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THE LINEAR PENCIL APPROACH TO RATIONAL INTERPOLATION

BERNHARD BECKERMANN, MAXIM DEREVYAGIN, AND ALEXEI ZHEDANOV

ABSTRACT. ltis possible to generalize the fruitful interaction beem (real or complex)
Jacobi matrices, orthogonal polynomials and Padé apmands at infinity by considering
rational interpolants, (bi-)orthogonal rational funct®and linear pencils B — A of two
tridiagonal matricesA, B, following Spiridonov and Zhedanov.

In the present paper, beside revisiting the underlying igdized Favard theorem, we
suggest a new criterion for the resolvent set of this linearcp in terms of the underlying
associated rational functions. This enables us to gerersdéiveral convergence results for
Padé approximants in terms of complex Jacobi matricestoitre general case of conver-
gence of rational interpolants in terms of the linear pendik also study generalizations
of the Darboux transformations and the link to biorthogoradional functions. Finally,
for a Markov function and for pairwise conjugate interpaatpoints tending tao, we
compute explicitly the spectrum and the numerical rang@eiinderlying linear pencil.

1. INTRODUCTION

The connection with Jacobi matrices has led to numerouscapipins of spectral tech-
nigues for self-adjoint operators in the theory of orthoglgrolynomials on the real line
and Padé approximation. In order to give an idea of thesgantions consider a Markov
function of the form

b
w@)=1/ ?62,

wherea, b are real numbers andju(t) is a probability measure, that iﬁf du(t) = 1. It
is well known [1], [31] that one can expand such a Markov fiorcty into the following
continued fraction
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whereb;, a; € R, a; > 0. Continued fractions of the forri(1.1) are called J-frausi@?1,

[31]. To the continued fractiofi_(1.1) one can associate abjacatrix A acting in¢?, the

space of square summable sequences, and its trunchfon
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Then it is known thatp(z) = ((2I — A)"leq, eo), and thenth convergent of the above
continued fraction is given by

pn(2) -1 1 by s
= ((zI — Aj. = o
qn(z) <(Z [0-71*1]) 60,€0> 4 aop z anfl,

where the column vecta, = (1,0,...) " is the first canonical vector of suitable sizg,
are orthogonal polynomials with respecto, andp,, are polynomials of the second kind,
see([1[24,25]. It is elementary fact of the continued fractheory that

o029 0(ck)

see for instancé [1] 4, 21]. Relatidn {I1.2) means that themaltfunctionp,, /¢, is thenth
diagonal Padé approximant¢oat infinity. Consequently, the locally uniform convergence
of diagonal Padé approximants appears as the strong eesalenvergence of the finite
matrix approximationsiy.,;. For instance, one knows that /¢, — ¢ in capacity in
the resolvent ofd given by the complement of the supportof and locally uniformly
outside the numerical range df given by the convex hull of the spectrum df see for
instance([2B]. Besides, it should be mentioned here thatpanator approach for prov-
ing convergence of Padé approximants for rational peatishs of Markov functions was
proposed in[[15], see also [14].

If ¢ is nolonger a Markov function but has distimth Padé approximants at infinity, we
may still recover these approximants as convergents of eincmd fraction of type[(1]1),
but now in generad;,b; € C, a; # 0, see([31], that isA becomes complex symmetric,
called a complex Jacobi matrix. There is no longer a nataadiiclate for the spectrum of
A, butitis still possible to characterize the spectrum imt&pf some asymptotic behavior
of the Padé denominatogs (z) and the linearized error functiong (z) = ¢, (2)d(z) —
pn(2) [B,[13,[9], see alsd [7, 15, 114] for more general banded nesricConvergence
outside the numerical range was established in [11], andergence in capacity in the
outer connected component of the resolvent setin [10]. k& tbe reader to]8] for
some recent summary on complex Jacobi matrices, includimg®pen questions partially
solved in [6].

The goal of this paper is to generalize several of the abaudteeto the case of multi-
point Padé approximants.

Definition 1.1 ([4]). The|[n;|n2] multipoint Pag approximant (or rational interpolant)
for a functiony at the points{z;}7° , is defined as the ratip/q of two polynomials
p andg # 0 of degree at most; and n, respectively, such thatq — p vanishes at
21,22, -, Zny+na+1 COUNtiNg multiplicities.

It is easy to see that the degree and interpolation conditiead to a homogeneous
system of linear equations, and thugwa|ns] multipoint Padé approximant exists. Also,
one may show uniqueness of the fractjolg. However, since the denominator may vanish
at some of the interpolation points, it may happen that thetionp/q does not interpolate
o at some pointy, usually referred to as an unattainable point.

Under some regularity conditions, the— 1|n] multipoint Padé approximants gfmay
be written as:th convergents of a continued fraction of the form

L ag(z—zl)(z—zg)‘_ a%(z—23)(z—24)‘_
|Z*b0 | Z*bl | Z*bg '

(1.3)

the odd part of a Thiele continued fractidn [4]. Continuegkcfions of this type are re-
ferred to as\/ P-fractions in [19] and ag2;;—fractions in[[20]. In particular, the authors
study in [19, Theorem 4.4] and [20, Theorem 3.5] some analdepward’s theorem and
the link with orthogonal rational functions. Spiridonovdaane of the authors$ [27, B2]
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showed that such continued fractions are related not to glesitacobi matrix but to a
pencil zB — A with tridiagonal matricesd, B. Various links to bi-orthogonal rational
functions have been presented[inl[32] dnd [16]. In particidgd16, Theorem 6.2] the au-
thors present an operator-theoretic proof for the Markaweagence theorem multipoint
Padé approximants 18] based on spectral properties gfeheil 2B — A.

The aim of this paper is to present further convergencetsefarlthe continued fraction
(13), both in the resolvent set and outside the numericajeaf the tridiagonal linear
pencilzB — A. To be more precise, denote By = 5[20:00) the Hilbert space of complex

square summable sequen¢es, z1,...) " with the usual inner product

(o]
(x,y) = ijyj, z,y € 2.

j=0
We will restrict our attention to the case of tridiagonal riw#s A, B with bounded en-
tries, in which case we may identify via usual matrix prodihet matricesA and B with
bounded operators acting #. Notice that many algebraic relations remain true in the
unbounded case as well. However, already the simpler caseusided pencils allows to
describe the main ideas of how to generalize results froral#ssical theory of orthogonal
polynomials to the theory of biorthogonal rational funasoas well as to the multipoint
Padé approximation.

The remainder of the paper is organized as follows: we stanh fa general bounded
M P—fraction and introduce the associated linear pencilsttegewith the rational solu-
tions of some underlying three term recurrence relatior2if. In§2.2, by generalizing
previous work of Aptekarev, Kaliaguine & Van Assché [3] weoshhow the asymptotic
behavior of these rational solutions allows to decide wiethe linear pencit B — A is
boundedly invertible. In particular, we deduce in Coroll@3 the pointwise convergence
of at least a subsequence of our multipoint Padé approxsrawards what is called the
m~—function (or Weyl function) of the linear pencil. Subsentig we present in Theo-
rem[2.9 off2.3 an alternate proof for a Favard-type theorem based bogonality prop-
erties of associated rational functions, which yields irrdllary[2.11 a simple proof for
the fact that the convergents of our continued fractionsrateed multipoint Padé approx-
imants of them-function of our linear pencil. I3 we generalize the above-mentioned
results of [11, Theorem 3.10], 10, Theorem 3.1], dnd [10edrem 4.4], on the conver-
gence of Padé approximants at infinity in terms of compleoBamatrices to the more
general case of multi-point Padé approximants in termsnefal pencils: B — A. The
aim of §4 is to exploreLU andU L decompositions of our linear pencil, and the link to
biorthogonal rational functions. This naturally leads @agénsider generalizations of the
Darboux transformations df[12]. Finally, we generaliz€Bhthe findings described in the
begining of this section, namely, if we start with a Markonétion and pairwise conjugate
interpolation points tending to infinity, then the spectrafrour linear pencil is still the
support of the underlying measure, and the numerical raggealgits convex hull.

