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Abstract

We describe a local Lagrange interpolation method using cubic (i.e. non-tensor product) C1 splines
on cube partitions with five tetrahedra in each cube. We show, by applying a complex proof, that the
interpolation method is local, stable, has optimal approximation order and linear complexity. Since no
numerical results on trivariate cubic C1 spline interpolation are known from the literature, the steps of the
algorithm, which are different from those of the known methods, are focused on its implementation. In this
way, we are able to describe the first implementation of a trivariate C1 spline interpolation method, run
numerical tests and visualize the corresponding isosurfaces. These tests with up to 5.5× 1011 data confirm
the efficiency of the algorithm.
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In the last few years, a series of papers have appeared on local Lagrange interpolation using
bivariate splines (see [11,8,9,7,6]). On the other hand, only a few results are known for this
problem in the trivariate case (see [3,4,12,10]). Up to now, no Lagrange interpolation algorithms
using trivariate cubic C1 splines have been implemented.
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In this paper, we describe a local Lagrange interpolation method using cubic C1 splines on
cube partitions with five tetrahedra in each cube, called type-4 tetrahedral partitions. For the first
time, a trivariate spline interpolation algorithm is implemented and its efficiency is verified.

A fundamental method for constructing local Lagrange interpolation sets for spaces of cubic
C1 splines on refined arbitrary partitions was developed by [4]. The method is based on
decompositions into classes of tetrahedra and the refinement of certain tetrahedra by partial
Worsey–Farin splits. A spline space together with a corresponding Lagrange interpolation set
is called an interpolation pair (cf. [4]). We note that the above decompositions are not unique.

As regards the aspect of implementation, we investigate type-4 tetrahedral partitions and
describe efficient decompositions of these partitions. The tetrahedral partitions are decomposed
into classes of cubes such that for each cube, the interpolating splines can be computed by simply
repeating the same steps. Moreover, all steps are very similar and - roughly speaking - slight
modifications of one single step.

In order to simplify the implementation, we describe in detail which tetrahedra are refined by a
partial Worsey–Farin split and which interpolation points are chosen. We note that the algorithm
is different from the general method in [4] and from the algorithm in [3] for Freudenthal
partitions. In [4], the computation of the interpolating spline is based on chains of tetrahedra with
common vertices and common edges, while in [3], a black and white coloring of the tetrahedra
is used.

It is proved that the Lagrange interpolating splines can be computed locally and stably, which
implies that the method yields optimal approximation order for smooth functions. In addition,
the computational complexity of the method is linear in the number of vertices of the cubes.

We implement the algorithm and give numerical results and visualizations of the
corresponding isosurfaces. Moreover, we also implement the method of [3] for Freudenthal
partitions. The results for our method are slightly better than those for the Freudenthal partition,
although fewer tetrahedra are used.

We note, that for trivariate C1 tensor product spline interpolation, splines of higher degree
have to be used.

The paper is organized as follows. In Section 2, we recall the basic Bernstein–Bézier theory of
splines. In Section 3, we define type-4 partitions and the classifications of cubes and tetrahedra.
We recall the so called partial Worsey–Farin splits in Section 4. In Section 5, we describe
an algorithm for refining the given tetrahedral partition and for constructing a corresponding
Lagrange interpolation set. Moreover, we give our main result on the locality and the stability
of our method by using a complex proof. In Section 6, we establish error bounds for the
corresponding interpolation operator. In the last section, we give some numerical tests and
visualizations, and we compare them with other methods.

2. Preliminaries

For any given tetrahedral partition ∆, the associated space of C1 cubic splines is defined by

S 1
3 := {s ∈ C1

: s|T ∈ P3,∀T ∈ ∆},

where P3 is the 20-dimensional space of trivariate cubic polynomials. In this paper we use the
well-known Bernstein–Bézier techniques (see the book [5], chapter 15.3–15.4). For a collection
of tetrahedra ∆ ⊂ R3, let

D∆ :=
⋃

T∈∆

DT ,
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be the set of domain points, where

DT :=

{
ξ T

i, j,k,l :=
iv1 + jv2 + kv3 + lv4

3
, i + j + k + l = 3

}
and T := 〈v1, v2, v3, v4〉.

Definition 2.1. The ball of radius 1 around v1 is defined by

DT
1 (v1) := {ξ

T
i, j,k,l : i ≥ 2},

which consists of four domain points. The definition is similar for the other vertices of T . If v is
a vertex of a collection of tetrahedra ∆, we define

D1(v) :=
⋃

{T∈∆: v∈T }

DT
1 (v).

The tube of radius 1 around e := 〈v1, v2〉 is defined by

ET
1 (e) := {ξ

T
i, j,k,l : k + l ≤ 1},

which consists of ten domain points. If e is an edge of a collection of tetrahedra ∆, we define

E1(e) :=
⋃

{T∈∆: e∈T }

ET
1 (e).

We have for every spline s ∈ S 0
3 (∆),

s|T =
∑

i+ j+k+l=3

cT
i, j,k,l B3

i, j,k,l

where B3
i, j,k,l =

3!
i ! j !k!l!Φ

i
1Φ

j
2 Φk

3Φ
l
4 are the Bernstein polynomials of degree 3 associated with T

and Φν ∈ P1, ν = 1, 2, 3, 4, are the barycentric coordinates of T . Then each spline s ∈ S 0
3 (∆) is

uniquely determined by its corresponding set of B-coefficients {cξ }ξ∈Dd,∆ , with cξT
i, j,k,l
:= cT

i, j,k,l .

