−| f |B∗ )χB∗ ,χB∗

)
φ′(|(| f | − | f |B∗)χB∗ |)dµ,

from ([17], Theorem 2.9), (30) and (32) we have

φ′(0)W (µ(B∗)) ≤ 2
∫
{| f |≥| f |B∗ }∩B∗

w
(
ρ(| f |−| f |B∗ )χB∗ ,χB∗

)
φ′((| f | − | f |B∗)χB∗)dµ

≤ 4
∫
{| f |>s}∩B∗

w
(
ρ(| f |−| f |B∗ )χB∗ ,χB∗

)
φ′(| f |χB∗)dµ.
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So, (1) and (33) imply φ′(0)W (c) ≤ 12
∫ µ f (s)

0 φ′( f ∗)w. Finally, if c ↑ µ∗(Ωs), the proof is
complete. �

As we have mentioned in Section 1, we extend ([19], Corollary 3.2) and ([6], Theorems 4 and
9) for the case of one-variable functions. In fact we have:

Theorem 4.5. Let f ∈ Λw,φ′ , x ∈ (0, α), and let f ε(x) ∈ TB(x,ε)( f ) be any best constant
approximation of f on B(x, ε). If φ ∈ ∆2, then limε→0 f ε(x) = f (x), a.e. x ∈ (0, α).

Proof. Let L f (x) = lim supε→0 | f
ε(x) − f (x)| and let g ∈ S. For a.e. x ∈ (0, α), there exists

a net {( f − g)ε(x)}ε ⊂ TB(x,ε)( f − g) such that

L f (x) = lim sup
ε→0

|( f − g)ε(x)− ( f (x)− g(x))|.

Then L f (x) ≤ Γ ( f − g)(x) + | f (x) − g(x)|, a.e. x ∈ (0, α), and consequently µ∗({L f >
2s}) ≤ µ∗ ({Γ ( f − g) > s})+ µ f−g (s), s > 0. From (22), it follows that

W (µ∗({L f > 2s})) ≤ 2
(
W (µ∗ ({Γ ( f − g) > s}))+W

(
µ f−g (s)

))
, s > 0.

Therefore, Theorems 4.4 and 2.6 show that L f (x) = 0, a.e. x ∈ (0, α). This completes the
proof. �

Remark 4.6. In [6], the authors assume that the family {B(x, ε)}ε differentiates Lφ′ in order to
prove Theorem 4, in the case φ′(0) = 0. However, by Corollary 3.9, we prove that this property
is always satisfied.
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