2. CONTINUED FRACTIONS LINEAR PENCILS, AND THEIR RESOLVENT

In this section we show the links between continued frastionquestion and linear
pencils. Moreover, we prove a Favard type result for theaspronding recurrence relation.

2.1. Linear pencils. Let us consider a continued fraction of the form

1| afe)af(x)]  ofe)ef)]
[50z) | B [ B 2.1)

where3,,, o, ot are polynomials of degree at mostand not identically zero. Next,
denote byC,, (=) the nth convergent of this continued fraction obtained by takomdy
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the firstn terms in [2.11), then the well-known theory of continued fiaas tells us that
Cn(z) = pn(2)/aqn(z), where the polynomials, of degree< n — 1 andg, of degree< n
are obtained as solutions of the three-term recurrencaela

Yn+1 = ﬂn(z)yn - aﬁ—l(z)ag—l(z)ynflv n= 05 17 25 o (22)
by means of the initial conditions (settind’ ;, = o®, = 1 for convenience)
q(z) =1, ¢-1(2) =0, po(z) =0, p-_i(z)=-1 (2.3)

Using [2.2) and{Z]3) one easily verifies by recurrence that

Qn(z) = det(ZB[O:nfl] - A[O:nfl])a pn(Z) = det(ZB[l:nfl] - A[l:nfl])' (24)

By Cramer’s rule, this implies the following formula for tkenvergents

n(2)
By induction, one also easily shows the Liouville-Ostratgley formula

= ((#Bjo:n-1] — A[O:n—l])7160560>- (2.5)

n—1
pn+1(2)qn(2) _pn(z)%l-?-l(z) = Haf(z)akR(Z)a n:0a172a---- (26)
k=0

For a complex numbef(z), the sequence defined by

’I“n(Z) = ¢(z)Qn(Z) _pn('z)v (27)
gives another solution of (2.2) with initial conditions
ro(z) = ¢(z), r-1(z)=1. (2.8)

We will refer tor,, as linearized error (or function of the second kind) sincemfthe
Pincherle Theoreni[21, Theorem 5.7], the continued frac{@) has a limitp(z) iff
rn(2) is @ minimial solution of the recurrence relatign {2.2).

It will be convenient to write the ponnomiaJsJL, af, andg; occurring in [2.1) in the
form of the tridiagonal infinite linear pencil

Bo(z) —afi(z) 0 0
—ak(z 1(2)  —af(z -
N -

0 —af(z)  Falz)  af(z)

with the two tridiagonal infinite matriced = (a; ;)§5_o andB = (b; ;)§5_,. For aJ-
fraction, we obtain the linear pencil— A with a tridiagonal matrixA [1] (see also[[B]).

In the case of/-fractions it is also known that we may write the eigenvalageaion

Ay = zy for some infinite column vectoy in terms of normalized counterparts of the
monic polynomialsg,(z) (namely the corresponding orthonormal OP). Notice that the
product Ay is defined fory not necessarily an element 6f, since for each component
there are only a finite number of non-zero terms. For the lipeacil 2B — A we can
analogously write the similar eigenvalue equations

Aqfi(z) = 2Bq"(2), q"(2)A = 2¢"(2)B, (2.10)

with an infinite column vectog(z) = (¢&¥(2), ¢f*(2),...) " and an infinite row vector
q“(2) = (¢§(2),qF (2),...). Hereqk(z) andg(z) are rational functions obtained from

n



THE LINEAR PENCIL APPROACH TO RATIONAL INTERPOLATION 5

qn(2) by scaling with a product of linear polynomials. Indeed, nliefi ¢* (z), pZ(z), and
ri(z) via

qn\Z Pnlz Tn(2
ey = —2CL gy ) ey @) o gy
I efz) I ef2) I eic2)
k=0 k=0 k=0
leads us to three solutions of the recurrence relation
ag(z)y’f-i—l _ﬁﬂ('z)yf—’—aﬁ—l(z)y’f—l = 0) n= 051725"" (212)

In the similar way, we see that

o) = B = Ly = B (g

- I n 1 I
[T ek ) I ek ) I ek (2
k=0 k=0 k=0
are three solutions of the recurrence relation

aﬁ(z)yﬁﬁ-l 7ﬂn(z)y7€+a§—1(z)y7€—l = 05 n = 051725"" (214)
Now, it is immediate to see by taking into account the initiahditions [[2.B) that the
identities [2.1R) and (2.14) reduce to the formal spectjab&ons[(2.70).
It should be also noted that we formally have

pE(2)(2B — A) = —¢), (2B — A)pi(2) = —eo. (2.15)

Remark 2.1. There are many degrees of freedom in going from a continuactién
(2.1) to a linear pencitB — A. For instance, for the special casedf 3, = 1 and
degal = 0 = degaf forall n > 0, the above approach leads a priori to diagaBand
tridiagonal A without any further symmetry properties. However, by appiyan equiva-
lence transformation t¢_(2.1) we can make the polynonﬁglmonic implying thatB is
the identity matrix. Moreover, we can choasg = o, i.e., A becomes complex sym-
metric (also called a complex Jacobi matrix). In thls ca;ée q2 are known to be the
corresponding formal orthonormal polynomials, whergais the associated monic coun-
terpart. We will return to this scaling and normalizatioeddom in the last section. [

2.2. m-functions of linear pencils and the resolvent.In accordance with the Jacobi case
of B being the identity, we define the resolventged, B) of the linear pencitB — A to
be the set ot € C such that B — A has a bounded inverse.

Aptekarev et al[[8, Theorem 1] showed that a bounded tratiagmatrix has a bounded
inverse if and only if the above solutions of the recurreai&12) and(2.14) have a par-
ticular asymptotic behavior. In our setting, their findir{gse also the slight improvement
givenin [11, Theorem 2.1]) read as follows.

Theorem 2.2([3]). Suppose thatl, B are bounded, and consider farc C the matrix
R(z) with entries

[ riRai(z) = (4] (=) (w) P (2))ay (=) 5>k,
R ={ RO = Ot ot a1 2k
Thenz € p(A, B) if and only if there existg(z) € C and constants/(z) > 0, §(z) €
(0,1) such that

[R(2)jk] <v(2)6(2)97M, Gk =0,1,.... (2.16)
In this caseR(z);x = ((zB — A) " 'ex, e;), in particular, ¢(z) is uniquely given by
¢(2) = R(2)o,0 = (2B — A)""eo, €0).