Suppose T̃ := 〈v5, v2, v3, v4〉 is a further tetrahedron in ∆, and T and T̃ share the face
f := 〈v2, v3, v4〉. Let p and p̃ be two polynomials of degree 3 with B-coefficients cT

i, j,k,l and

cT̃
i, j,k,l . Then p and p̃ join with Cr continuity across the face f if and only if

cT̃
i, j,k,l =

∑
α+β+γ+δ=i

cT
α, j+β,k+γ,l+δBi

α,β,γ,δ(v5),

for i = 0, . . . , r, j + k + l = 3− i ; see [5], chapter 17.2.
In this paper we also use the concept of minimal determining sets. A set M of domain points

is called a minimal determining set for a spline space S provided it is the smallest set of points
such that the corresponding B-coefficients {cξ }ξ∈M can be set independently, and all other B-
coefficients of a spline s ∈ S are consistently determined from smoothness conditions; see [5],
chapter 17.3.

3. Classification of cubes and tetrahedra

Let n be an odd integer and let � be the cube partition of Ω = [0, n] × [0, n] × [0, n] ⊆ R3

which is obtained by intersecting Ω with n + 1 parallel planes in each of the three space
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Table 3.1
Classification for K0, . . . ,K3.

i j k

K0 Even Even Even
K1 Odd Odd Even
K2 Odd Even Odd
K3 Even Odd Odd

Fig. 3.1. Classification of cubes.

dimensions, i.e.,

� = {Qi, j,k : Qi, j,k = [i − 1, i] × [ j − 1, j] × [k − 1, k], i, j, k = 1, . . . , n}.

The cubes {Qi, j,k} can be classified as K0, . . . ,K4, according to their subscripts, as in Table 3.1.
The remaining cubes are in class K4 (see Fig. 3.1).

These classes have the following properties:

Lemma 3.1. 1. No two cubes in class Ki , i = 0, . . . , 3, touch each other.
2. Each cube Q in class Ki , i = 1, 2, 3, touches at most four cubes in class K j at the edges of

Q, for each j = 0, . . . , i − 1.
3. Two cubes in class K4 can have at most one common edge.
4. If a cube Q in class K4 shares an edge e with another cube in class K4, then Q also shares

the two faces containing e with two cubes in the classes Ki , i = 0, . . . , 3 (see Fig. 3.3).

We now describe the construction of a type-4 tetrahedral partition of � by subdividing each
cube Q of � into five tetrahedra, introduced by [12]. Therefore, let V be the set of vertices of �
(see Fig. 3.1).

Lemma 3.2. The set V can be divided into two sets V1 and V2 such that for every vertex v ∈ Vν ,
all of its vertices sharing an edge with v are in Vµ, where ν 6= µ.
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This partition of V is not unique in the sense that there can be other partitions of V into V1 and
V2 depending on the choice of the vertices.

Without loss of generality we assume that {v0,0,0, v0,1,1, v1,0,1, v1,1,0} ∈ V1. Thus all other
vertices are uniquely classified and can be more easily described.

We say that the vertices in V1 are of type-1 and those in V2 are of type-2.
Now it is possible to define the following type-4 tetrahedral partition:

Definition 3.1 (Type-4 Tetrahedral Partition). Given a cube partition � in R3, suppose ∆ is the
collection of tetrahedra which is obtained by splitting each cube Q of � into five tetrahedra by
connecting its four type-2 vertices with each other. ∆ is called a type-4 partition of �.

For a simpler description of the different tetrahedra in a single cube Qi, j,k we write

T 1
i, j,k := 〈vi, j,k, vi, j,k+1, vi, j+1,k, vi+1, j,k〉,

T 2
i, j,k := 〈vi, j,k+1, vi, j+1,k, vi, j+1,k+1, vi+1, j+1,k+1〉,

T 3
i, j,k := 〈vi, j,k+1, vi+1, j,k, vi+1, j,k+1, vi+1, j+1,k+1〉,

T 4
i, j,k := 〈vi, j+1,k, vi+1, j,k, vi+1, j+1,k, vi+1, j+1,k+1〉,

T 5
i, j,k := 〈vi, j,k+1, vi, j+1,k, vi+1, j,k, vi+1, j+1,k+1〉,

for the tetrahedra in cubes of the classes K0,K1,K2 and K3 (see Fig. 3.4).
For the different tetrahedra in a cube Qi, j,k in class K4 (see Fig. 3.5) we use the notation

T 1
i, j,k := 〈vi, j,k, vi, j+1,k, vi, j+1,k+1, vi+1, j+1,k〉,

T 2
i, j,k := 〈vi, j,k, vi, j,k+1, vi, j+1,k+1, vi+1, j,k+1〉,

T 3
i, j,k := 〈vi, j+1,k, vi+1, j,k+1, vi+1, j+1,k, vi+1, j+1,k+1〉,

T 4
i, j,k := 〈vi, j,k, vi+1, j,k, vi+1, j,k+1, vi+1, j+1,k〉,

T 5
i, j,k := 〈vi, j,k, vi, j+1,k+1, vi+1, j,k+1, vi+1, j+1,k〉.

4. Partial Worsey–Farin splits

In this section we recall the partial Worsey–Farin split. In order to describe a partial
Worsey–Farin split we also need the Clough–Tocher split of a triangle. The Clough–Tocher split
FCT of a triangle F := 〈v1, v2, v3〉 with interior point vF can be obtained by connecting all three
vertices of F to vF . Then FCT consists of the three subtriangles Fi := 〈vI , vi+1, vF 〉, i = 1, 2, 3,
where v4 = v1.