For the sake of completeness, we will give below the idealseptoof of Theorer 212.
Let us first discuss some immediate consequences.
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Remark 2.3. For the particular case of Jacobi matrices (thd is- 1), the above formulas
for the entries of the resolvent, also referred to as Grdanstions, have been known for
along time, see for instance the recent baok [26, Sectidn @ur linear pencil formalism

also includes so-called CMV matrices occurring in the staflprthogonal polynomials

on the unit circle, seé¢ [26, Section 4.2], heteB are not only tridiagonal but in addition
block-diagonal, with unitary blocks. Again, the formulas the Green'’s functions given
in [26] are a special case of TheorEmi2.2. O

A basic object in Theorefn 2.2 and in the rest of the paper evdrhg.
Definition 2.4. The function
m(z) = (2B — A)"leg,e0), z€ p(A,B) (2.17)
will be called them-function (or Weyl function) of the linear peneiB — A.

Comparing with [[26) we are left with the central questionetier them-function
pn(z)/qn(z) = <(ZB[O:n71] - A[O:nfl])ilem 60> of the finite penCilZB[O:nfl] - A[O:nfl]
converges fon — oo to them-function of the infinte pencit B — A.

We learn from Theorefn 2.2 that the linearized eridr&:) = R(2)o.n = ¢5(2)m(z) —
pL(2)andrZ(z) = R(2)n.0 = ¢%(2)m(z) — pE(z) tend to zero with a geometric rate

limsup [rZ(2)|Y™ < 1, limsup |[rB(2)|Y/™ <1, 2z € p(4,B). (2.18)
n—r00 n— o0

Following exactly the lines of Aptekarev et dl] [3, Theoreraritl Corollary 3] we obtain
the following result on point-wise convergence of a subegee

Corollary 2.5. We have for € p(A, B)
n(z)

limsup |¢Z (2)[Y™ > 1, limsup |¢f ()] > 1, liminf [m(2) — ==Y/ < 1.
Proof. Using [2Z.11) and{Z2.13), the Liouville-Ostrogradsky foila(.6) takes the follow-
ing form

0 (21 (2)r (2) = 07 (2) gy ()i (2) = 1. (2.19)

Sincesup,, max{|al(z)|, |aZ(2)|} < oo by assumption o, B, relation [2.1B) together
with the Cauchy-Schwarz inequality implies that

tim inf(lg (=) + gk (2) ]V C > 1,

implying our first claim. The second is established usinglaintechniques, and the third
by writing m(z) — pn(2)/qn(2) = 17 (2) /45 (2)- O

By having a closer look at the proof, we see that we have p@etaonvergence for a
quite dense subsequence, namelyfor., /q¢n+., for n > 0 with suitablee,, € {0,1}.

We will show in Theorer 3]5 below that this point-wise comearce result can be replaced
by a uniform convergence result in neighborhoods of an el (A, B).

In the remainder of this subsection we present the main lofigke proof of Theo-
rem[2.2. The first step consists in showing that our infinitérixd(z) is a formal left and
right inverse forzB — A, compare with[[3]l, Section 60 and Section 61]) for the case of
complex Jacobi matrices.

Lemma 2.6. For any value ofp(z), the formal matrix product®(z)(zB — A) and(z B —
A)R(z) give the identity matrix.

Proof. We will concentrate on the first identity, the second follog/along the same lines.
Write shorter

q[%:j]:(qg,...,qu,0,0,...)
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and similarlyp[%:j] andr[%:j] for the row vectors built with the other solutions of the recu

rence[(Z.IK). Then
Plos)(2) (2B — A) = —eg +af (2)pf1(2)e] +ai'pf (2)e i1, (2.20)

ab.)(2)(2B — A) = aF(2)gh (2)e] +alqk(2)e].,. (2.21)

In view of (2.8), [Z.111), and(2.13), one obtains
(47 (2)P(6:5)(2) = 7 (2)ao. (2) (2B — A) = ef —q; (2)eq -
In addition, from[Z.ID) and Z.15 we have that
(q"(2)9(2) = p"(2))(zB — A) = ¢q -
A combination of the last two equations shows that, forjail 0,
(R(2)j,0, R(2)j1,R(2)j2,...) (2B —A) = ejT,
as claimed above. O

Proof of Theoreri 212.Let z € p(A, B). Then, according to Lemnia2.®(z) is indeed
the matrix representation of the bounded operatér— A) ~!. We get the decay rate (2]16)
of the entries ofR(z) from [13, Theorem 2.4] using the fact th&(z) is the inverse of a
bounded tridiagonal matrix.

Suppose now that(z) € C is such that[{2.16) is satisfied. Then, using the same argu-
ments as in[3] we have that(z) represents a bounded operatofifwhich by Lemm&Z2l6
is a left and right inverse of B — A. Hencez € p(A, B). O

Remark 2.7. The essential tool in the proof of Theoréml2.2 was the decty (£a1l6)
of entries of the inverse of a bounded tridiagonal matrix.otder to specify the rate of
convergence, for instance in Corollary]2.5, it is interggto quote from[113, Theorem 2.4]
possible values of(z), §(z) in terms of the condition number

k(z) = ||2B = A|||(zB = A)7'| > 1
being obviously continuous in(4, B), compare with[[1Ill, Lemma 3.3],

r(z) — 1 _3lB =AY (1+r(2))?

5(z) = FEEE v(2) 50)° max{li(z),72ﬁ(z) }

O

2.3. Biorthogonal rational functions and a Favard theorem. Our explicit formulas for
the entries of the resolvent allow for a simple proof of Hiogonality for the denominators
qu andgf, and in addition an explicit formula for the linear functairof orthogonality
discussed by Ismail and Masséon][20]. This generalizes tesidal case o = I and a
selfadjoint Jacobi matri¥ [I] where it is well-known that, foy # £,

(gj(A)eo, qx(A)eo) = 0.
As a consequence, we obtain a simple proof of the fact thatttiheonvergent of (Z]1) is
indeed arjn — 1|n|th multipoint Padé approximant of the-function.

In this subsection we denote for= 0, 1,2, ... by 2951 (and byzoy ) the root ofaé
(and ofaf, respectively), where we puby+1 = oo (@ndzz,+1 = o0) if aF (andaf) is
of degred). Similar to [20] we suppose for convenience thatzo, ... € p(4, B). More
precisely, we suppose that there exists a domajp with compact boundary forming a
Jordan curve such that

21,22, ... € Dege C Clog(Teyt) C p(A, B), (2.22)

where Clo$) denotes the closure. The case = oo needs special care: notice that
oo € p(A, B) if and only if B has a bounded inverse, in which case we will also suppose
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thatoo € T’ The boundary” of T'.,; is orientated such thdt,.., is on the right ofl",
implying that

L[ g(Q)
=— [ =—=2d
o) = 5 [ Lic
for z € I+ and any functiory being analytic inp(A4, B) and, ifoco € p(A4, B), vanishing
at infinity.
We start by establishing an integral formula for the entokthe resolvent.

Lemma 2.8. Under the assumptiof@.22) we have for € I'.,; andj, k = 0,1,2, ...