The following definition can be found in a similar way in [3].

Definition 4.1. Let T be a tetrahedron, and let vT be its barycenter. Given an integer 1 ≤ m ≤ 4,
let F1, . . . , Fm be distinct faces of T , and for each i = 1, . . . ,m, let vFi be a point in the interior
of Fi . Then we define the m-th-order partial Worsey–Farin split ∆m

W F of T to be the tetrahedral
partition obtained by the following steps:

1. connect vT to each of the four vertices of T ,
2. connect vT to the points vFi for i = 1, . . . ,m,
3. connect vFi to the three vertices of Fi for i = 1, . . . ,m.
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The m-th-order partial Worsey–Farin split of a tetrahedron results in 4 + 2m subtetrahedra; see
Fig. 4.1. The split ∆4

W F is the well-known Worsey–Farin split; see [14]. We need the following
result on the space S 1

3 (∆
m
W F ), where ∆m

W F is the m-th-order partial Worsey–Farin split of a
tetrahedron T := 〈v1, v2, v3, v4〉.

Theorem 4.1 ([3], Theorem 6.3). Fix 0 ≤ m ≤ 4. Let Mm be the union of the following sets of
domain points in D∆m

W F
:

1. for each i = 1, . . . , 4, D(vi ) ∩ Ti for some tetrahedron Ti ∈ ∆m
W F containing vi ,

2. for each face F of T that is not split, the point ξ F
1,1,1,

3. for each face F of T that has been subjected to a Clough–Tocher split, the points {ξ Fi
1,1,1}

3
i=1,

where F1, F2, F3 are the subfaces of F.

Then Mm is a minimal determining set for S 1
3 (∆

m
W F ).

5. Main result

In this section we give an algorithm for the refinement of ∆ to ∆∗ and develop a local and
stable Lagrange interpolation method for S 1

3 (∆
∗). In this algorithm we split some of the faces

of the tetrahedra with a Clough–Tocher split and the tetrahedra with the corresponding partial
Worsey–Farin split. To uniquely define these splits we specify the points vF , where the faces
have to be split, in the following way:

1. if F is a face that is shared by two tetrahedra T and T̃ in ∆, then choose vF to be the
intersection of F with the line connecting the barycenters vT and vT̃ of T and T̃ ;

2. otherwise choose the barycenter of F to be vF .

Let � be a cube partition and ∆ the corresponding type-4 tetrahedral partition. Moreover, let
Ki , i = 0, . . . , 4, be the classes of cubes and T l

i, j,k, l = 1, . . . , 5, the tetrahedra as in Section 3.

Algorithm 5.1. Step 1: For each cube Qi, j,k ∈ K0,
(1a) choose the 20 points DT 1

i, j,k
,

(1b) choose the 10 points DT 2
i, j,k
\ E

T 2
i, j,k

1 (〈vi, j,k+1, vi, j+1,k〉),

(1c) split T 3
i, j,k with a first-order partial Worsey–Farin split at 〈vi, j,k+1, vi+1, j,k,

vi+1, j+1,k+1〉 and choose the four points DT
1 (vi+1, j,k+1), vi+1, j,k+1 ∈ T ⊂ T 3

i, j,k ,
vF ∈ 〈vi+1, j,k, vi+1, j,k+1, vi+1, j+1,k+1〉 and vF̃ ∈ 〈vi, j,k+1, vi+1, j,k, vi+1, j+1,k+1〉,

(1d) and split T 4
i, j,k with a first-order partial Worsey–Farin split at 〈vi, j+1,k, vi+1, j,k,

vi+1, j+1,k+1〉 and choose the four points DT
1 (vi+1, j+1,k), vi+1, j+1,k ∈ T ⊂ T 4

i, j,k .
Step 2: Define all edges of ∆\K0 as “unmarked” and all edges in cubes in class K0 as “marked”.
Step 3: For each cube Qi, j,k in Kl , l = 1, . . . , 4, for each tetrahedron T m

i, j,k, m = 1, . . . , 4, in
Qi, j,k ,
3(a) if T := T m

i, j,k has h faces with two or three marked edges, then split these faces with
a Clough–Tocher split, T with an h-th-order partial Worsey–Farin split and replace
T in ∆ by the resulting subtetrahedra,

3(b) if a face 〈v1, v2, v3〉 of T has no or two marked edges, choose the point vF ,
3(c) mark all edges of T .

Step 4: Split each tetrahedron T 5
i, j,k in ∆ with a fourth-order partial Worsey–Farin split.
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Table 5.1
Possible splits for the different tetrahedra for cubes in K0 ∪ · · · ∪K3.

No split 1-WF 2-WF 3-WF 4-WF

K0T 1
i, j,k × – – – –

K0T 2
i, j,k × – – – –

K0T 3
i, j,k – × – – –

K0T 4
i, j,k – × – – –

K0T 5
i, j,k – – – – ×

K1T 1
i, j,k × – – – –

K1T 2
i, j,k – × – – –

K1T 3
i, j,k – – × – –

K1T 4
i, j,k – – – × –

K1T 5
i, j,k – – – – ×

K2T 1
i, j,k o × – – –

K2T 2
i, j,k – o × – –

K2T 3
i, j,k – – o × –

K2T 4
i, j,k – – – o ×

K2T 5
i, j,k – – – – ×

K3T 1
i, j,k o – – × –

K3T 2
i, j,k o – – × –

K3T 3
i, j,k – – – o ×

K3T 4
i, j,k – – – o ×

K3T 5
i, j,k – – – – ×

Now, let L be the set of all interpolation points chosen in Algorithm 5.1 and ∆∗ be the tetrahedral
partition obtained from Algorithm 5.1.