_ 1 m(¢)
R(:)y = (B = ) ewve)) = 5 [ afi(Oab (0 dc
Proof. We will consider only the casg> k, the casg < k is similar. Both the resolvent
andR; ;, are analytic inp(A, B), and vanishing at infinity provided that € p(A4, B).
Using the explicit formula fof?(z), ,, derived in Theore 212, we get fore T,

R = g [rRQak 022

2mi Jr
1 1 d
= 5= qu(oq;%(of—“édc—% /F pf<<>q£<<)zf§-

It remains to show that the last integral equals zero. Delpte a connected component
of C \ ClogI'.,;). If Q is bounded, then, by assumpti¢n(2.22), all poles of themati
function¢ — p¥(¢)qi (¢)/(z — ¢) are outside of Clag2), and hence the integral ovef)

is zero. IfQ2 is unbounded, then by the above assumptioi’'gn we may conclude that
oo € p(A, B), implying that allz, are finite. It follows from[(2.11) and (2.1 3) that all poles
of the rational functiog — p’*(¢)g/; (¢)/(z — ¢) are outside of Clgs2), and this function
does vanish ato. Hence again the integral ovéf) is zero. O

We are now prepared to state and to give a new constructivi pfahe Favard type
Theorems[[20, Theorem 2.1 and Theorem 3.5] of Ismail and dtass

Theorem 2.9. Under the assumptiof?.22) define forg € C(T") the linear functional
1
&(9) = 5 [ 9lOm(C)dc.
then we have the following biorthogonality relations: faryan > 1 and for any polyno-
mial p of degree< n there holds

P p L
6|t —r~~——)=0, 67— = 0.
(qn agaf...aﬁl) (a?a{z...aflqn)

Proof. We again only show the first relation, the second follows bysetry. Observe
first thatal_;(z2,_1) = 0 implies thatz: B — A is upper block-diagonal. Sincg,,_; €
p(A, B) by (222), we obtain for the resolvefit,,, 1B — A)~! the block matrix repre-
sentation

{ (22n-1Bo:n—1] — A[O:nfl])_l | * }

0 | (Z2n71B[n:oo] - A[n:oo])il

In particular, comparing with (21.4) it follows that, (zo,—1) # 0 fork = 0,1,...,n— 1 (or
deg g, = k provided that,_1; = c0), and

R(ZQn—l)n,k =0, k:0517"'7n_ 1
(orlim, o 2R(2)n.k = 0 in the casen,,—1 = o). The first relation implies that

a P
Span{L—k:k::O,l,...,n—l} = {ﬁdegp<n},
«

n—1 Gy - Qp
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and the second combined with Lemmal 2.8 that

qL

G(qR k ):o, k=0,1,...,n—1,
n T
Oén71

as claimed in Theorem2.9. O

Remark 2.10. In the statement of Theordm 2.9, one recoversithinction as a generat-
ing function for the linear functional of orthogonalitynsie

ZHGC(Z’iC

Suppose in addition thab € p(A, B), and thusB has a bounded inverse. Then Cauchy’s
theorem gives the normalisatiéh(1) = m/(co) = (B~ 'eo, o), and for¢ > 0

&¢(¢) = (BT (AB ™) e, eq).-
Similarly, for z;, € T'.,; and? > 0 we have that

m® (z,) -1
VR 6< [
YAl (C _ Ze)lJrl
Using a partial fraction decomposition, we obtain for anjypomialp (of degree< 2n if
oo € p(A, B)) the even simpler formula

) =m(z), z€ Leus.

) = —<B_1(AB_1 — Zk)_l_éeo,€0>.

p

L R L R
o RO T A e YRR o B

&(r) = (B~'r(AB Yeg,eq), 7=

O

The orthogonality relations of TheorémP.9 allow now to shiow simple way that the
convergents of our continued fractidn (2.1) are indeedipnilit Padé approximants.

Corollary 2.11. Under the assumptiof.22), for anyn > 0, the rational functiorp,, /.,
is an[n — 1|n] multipoint Pad approximant of the:-function of the pencit B — A at the
pointszy, ..., z2,, counting multiplicities.

Proof. Relation [2Z.#) shows that,, q,,, are polynomials of degree at mast- 1, andn,
respectively, and from the proof of TheorEml2.9 we know théts, 1) # 0, hencey, is
non-trivial.

The interpolation conditions for a Cauchy transform (or exgenerally for a generating
function of a linear functional) are known to translate tthogonality relations with vary-
ing weights, see for instande [28, Lemma 6.1.2]. Sirffe= (mq,, — p,)/(adt ...k )
is analytic inT'.,; (and vanishes ato if z € p(A, B)), we only have to show that
w=rl/(af ... ak_,)is analyticinl.,, and, provided thato € T'.,:, its expansion at
oo starts with a term—""1,

Denote byz1, ..., Zy) the finite points out oty 23, ..., zor—1 With &k < n. If £(k) > 1,
define

ab(z)...ak_|(2)
(2 = Zow)) -+ (2 = Zoqy)
a polynomial of degreec n. Arguing as in Lemm&=218 and using the Hermite integral
formulas for divided differences we find that

_ _ 1 R(O)p R

O{O Oél NN
where in the last step we have applied the orthogonalityiosiaf Theoreni 219. Hence
is indeed analytic if'.,;. If oo € T'c,¢, We find by a similar argument for the expansion

p(z) =

n
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of watoo
_ 1 ra(C) dg¢
A = 5 | D P
R o R j
‘ (a&(@ Y INGIEETS 2 “Naf Q). al_1(Q)
which again by Theorem 2.9 starts with the term—!. O

3. CONVERGENCE RESULTS FOR MULTIPOINTPADE APPROXIMANTS

The aim of this section is to generalize various convergeeselts for complex Jacobi
matrices to the setting of linear pencils.

3.1. Numerical ranges of linear pencils. It is well known that zeros of formal orthogonal
polynomials lie in the numerical range of the correspondiitjagonal operator. More-
over, the corresponding sequence of Padé approximantsiges locally uniformly out-
side the closure of the numerical rangel[11, Theorem 3.10hik section, we generalize
this machinery to the case of linear pencils and multipoadé&approximants.

Let us recall that, for a bounded operafoacting in¢?, it's numerical range is defined
by

OT) = {(Ty,y)e : Iyl = 1} c C

Clearly,©(T) is a bounded set. By the Hausdorff theorem we have that thetrapes (77)
of T is a subset of the convex $8(T") (for instance, seé [23, Section 26]). The following
definition generalizes the concept of numerical rangesdditiear pencil case.

Definition 3.1 ([23]). The set
W(A,B):={z€C:{((2B— A)y,y), = 0forsomey # 0}
is called a numerical range of the linear peneiB — A.
The following proposition is immediate from Definitin B.1.
Proposition 3.2. All the zeros of;, andp,, belong toW (A, B).

Proof. Let us suppose thdtis a zero of the polynomiaj,. Thus, according td.(2.4), there
exists an elemenft. € C" such that

(€Bio:n—1] — Ajoin—11)¥e =0, [lyel| = 1.
The latter relation implie§ € W (Ao.,—1), Bjo:n—1]) C W (A, B). Similarly, we have the
inclusion of the zeros qgf; to W (A, B). O

In general, for the bounded operatoetsand B, the setiV' (A, B) is neither convex nor
bounded. However, it turns out that the condition

0 ¢ O(B) (3.1)
implieso (4, B) € W (A, B) [23, Section 26], as well as the representation
CJARD }
wia,m) = { G i=1f, 32)

from which we see the boundednessi6t A, B).

Generalizing[[11, Theorem 3.10] for complex Jacobi mag;icge are able to prove
a result on locally uniform convergence which in some serseelizes the Gonchar
theorem([[17].