It may be helpful to list the types of the splits that may be applied to the tetrahedra in the
different classes—see Tables 5.1 and 5.2. m-WF stands for the m-th-order partial Worsey–Farin
split. In the table the symbol “–” indicates that the corresponding tetrahedra are not subdivided
with the indicated split. The symbol “o” identifies cases which can occur when the corresponding
cube is on the boundary of �. The splits for tetrahedra of cubes in the interior of � are identified
with the symbol “×”.

Note that the tetrahedral partition obtained is not the final partition. Let T and T̃ be two
tetrahedra with a common face F . By Algorithm 5.1, F has not been split as a face of tetrahedron

T , but it has been split as a face of T̃ . We first determine the spline on T . Then, we split T at F
and represent the spline as a spline on the subdivided tetrahedron T . This representation can be
easily obtained by applying the de Casteljau algorithm. Next, the spline can be determined on T̃ .
Note that in the Tables 5.1 and 5.2 these additional splits are not considered.

Definition 5.1. A set L := {ξi }i=1,...,N is called a Lagrange interpolation set for the spline space
S 1

3 (∆
∗) if N is the dimension of S 1

3 (∆
∗) and for every choice of real numbers { fi }i=1,...,N there

is a unique spline s ∈ S satisfying

s(ξi ) = fi , i = 1, . . . , N .
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Table 5.2
Possible splits for the different tetrahedra for cubes in K4.

No split 1-WF 2-WF 3-WF 4-WF

K4T 1
i, j,k – o – – ×

K4T 2
i, j,k – o o – ×

K4T 3
i, j,k – – – o ×

K4T 4
i, j,k – – – – ×

K4T 5
i, j,k – – – – ×

Fig. 3.2. Layers of cubes.

Definition 5.2. A Lagrange interpolation set L is local if for any tetrahedron T in ∆∗ and a
spline s ∈ S 1

3 (∆
∗), s|T depends only on values { fξ }ξ∈L∩ΩT , with ΩT ⊂ Ω .

L is also stable if

|cξ | ≤ K max
η∈ΩT

| fη| (5.1)

holds for the B-coefficients cξ of s|T , with an absolute constant K .

Now, we are ready to state the main result of this paper.

Theorem 5.1. L is a local and stable Lagrange interpolation set for S1
3(∆

∗).

Before giving the proof, we describe how a spline on � can be computed. Therefore, we argue
with layers of cubes; see Fig. 3.2. In Algorithm 5.1, we first choose the interpolation points in
tetrahedra of cubes in class K0. These can be chosen independently, since the cubes in class K0
are disjoint (cf. Lemma 3.1). Thus, we can compute s on all cubes in class K0 independently.
Moreover, for all cubes in class K0, these computations are the same.

Next, s can be computed on the cubes in class K1. Therefore, the interpolation points in
tetrahedra of cubes in class K1 are chosen considering the common edges with cubes in K0. The
computations are very similar to those for the cubes in class K0. For cubes in class K1 in the
interior of �, we always have the same computations, since these cubes are disjoint and each one
touches exactly four cubes in class K0, which lie in the same layer. Thus, s only depends on the
values of the interpolation points in each cube in class K1 and at most four cubes in class K0 with
a common edge in the same layer. In the same way s can be computed in the cubes in the other
classes. So we compute s in the cubes of K0,K1,K2,K3 and finally K4 (see Figs. 3.4 and 3.5).



502 M.A. Matt, G. Nürnberger / Journal of Approximation Theory 162 (2010) 494–511

Fig. 3.3. Cube Q ∈ K4 sharing e with a cube in class K4 and sharing two faces with cubes in classes Ki and
K j , i, j = 0, . . . , 3.

Fig. 3.4. The partition of a cube Qi, j,k ∈ K0 ∪K1 ∪K2 ∪K3 into five tetrahedra with marked vertices of type-1 and
type-2.

Therefore, a spline s can be computed locally in the sense that s|Q , where Q is a cube in class
K4, only depends on values in Q and the coefficients of s in the surrounding cubes.

For the proof of our main result we need the following two bivariate Lemmas from [3].
Therefore, we also need some bivariate Bernstein–Bézier techniques (cf. [5], chapter 2.3). Let
D F := {ξ

T
i, j,k :=

iv1+ jv2+kv3
3 , i + j + k = 3} be the set of domain points of a triangle F :=

〈v1, v2, v3〉. Moreover, let {Bi, j,k}i+ j+k=3 be the bivariate Bernstein polynomials associated with
F . Then every bivariate polynomial p of degree 3 can be uniquely written as

p =
∑

i+ j+k=3

cF
i, j,k Bi, j,k,

where cF
i, j,k are the B-coefficients of p associated with the domain points in F .

Lemma 5.1. Suppose that we are given all of the coefficients cF
i, j,k of a bivariate cubic

polynomial p except for cF
1,1,1. Then for any given real number z and any point vF in the interior

of F, there exists a unique cF
1,1,1 such that p(vF ) = z.

Let FCT be a triangle which has been subjected to the Clough–Tocher split with subfaces
Fi , i = 1, 2, 3, as in Section 4. Moreover, let s be a bivariate cubic C1 spline, with B-coefficients
{cFl

i, j,k}i+ j+k=3,l=1,2,3.
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Fig. 3.5. The partition of a cube Qi, j,k ∈ K4 into five tetrahedra with marked vertices of type-1 and type-2.

Fig. 4.1. Partial Worsey–Farin splits of m-th order for m = 1, . . . , 4.

Lemma 5.2. Suppose that we are given all of the coefficients of s ∈ S1
3(FCT ) except for

cF1
3,0,0, cF1

2,1,0, cF1
2,0,1, cF1

1,1,1. Then for any given real number z, there exists a unique choice of these
coefficients such that s(vF ) = z.

Note that the spline in Lemma 5.2 is not uniquely determined without the interpolation condition
at vF .

Proof of Theorem 5.1. To show that L is a local Lagrange interpolation set for S1
3(∆

∗), we fix
the values {zξ }ξ∈L for a spline s ∈ S1

3(∆
∗). Then we show that s is locally, stably and uniquely

determined. We have to consider three cases.
Case 1: Qi, j,k ∈ K0.

We begin with s|Qi, j,k , Qi, j,k ∈ K0. By Lemma 3.1 all cubes Qi, j,k ∈ K0 are disjoint.
Therefore, we only consider one cube Q ∈ K0; the remaining cubes in class K0 can be treated
analogously. For simplicity, in the following we set i = j = k = 0.
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Case 1.1: T 1
0,0,0.

Since L contains all the points DT 1
0,0,0

, the B-coefficients of s|T 1
0,0,0

can be uniquely and stably

computed form the values {zξ }ξ∈L∩T 1
0,0,0

. Thus, all B-coefficients of s associated with domain

points in D1(v), v ∈ T 1
0,0,0, and E1(e), e ∈ T 1

0,0,0, can be uniquely and stably determined using

the C1 smoothness conditions of s at the edges and vertices of T 1
0,0,0. Since these computations

only involve values {zξ }ξ∈L∩T 1
0,0,0

, they are also local.

Case 1.2: T 2
0,0,0.

Next, we consider the tetrahedron T 2
0,0,0. The B-coefficients associated with the 10

domain points in E
T 2

0,0,0
1 (〈v0,0,1, v0,1,0〉) are already uniquely determined. Then the remaining

undetermined B-coefficients of s|T 2
0,0,0

can be uniquely and stably computed using the values

{zξ }ξ∈L∩T 2
0,0,0

. Thus, the spline s|T 2
0,0,0

can be computed locally, since the corresponding B-

coefficients only depend on the values {zξ }ξ∈L∩(T 1
0,0,0∪T 2

0,0,0)
. Now, also all B-coefficients of s

associated with domain points in D1(v), v ∈ T 2
0,0,0, and E1(e), e ∈ T 2

0,0,0, can be uniquely and

stably determined using the C1 smoothness conditions of s at the edges and vertices of T 2
0,0,0.

Case 1.3: T 3
0,0,0.

Next, we consider the tetrahedron T 3
0,0,0, which has been subjected to a first-order partial

Worsey–Farin split. The B-coefficients associated with the domain points in E1(〈v0,0,1, v1,0,0〉)∪

E1(〈v0,0,1, v1,1,1〉) are already uniquely determined. Those coefficients associated with the
domain points in D1(v1,0,1) can be uniquely determined from the values at the interpolation
points ξ ∈ DT

1 (v1,0,1) ⊂ L, v1,0,1 ∈ T ⊂ T 3
0,0,0. The undetermined B-coefficients in the

faces 〈v1,0,0, v1,0,1, v1,1,1〉 and 〈v0,0,1, v1,0,0, v1,1,1〉 can be computed from the values at the
two points vF ∈ L and vF̃ ∈ L in these faces using Lemmas 5.1 and 5.2, respectively. Thus,
all B-coefficients associated with the domain points in the minimal determining set M1 from
Theorem 4.1 are uniquely and stably determined. Therefore, all other B-coefficients of s|T 3

0,0,0

are uniquely and stably determined. The computation of these B-coefficients is also local, since
they only depend on the values {zξ }ξ∈L∩(T 1

0,0,0∪T 2
0,0,0∪T 3

0,0,0)
. So, all B-coefficients of s associated

with domain points in D1(v), v ∈ T 3
0,0,0, and E1(e), e ∈ T 3

0,0,0, can be uniquely and stably

determined using the C1 smoothness conditions of s at the edges and vertices of T 3
0,0,0.

Case 1.4: T 4
0,0,0.

Now, we consider the tetrahedron T 4
0,0,0. This tetrahedron has also been subjected to a

first-order partial Worsey–Farin split. Moreover, the B-coefficients associated with the domain
points in E1(〈v0,1,0, v1,0,0〉) ∪ E1(〈v0,1,0, v1,1,1〉) ∪ E1(〈v1,0,0, v1,1,1〉) are already uniquely
determined. Thus, all B-coefficients of s|〈v0,1,0,v1,0,0,v1,1,1〉 are already uniquely and stably
determined, since we already know the B-coefficients corresponding to the domain points in the
minimal determining set of the classical Clough–Tocher macro-element (cf. [1]). The remaining
B-coefficients of s|T 4

0,0,0
can be uniquely and stably determined from the values at the

interpolation points ξ ∈ DT
1 (v1,1,0) ⊂ L, v1,1,0 ∈ T ⊂ T 4

0,0,0. Thus, all B-coefficients of s

associated with domain points in D1(v), v ∈ T 4
0,0,0, and E1(e), e ∈ T 4

0,0,0, can be uniquely and

stably determined using the C1 smoothness conditions of s at the edges and vertices of T 4
0,0,0.