Theorem 3.3. Let ([3.1) be satisfied. Then the sequence of multipointEPapproximants
M[0:n] = Pnt1/Gns1 CONVeErges to then-function locally uniformly inC \ W (A, B).
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Proof. Denote byD c C\ W (A, B) a closed set with compact boundary. Settihg=
H}III1£1 [(Bf, f)] > 0, wefind forz € 9D and| f|| = 1 that
(Af, f)

1(zB = A)fll = [(Bf, Hl]z - BI. )

implying that

| > d dist(z, W(A, B)),

1 1
B-A)Y<d == .
max (2B —A) 7l < di = g max G WAL B)

SinceW (Ajp.,—1], Bjo:n—17) € W (A, B), the same argument can be used to estimate the
norm of the resolvent of finite subsections

= A ) < dy |
max (2 Bjoun) = Apn)) "' || < 53

Let+ be a finite sequence, that ig,= (1, ...,%,0,0,...)". Then
(2B — A)y = (2Bjo.j) — Ajo:))Y = ¢

for sufficiently largej € Z and¢ is also a finite sequence. Further, one obviously has
(B~ 4)7'¢ = lim (:Bj;) ~ Apyg) ¢ (3.4)

SincezB — A is bounded and boundedly invertible, the set of sgistis dense i’ and,
therefore, due td(313) we have that formilal3.4) is als@al all ¢ < ¢2 implying the

pointwise convergeneey.; (A) — m(X) foranyz € C\W(A, B). Now, the statement of
the theorem immediately follows frofi(3.3) and the Vitaktinem[30, Section 5.21].0

Notice that the concept of a numerical range is valid for afmrvalued function$ [23].
Thus the presented approach can be also generalized topieecils proposed in[5].

3.2. Uniform convergence of subsequences in neighborhoodsVe start by improving
the pointwise convergence result of Corollary]2.5 gengradi [3, Corollary 3]. It was
Ambroladzel[2, Corollaries 3 and 4] who first observed that,réal Jacobi matrices, a
quite dense subsequence of convergenf{sdf (2.1) convengesmly in a neighborhood of
any element of the resolvent set. This result has been daeetin [10, Theorem 4.4] to
the setting of complex Jacobi matrices. We follow here thediof the proof presented in
[8, Theorem 4.7] since this allows to deduce in the next sttiisea result of convergence
in capacity in bounded connected components(af, B).

A central observation in what follows is the following retswhich for complex Jacobi
matrices may be found in[10, Proposition 2.2].

Proposition 3.4. The family of rational functions

wmz) ez ai(2)

T @) T ) aF )

is normal with respect to chordal metric @i A, B).

Proof. We only have to show that,, is equicontinuous on the Riemann sphere. By the
definition of the chordal metric we find far, y € p(A, B)

}aﬁ (@)qr41 (@)an () — o7 (y)ary (x)qffﬂ(y)}
a5 (@), ok (@)aki @) |0 ), af e )]
In order to minorize the denominator, we write shorter ah@groof of Lemm&2]6

q[%:n] =(qb,...,q~,00,...), q[lg:n] = (¢,...,¢%,00,..)7

X(un (@), un(y)) = ‘
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and observe that

q[lén] (ZC)(.Z’B - A) = Oa cey Oa aﬁ(‘r)qﬁﬁ-l(‘r)? —af(x)qﬁ(ac), 07 :|7
——

implying that
1960y (@) 1* < (@B = A7 (1 + g (2)1?) (g () + la; (2)gm 11 (2) ).
Similarly,

(yB - A)q[}g:n] (y) = Oa HE3) 0) ag(y)Q:?Jrl(y)a _arLz (y)%?(y)v Oa ’

implying that

a5y DI < (B = A)7HZ (1 + |ag (9)7) (lag (@) + e (9) a1 ())-
Finally,

(ak(@)ak 1 (@)af ) — o Wk (@)alk, )

= Gt () [(xB = A) = (yB = A)] 4. () = (# = )6 () B4 (v),

and a combination of these findings yields thét,, (x), u, (y)) is bounded above by:—y|
times a quantity which can be bounded fory lying in compact subsets @f 4, B). O

We are now prepared to generalizel[10, Theorem 4.4] to lipeacils.

Theorem 3.5. For any¢ € p(A, B) there exists a closed neighborhoBdc p(A4, B) and
€n € {0, 1} such thatm., 1., converges tan uniformly inV’.

Proof. Letv,, = u,, ande,, = 0 if |un(§)| < 1, orelsewhere,, = 1/u,, ande,, = 1. Then
)] |2kt o)V TG 7|
Qn+e Z \/|qn |2 + |aL anrl

Using the equicontinuity of the,, (and thus the,,) established in Propositidn 3.4, there
exists a neighborhood of ¢ such thafv,, (z)| < 2 forall z € V. Applying the Cauchy-
Schwarz inequality td {2,19), we obtain forc V' the upper bound

Z

|m(z> — M[o:n—1+e,] 7 (

|m(z) - m[o:n71+€n]( )| <
VB\IrE )2 + ok (2)ry ()P IR ()R + o () (2) 2

and the right-hand side tends to zero with a geometric raterding to Remark2]7. O

One may construct examples wifh = I and selfadjointd with the spectruntC \
p(A4, B) consisting of two intervals being symmetric with respedhi® origin = 0, and
m[o:n—1) has a pole a¢ for all oddn. This shows that we may not expect convergence for
a subsequence denser than that of The@rem 3.5.

3.3. Convergence in capacity.As explained already before, in general one may not ex-
pect convergence ofy.,, to m locally uniformly in p(A, B) since there might be so-
called spurious poles ip(4, B). One strategy of overcoming the problem of spurious
poles is to allow for exceptional small sets, as doné_in [Iedarem 3.1] for complex
Jacobi matrices where convergence in capacity is establiskiVe may generalize these
findings for linear pencils, where again we follow the linéshe alternate proof presented
in [8, Theorem 4.7].
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Theorem 3.6. Let V' be a closed connected subsetpofi, B) with compact boundary,
then there exist,, € {0, 1} such thatmyy.,,_1,] cOnverges ton in capacity inV’.

If (33)is satisfied and” ¢ W (A, B) then we obtain convergence in capacity of the
whole subsequence.

Proof. Let again bey,, = ul =2 with ¢,, € {0, 1} to be fixed later, and consider the sets
Vei={z e V:|u(2)] > 1/e}.

The arguments in the proof of Theoréml3.5 show tha,,, 1 .,; converges ton uni-
formly in V'\ V¢. It remains thus to show that the capacityldftends to zero foe — 0.

We choose,, in order to insure that the normal family,,) does not have a partial limit
being equal to the constant in the connected component pfA, B) containingV: this
can be done for instance by choosing a fied V and to takee,, as in Theoreri 3]5,
namelye,, = 0if |u,(£)] < 1, and elsewhere, = 1. However, under the assumptions of

the second part of the statement, by taking V' \ W (A4, B) it follows from the proof of
Theoreni 3B that

Sup |uﬂ(§)| = sup |e'r—zr (€B[On] - A[O:n])_1€n| < 00,

and hence here we may take the constant sequgnee).

Itis now a well-known fact on normal families (see for instaril0, Lemma 2.4] or the
proof of [8, Theorem 4.7]) that for normal meromorphic fagsl(v,, ),, with partial limits
different fromoo there exist monic polynomials,, of degree bounded independentof
such that

C' := sup max |w, (2)v,(2)] < oo.
n 2€V
This enables us insure that

V;C{ZGV:L>1/6}C{Z€C:|wn(2)|§60}.

wn(2)]
Since the capacity increases for increasing sets, and gieceapacity of the right-hand
lemniscate can be explicitly computed to (a€')'/ 4°¢«~ | the assertion follows. O

4. BIORTHOGONAL RATIONAL FUNCTIONS AND BI-DIAGONAL DECOMPOSITIONS

In this section we give an operator interpretation of theddax transformations of
rational solutions of the difference equations in quesffonthe orthogonal polynomials
case see [12]). In other words, we present a scheme for cetisg biorthogonal rational
functions.