At this point s is uniquely and stably determined on all edges of ∆∗.
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Case 1.5: T 5
0,0,0.

Next, we consider the last tetrahedron in Q, T 5
0,0,0. By the construction of ∆, T 5

0,0,0 has

one common face with each of the four tetrahedra T l
0,0,0, l = 1, . . . , 4. Furthermore, by

Algorithm 5.1 T 5
0,0,0 has been subjected to the fourth-order partial Worsey–Farin split. Since

s|T l
0,0,0
, l = 1, . . . , 4, is already uniquely determined, we use the de Casteljau Algorithm to

subdivide the tetrahedra T l
0,0,0, l = 1, 2, 3, with a partial Worsey–Farin split with a split face

at the common face with T 5
0,0,0 and the C1 smoothness conditions at the edges and vertices of

∆∗, to uniquely and stably determine the B-coefficients associated with the domain points on the
faces of T 5

0,0,0. Now, we have determined all B-coefficients associated with the domain points in
the minimal determining set M4 for a spline s over the fourth-order partial Worsey–Farin split
and the remaining undetermined B-coefficients of s|T 5

0,0,0
can be uniquely and stably computed

(see Theorem 4.1). These computations are also local, since the B-coefficients of s|T 5
0,0,0

only

depend on the values {zξ }ξ∈L∩Q .
Case 2: Qi, j,k ∈ (K1 ∪K2 ∪K3).

In the following we consider the cubes Qi, j,k ∈ (K1 ∪ K2 ∪ K3). The spline s is determined
on these cubes according to the ordering imposed by their classes. So, first s can be determined
on all cubes in the class K1, then on all cubes in class K2 and afterwards on all cubes in class
K3. By Lemma 3.1, no two cubes in class Ki , i = 0, . . . , 3, touch each other. Therefore, we
can compute s on each cube Qi, j,k ∈ Kl , l = 1, . . . , 3, in the same way. These computations
are also very similar to those for determining s|K0 . Let Q̃ be a cube in (K1 ∪ K2 ∪ K3) and
T̃ l

i, j,k, l = 1, . . . , 5, the tetrahedra in Q̃. Since s is already uniquely determined on the edges of
∆∗, the only undetermined B-coefficients of s|Q̃ are associated with domain points on the faces

of the tetrahedra in Q̃.
Case 2.1: T 1

i, j,k, T 2
i, j,k, T 3

i, j,k, T 4
i, j,k .

We first consider the faces of the tetrahedron T̃ 1
i, j,k . Let F be a face of T̃ 1

i, j,k . We have to
distinguish four cases:

(1) If F has no marked edges, then L contains the barycenter vF of F and the remaining
undetermined B-coefficient of s|F can be uniquely and stably determined using Lemma 5.1.

(2) If F has one marked edge, then the remaining undetermined B-coefficient of s|F can be
uniquely and stably determined using the C1 smoothness conditions at the marked edge.

(3) If F has two marked edges, then F is split with a Clough–Tocher split and L contains the
barycenter vF of F and the remaining undetermined B-coefficients of s|F can be uniquely
and stably determined using Lemma 5.2.

(4) If F has three marked edges, then F is split with a Clough–Tocher split and the remaining
undetermined B-coefficients of s|F can be uniquely and stably computed using the C1

smoothness conditions at the edges of F , since s|F is just a classical C1 Clough–Tocher
macro-element (cf. [1]).

If none of the faces of T̃ 1
i, j,k is subdivided by a Clough–Tocher split, s|T̃ 1

i, j,k
is uniquely and

stably determined. If one or more of the faces of T̃ 1
i, j,k is subdivided, we can use Theorem 4.1 to

uniquely and stably determine s|T̃ 1
i, j,k

. All these computations are also local. The spline s|T̃ 1
i, j,k

can be uniquely determined from values corresponding to interpolation points in T̃ 1
i, j,k , the

B-coefficients of s associated with domain points in the cubes in class K0 sharing vertices with
Q̃ and the maximal four cubes in class Ki−1 touching Q̃ at the edges, where Q̃ is in class Ki .
The cube Q̃ can touch fewer cubes in class Ki−1 if it lies on the boundary of �.
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On the tetrahedra T̃ l
i, j,k, l = 2, 3, 4, s can be determined in the same way as on T̃ 1

i, j,k . The
only difference is, that s|T̃ l

i, j,k
, l = 2, 3, 4, then also depends on the B-coefficients of s associated

with domain points in the tetrahedra T̃ m
i, j,k, m = 1, . . . , l.

Case 2.2: T 5
i, j,k .

Now, we can determine s|T̃ 5
i, j,k

. The tetrahedron T̃ 5
i, j,k has exactly one common face with each

of the four tetrahedra T̃ 1
i, j,k, . . . , T̃ 4

i, j,k and by Algorithm 5.1 T̃ 5
i, j,k has been subjected to the

fourth order partial Worsey–Farin split. So, we use the de Casteljau Algorithm to subdivide the
tetrahedra T̃ 1

i, j,k, . . . , T̃ 4
i, j,k with a partial Worsey–Farin split with a split face at the common face

with T 5
i, j,k , if not done earlier, and the C1 smoothness conditions at the edges and vertices of ∆∗,

to uniquely and stably determine the B-coefficients associated with the domain points on the faces
of T̃ 5

i, j,k . Thus, we have determined all B-coefficients associated with the domain points in the
minimal determining set M4 for a spline s over the fourth-order partial Worsey–Farin split and
the remaining undetermined B-coefficients of s|T̃ 5

i, j,k
can be uniquely and stably computed (see

Theorem 4.1). These computations are also local, since the B-coefficients of s|T̃ 5
i, j,k

depend on the

same values and already determined B-coefficients as the previous tetrahedra T̃ 1
i, j,k, . . . , T̃ 4

i, j,k .
Case 3: Qi, j,k ∈ K4.

Finally, we determine s|Qi, j,k , Qi, j,k ∈ K4. Let Q̂ be a cube in class K4. Then the tetrahedra

in Q̂ can be determined in the same way and in the same ordering as the tetrahedra in the cubes
in K0, . . . ,K3. Note that for each tetrahedron T sharing a face with a tetrahedron T̂ ∈ Q̂ we also
split these faces in the neighboring tetrahedra, if this has not already happened, and use the de
Casteljau Algorithm to subdivide s|T with the corresponding partial Worsey–Farin split.

These computations are also local and stable and s|Q̂ depends only on the values associated

with the interpolation points inside Q̂ and the B-coefficients of s associated with the domain
points in the cubes sharing an edge or a vertex with Q̂, which are not in K4. Moreover, none of
the C1 smoothness conditions is violated. By Lemma 3.1 two cubes in class K4 can only touch
on edges and moreover Q̂ must also touch two cubes in the classes Ki , i = 0, . . . , 3, at these
edges. But s is already determined on the cubes in these classes. �

In the proof it is shown that L is a local and stable Lagrange interpolation method for S 1
3 (∆

∗).
Since the spline is computed locally on each cube, it can easily be seen that for any tetrahedron
T of a cube in class K4, s|T depends only on values {zξ }ξ∈L∩ΩT , where ΩT is the collection
of at most 5 × 5 × 7 cubes, where T lies in the middle of ΩT . But we emphasize that s only
depends on the cubes in ΩT of lower class. Thus, for tetrahedra in cubes of lower class, ΩT is
still smaller. Moreover, since we only use the C1 smoothness conditions and some small systems
of linear equations to determine s, all computations needed to uniquely determine s are stable in
the sense that

|cξ | ≤ max
η∈ΩT

|zη| (5.2)

holds with an absolute constant K , since the angles of ∆ are bounded away from zero by an
absolute constant independent of the mesh size of ∆. Therefore, also

‖s‖T ≤ K̃‖ f ‖ΩT (5.3)

holds with an absolute constant K̃ , where s is the interpolating spline of the function f ∈ C(Ω).
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Remark 5.1. In the notation of [5], L and S 1
3 (∆

∗) form a Lagrange interpolation pair. Moreover,
from the proof of Theorem 5.1 it is easy to see that L is a minimal determining set for S 1

3 (∆
∗)

and that the set {εξ }ξ∈L is also a nodal minimal determining set for S 1
3 (∆

∗), where εξ denotes
the point evaluation at the point ξ in Ω .

6. Bounds on the error of the interpolant

In this section we want to provide a bound on the error ‖ f − s‖Ω for smooth functions, where
the error is measured in the maximum norm on Ω .

Let L be the Lagrange interpolation method constructed in Section 5 associated with the spline
space S 1

3 (∆
∗). Then for every f ∈ C(Ω), there is a unique spline I f ∈ S 1

3 (∆
∗) such that

I f (ξ) = f (ξ), ξ ∈ L. (6.1)

This defines a linear projector I mapping C(Ω) onto S 1
3 (∆

∗).
Now for a compact set B ⊆ Ω and an integer m ≥ 1, let W m

∞(B) be the usual Sobolev space
defined on B with seminorm

| f |m,B :=
∑
|α|=m

‖Dα f ‖B,

where ‖ · ‖B denotes the infinity norm on B and Dα
:= Dα1

x Dα2
y Dα3

z with α = (α1, α2, α3). Let
|∆∗| be the mesh size of ∆∗, i.e. the maximum diameter of the tetrahedra in ∆∗.

Theorem 6.1. Let f ∈ W m+1
∞ (Ω) for some 0 ≤ m ≤ 3. Then there exists an absolute constant

K such that

‖Dα( f − I f )‖Ω ≤ K |∆∗|m+1−|α|
| f |m+1,Ω , (6.2)

for all multi-indices α with 0 ≤ |α| ≤ m.

Proof. Fix m, and let f ∈ W m+1
∞ (Ω). Fix T ∈ ∆∗, and let ΩT be as in Section 5. By Lemma

4.3.8 of [2], there exists a cubic polynomial p such that

‖Dβ( f − p)‖ΩT ≤ K2|ΩT |
m+1−|β|

| f |m+1,ΩT , (6.3)

for all 0 ≤ |β| ≤ m, where |ΩT | is the diameter of ΩT . Since I p = p, it follows that

‖Dα( f − I f )‖T ≤ ‖D
α( f − p)‖T + ‖D

αI( f − p)‖T .

Due to (6.3) with β = α, it suffices to estimate the second term ‖DαI( f − p)‖T . By the Markov
inequality [13] and (5.3)

‖DαI( f − p)‖T ≤ K3|T |
−|α|
‖I( f − p)‖T ≤ K4|T |

−|α|
‖ f − p‖ΩT ,

where |T | is the diameter of T . Because of the geometry of the partition, two absolute constants
K5 and K6 exist with ΩT ≤ K5|T | and |T | ≤ K6|∆∗|. In view of this and by inserting (6.3) with
β = 0 for ‖ f − p‖ΩT , we get

‖Dα( f − I f )‖T ≤ K1|ΩT |
m+1−|α|

| f |m+1,ΩT .