4.1. LU-factorizations. Let us try to factorize the linear penciB — A as follows
2B —A=L(2)D(2)U(z) (4.1)

whereD(z) = diag(dy(z), d1(z), ....) is a diagonal matrix, andl, U are bidiagonal matri-
ces of the forms

1 0 0o - 1 —of 0
—up 10 0 1 —of
L= 0 ok 1 . U= .
Comparing coefficients gives
L R
,QTI; = —vﬁdn, —ag = —vfdm do = Bo, Bn=d, + anglan—l'
n—1
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Thusdy(z) = q1(2)/q0(z) by (Z3), and by recurrence usiig(2.2) one deduces that

do(r) = 1) py (@) ey (D))

wiz) o T ) Gnr1(2)

Hence, the decompositidn (#.1) exists if and onlyjffz) = 0 for all n > 0. In particular,
from Propositiof 3]2 we obtain existence of such a facttiordor = ¢ W (A4, B).

The decompositio (41.1) gives us the possibility to defineisbifel type transforma-
tions.

Proposition 4.1. Under assumptioZ.22) let 2o € T'.,; such that the decomposition
(4.7) exists for: = . Define forn > 0 the functions rational inc

O (o, 2) = K ZE@0GEN @) on o all) — i0)aln (@)
o — T o — T
Then we have the orthogonality relations
= / Q (w0, 2) QP (w0, 2) (w0 — w)m(x)de = 854/ d; (o), (4.2)

whered; ;. is the Kronecker delta.

Proof. Denote byI; ;. the expression on the left-hand side[of{4.2). We only caerdide
case0 < j < k, the other case follows by symmetry. By definition @f xo,x) and
Of (g, x) and by Lemm&2]8 we obtain

L = R(xo)k,; — vk (20) R(x0)kt1,5
—vf (20) R(w0)k.j41 + v} (20)vf (20) R(20) k41,54 1-
Forj < k, we may apply Theorem 2.2 and obtain after factorization
Lix = (qf (x0) — v} (20)qf41 (20)) (rf (0) — vi (20)ri1 (20)) = 0

by definition ofij (zo). If j = k, we get slightly different formulas from TheorémP.2 and
obtain after some simplifications

q;(2o) 1

L. =d* R _ B R = -
Wy qj (1:0)(7“] (.170) v] (.170)7"]+1(.T0)) QjJrl(xO) dj($0)’
where in the second equality we have applied (2.19). O

Remark 4.2. Clearly, the functions ... aLQL(xg,-) andaf. .. alfQE(xy, -) are poly-
nomials of degre& n. O

Propositiod 4.1l tells us that the Christoffel transformafieads to multiplication of the
biorthogonality measure:(x) by a linear factofz, — «). This process can be repeated.
Indeed, after the Christoffel transformation we again mbégpair of biorthogonal rational
functions satisfying a generalized eigenvalue equatigh winew pair of the Jacobi ma-
trices A, B [B2]. We can thus > apply the Christoffel transformation tesé new functions
factorizing the linear pencit; B — A in a similar way as in{4]1). Then the weight function
m(x)(xo — ) is multiplied by a linear factor; — = with z; # x¢. Repeating this process,
let us introduce the polynomialy (z) = (zo — )(z1 — ) ... (eny—1 — ) With z; # z;,
for i # j and construct the functions

QL(zo,21,...,an_1;7) =
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where
gy () gpa(z) o ghin(@)
L qL(xo) qL+1(fE0) cen q N(xO)
AL y(z) = det " " e , (4.3
a(xn-1) ghi(en—1) . ghin(eno1)
Q£+1(5E0) Q£+2(5E0) cee Q£+N(=’E0)
Bl x = det . . .. . (4.9
gr(en—1) qrio(en—1) ... ghyy(eno1)

and similar expressions f@/f(zo, ..., #n—1; ), AF y(x) and B[  (x). Note that if two
or more of the parametess coincide, sayr; = z(, then we may apply a simple limiting
process leading to appearance of derivatives in correspgddterminants. Then itis easy
to show that these functions satisfy the biorthogonalilgtien

1
5 / Qf(mo, T1,.. ., en_1;2)Q (xo, 1, . 2N _1; x)mj(z)m(z)dx
I
= 0;k/dj(x0,T1,- ., Tj-1), (4.5)
with some constantg; (xo, x1, ..., z;_1). Formula[[4.5) is a direct generalization of the

Christoffel formula for the orthogonal polynomials, se.£[29,§2.5].
4.2. UL-decomposition. Forz € p(A, B), let us find a decomposition
z2B—A=U(2)D(z)L(2) (4.6)

with a diagonal matrixD(z) = diag(do(z), d1(2), ....), and bidiagonal matrices

I —uf 0 - 10 0
0 1 —ult " —uf 1 0
U: s L: L

0 0 0 —uy 1

By comparing coefficients we have

L R

aro
L L R R L, R n%n
—a,, = —U,dp+1, —0,, = —Updpt1, Bn =dn +uyuydpyr =dy + ——.

dn+1

It turns out that this decomposition is unique after fixingaabitrary value forl,. Indeed,
lety_1 = do,yo = 1, and considey,, defined by the recurrence relatidn (2.2). Then it
follows that

L R
Q10 _1Yn—1 L Yn+1 R Yn+1
d, = uy = =

- - ) n L )
anYn

3

Yn " affyn
where from [[2.B) we learn that
yn(2) = (1 =m(2)do(2))gn(2) + do(2)rn(2) = qn(2) — do(2)pn(2) (4.7)
for all n > —1. Thus the decompositioh (4.6) exists if and onlylifz) € C is chosen
such thay, (z) # 0 andal (2)af(z) # 0 foralln > 0. For the special casg (z) = 0 we
may compare with théU decomposition of the preceding subsection and:fet= 1/v’
and similarlyu” = 1/v. Also, for the special case(z)do(z) = 1 one may show that
yn(z) = do(2)rn(2) # 0 provided that ¢ W (A, B).
Suppose that the above factorization existszfet xq, and define the Geronimus type
transformations by the following formulas

Qi (w0, ) = gy ()~ (0) g1 (2), Qyf (w0, @) = g (x) —up_y (w0) gy’ 4 (),

andQf (zg,z) = Qff (zg,z) = 1.
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Proposition 4.3. Under assumptio@.22) letzy € Ty, do(z0) # 0, such that the above
factorization(4.8) exists forz = zy. Consider forg € C(T') the linear functional

o1 m(() 1
80) = g7 [ 90Tk dc -+ (s = mla) (o)
then we obtain foy # & the biorthogonality relations
~ ~ 1
e L. — R, L. -
S( Q¢ a0)Qk(0)) =0, &(Q(,20)Qf (20)) = 7.
Proof. We only look at the cas¢ > k£ > 0, the other case follows by symmetry. Let us
compute thej, k)th entry of the product (xo)(zoB — A)~! (which formally is perhaps

expected to be equal to the upper triangular mafrx, ) ~U(z) ! but turns out to be a
full matrix). Using Lemma218 observing thag € T'..; we get forj > 0,

(L(x0)(xoB — A)flek,ej)
<($OB — A)lep,ej) — iy (zo){(woB — A)ter, 1)

277'2 / QR Cawo 4y, (C) ( ) C7

and we observe that the same conclusion is trug fer0. If now j > k, we may rewrite
the last expression as

(L(zo)(w0B — A) e, e5) = (rf(wo) = uf_y (wo)rfL (w0) ) af (o).