Now taking the maximum over all tetrahedra in ∆∗ leads to (6.2). �

Thus, it is also shown that the Lagrange interpolation method constructed in this paper yields
optimal approximation order.
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Table 7.1
Results for the type-4 partition.

n Dim ErrorE ErrorF ErrorT Decay

1283 17 073 158 4.84× 10−5 2.08× 10−4 2.313× 10−4 –
2563 135 399 430 3.07× 10−6 1.11× 10−5 1.268× 10−5 4.19
5123 1 078 464 518 1.88× 10−7 6.02× 10−7 6.952× 10−7 4.19

10243 8 608 817 158 1.18× 10−8 3.24× 10−8 3.591× 10−8 4.27
20483 68 794 990 598 7.36× 10−10 2.01× 10−9 2.252× 10−9 3.99
40963 550 057 836 550 4.43× 10−11 1.23× 10−10 1.407× 10−10 4.00

Table 7.2
Results for the Freudenthal partition.

n Dim ErrorE ErrorF ErrorT Decay

1283 17 138 451 5.00× 10−5 2.43× 10−4 2.811× 10−4 –
2563 135 661 075 3.18× 10−6 1.63× 10−5 1.864× 10−5 3.91
5123 1 079 512 083 1.99× 10−7 1.03× 10−6 1.065× 10−6 4.13

10243 8 613 009 427 1.23× 10−8 6.43× 10−8 6.630× 10−8 4.01
20483 68 811 763 731 6.89× 10−10 3.57× 10−9 4.128× 10−9 4.01
40963 550 124 937 235 4.45× 10−11 2.23× 10−10 2.577× 10−10 4.00

7. Numerical tests and visualizations

In this section we illustrate our method by interpolating the Marschner–Lobb test function

p(x, y, z) :=
1− sin(π z

2 )+ α(1+ ρr (x2
+ y2))

2(1+ α)
,

with ρr := cos(2π fM cos(π r
2 )), where fM = 6 and α = 0.25.

For the following numerical tests and visualizations, we interpolate the function on Ω =
[[−0.1, 0.9], [−0.1, 0.9], [−0.6, 0.4]].

7.1. Numerical tests

In Table 7.1, we list the number of cubes n, the dimension of the spline space (dim), the
error on the edges (ErrorE ), on the faces (ErrorF ), in the tetrahedra (ErrorT ) and the decay
exponent (decay). Therefore, we compute the error of the spline, using 8 points per edge, 36
points per subface and 56 points per subtetrahedron. This confirms that our method yields optimal
approximation order.

To compare our results to those from other methods, we also compute the errors and the
decay exponent for the method described in [3] for the same test function. These can be seen in
Table 7.2.

It can easily be seen that the results for our method are slightly better, with the same order of
magnitude, although we use one tetrahedron less per cube.

We finally compare the errors obtained by our method with the errors for interpolation using
linear splines, for the case when the exact values of the Marschner–Lobb test function are only
interpolated at the vertices of the cubes in both cases. The values at the additional interpolation
points needed for our method are taken from linear splines with about the same errors (for
sufficiently many cubes) as our method (for far fewer cubes)—see Table 7.3, where s is a spline
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Table 7.3
Results for a spline from linear data.

n Error s N Error s̃lin n Error s̃

2563 1.2678× 10−5 56323 2.72× 10−6 2563 3.57× 10−5

3603 3.86× 10−6 100803 8.39× 10−7 3603 4.15× 10−6

5123 6.95× 10−7 225283 1.67× 10−7 5123 7.98× 10−7

Table 7.4
Data reduction for linear splines.

n Dimension cubic spline N Dimension linear spline Quotient

2563 135 399 430 16003 4 096 000 000 30.25
3603 375 583 686 46003 97 336 000 000 259.16
5123 1 078 464 518 108003 1 259 712 000 000 1168.06

Fig. 7.1. Isosurface with value 0.5 of the Marschner–Lobb test function with 200× 200× 200 cubes, visualized by our
method.

constructed from exact data at all Lagrange interpolation points, s̃lin a linear spline and s̃ a spline
with exact data only at the vertices of the cubes. Moreover, n is the number of cubes for the cubic
splines and N the number of cubes for the linear splines.

The results show that if we compare the dimensions of the space of cubic C1 splines used for
our method with the dimensions of the spaces of linear splines which yield approximately the
same errors, we obtain data reductions up to factor 103—see Table 7.4, where n is the number of
cubes for the cubic splines and N the number of cubes for the linear splines. Moreover, we also
list the quotient of the dimension of the linear spline and the cubic spline.

7.2. Visualizations

In the following we also illustrate the application of our method. Therefore, we visualize an
isosurface with value 0.5 of the Marschner–Lobb test function with 200× 200× 200 cubes. To
show the smoothness of the interpolant more clearly, we also visualize an enlargement of a small
section of the isosurfaces (see Fig. 7.1).
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Fig. 7.2. Isosurface with value 0.5 of the Marschner–Lobb test function with 200× 200× 200 cubes, visualized by the
method described in [3].

In order to compare the results visually, we also illustrate the method described in [3] (see
Fig. 7.2).
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