Noticing thatu’ | (z0) = yJ*(x0)/yl" | (o) With yX = y,./(of...f_,), we get accord-

ing to (4.1)

(4.8)

rit (o) — ug_y (wo)rity (o)

_ R 73/]1'%(‘%0) L R 79531(550)

=) gy T ) <Tj—1(z0) do(o) )
1

= (m(xo) - —do(zo))Qf(xo,xo).

Thus for allg € spafdqf : k =0,...,5 — 1} = spaf QF(-,z¢) : k = 0,...,5 — 1} we
conclude tha&(QF (-, z0)g) = 0, and, by definition of5 and Theoreri 212,

S(QR (-, 20) QL (-, 20)) = S(QF (-, x0)q")

= (L) woB = A)epes) + (i — ml@) @ e, z0)af x0)
= Q% (o, zo)<rf(:r0) + (@ - m(xo))qf(zo))
= Qf(wo, o) Lyj(xo) oL -

do(xo)ag (xo)...af 1 (o) dj(zo)’
the last claim being evident fgr= 0, and forj > 0 according to[(216) and(4.7)
Qf(x0,x0)
L
J—

do(o)a (xo)...al

p]Qj 1 —Pj—145
1(%0) Yj— 10‘0 O‘L a{f O
1 Yy (-770

yj,laf_laf_l —dj(z0)

R
7—1

where for simplicity we have dropped in the intermediateregpion the argument. O
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Remark 4.4. Formula [4:8) means that the (bi)orthogonality measi(e) for the trans-
formed rational function®’ (o, ), Qi (xo, =) consists of a regular pamt(x)/(zo — x)
onT plus a point mass at = x, with massM, = 27i(1/dy(x) — m(zg)), where
do(zo) # 0is a free parameter. A similar situation occurs in the casgrdihary orthog-
onal polynomials, where the mass of the point mass in thedargs transformation can

be freely choser[12]. O
Remark 4.5. Propositio 4B fory — oo (after multiplication withz) has been consid-
ered before in[16, Theorem 2.2]. O

5. AN EXAMPLE

In order to illustrate the above findings and to give a novigtiexample, we study in
this section the properties of a symmetric linear pencliee to a Markov function of the

form
b
o) = [ 249,

with a probability measurg with support included in some compact real interjah].
Here, the entriesl; i, B; ;, of the linear pencik B — A for symmetric interpolation points

21 = 73,23 = Z1,... € C\ [a,] (5.1)

are obtained by developing into an even part of a Thiele continued fraction. Before
going into details, we recall from the beginning{ the special case of interpolation at
infinity z; = 20 = 23 = ... = co. Here the expansion af into a J-fraction generates a
pencil zB — A with a real Jacobi matrid and with B = I the identity, and it is known
that the spectrum of the linear peneiB — A (and thus ofA) is given by the support of
the underlying measurg, and the numerical range equals to its convex hwlb]. The
aim of this section is to show that these properties remdid Y@ more general sets of
interpolation points.

Returning to the task of developinginto the continued fraction in question, the fol-
lowing result has been shown [n]16, Lemma 3.1 and Remarki3y3haking the link with
Nevalinna functions. The proof given in [16] uses the asdiongIm z;| > ¢ > 0 and it
can be immediately generalized to our setting.

Proposition 5.1. Suppose thas.1) holds, and thaf: has an infinite number of points
of increase such thap is not a rational function. Then there exist probability reees
1o = W, pi1, B2, ... Such that, for allj > 0,

1
2Bj; — Ajj — Bi1 (2 — 22j41) (2 — 22j42)9541(2)
with the Markov functions

b
%‘(Z)Z/ duy (@)

z—1

pj(z) =

and the real numbers

f _dpi(t) f _tdp;(t)
Ja Tzajq1—t7 t| Ja Tz =t t|2 B
Ajg = y Bjy1; =+vBj; —1>0.

F

b dp; )

fa z2j+1—1

Hence, our Markov functiorp for the symmetric interpolation point§ (5.1) induces a
linear tridiagonal pencit B — A if we set according td(219),

Bj(2) = 2Bjj — Ajj,
—af(2) = 2Bjp1j — Ajarj = Bjy1j(z — 22511),

—aj(2) = 2Bj 41 — Ay = B (2 — Zj31) = By (2 — 22542).

fb dp;

a 22j+1 —t
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We collect some elementary properties of this pencil in tllefing two propositions.

Proposition 5.2. Suppose thafs.1) holds. Then the above tridiagonal matricésB are
Hermitian and bounded.

Proof. It follows from (5.3) and the explicit formulas given in Pragition[5.1 thatd and
B are hermitian, and is real. In order to show thd? is bounded, it is sufficient to show
that its entries are uniformly bounded, where in our case #ufficient to consider the
diagonal ones. Let us first establish the minorization

/b dp;(t) dist(z, [a, b))
o 21

= max{[z —af?, |z — b2}’
For a proof of [5.2) we suppose tht z > (a + b)/2, the other case is similar. Since
t — Im(1/(z — t)) does not change sign ¢, b], we get

b ) b
a * l a

Hence our claim{5]2) follows provided thgitm z| = dist(z, [a, b]). Otherwise, we have
thatRe(z — t) > Re(z — b) > 0 forall ¢t € [a, b], and hence

Reg;(z)] > 2 =0

2 —al?
and the claim follows by observing thgt— b| = dist(z2;+1, [a, b]).
Combining [5:2) with the definition aB; ; given in Propositio 511 we conclude that

z € C\ [a,b]. (5.2)

[ Im z|

1
Im —|dp,(t) > —.
mz—t’ MJ()_|Z—G|2

By, < maX(|22'j+1 —al*, |22j41 — b")
dist (22541, [a, b])*
the right-hand side being bounded according to assumjidi). (ThusB is bounded.
Similarly, one shows that the diagonal entri¢s; of A are uniformly bounded. In
order to discuss the off-diagonal entrieshfwe choose a fixed pointe C\ [a, b] having
a positive distance from the set of the interpolation pointsand get with the help of
Propositiod 5.1

|Aj1,5° = 1454117 = l22j411° B}y
1 |z9541]° ( 1 )
< ZB‘7*—A‘,‘+—
() T2~z PP Al
the right-hand side being bounded uniformly for> 0 according to[(5]2). Henced is

also bounded. O
Proposition 5.3. Suppose tha.d) holds. Then for ally = (yo,%1,...) " € ¢2 there holds
(By,y) > lyx|* fyo=...=yr_1=0. (5.3)

Furthermore, for the numerical range of Definitiobn13.1 thbmdsW (A, B) C [a, b].

Proof. In order to show[(513), ley = (yo,y1,¥2,...)" € (. We write as beforgo.,,; =
(Y0, Y1, -, Yn, 0,0,...) T € £2, and notice that Byo..], yjo.n]) — (By,y) for n — oo

sinceB is bounded by Propositién $.2. Thenfgr= ... = y._1 = 0 andn > k using the
relationB; ; = 1+ B3, ; we get
n n—1
(Byonl»vom) = Y Bijlysl> +2D By Re(yg551)
=k =k

n—1

kl® + Y 1Bjsrgy; + v ” + Brpinlynl® > lusl?,
=k
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implying that [5.3) holds. Since alsyo.n}, yjo:n)) — (Ay,y) for n — oo, we get
using [5.3) thatV (A, B) is included in the closure of the union of the numerical range
W (Ajo.n), Bio:n)) Of all finite sections. Hence it is sufficient to show thg.,,) — aBjo.,,
andbB.,,) — Ajo.,) are positive definite for alk > 0, or, the determinants of these matrices
are positive. Fron{(2]14) we know that

anrl(b) - det(bB[On] - A[O:n])a (71)n+1Qn+1(a’) - det(A[O:n] - aB[O:n])v

moreovery, 1 has the leading coefficiedtt(By.,,) which is> 0 sinceBj.y, is positive
definite by [5.8). Thus the positivity of both determinamtslision W (A(q.,|, Bio.n)) C
[a, b] follows from the observation that all + 1 roots of¢,,+1 , that is, the poles of a
rational interpolant of a Markov function are lying in theespinterval(a,b), see [28,
Lemma6.1.2]. O

The positive definiteness of finite sections®falso for not necessarily boundéd b)
has been shown already [n 16, Proposition 4.2], where th®asialso establish(3.3).

Notice that property((5]3) in general does not imply thatditon (3.3) is true. How-
ever, only the latter condition allows us to conclude thatspectrum of the pencilB — A
is included in[a, b]. There is a special case where we may say more.

Theorem 5.4. Beside(5.1), suppose in addition thaty; 1 = Z2;72 — oo asj — oo.

Then the operatof3 is a compact perturbation of the identity, and condit{@l) holds.
In particular, the spectrum of B — A is given by the support of the measureand,

outside the spectrung, coincides with then—function of the linear pencid B — A.

Proof. We have shown in the proof of Propositionl5.2 that,; ;|? = |z241/*(Bj; —
1) = |22;41/* B}, ; is bounded foj — oo, and hence

Jim By = lim Bjjia =0, lim Bj; =1,

showing thatB is a compact perturbation of the identity, aBdhas its numerical range
included in[0, +o0) by (5.3). Hence, ifl(3]1) does not hold, theémwould be an eigenvalue
of B, with corresponding eigenvectgre /2,y # 0. Inserting thigy into (5.3) with% such
thaty, # 0 gives a contradiction.

It follows from the text after[(3]1) together with Propositi5.3 that the spectrum
o(A, B) of the linear penciB — A is included in[a,b]. Also, by construction and
Corollary[211,p,, /. interpolates botlp andm in z,, implying that these functions
are equal for: = z9, and for alln, and analytic inC \ [a, b] includingcc. Since these
points accumulate ato, we conclude thatn = ¢ outside[a, b]. Finally, the inclusion
supgu) C o(A, B) follows from the fact thaty is not analytic in any domain containing
points of the support of.

Givenz € C\ [a, b], by choosing a contodr surroundingda, b] but not the interpolation
pointsz; nor z we get from Lemma2]8 the formula

1 m b du(t
(8 - ) o) = 5 [ Qab O™ L = [ afwato 2,
where for the second identity we have used Fubini and thetffiattyr = m onT'. We
denote byR(z) the infinite matrix with entriesR(z), » given by the above right-hand
integral, which is clearly well defined for anyoutside the support of. From Lemm&2]6
we know thatR(z) is a formal left and right inverse ¢¢ B— A), and the desired conclusion
z ¢ o(A, B) follows as in the proof of Theorem 2.2 by showing tii4t) is bounded.
For this last step, we consider thed, decomposition o3 discussed in Remalk4.5 and
in [16, Theorem 2.2]: let/ be an upper bidiagonal matrix with ones on the diagonal, and
the quantities5;; ; on the main upper diagonal, théhrepresents a bounded operator
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on ¢? according to Propositidn 3.2. Moreover, we have that UU*, and, withB, also
U has a bounded inverse. Hence it will be sufficient to show that

P,
~ dist(z, supdu))

forally = (yo,v1, - ¥n,0,0,...) " € ¢ and for alln. Comparing with Proposition 4.3
we find that

b
(U*R(z)Uek,ej):/ Q% (0, 1) Ok (00, 1)

(U*R(2)Uy,y) (5.4)

dp(t)
z—1
where
QrLz(ooa r) = quL(fﬂ) - Bn,n—l%gfl(x)v Qﬁ(ooa r) = qf(l’) - Bn,n—l%?fl(w)a
andQé(oo r) = QF(co,z) = 1, and finally

b
7 | €0, 00k (0. Om(OC = [ @l (o0, 110k 0.ty dult) = 1.
In addition, sincey,, has real coefficients, it also follows from{b.1) that, for R,
implying that
2
. o dpl(t
(0 REU = | [ [ ke 42

J=0

S L(oo, S N
dlst(z Supp:u / Z%Q b dult) = dist(z, supgpu))’
as claimed in[(514). O

Remark 5.5. The assumptiony;+1 = Zz;52 — 0o asj — oo is very restrictive and can
be relaxed. For instance, if
lim sup max(|za;41 — al, 2241 = b) 73,
j—roo dist(z2;+1, [a, b])
then it follows from the proof of Propositidn 5.2 thatp B,.1,; < 1. As a consequence,

J
the operatoi/ from the proof of Theorefi 5.4 and thudsis a compact perturbation of
a boundedly invertible operator. This implies tHat13.1yl &ience the second part of the
statement of Theorem 5.4 is still true. O

In the setting of Theorem §.4, we may therefore apply our figsliof Theoren 3]3,
Theoren 3, or Theorem 3.6 in order to study the convergefitee multipoint Padé
approximants towards the Markov functigncompare with[[16, Theorem 6.2].

Finally, returning to the discussion of Remfrkl2.1 conaggrthe degrees of freedom of
representing multipoint Padé approximants via linearcfgnit is not difficult to see that
the two linear pencils B — A andAD(zB — A)D~!A for diagonalD, A with non-zero
diagonal entries generate the same continued fra¢tioh (2dtice that the matrixD does
not affect the diagonal entries and can be therefore bederes as to be a balancing factor
for the offdiagonal entries, whereasallows to scale the entries. In terms of the continued
fraction [2.1), a scaling corresponds to considering anvatgnce transformation of (2.1),
and different normalizations can be found in the literattwecerning the special cases
of J-fractions,7T'-fractions or Thiele continued fractions. A balancing, lever, leaves
invariant the continued fractiof (2.1) and just addressegjtiestion how to factorize the
productsaf ot
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It is always possible to choose a scaling such that the regutiatricesA, B become
bounded. However, such a scaling might produce a makipaving no longer a bounded
inverse, or satisfying no longer the conditifn {3.1). We&lsow from [11, Theorem 2.3]
that, for fixedz, the balancing which is best for obtainiage p(A, B) is the one which
makeszB — A to be complex symmetric (i.e., a complex Jacobi matrix). ha $pecial
case of Theorem 5.4, we have chosen a balancing factor to Ma&eal symmetric, and a
scaling such thatl, B are bounded an# has a bounded inverse.

A study of best scaling or balancing for general linear perisibeyond the scope of
this paper. For future research it might be interesting tws@ter a (formal) factorization
20B — A = M (z0)Ma(z) for some fixedz, (as done ir§ 4) and to discuss the conver-
gence of multi-point approximants in terms of spectral prtips ofz — M (z9) (2B —
A)M-(z) ™1, since this latter quantity does not depend on scaling anaahg (but de-
pends on how to choose the factdrs (zo)).
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